xref: /openbmc/linux/drivers/mtd/mtdconcat.c (revision 9cdb81c7)
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34 
35 #include <asm/div64.h>
36 
37 /*
38  * Our storage structure:
39  * Subdev points to an array of pointers to struct mtd_info objects
40  * which is allocated along with this structure
41  *
42  */
43 struct mtd_concat {
44 	struct mtd_info mtd;
45 	int num_subdev;
46 	struct mtd_info **subdev;
47 };
48 
49 /*
50  * how to calculate the size required for the above structure,
51  * including the pointer array subdev points to:
52  */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
54 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55 
56 /*
57  * Given a pointer to the MTD object in the mtd_concat structure,
58  * we can retrieve the pointer to that structure with this macro.
59  */
60 #define CONCAT(x)  ((struct mtd_concat *)(x))
61 
62 /*
63  * MTD methods which look up the relevant subdevice, translate the
64  * effective address and pass through to the subdevice.
65  */
66 
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69 	    size_t * retlen, u_char * buf)
70 {
71 	struct mtd_concat *concat = CONCAT(mtd);
72 	int ret = 0, err;
73 	int i;
74 
75 	*retlen = 0;
76 
77 	for (i = 0; i < concat->num_subdev; i++) {
78 		struct mtd_info *subdev = concat->subdev[i];
79 		size_t size, retsize;
80 
81 		if (from >= subdev->size) {
82 			/* Not destined for this subdev */
83 			size = 0;
84 			from -= subdev->size;
85 			continue;
86 		}
87 		if (from + len > subdev->size)
88 			/* First part goes into this subdev */
89 			size = subdev->size - from;
90 		else
91 			/* Entire transaction goes into this subdev */
92 			size = len;
93 
94 		err = mtd_read(subdev, from, size, &retsize, buf);
95 
96 		/* Save information about bitflips! */
97 		if (unlikely(err)) {
98 			if (mtd_is_eccerr(err)) {
99 				mtd->ecc_stats.failed++;
100 				ret = err;
101 			} else if (mtd_is_bitflip(err)) {
102 				mtd->ecc_stats.corrected++;
103 				/* Do not overwrite -EBADMSG !! */
104 				if (!ret)
105 					ret = err;
106 			} else
107 				return err;
108 		}
109 
110 		*retlen += retsize;
111 		len -= size;
112 		if (len == 0)
113 			return ret;
114 
115 		buf += size;
116 		from = 0;
117 	}
118 	return -EINVAL;
119 }
120 
121 static int
122 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
123 	     size_t * retlen, const u_char * buf)
124 {
125 	struct mtd_concat *concat = CONCAT(mtd);
126 	int err = -EINVAL;
127 	int i;
128 
129 	if (!(mtd->flags & MTD_WRITEABLE))
130 		return -EROFS;
131 
132 	*retlen = 0;
133 
134 	for (i = 0; i < concat->num_subdev; i++) {
135 		struct mtd_info *subdev = concat->subdev[i];
136 		size_t size, retsize;
137 
138 		if (to >= subdev->size) {
139 			size = 0;
140 			to -= subdev->size;
141 			continue;
142 		}
143 		if (to + len > subdev->size)
144 			size = subdev->size - to;
145 		else
146 			size = len;
147 
148 		if (!(subdev->flags & MTD_WRITEABLE))
149 			err = -EROFS;
150 		else
151 			err = mtd_write(subdev, to, size, &retsize, buf);
152 
153 		if (err)
154 			break;
155 
156 		*retlen += retsize;
157 		len -= size;
158 		if (len == 0)
159 			break;
160 
161 		err = -EINVAL;
162 		buf += size;
163 		to = 0;
164 	}
165 	return err;
166 }
167 
168 static int
169 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
170 		unsigned long count, loff_t to, size_t * retlen)
171 {
172 	struct mtd_concat *concat = CONCAT(mtd);
173 	struct kvec *vecs_copy;
174 	unsigned long entry_low, entry_high;
175 	size_t total_len = 0;
176 	int i;
177 	int err = -EINVAL;
178 
179 	if (!(mtd->flags & MTD_WRITEABLE))
180 		return -EROFS;
181 
182 	*retlen = 0;
183 
184 	/* Calculate total length of data */
185 	for (i = 0; i < count; i++)
186 		total_len += vecs[i].iov_len;
187 
188 	/* Do not allow write past end of device */
189 	if ((to + total_len) > mtd->size)
190 		return -EINVAL;
191 
192 	/* Check alignment */
193 	if (mtd->writesize > 1) {
194 		uint64_t __to = to;
195 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
196 			return -EINVAL;
197 	}
198 
199 	/* make a copy of vecs */
200 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
201 	if (!vecs_copy)
202 		return -ENOMEM;
203 
204 	entry_low = 0;
205 	for (i = 0; i < concat->num_subdev; i++) {
206 		struct mtd_info *subdev = concat->subdev[i];
207 		size_t size, wsize, retsize, old_iov_len;
208 
209 		if (to >= subdev->size) {
210 			to -= subdev->size;
211 			continue;
212 		}
213 
214 		size = min_t(uint64_t, total_len, subdev->size - to);
215 		wsize = size; /* store for future use */
216 
217 		entry_high = entry_low;
218 		while (entry_high < count) {
219 			if (size <= vecs_copy[entry_high].iov_len)
220 				break;
221 			size -= vecs_copy[entry_high++].iov_len;
222 		}
223 
224 		old_iov_len = vecs_copy[entry_high].iov_len;
225 		vecs_copy[entry_high].iov_len = size;
226 
227 		if (!(subdev->flags & MTD_WRITEABLE))
228 			err = -EROFS;
229 		else
230 			err = mtd_writev(subdev, &vecs_copy[entry_low],
231 					 entry_high - entry_low + 1, to,
232 					 &retsize);
233 
234 		vecs_copy[entry_high].iov_len = old_iov_len - size;
235 		vecs_copy[entry_high].iov_base += size;
236 
237 		entry_low = entry_high;
238 
239 		if (err)
240 			break;
241 
242 		*retlen += retsize;
243 		total_len -= wsize;
244 
245 		if (total_len == 0)
246 			break;
247 
248 		err = -EINVAL;
249 		to = 0;
250 	}
251 
252 	kfree(vecs_copy);
253 	return err;
254 }
255 
256 static int
257 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
258 {
259 	struct mtd_concat *concat = CONCAT(mtd);
260 	struct mtd_oob_ops devops = *ops;
261 	int i, err, ret = 0;
262 
263 	ops->retlen = ops->oobretlen = 0;
264 
265 	for (i = 0; i < concat->num_subdev; i++) {
266 		struct mtd_info *subdev = concat->subdev[i];
267 
268 		if (from >= subdev->size) {
269 			from -= subdev->size;
270 			continue;
271 		}
272 
273 		/* partial read ? */
274 		if (from + devops.len > subdev->size)
275 			devops.len = subdev->size - from;
276 
277 		err = mtd_read_oob(subdev, from, &devops);
278 		ops->retlen += devops.retlen;
279 		ops->oobretlen += devops.oobretlen;
280 
281 		/* Save information about bitflips! */
282 		if (unlikely(err)) {
283 			if (mtd_is_eccerr(err)) {
284 				mtd->ecc_stats.failed++;
285 				ret = err;
286 			} else if (mtd_is_bitflip(err)) {
287 				mtd->ecc_stats.corrected++;
288 				/* Do not overwrite -EBADMSG !! */
289 				if (!ret)
290 					ret = err;
291 			} else
292 				return err;
293 		}
294 
295 		if (devops.datbuf) {
296 			devops.len = ops->len - ops->retlen;
297 			if (!devops.len)
298 				return ret;
299 			devops.datbuf += devops.retlen;
300 		}
301 		if (devops.oobbuf) {
302 			devops.ooblen = ops->ooblen - ops->oobretlen;
303 			if (!devops.ooblen)
304 				return ret;
305 			devops.oobbuf += ops->oobretlen;
306 		}
307 
308 		from = 0;
309 	}
310 	return -EINVAL;
311 }
312 
313 static int
314 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
315 {
316 	struct mtd_concat *concat = CONCAT(mtd);
317 	struct mtd_oob_ops devops = *ops;
318 	int i, err;
319 
320 	if (!(mtd->flags & MTD_WRITEABLE))
321 		return -EROFS;
322 
323 	ops->retlen = ops->oobretlen = 0;
324 
325 	for (i = 0; i < concat->num_subdev; i++) {
326 		struct mtd_info *subdev = concat->subdev[i];
327 
328 		if (to >= subdev->size) {
329 			to -= subdev->size;
330 			continue;
331 		}
332 
333 		/* partial write ? */
334 		if (to + devops.len > subdev->size)
335 			devops.len = subdev->size - to;
336 
337 		err = mtd_write_oob(subdev, to, &devops);
338 		ops->retlen += devops.oobretlen;
339 		if (err)
340 			return err;
341 
342 		if (devops.datbuf) {
343 			devops.len = ops->len - ops->retlen;
344 			if (!devops.len)
345 				return 0;
346 			devops.datbuf += devops.retlen;
347 		}
348 		if (devops.oobbuf) {
349 			devops.ooblen = ops->ooblen - ops->oobretlen;
350 			if (!devops.ooblen)
351 				return 0;
352 			devops.oobbuf += devops.oobretlen;
353 		}
354 		to = 0;
355 	}
356 	return -EINVAL;
357 }
358 
359 static void concat_erase_callback(struct erase_info *instr)
360 {
361 	wake_up((wait_queue_head_t *) instr->priv);
362 }
363 
364 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
365 {
366 	int err;
367 	wait_queue_head_t waitq;
368 	DECLARE_WAITQUEUE(wait, current);
369 
370 	/*
371 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
372 	 */
373 	init_waitqueue_head(&waitq);
374 
375 	erase->mtd = mtd;
376 	erase->callback = concat_erase_callback;
377 	erase->priv = (unsigned long) &waitq;
378 
379 	/*
380 	 * FIXME: Allow INTERRUPTIBLE. Which means
381 	 * not having the wait_queue head on the stack.
382 	 */
383 	err = mtd_erase(mtd, erase);
384 	if (!err) {
385 		set_current_state(TASK_UNINTERRUPTIBLE);
386 		add_wait_queue(&waitq, &wait);
387 		if (erase->state != MTD_ERASE_DONE
388 		    && erase->state != MTD_ERASE_FAILED)
389 			schedule();
390 		remove_wait_queue(&waitq, &wait);
391 		set_current_state(TASK_RUNNING);
392 
393 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
394 	}
395 	return err;
396 }
397 
398 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
399 {
400 	struct mtd_concat *concat = CONCAT(mtd);
401 	struct mtd_info *subdev;
402 	int i, err;
403 	uint64_t length, offset = 0;
404 	struct erase_info *erase;
405 
406 	if (!(mtd->flags & MTD_WRITEABLE))
407 		return -EROFS;
408 
409 	if (instr->addr > concat->mtd.size)
410 		return -EINVAL;
411 
412 	if (instr->len + instr->addr > concat->mtd.size)
413 		return -EINVAL;
414 
415 	/*
416 	 * Check for proper erase block alignment of the to-be-erased area.
417 	 * It is easier to do this based on the super device's erase
418 	 * region info rather than looking at each particular sub-device
419 	 * in turn.
420 	 */
421 	if (!concat->mtd.numeraseregions) {
422 		/* the easy case: device has uniform erase block size */
423 		if (instr->addr & (concat->mtd.erasesize - 1))
424 			return -EINVAL;
425 		if (instr->len & (concat->mtd.erasesize - 1))
426 			return -EINVAL;
427 	} else {
428 		/* device has variable erase size */
429 		struct mtd_erase_region_info *erase_regions =
430 		    concat->mtd.eraseregions;
431 
432 		/*
433 		 * Find the erase region where the to-be-erased area begins:
434 		 */
435 		for (i = 0; i < concat->mtd.numeraseregions &&
436 		     instr->addr >= erase_regions[i].offset; i++) ;
437 		--i;
438 
439 		/*
440 		 * Now erase_regions[i] is the region in which the
441 		 * to-be-erased area begins. Verify that the starting
442 		 * offset is aligned to this region's erase size:
443 		 */
444 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
445 			return -EINVAL;
446 
447 		/*
448 		 * now find the erase region where the to-be-erased area ends:
449 		 */
450 		for (; i < concat->mtd.numeraseregions &&
451 		     (instr->addr + instr->len) >= erase_regions[i].offset;
452 		     ++i) ;
453 		--i;
454 		/*
455 		 * check if the ending offset is aligned to this region's erase size
456 		 */
457 		if (i < 0 || ((instr->addr + instr->len) &
458 					(erase_regions[i].erasesize - 1)))
459 			return -EINVAL;
460 	}
461 
462 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
463 
464 	/* make a local copy of instr to avoid modifying the caller's struct */
465 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
466 
467 	if (!erase)
468 		return -ENOMEM;
469 
470 	*erase = *instr;
471 	length = instr->len;
472 
473 	/*
474 	 * find the subdevice where the to-be-erased area begins, adjust
475 	 * starting offset to be relative to the subdevice start
476 	 */
477 	for (i = 0; i < concat->num_subdev; i++) {
478 		subdev = concat->subdev[i];
479 		if (subdev->size <= erase->addr) {
480 			erase->addr -= subdev->size;
481 			offset += subdev->size;
482 		} else {
483 			break;
484 		}
485 	}
486 
487 	/* must never happen since size limit has been verified above */
488 	BUG_ON(i >= concat->num_subdev);
489 
490 	/* now do the erase: */
491 	err = 0;
492 	for (; length > 0; i++) {
493 		/* loop for all subdevices affected by this request */
494 		subdev = concat->subdev[i];	/* get current subdevice */
495 
496 		/* limit length to subdevice's size: */
497 		if (erase->addr + length > subdev->size)
498 			erase->len = subdev->size - erase->addr;
499 		else
500 			erase->len = length;
501 
502 		if (!(subdev->flags & MTD_WRITEABLE)) {
503 			err = -EROFS;
504 			break;
505 		}
506 		length -= erase->len;
507 		if ((err = concat_dev_erase(subdev, erase))) {
508 			/* sanity check: should never happen since
509 			 * block alignment has been checked above */
510 			BUG_ON(err == -EINVAL);
511 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
512 				instr->fail_addr = erase->fail_addr + offset;
513 			break;
514 		}
515 		/*
516 		 * erase->addr specifies the offset of the area to be
517 		 * erased *within the current subdevice*. It can be
518 		 * non-zero only the first time through this loop, i.e.
519 		 * for the first subdevice where blocks need to be erased.
520 		 * All the following erases must begin at the start of the
521 		 * current subdevice, i.e. at offset zero.
522 		 */
523 		erase->addr = 0;
524 		offset += subdev->size;
525 	}
526 	instr->state = erase->state;
527 	kfree(erase);
528 	if (err)
529 		return err;
530 
531 	if (instr->callback)
532 		instr->callback(instr);
533 	return 0;
534 }
535 
536 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
537 {
538 	struct mtd_concat *concat = CONCAT(mtd);
539 	int i, err = -EINVAL;
540 
541 	if ((len + ofs) > mtd->size)
542 		return -EINVAL;
543 
544 	for (i = 0; i < concat->num_subdev; i++) {
545 		struct mtd_info *subdev = concat->subdev[i];
546 		uint64_t size;
547 
548 		if (ofs >= subdev->size) {
549 			size = 0;
550 			ofs -= subdev->size;
551 			continue;
552 		}
553 		if (ofs + len > subdev->size)
554 			size = subdev->size - ofs;
555 		else
556 			size = len;
557 
558 		err = mtd_lock(subdev, ofs, size);
559 		if (err)
560 			break;
561 
562 		len -= size;
563 		if (len == 0)
564 			break;
565 
566 		err = -EINVAL;
567 		ofs = 0;
568 	}
569 
570 	return err;
571 }
572 
573 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
574 {
575 	struct mtd_concat *concat = CONCAT(mtd);
576 	int i, err = 0;
577 
578 	if ((len + ofs) > mtd->size)
579 		return -EINVAL;
580 
581 	for (i = 0; i < concat->num_subdev; i++) {
582 		struct mtd_info *subdev = concat->subdev[i];
583 		uint64_t size;
584 
585 		if (ofs >= subdev->size) {
586 			size = 0;
587 			ofs -= subdev->size;
588 			continue;
589 		}
590 		if (ofs + len > subdev->size)
591 			size = subdev->size - ofs;
592 		else
593 			size = len;
594 
595 		err = mtd_unlock(subdev, ofs, size);
596 		if (err)
597 			break;
598 
599 		len -= size;
600 		if (len == 0)
601 			break;
602 
603 		err = -EINVAL;
604 		ofs = 0;
605 	}
606 
607 	return err;
608 }
609 
610 static void concat_sync(struct mtd_info *mtd)
611 {
612 	struct mtd_concat *concat = CONCAT(mtd);
613 	int i;
614 
615 	for (i = 0; i < concat->num_subdev; i++) {
616 		struct mtd_info *subdev = concat->subdev[i];
617 		mtd_sync(subdev);
618 	}
619 }
620 
621 static int concat_suspend(struct mtd_info *mtd)
622 {
623 	struct mtd_concat *concat = CONCAT(mtd);
624 	int i, rc = 0;
625 
626 	for (i = 0; i < concat->num_subdev; i++) {
627 		struct mtd_info *subdev = concat->subdev[i];
628 		if ((rc = mtd_suspend(subdev)) < 0)
629 			return rc;
630 	}
631 	return rc;
632 }
633 
634 static void concat_resume(struct mtd_info *mtd)
635 {
636 	struct mtd_concat *concat = CONCAT(mtd);
637 	int i;
638 
639 	for (i = 0; i < concat->num_subdev; i++) {
640 		struct mtd_info *subdev = concat->subdev[i];
641 		mtd_resume(subdev);
642 	}
643 }
644 
645 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
646 {
647 	struct mtd_concat *concat = CONCAT(mtd);
648 	int i, res = 0;
649 
650 	if (!mtd_can_have_bb(concat->subdev[0]))
651 		return res;
652 
653 	if (ofs > mtd->size)
654 		return -EINVAL;
655 
656 	for (i = 0; i < concat->num_subdev; i++) {
657 		struct mtd_info *subdev = concat->subdev[i];
658 
659 		if (ofs >= subdev->size) {
660 			ofs -= subdev->size;
661 			continue;
662 		}
663 
664 		res = mtd_block_isbad(subdev, ofs);
665 		break;
666 	}
667 
668 	return res;
669 }
670 
671 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
672 {
673 	struct mtd_concat *concat = CONCAT(mtd);
674 	int i, err = -EINVAL;
675 
676 	if (!mtd_can_have_bb(concat->subdev[0]))
677 		return 0;
678 
679 	if (ofs > mtd->size)
680 		return -EINVAL;
681 
682 	for (i = 0; i < concat->num_subdev; i++) {
683 		struct mtd_info *subdev = concat->subdev[i];
684 
685 		if (ofs >= subdev->size) {
686 			ofs -= subdev->size;
687 			continue;
688 		}
689 
690 		err = mtd_block_markbad(subdev, ofs);
691 		if (!err)
692 			mtd->ecc_stats.badblocks++;
693 		break;
694 	}
695 
696 	return err;
697 }
698 
699 /*
700  * try to support NOMMU mmaps on concatenated devices
701  * - we don't support subdev spanning as we can't guarantee it'll work
702  */
703 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
704 					      unsigned long len,
705 					      unsigned long offset,
706 					      unsigned long flags)
707 {
708 	struct mtd_concat *concat = CONCAT(mtd);
709 	int i;
710 
711 	for (i = 0; i < concat->num_subdev; i++) {
712 		struct mtd_info *subdev = concat->subdev[i];
713 
714 		if (offset >= subdev->size) {
715 			offset -= subdev->size;
716 			continue;
717 		}
718 
719 		/* we've found the subdev over which the mapping will reside */
720 		if (offset + len > subdev->size)
721 			return (unsigned long) -EINVAL;
722 
723 		return mtd_get_unmapped_area(subdev, len, offset, flags);
724 	}
725 
726 	return (unsigned long) -ENOSYS;
727 }
728 
729 /*
730  * This function constructs a virtual MTD device by concatenating
731  * num_devs MTD devices. A pointer to the new device object is
732  * stored to *new_dev upon success. This function does _not_
733  * register any devices: this is the caller's responsibility.
734  */
735 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
736 				   int num_devs,	/* number of subdevices      */
737 				   const char *name)
738 {				/* name for the new device   */
739 	int i;
740 	size_t size;
741 	struct mtd_concat *concat;
742 	uint32_t max_erasesize, curr_erasesize;
743 	int num_erase_region;
744 	int max_writebufsize = 0;
745 
746 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
747 	for (i = 0; i < num_devs; i++)
748 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
749 	printk(KERN_NOTICE "into device \"%s\"\n", name);
750 
751 	/* allocate the device structure */
752 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
753 	concat = kzalloc(size, GFP_KERNEL);
754 	if (!concat) {
755 		printk
756 		    ("memory allocation error while creating concatenated device \"%s\"\n",
757 		     name);
758 		return NULL;
759 	}
760 	concat->subdev = (struct mtd_info **) (concat + 1);
761 
762 	/*
763 	 * Set up the new "super" device's MTD object structure, check for
764 	 * incompatibilities between the subdevices.
765 	 */
766 	concat->mtd.type = subdev[0]->type;
767 	concat->mtd.flags = subdev[0]->flags;
768 	concat->mtd.size = subdev[0]->size;
769 	concat->mtd.erasesize = subdev[0]->erasesize;
770 	concat->mtd.writesize = subdev[0]->writesize;
771 
772 	for (i = 0; i < num_devs; i++)
773 		if (max_writebufsize < subdev[i]->writebufsize)
774 			max_writebufsize = subdev[i]->writebufsize;
775 	concat->mtd.writebufsize = max_writebufsize;
776 
777 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
778 	concat->mtd.oobsize = subdev[0]->oobsize;
779 	concat->mtd.oobavail = subdev[0]->oobavail;
780 	if (subdev[0]->writev)
781 		concat->mtd.writev = concat_writev;
782 	if (subdev[0]->read_oob)
783 		concat->mtd.read_oob = concat_read_oob;
784 	if (subdev[0]->write_oob)
785 		concat->mtd.write_oob = concat_write_oob;
786 	if (subdev[0]->block_isbad)
787 		concat->mtd.block_isbad = concat_block_isbad;
788 	if (subdev[0]->block_markbad)
789 		concat->mtd.block_markbad = concat_block_markbad;
790 
791 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
792 
793 	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
794 
795 	concat->subdev[0] = subdev[0];
796 
797 	for (i = 1; i < num_devs; i++) {
798 		if (concat->mtd.type != subdev[i]->type) {
799 			kfree(concat);
800 			printk("Incompatible device type on \"%s\"\n",
801 			       subdev[i]->name);
802 			return NULL;
803 		}
804 		if (concat->mtd.flags != subdev[i]->flags) {
805 			/*
806 			 * Expect all flags except MTD_WRITEABLE to be
807 			 * equal on all subdevices.
808 			 */
809 			if ((concat->mtd.flags ^ subdev[i]->
810 			     flags) & ~MTD_WRITEABLE) {
811 				kfree(concat);
812 				printk("Incompatible device flags on \"%s\"\n",
813 				       subdev[i]->name);
814 				return NULL;
815 			} else
816 				/* if writeable attribute differs,
817 				   make super device writeable */
818 				concat->mtd.flags |=
819 				    subdev[i]->flags & MTD_WRITEABLE;
820 		}
821 
822 		/* only permit direct mapping if the BDIs are all the same
823 		 * - copy-mapping is still permitted
824 		 */
825 		if (concat->mtd.backing_dev_info !=
826 		    subdev[i]->backing_dev_info)
827 			concat->mtd.backing_dev_info =
828 				&default_backing_dev_info;
829 
830 		concat->mtd.size += subdev[i]->size;
831 		concat->mtd.ecc_stats.badblocks +=
832 			subdev[i]->ecc_stats.badblocks;
833 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
834 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
835 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
836 		    !concat->mtd.read_oob  != !subdev[i]->read_oob ||
837 		    !concat->mtd.write_oob != !subdev[i]->write_oob) {
838 			kfree(concat);
839 			printk("Incompatible OOB or ECC data on \"%s\"\n",
840 			       subdev[i]->name);
841 			return NULL;
842 		}
843 		concat->subdev[i] = subdev[i];
844 
845 	}
846 
847 	concat->mtd.ecclayout = subdev[0]->ecclayout;
848 
849 	concat->num_subdev = num_devs;
850 	concat->mtd.name = name;
851 
852 	concat->mtd.erase = concat_erase;
853 	concat->mtd.read = concat_read;
854 	concat->mtd.write = concat_write;
855 	concat->mtd.sync = concat_sync;
856 	concat->mtd.lock = concat_lock;
857 	concat->mtd.unlock = concat_unlock;
858 	concat->mtd.suspend = concat_suspend;
859 	concat->mtd.resume = concat_resume;
860 	concat->mtd.get_unmapped_area = concat_get_unmapped_area;
861 
862 	/*
863 	 * Combine the erase block size info of the subdevices:
864 	 *
865 	 * first, walk the map of the new device and see how
866 	 * many changes in erase size we have
867 	 */
868 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
869 	num_erase_region = 1;
870 	for (i = 0; i < num_devs; i++) {
871 		if (subdev[i]->numeraseregions == 0) {
872 			/* current subdevice has uniform erase size */
873 			if (subdev[i]->erasesize != curr_erasesize) {
874 				/* if it differs from the last subdevice's erase size, count it */
875 				++num_erase_region;
876 				curr_erasesize = subdev[i]->erasesize;
877 				if (curr_erasesize > max_erasesize)
878 					max_erasesize = curr_erasesize;
879 			}
880 		} else {
881 			/* current subdevice has variable erase size */
882 			int j;
883 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
884 
885 				/* walk the list of erase regions, count any changes */
886 				if (subdev[i]->eraseregions[j].erasesize !=
887 				    curr_erasesize) {
888 					++num_erase_region;
889 					curr_erasesize =
890 					    subdev[i]->eraseregions[j].
891 					    erasesize;
892 					if (curr_erasesize > max_erasesize)
893 						max_erasesize = curr_erasesize;
894 				}
895 			}
896 		}
897 	}
898 
899 	if (num_erase_region == 1) {
900 		/*
901 		 * All subdevices have the same uniform erase size.
902 		 * This is easy:
903 		 */
904 		concat->mtd.erasesize = curr_erasesize;
905 		concat->mtd.numeraseregions = 0;
906 	} else {
907 		uint64_t tmp64;
908 
909 		/*
910 		 * erase block size varies across the subdevices: allocate
911 		 * space to store the data describing the variable erase regions
912 		 */
913 		struct mtd_erase_region_info *erase_region_p;
914 		uint64_t begin, position;
915 
916 		concat->mtd.erasesize = max_erasesize;
917 		concat->mtd.numeraseregions = num_erase_region;
918 		concat->mtd.eraseregions = erase_region_p =
919 		    kmalloc(num_erase_region *
920 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
921 		if (!erase_region_p) {
922 			kfree(concat);
923 			printk
924 			    ("memory allocation error while creating erase region list"
925 			     " for device \"%s\"\n", name);
926 			return NULL;
927 		}
928 
929 		/*
930 		 * walk the map of the new device once more and fill in
931 		 * in erase region info:
932 		 */
933 		curr_erasesize = subdev[0]->erasesize;
934 		begin = position = 0;
935 		for (i = 0; i < num_devs; i++) {
936 			if (subdev[i]->numeraseregions == 0) {
937 				/* current subdevice has uniform erase size */
938 				if (subdev[i]->erasesize != curr_erasesize) {
939 					/*
940 					 *  fill in an mtd_erase_region_info structure for the area
941 					 *  we have walked so far:
942 					 */
943 					erase_region_p->offset = begin;
944 					erase_region_p->erasesize =
945 					    curr_erasesize;
946 					tmp64 = position - begin;
947 					do_div(tmp64, curr_erasesize);
948 					erase_region_p->numblocks = tmp64;
949 					begin = position;
950 
951 					curr_erasesize = subdev[i]->erasesize;
952 					++erase_region_p;
953 				}
954 				position += subdev[i]->size;
955 			} else {
956 				/* current subdevice has variable erase size */
957 				int j;
958 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
959 					/* walk the list of erase regions, count any changes */
960 					if (subdev[i]->eraseregions[j].
961 					    erasesize != curr_erasesize) {
962 						erase_region_p->offset = begin;
963 						erase_region_p->erasesize =
964 						    curr_erasesize;
965 						tmp64 = position - begin;
966 						do_div(tmp64, curr_erasesize);
967 						erase_region_p->numblocks = tmp64;
968 						begin = position;
969 
970 						curr_erasesize =
971 						    subdev[i]->eraseregions[j].
972 						    erasesize;
973 						++erase_region_p;
974 					}
975 					position +=
976 					    subdev[i]->eraseregions[j].
977 					    numblocks * (uint64_t)curr_erasesize;
978 				}
979 			}
980 		}
981 		/* Now write the final entry */
982 		erase_region_p->offset = begin;
983 		erase_region_p->erasesize = curr_erasesize;
984 		tmp64 = position - begin;
985 		do_div(tmp64, curr_erasesize);
986 		erase_region_p->numblocks = tmp64;
987 	}
988 
989 	return &concat->mtd;
990 }
991 
992 /*
993  * This function destroys an MTD object obtained from concat_mtd_devs()
994  */
995 
996 void mtd_concat_destroy(struct mtd_info *mtd)
997 {
998 	struct mtd_concat *concat = CONCAT(mtd);
999 	if (concat->mtd.numeraseregions)
1000 		kfree(concat->mtd.eraseregions);
1001 	kfree(concat);
1002 }
1003 
1004 EXPORT_SYMBOL(mtd_concat_create);
1005 EXPORT_SYMBOL(mtd_concat_destroy);
1006 
1007 MODULE_LICENSE("GPL");
1008 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
1009 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
1010