1 /* 2 * MTD device concatenation layer 3 * 4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de> 5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org> 6 * 7 * NAND support by Christian Gan <cgan@iders.ca> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/types.h> 30 #include <linux/backing-dev.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/concat.h> 34 35 #include <asm/div64.h> 36 37 /* 38 * Our storage structure: 39 * Subdev points to an array of pointers to struct mtd_info objects 40 * which is allocated along with this structure 41 * 42 */ 43 struct mtd_concat { 44 struct mtd_info mtd; 45 int num_subdev; 46 struct mtd_info **subdev; 47 }; 48 49 /* 50 * how to calculate the size required for the above structure, 51 * including the pointer array subdev points to: 52 */ 53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ 54 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) 55 56 /* 57 * Given a pointer to the MTD object in the mtd_concat structure, 58 * we can retrieve the pointer to that structure with this macro. 59 */ 60 #define CONCAT(x) ((struct mtd_concat *)(x)) 61 62 /* 63 * MTD methods which look up the relevant subdevice, translate the 64 * effective address and pass through to the subdevice. 65 */ 66 67 static int 68 concat_read(struct mtd_info *mtd, loff_t from, size_t len, 69 size_t * retlen, u_char * buf) 70 { 71 struct mtd_concat *concat = CONCAT(mtd); 72 int ret = 0, err; 73 int i; 74 75 *retlen = 0; 76 77 for (i = 0; i < concat->num_subdev; i++) { 78 struct mtd_info *subdev = concat->subdev[i]; 79 size_t size, retsize; 80 81 if (from >= subdev->size) { 82 /* Not destined for this subdev */ 83 size = 0; 84 from -= subdev->size; 85 continue; 86 } 87 if (from + len > subdev->size) 88 /* First part goes into this subdev */ 89 size = subdev->size - from; 90 else 91 /* Entire transaction goes into this subdev */ 92 size = len; 93 94 err = mtd_read(subdev, from, size, &retsize, buf); 95 96 /* Save information about bitflips! */ 97 if (unlikely(err)) { 98 if (mtd_is_eccerr(err)) { 99 mtd->ecc_stats.failed++; 100 ret = err; 101 } else if (mtd_is_bitflip(err)) { 102 mtd->ecc_stats.corrected++; 103 /* Do not overwrite -EBADMSG !! */ 104 if (!ret) 105 ret = err; 106 } else 107 return err; 108 } 109 110 *retlen += retsize; 111 len -= size; 112 if (len == 0) 113 return ret; 114 115 buf += size; 116 from = 0; 117 } 118 return -EINVAL; 119 } 120 121 static int 122 concat_write(struct mtd_info *mtd, loff_t to, size_t len, 123 size_t * retlen, const u_char * buf) 124 { 125 struct mtd_concat *concat = CONCAT(mtd); 126 int err = -EINVAL; 127 int i; 128 129 if (!(mtd->flags & MTD_WRITEABLE)) 130 return -EROFS; 131 132 *retlen = 0; 133 134 for (i = 0; i < concat->num_subdev; i++) { 135 struct mtd_info *subdev = concat->subdev[i]; 136 size_t size, retsize; 137 138 if (to >= subdev->size) { 139 size = 0; 140 to -= subdev->size; 141 continue; 142 } 143 if (to + len > subdev->size) 144 size = subdev->size - to; 145 else 146 size = len; 147 148 if (!(subdev->flags & MTD_WRITEABLE)) 149 err = -EROFS; 150 else 151 err = mtd_write(subdev, to, size, &retsize, buf); 152 153 if (err) 154 break; 155 156 *retlen += retsize; 157 len -= size; 158 if (len == 0) 159 break; 160 161 err = -EINVAL; 162 buf += size; 163 to = 0; 164 } 165 return err; 166 } 167 168 static int 169 concat_writev(struct mtd_info *mtd, const struct kvec *vecs, 170 unsigned long count, loff_t to, size_t * retlen) 171 { 172 struct mtd_concat *concat = CONCAT(mtd); 173 struct kvec *vecs_copy; 174 unsigned long entry_low, entry_high; 175 size_t total_len = 0; 176 int i; 177 int err = -EINVAL; 178 179 if (!(mtd->flags & MTD_WRITEABLE)) 180 return -EROFS; 181 182 *retlen = 0; 183 184 /* Calculate total length of data */ 185 for (i = 0; i < count; i++) 186 total_len += vecs[i].iov_len; 187 188 /* Do not allow write past end of device */ 189 if ((to + total_len) > mtd->size) 190 return -EINVAL; 191 192 /* Check alignment */ 193 if (mtd->writesize > 1) { 194 uint64_t __to = to; 195 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) 196 return -EINVAL; 197 } 198 199 /* make a copy of vecs */ 200 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL); 201 if (!vecs_copy) 202 return -ENOMEM; 203 204 entry_low = 0; 205 for (i = 0; i < concat->num_subdev; i++) { 206 struct mtd_info *subdev = concat->subdev[i]; 207 size_t size, wsize, retsize, old_iov_len; 208 209 if (to >= subdev->size) { 210 to -= subdev->size; 211 continue; 212 } 213 214 size = min_t(uint64_t, total_len, subdev->size - to); 215 wsize = size; /* store for future use */ 216 217 entry_high = entry_low; 218 while (entry_high < count) { 219 if (size <= vecs_copy[entry_high].iov_len) 220 break; 221 size -= vecs_copy[entry_high++].iov_len; 222 } 223 224 old_iov_len = vecs_copy[entry_high].iov_len; 225 vecs_copy[entry_high].iov_len = size; 226 227 if (!(subdev->flags & MTD_WRITEABLE)) 228 err = -EROFS; 229 else 230 err = mtd_writev(subdev, &vecs_copy[entry_low], 231 entry_high - entry_low + 1, to, 232 &retsize); 233 234 vecs_copy[entry_high].iov_len = old_iov_len - size; 235 vecs_copy[entry_high].iov_base += size; 236 237 entry_low = entry_high; 238 239 if (err) 240 break; 241 242 *retlen += retsize; 243 total_len -= wsize; 244 245 if (total_len == 0) 246 break; 247 248 err = -EINVAL; 249 to = 0; 250 } 251 252 kfree(vecs_copy); 253 return err; 254 } 255 256 static int 257 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 258 { 259 struct mtd_concat *concat = CONCAT(mtd); 260 struct mtd_oob_ops devops = *ops; 261 int i, err, ret = 0; 262 263 ops->retlen = ops->oobretlen = 0; 264 265 for (i = 0; i < concat->num_subdev; i++) { 266 struct mtd_info *subdev = concat->subdev[i]; 267 268 if (from >= subdev->size) { 269 from -= subdev->size; 270 continue; 271 } 272 273 /* partial read ? */ 274 if (from + devops.len > subdev->size) 275 devops.len = subdev->size - from; 276 277 err = mtd_read_oob(subdev, from, &devops); 278 ops->retlen += devops.retlen; 279 ops->oobretlen += devops.oobretlen; 280 281 /* Save information about bitflips! */ 282 if (unlikely(err)) { 283 if (mtd_is_eccerr(err)) { 284 mtd->ecc_stats.failed++; 285 ret = err; 286 } else if (mtd_is_bitflip(err)) { 287 mtd->ecc_stats.corrected++; 288 /* Do not overwrite -EBADMSG !! */ 289 if (!ret) 290 ret = err; 291 } else 292 return err; 293 } 294 295 if (devops.datbuf) { 296 devops.len = ops->len - ops->retlen; 297 if (!devops.len) 298 return ret; 299 devops.datbuf += devops.retlen; 300 } 301 if (devops.oobbuf) { 302 devops.ooblen = ops->ooblen - ops->oobretlen; 303 if (!devops.ooblen) 304 return ret; 305 devops.oobbuf += ops->oobretlen; 306 } 307 308 from = 0; 309 } 310 return -EINVAL; 311 } 312 313 static int 314 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) 315 { 316 struct mtd_concat *concat = CONCAT(mtd); 317 struct mtd_oob_ops devops = *ops; 318 int i, err; 319 320 if (!(mtd->flags & MTD_WRITEABLE)) 321 return -EROFS; 322 323 ops->retlen = ops->oobretlen = 0; 324 325 for (i = 0; i < concat->num_subdev; i++) { 326 struct mtd_info *subdev = concat->subdev[i]; 327 328 if (to >= subdev->size) { 329 to -= subdev->size; 330 continue; 331 } 332 333 /* partial write ? */ 334 if (to + devops.len > subdev->size) 335 devops.len = subdev->size - to; 336 337 err = mtd_write_oob(subdev, to, &devops); 338 ops->retlen += devops.oobretlen; 339 if (err) 340 return err; 341 342 if (devops.datbuf) { 343 devops.len = ops->len - ops->retlen; 344 if (!devops.len) 345 return 0; 346 devops.datbuf += devops.retlen; 347 } 348 if (devops.oobbuf) { 349 devops.ooblen = ops->ooblen - ops->oobretlen; 350 if (!devops.ooblen) 351 return 0; 352 devops.oobbuf += devops.oobretlen; 353 } 354 to = 0; 355 } 356 return -EINVAL; 357 } 358 359 static void concat_erase_callback(struct erase_info *instr) 360 { 361 wake_up((wait_queue_head_t *) instr->priv); 362 } 363 364 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) 365 { 366 int err; 367 wait_queue_head_t waitq; 368 DECLARE_WAITQUEUE(wait, current); 369 370 /* 371 * This code was stol^H^H^H^Hinspired by mtdchar.c 372 */ 373 init_waitqueue_head(&waitq); 374 375 erase->mtd = mtd; 376 erase->callback = concat_erase_callback; 377 erase->priv = (unsigned long) &waitq; 378 379 /* 380 * FIXME: Allow INTERRUPTIBLE. Which means 381 * not having the wait_queue head on the stack. 382 */ 383 err = mtd_erase(mtd, erase); 384 if (!err) { 385 set_current_state(TASK_UNINTERRUPTIBLE); 386 add_wait_queue(&waitq, &wait); 387 if (erase->state != MTD_ERASE_DONE 388 && erase->state != MTD_ERASE_FAILED) 389 schedule(); 390 remove_wait_queue(&waitq, &wait); 391 set_current_state(TASK_RUNNING); 392 393 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0; 394 } 395 return err; 396 } 397 398 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) 399 { 400 struct mtd_concat *concat = CONCAT(mtd); 401 struct mtd_info *subdev; 402 int i, err; 403 uint64_t length, offset = 0; 404 struct erase_info *erase; 405 406 if (!(mtd->flags & MTD_WRITEABLE)) 407 return -EROFS; 408 409 if (instr->addr > concat->mtd.size) 410 return -EINVAL; 411 412 if (instr->len + instr->addr > concat->mtd.size) 413 return -EINVAL; 414 415 /* 416 * Check for proper erase block alignment of the to-be-erased area. 417 * It is easier to do this based on the super device's erase 418 * region info rather than looking at each particular sub-device 419 * in turn. 420 */ 421 if (!concat->mtd.numeraseregions) { 422 /* the easy case: device has uniform erase block size */ 423 if (instr->addr & (concat->mtd.erasesize - 1)) 424 return -EINVAL; 425 if (instr->len & (concat->mtd.erasesize - 1)) 426 return -EINVAL; 427 } else { 428 /* device has variable erase size */ 429 struct mtd_erase_region_info *erase_regions = 430 concat->mtd.eraseregions; 431 432 /* 433 * Find the erase region where the to-be-erased area begins: 434 */ 435 for (i = 0; i < concat->mtd.numeraseregions && 436 instr->addr >= erase_regions[i].offset; i++) ; 437 --i; 438 439 /* 440 * Now erase_regions[i] is the region in which the 441 * to-be-erased area begins. Verify that the starting 442 * offset is aligned to this region's erase size: 443 */ 444 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1)) 445 return -EINVAL; 446 447 /* 448 * now find the erase region where the to-be-erased area ends: 449 */ 450 for (; i < concat->mtd.numeraseregions && 451 (instr->addr + instr->len) >= erase_regions[i].offset; 452 ++i) ; 453 --i; 454 /* 455 * check if the ending offset is aligned to this region's erase size 456 */ 457 if (i < 0 || ((instr->addr + instr->len) & 458 (erase_regions[i].erasesize - 1))) 459 return -EINVAL; 460 } 461 462 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 463 464 /* make a local copy of instr to avoid modifying the caller's struct */ 465 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 466 467 if (!erase) 468 return -ENOMEM; 469 470 *erase = *instr; 471 length = instr->len; 472 473 /* 474 * find the subdevice where the to-be-erased area begins, adjust 475 * starting offset to be relative to the subdevice start 476 */ 477 for (i = 0; i < concat->num_subdev; i++) { 478 subdev = concat->subdev[i]; 479 if (subdev->size <= erase->addr) { 480 erase->addr -= subdev->size; 481 offset += subdev->size; 482 } else { 483 break; 484 } 485 } 486 487 /* must never happen since size limit has been verified above */ 488 BUG_ON(i >= concat->num_subdev); 489 490 /* now do the erase: */ 491 err = 0; 492 for (; length > 0; i++) { 493 /* loop for all subdevices affected by this request */ 494 subdev = concat->subdev[i]; /* get current subdevice */ 495 496 /* limit length to subdevice's size: */ 497 if (erase->addr + length > subdev->size) 498 erase->len = subdev->size - erase->addr; 499 else 500 erase->len = length; 501 502 if (!(subdev->flags & MTD_WRITEABLE)) { 503 err = -EROFS; 504 break; 505 } 506 length -= erase->len; 507 if ((err = concat_dev_erase(subdev, erase))) { 508 /* sanity check: should never happen since 509 * block alignment has been checked above */ 510 BUG_ON(err == -EINVAL); 511 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 512 instr->fail_addr = erase->fail_addr + offset; 513 break; 514 } 515 /* 516 * erase->addr specifies the offset of the area to be 517 * erased *within the current subdevice*. It can be 518 * non-zero only the first time through this loop, i.e. 519 * for the first subdevice where blocks need to be erased. 520 * All the following erases must begin at the start of the 521 * current subdevice, i.e. at offset zero. 522 */ 523 erase->addr = 0; 524 offset += subdev->size; 525 } 526 instr->state = erase->state; 527 kfree(erase); 528 if (err) 529 return err; 530 531 if (instr->callback) 532 instr->callback(instr); 533 return 0; 534 } 535 536 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 537 { 538 struct mtd_concat *concat = CONCAT(mtd); 539 int i, err = -EINVAL; 540 541 if ((len + ofs) > mtd->size) 542 return -EINVAL; 543 544 for (i = 0; i < concat->num_subdev; i++) { 545 struct mtd_info *subdev = concat->subdev[i]; 546 uint64_t size; 547 548 if (ofs >= subdev->size) { 549 size = 0; 550 ofs -= subdev->size; 551 continue; 552 } 553 if (ofs + len > subdev->size) 554 size = subdev->size - ofs; 555 else 556 size = len; 557 558 err = mtd_lock(subdev, ofs, size); 559 if (err) 560 break; 561 562 len -= size; 563 if (len == 0) 564 break; 565 566 err = -EINVAL; 567 ofs = 0; 568 } 569 570 return err; 571 } 572 573 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 574 { 575 struct mtd_concat *concat = CONCAT(mtd); 576 int i, err = 0; 577 578 if ((len + ofs) > mtd->size) 579 return -EINVAL; 580 581 for (i = 0; i < concat->num_subdev; i++) { 582 struct mtd_info *subdev = concat->subdev[i]; 583 uint64_t size; 584 585 if (ofs >= subdev->size) { 586 size = 0; 587 ofs -= subdev->size; 588 continue; 589 } 590 if (ofs + len > subdev->size) 591 size = subdev->size - ofs; 592 else 593 size = len; 594 595 err = mtd_unlock(subdev, ofs, size); 596 if (err) 597 break; 598 599 len -= size; 600 if (len == 0) 601 break; 602 603 err = -EINVAL; 604 ofs = 0; 605 } 606 607 return err; 608 } 609 610 static void concat_sync(struct mtd_info *mtd) 611 { 612 struct mtd_concat *concat = CONCAT(mtd); 613 int i; 614 615 for (i = 0; i < concat->num_subdev; i++) { 616 struct mtd_info *subdev = concat->subdev[i]; 617 mtd_sync(subdev); 618 } 619 } 620 621 static int concat_suspend(struct mtd_info *mtd) 622 { 623 struct mtd_concat *concat = CONCAT(mtd); 624 int i, rc = 0; 625 626 for (i = 0; i < concat->num_subdev; i++) { 627 struct mtd_info *subdev = concat->subdev[i]; 628 if ((rc = mtd_suspend(subdev)) < 0) 629 return rc; 630 } 631 return rc; 632 } 633 634 static void concat_resume(struct mtd_info *mtd) 635 { 636 struct mtd_concat *concat = CONCAT(mtd); 637 int i; 638 639 for (i = 0; i < concat->num_subdev; i++) { 640 struct mtd_info *subdev = concat->subdev[i]; 641 mtd_resume(subdev); 642 } 643 } 644 645 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) 646 { 647 struct mtd_concat *concat = CONCAT(mtd); 648 int i, res = 0; 649 650 if (!mtd_can_have_bb(concat->subdev[0])) 651 return res; 652 653 if (ofs > mtd->size) 654 return -EINVAL; 655 656 for (i = 0; i < concat->num_subdev; i++) { 657 struct mtd_info *subdev = concat->subdev[i]; 658 659 if (ofs >= subdev->size) { 660 ofs -= subdev->size; 661 continue; 662 } 663 664 res = mtd_block_isbad(subdev, ofs); 665 break; 666 } 667 668 return res; 669 } 670 671 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) 672 { 673 struct mtd_concat *concat = CONCAT(mtd); 674 int i, err = -EINVAL; 675 676 if (!mtd_can_have_bb(concat->subdev[0])) 677 return 0; 678 679 if (ofs > mtd->size) 680 return -EINVAL; 681 682 for (i = 0; i < concat->num_subdev; i++) { 683 struct mtd_info *subdev = concat->subdev[i]; 684 685 if (ofs >= subdev->size) { 686 ofs -= subdev->size; 687 continue; 688 } 689 690 err = mtd_block_markbad(subdev, ofs); 691 if (!err) 692 mtd->ecc_stats.badblocks++; 693 break; 694 } 695 696 return err; 697 } 698 699 /* 700 * try to support NOMMU mmaps on concatenated devices 701 * - we don't support subdev spanning as we can't guarantee it'll work 702 */ 703 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd, 704 unsigned long len, 705 unsigned long offset, 706 unsigned long flags) 707 { 708 struct mtd_concat *concat = CONCAT(mtd); 709 int i; 710 711 for (i = 0; i < concat->num_subdev; i++) { 712 struct mtd_info *subdev = concat->subdev[i]; 713 714 if (offset >= subdev->size) { 715 offset -= subdev->size; 716 continue; 717 } 718 719 /* we've found the subdev over which the mapping will reside */ 720 if (offset + len > subdev->size) 721 return (unsigned long) -EINVAL; 722 723 return mtd_get_unmapped_area(subdev, len, offset, flags); 724 } 725 726 return (unsigned long) -ENOSYS; 727 } 728 729 /* 730 * This function constructs a virtual MTD device by concatenating 731 * num_devs MTD devices. A pointer to the new device object is 732 * stored to *new_dev upon success. This function does _not_ 733 * register any devices: this is the caller's responsibility. 734 */ 735 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ 736 int num_devs, /* number of subdevices */ 737 const char *name) 738 { /* name for the new device */ 739 int i; 740 size_t size; 741 struct mtd_concat *concat; 742 uint32_t max_erasesize, curr_erasesize; 743 int num_erase_region; 744 int max_writebufsize = 0; 745 746 printk(KERN_NOTICE "Concatenating MTD devices:\n"); 747 for (i = 0; i < num_devs; i++) 748 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); 749 printk(KERN_NOTICE "into device \"%s\"\n", name); 750 751 /* allocate the device structure */ 752 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); 753 concat = kzalloc(size, GFP_KERNEL); 754 if (!concat) { 755 printk 756 ("memory allocation error while creating concatenated device \"%s\"\n", 757 name); 758 return NULL; 759 } 760 concat->subdev = (struct mtd_info **) (concat + 1); 761 762 /* 763 * Set up the new "super" device's MTD object structure, check for 764 * incompatibilities between the subdevices. 765 */ 766 concat->mtd.type = subdev[0]->type; 767 concat->mtd.flags = subdev[0]->flags; 768 concat->mtd.size = subdev[0]->size; 769 concat->mtd.erasesize = subdev[0]->erasesize; 770 concat->mtd.writesize = subdev[0]->writesize; 771 772 for (i = 0; i < num_devs; i++) 773 if (max_writebufsize < subdev[i]->writebufsize) 774 max_writebufsize = subdev[i]->writebufsize; 775 concat->mtd.writebufsize = max_writebufsize; 776 777 concat->mtd.subpage_sft = subdev[0]->subpage_sft; 778 concat->mtd.oobsize = subdev[0]->oobsize; 779 concat->mtd.oobavail = subdev[0]->oobavail; 780 if (subdev[0]->writev) 781 concat->mtd.writev = concat_writev; 782 if (subdev[0]->read_oob) 783 concat->mtd.read_oob = concat_read_oob; 784 if (subdev[0]->write_oob) 785 concat->mtd.write_oob = concat_write_oob; 786 if (subdev[0]->block_isbad) 787 concat->mtd.block_isbad = concat_block_isbad; 788 if (subdev[0]->block_markbad) 789 concat->mtd.block_markbad = concat_block_markbad; 790 791 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 792 793 concat->mtd.backing_dev_info = subdev[0]->backing_dev_info; 794 795 concat->subdev[0] = subdev[0]; 796 797 for (i = 1; i < num_devs; i++) { 798 if (concat->mtd.type != subdev[i]->type) { 799 kfree(concat); 800 printk("Incompatible device type on \"%s\"\n", 801 subdev[i]->name); 802 return NULL; 803 } 804 if (concat->mtd.flags != subdev[i]->flags) { 805 /* 806 * Expect all flags except MTD_WRITEABLE to be 807 * equal on all subdevices. 808 */ 809 if ((concat->mtd.flags ^ subdev[i]-> 810 flags) & ~MTD_WRITEABLE) { 811 kfree(concat); 812 printk("Incompatible device flags on \"%s\"\n", 813 subdev[i]->name); 814 return NULL; 815 } else 816 /* if writeable attribute differs, 817 make super device writeable */ 818 concat->mtd.flags |= 819 subdev[i]->flags & MTD_WRITEABLE; 820 } 821 822 /* only permit direct mapping if the BDIs are all the same 823 * - copy-mapping is still permitted 824 */ 825 if (concat->mtd.backing_dev_info != 826 subdev[i]->backing_dev_info) 827 concat->mtd.backing_dev_info = 828 &default_backing_dev_info; 829 830 concat->mtd.size += subdev[i]->size; 831 concat->mtd.ecc_stats.badblocks += 832 subdev[i]->ecc_stats.badblocks; 833 if (concat->mtd.writesize != subdev[i]->writesize || 834 concat->mtd.subpage_sft != subdev[i]->subpage_sft || 835 concat->mtd.oobsize != subdev[i]->oobsize || 836 !concat->mtd.read_oob != !subdev[i]->read_oob || 837 !concat->mtd.write_oob != !subdev[i]->write_oob) { 838 kfree(concat); 839 printk("Incompatible OOB or ECC data on \"%s\"\n", 840 subdev[i]->name); 841 return NULL; 842 } 843 concat->subdev[i] = subdev[i]; 844 845 } 846 847 concat->mtd.ecclayout = subdev[0]->ecclayout; 848 849 concat->num_subdev = num_devs; 850 concat->mtd.name = name; 851 852 concat->mtd.erase = concat_erase; 853 concat->mtd.read = concat_read; 854 concat->mtd.write = concat_write; 855 concat->mtd.sync = concat_sync; 856 concat->mtd.lock = concat_lock; 857 concat->mtd.unlock = concat_unlock; 858 concat->mtd.suspend = concat_suspend; 859 concat->mtd.resume = concat_resume; 860 concat->mtd.get_unmapped_area = concat_get_unmapped_area; 861 862 /* 863 * Combine the erase block size info of the subdevices: 864 * 865 * first, walk the map of the new device and see how 866 * many changes in erase size we have 867 */ 868 max_erasesize = curr_erasesize = subdev[0]->erasesize; 869 num_erase_region = 1; 870 for (i = 0; i < num_devs; i++) { 871 if (subdev[i]->numeraseregions == 0) { 872 /* current subdevice has uniform erase size */ 873 if (subdev[i]->erasesize != curr_erasesize) { 874 /* if it differs from the last subdevice's erase size, count it */ 875 ++num_erase_region; 876 curr_erasesize = subdev[i]->erasesize; 877 if (curr_erasesize > max_erasesize) 878 max_erasesize = curr_erasesize; 879 } 880 } else { 881 /* current subdevice has variable erase size */ 882 int j; 883 for (j = 0; j < subdev[i]->numeraseregions; j++) { 884 885 /* walk the list of erase regions, count any changes */ 886 if (subdev[i]->eraseregions[j].erasesize != 887 curr_erasesize) { 888 ++num_erase_region; 889 curr_erasesize = 890 subdev[i]->eraseregions[j]. 891 erasesize; 892 if (curr_erasesize > max_erasesize) 893 max_erasesize = curr_erasesize; 894 } 895 } 896 } 897 } 898 899 if (num_erase_region == 1) { 900 /* 901 * All subdevices have the same uniform erase size. 902 * This is easy: 903 */ 904 concat->mtd.erasesize = curr_erasesize; 905 concat->mtd.numeraseregions = 0; 906 } else { 907 uint64_t tmp64; 908 909 /* 910 * erase block size varies across the subdevices: allocate 911 * space to store the data describing the variable erase regions 912 */ 913 struct mtd_erase_region_info *erase_region_p; 914 uint64_t begin, position; 915 916 concat->mtd.erasesize = max_erasesize; 917 concat->mtd.numeraseregions = num_erase_region; 918 concat->mtd.eraseregions = erase_region_p = 919 kmalloc(num_erase_region * 920 sizeof (struct mtd_erase_region_info), GFP_KERNEL); 921 if (!erase_region_p) { 922 kfree(concat); 923 printk 924 ("memory allocation error while creating erase region list" 925 " for device \"%s\"\n", name); 926 return NULL; 927 } 928 929 /* 930 * walk the map of the new device once more and fill in 931 * in erase region info: 932 */ 933 curr_erasesize = subdev[0]->erasesize; 934 begin = position = 0; 935 for (i = 0; i < num_devs; i++) { 936 if (subdev[i]->numeraseregions == 0) { 937 /* current subdevice has uniform erase size */ 938 if (subdev[i]->erasesize != curr_erasesize) { 939 /* 940 * fill in an mtd_erase_region_info structure for the area 941 * we have walked so far: 942 */ 943 erase_region_p->offset = begin; 944 erase_region_p->erasesize = 945 curr_erasesize; 946 tmp64 = position - begin; 947 do_div(tmp64, curr_erasesize); 948 erase_region_p->numblocks = tmp64; 949 begin = position; 950 951 curr_erasesize = subdev[i]->erasesize; 952 ++erase_region_p; 953 } 954 position += subdev[i]->size; 955 } else { 956 /* current subdevice has variable erase size */ 957 int j; 958 for (j = 0; j < subdev[i]->numeraseregions; j++) { 959 /* walk the list of erase regions, count any changes */ 960 if (subdev[i]->eraseregions[j]. 961 erasesize != curr_erasesize) { 962 erase_region_p->offset = begin; 963 erase_region_p->erasesize = 964 curr_erasesize; 965 tmp64 = position - begin; 966 do_div(tmp64, curr_erasesize); 967 erase_region_p->numblocks = tmp64; 968 begin = position; 969 970 curr_erasesize = 971 subdev[i]->eraseregions[j]. 972 erasesize; 973 ++erase_region_p; 974 } 975 position += 976 subdev[i]->eraseregions[j]. 977 numblocks * (uint64_t)curr_erasesize; 978 } 979 } 980 } 981 /* Now write the final entry */ 982 erase_region_p->offset = begin; 983 erase_region_p->erasesize = curr_erasesize; 984 tmp64 = position - begin; 985 do_div(tmp64, curr_erasesize); 986 erase_region_p->numblocks = tmp64; 987 } 988 989 return &concat->mtd; 990 } 991 992 /* 993 * This function destroys an MTD object obtained from concat_mtd_devs() 994 */ 995 996 void mtd_concat_destroy(struct mtd_info *mtd) 997 { 998 struct mtd_concat *concat = CONCAT(mtd); 999 if (concat->mtd.numeraseregions) 1000 kfree(concat->mtd.eraseregions); 1001 kfree(concat); 1002 } 1003 1004 EXPORT_SYMBOL(mtd_concat_create); 1005 EXPORT_SYMBOL(mtd_concat_destroy); 1006 1007 MODULE_LICENSE("GPL"); 1008 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); 1009 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); 1010