1 /* 2 * MTD device concatenation layer 3 * 4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de> 5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org> 6 * 7 * NAND support by Christian Gan <cgan@iders.ca> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/types.h> 30 #include <linux/backing-dev.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/concat.h> 34 35 #include <asm/div64.h> 36 37 /* 38 * Our storage structure: 39 * Subdev points to an array of pointers to struct mtd_info objects 40 * which is allocated along with this structure 41 * 42 */ 43 struct mtd_concat { 44 struct mtd_info mtd; 45 int num_subdev; 46 struct mtd_info **subdev; 47 }; 48 49 /* 50 * how to calculate the size required for the above structure, 51 * including the pointer array subdev points to: 52 */ 53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ 54 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) 55 56 /* 57 * Given a pointer to the MTD object in the mtd_concat structure, 58 * we can retrieve the pointer to that structure with this macro. 59 */ 60 #define CONCAT(x) ((struct mtd_concat *)(x)) 61 62 /* 63 * MTD methods which look up the relevant subdevice, translate the 64 * effective address and pass through to the subdevice. 65 */ 66 67 static int 68 concat_read(struct mtd_info *mtd, loff_t from, size_t len, 69 size_t * retlen, u_char * buf) 70 { 71 struct mtd_concat *concat = CONCAT(mtd); 72 int ret = 0, err; 73 int i; 74 75 for (i = 0; i < concat->num_subdev; i++) { 76 struct mtd_info *subdev = concat->subdev[i]; 77 size_t size, retsize; 78 79 if (from >= subdev->size) { 80 /* Not destined for this subdev */ 81 size = 0; 82 from -= subdev->size; 83 continue; 84 } 85 if (from + len > subdev->size) 86 /* First part goes into this subdev */ 87 size = subdev->size - from; 88 else 89 /* Entire transaction goes into this subdev */ 90 size = len; 91 92 err = mtd_read(subdev, from, size, &retsize, buf); 93 94 /* Save information about bitflips! */ 95 if (unlikely(err)) { 96 if (mtd_is_eccerr(err)) { 97 mtd->ecc_stats.failed++; 98 ret = err; 99 } else if (mtd_is_bitflip(err)) { 100 mtd->ecc_stats.corrected++; 101 /* Do not overwrite -EBADMSG !! */ 102 if (!ret) 103 ret = err; 104 } else 105 return err; 106 } 107 108 *retlen += retsize; 109 len -= size; 110 if (len == 0) 111 return ret; 112 113 buf += size; 114 from = 0; 115 } 116 return -EINVAL; 117 } 118 119 static int 120 concat_write(struct mtd_info *mtd, loff_t to, size_t len, 121 size_t * retlen, const u_char * buf) 122 { 123 struct mtd_concat *concat = CONCAT(mtd); 124 int err = -EINVAL; 125 int i; 126 127 for (i = 0; i < concat->num_subdev; i++) { 128 struct mtd_info *subdev = concat->subdev[i]; 129 size_t size, retsize; 130 131 if (to >= subdev->size) { 132 size = 0; 133 to -= subdev->size; 134 continue; 135 } 136 if (to + len > subdev->size) 137 size = subdev->size - to; 138 else 139 size = len; 140 141 err = mtd_write(subdev, to, size, &retsize, buf); 142 if (err) 143 break; 144 145 *retlen += retsize; 146 len -= size; 147 if (len == 0) 148 break; 149 150 err = -EINVAL; 151 buf += size; 152 to = 0; 153 } 154 return err; 155 } 156 157 static int 158 concat_writev(struct mtd_info *mtd, const struct kvec *vecs, 159 unsigned long count, loff_t to, size_t * retlen) 160 { 161 struct mtd_concat *concat = CONCAT(mtd); 162 struct kvec *vecs_copy; 163 unsigned long entry_low, entry_high; 164 size_t total_len = 0; 165 int i; 166 int err = -EINVAL; 167 168 /* Calculate total length of data */ 169 for (i = 0; i < count; i++) 170 total_len += vecs[i].iov_len; 171 172 /* Check alignment */ 173 if (mtd->writesize > 1) { 174 uint64_t __to = to; 175 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) 176 return -EINVAL; 177 } 178 179 /* make a copy of vecs */ 180 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL); 181 if (!vecs_copy) 182 return -ENOMEM; 183 184 entry_low = 0; 185 for (i = 0; i < concat->num_subdev; i++) { 186 struct mtd_info *subdev = concat->subdev[i]; 187 size_t size, wsize, retsize, old_iov_len; 188 189 if (to >= subdev->size) { 190 to -= subdev->size; 191 continue; 192 } 193 194 size = min_t(uint64_t, total_len, subdev->size - to); 195 wsize = size; /* store for future use */ 196 197 entry_high = entry_low; 198 while (entry_high < count) { 199 if (size <= vecs_copy[entry_high].iov_len) 200 break; 201 size -= vecs_copy[entry_high++].iov_len; 202 } 203 204 old_iov_len = vecs_copy[entry_high].iov_len; 205 vecs_copy[entry_high].iov_len = size; 206 207 err = mtd_writev(subdev, &vecs_copy[entry_low], 208 entry_high - entry_low + 1, to, &retsize); 209 210 vecs_copy[entry_high].iov_len = old_iov_len - size; 211 vecs_copy[entry_high].iov_base += size; 212 213 entry_low = entry_high; 214 215 if (err) 216 break; 217 218 *retlen += retsize; 219 total_len -= wsize; 220 221 if (total_len == 0) 222 break; 223 224 err = -EINVAL; 225 to = 0; 226 } 227 228 kfree(vecs_copy); 229 return err; 230 } 231 232 static int 233 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 234 { 235 struct mtd_concat *concat = CONCAT(mtd); 236 struct mtd_oob_ops devops = *ops; 237 int i, err, ret = 0; 238 239 ops->retlen = ops->oobretlen = 0; 240 241 for (i = 0; i < concat->num_subdev; i++) { 242 struct mtd_info *subdev = concat->subdev[i]; 243 244 if (from >= subdev->size) { 245 from -= subdev->size; 246 continue; 247 } 248 249 /* partial read ? */ 250 if (from + devops.len > subdev->size) 251 devops.len = subdev->size - from; 252 253 err = mtd_read_oob(subdev, from, &devops); 254 ops->retlen += devops.retlen; 255 ops->oobretlen += devops.oobretlen; 256 257 /* Save information about bitflips! */ 258 if (unlikely(err)) { 259 if (mtd_is_eccerr(err)) { 260 mtd->ecc_stats.failed++; 261 ret = err; 262 } else if (mtd_is_bitflip(err)) { 263 mtd->ecc_stats.corrected++; 264 /* Do not overwrite -EBADMSG !! */ 265 if (!ret) 266 ret = err; 267 } else 268 return err; 269 } 270 271 if (devops.datbuf) { 272 devops.len = ops->len - ops->retlen; 273 if (!devops.len) 274 return ret; 275 devops.datbuf += devops.retlen; 276 } 277 if (devops.oobbuf) { 278 devops.ooblen = ops->ooblen - ops->oobretlen; 279 if (!devops.ooblen) 280 return ret; 281 devops.oobbuf += ops->oobretlen; 282 } 283 284 from = 0; 285 } 286 return -EINVAL; 287 } 288 289 static int 290 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) 291 { 292 struct mtd_concat *concat = CONCAT(mtd); 293 struct mtd_oob_ops devops = *ops; 294 int i, err; 295 296 if (!(mtd->flags & MTD_WRITEABLE)) 297 return -EROFS; 298 299 ops->retlen = ops->oobretlen = 0; 300 301 for (i = 0; i < concat->num_subdev; i++) { 302 struct mtd_info *subdev = concat->subdev[i]; 303 304 if (to >= subdev->size) { 305 to -= subdev->size; 306 continue; 307 } 308 309 /* partial write ? */ 310 if (to + devops.len > subdev->size) 311 devops.len = subdev->size - to; 312 313 err = mtd_write_oob(subdev, to, &devops); 314 ops->retlen += devops.retlen; 315 ops->oobretlen += devops.oobretlen; 316 if (err) 317 return err; 318 319 if (devops.datbuf) { 320 devops.len = ops->len - ops->retlen; 321 if (!devops.len) 322 return 0; 323 devops.datbuf += devops.retlen; 324 } 325 if (devops.oobbuf) { 326 devops.ooblen = ops->ooblen - ops->oobretlen; 327 if (!devops.ooblen) 328 return 0; 329 devops.oobbuf += devops.oobretlen; 330 } 331 to = 0; 332 } 333 return -EINVAL; 334 } 335 336 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) 337 { 338 struct mtd_concat *concat = CONCAT(mtd); 339 struct mtd_info *subdev; 340 int i, err; 341 uint64_t length, offset = 0; 342 struct erase_info *erase; 343 344 /* 345 * Check for proper erase block alignment of the to-be-erased area. 346 * It is easier to do this based on the super device's erase 347 * region info rather than looking at each particular sub-device 348 * in turn. 349 */ 350 if (!concat->mtd.numeraseregions) { 351 /* the easy case: device has uniform erase block size */ 352 if (instr->addr & (concat->mtd.erasesize - 1)) 353 return -EINVAL; 354 if (instr->len & (concat->mtd.erasesize - 1)) 355 return -EINVAL; 356 } else { 357 /* device has variable erase size */ 358 struct mtd_erase_region_info *erase_regions = 359 concat->mtd.eraseregions; 360 361 /* 362 * Find the erase region where the to-be-erased area begins: 363 */ 364 for (i = 0; i < concat->mtd.numeraseregions && 365 instr->addr >= erase_regions[i].offset; i++) ; 366 --i; 367 368 /* 369 * Now erase_regions[i] is the region in which the 370 * to-be-erased area begins. Verify that the starting 371 * offset is aligned to this region's erase size: 372 */ 373 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1)) 374 return -EINVAL; 375 376 /* 377 * now find the erase region where the to-be-erased area ends: 378 */ 379 for (; i < concat->mtd.numeraseregions && 380 (instr->addr + instr->len) >= erase_regions[i].offset; 381 ++i) ; 382 --i; 383 /* 384 * check if the ending offset is aligned to this region's erase size 385 */ 386 if (i < 0 || ((instr->addr + instr->len) & 387 (erase_regions[i].erasesize - 1))) 388 return -EINVAL; 389 } 390 391 /* make a local copy of instr to avoid modifying the caller's struct */ 392 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 393 394 if (!erase) 395 return -ENOMEM; 396 397 *erase = *instr; 398 length = instr->len; 399 400 /* 401 * find the subdevice where the to-be-erased area begins, adjust 402 * starting offset to be relative to the subdevice start 403 */ 404 for (i = 0; i < concat->num_subdev; i++) { 405 subdev = concat->subdev[i]; 406 if (subdev->size <= erase->addr) { 407 erase->addr -= subdev->size; 408 offset += subdev->size; 409 } else { 410 break; 411 } 412 } 413 414 /* must never happen since size limit has been verified above */ 415 BUG_ON(i >= concat->num_subdev); 416 417 /* now do the erase: */ 418 err = 0; 419 for (; length > 0; i++) { 420 /* loop for all subdevices affected by this request */ 421 subdev = concat->subdev[i]; /* get current subdevice */ 422 423 /* limit length to subdevice's size: */ 424 if (erase->addr + length > subdev->size) 425 erase->len = subdev->size - erase->addr; 426 else 427 erase->len = length; 428 429 length -= erase->len; 430 if ((err = mtd_erase(subdev, erase))) { 431 /* sanity check: should never happen since 432 * block alignment has been checked above */ 433 BUG_ON(err == -EINVAL); 434 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 435 instr->fail_addr = erase->fail_addr + offset; 436 break; 437 } 438 /* 439 * erase->addr specifies the offset of the area to be 440 * erased *within the current subdevice*. It can be 441 * non-zero only the first time through this loop, i.e. 442 * for the first subdevice where blocks need to be erased. 443 * All the following erases must begin at the start of the 444 * current subdevice, i.e. at offset zero. 445 */ 446 erase->addr = 0; 447 offset += subdev->size; 448 } 449 kfree(erase); 450 451 return err; 452 } 453 454 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 455 { 456 struct mtd_concat *concat = CONCAT(mtd); 457 int i, err = -EINVAL; 458 459 for (i = 0; i < concat->num_subdev; i++) { 460 struct mtd_info *subdev = concat->subdev[i]; 461 uint64_t size; 462 463 if (ofs >= subdev->size) { 464 size = 0; 465 ofs -= subdev->size; 466 continue; 467 } 468 if (ofs + len > subdev->size) 469 size = subdev->size - ofs; 470 else 471 size = len; 472 473 err = mtd_lock(subdev, ofs, size); 474 if (err) 475 break; 476 477 len -= size; 478 if (len == 0) 479 break; 480 481 err = -EINVAL; 482 ofs = 0; 483 } 484 485 return err; 486 } 487 488 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 489 { 490 struct mtd_concat *concat = CONCAT(mtd); 491 int i, err = 0; 492 493 for (i = 0; i < concat->num_subdev; i++) { 494 struct mtd_info *subdev = concat->subdev[i]; 495 uint64_t size; 496 497 if (ofs >= subdev->size) { 498 size = 0; 499 ofs -= subdev->size; 500 continue; 501 } 502 if (ofs + len > subdev->size) 503 size = subdev->size - ofs; 504 else 505 size = len; 506 507 err = mtd_unlock(subdev, ofs, size); 508 if (err) 509 break; 510 511 len -= size; 512 if (len == 0) 513 break; 514 515 err = -EINVAL; 516 ofs = 0; 517 } 518 519 return err; 520 } 521 522 static void concat_sync(struct mtd_info *mtd) 523 { 524 struct mtd_concat *concat = CONCAT(mtd); 525 int i; 526 527 for (i = 0; i < concat->num_subdev; i++) { 528 struct mtd_info *subdev = concat->subdev[i]; 529 mtd_sync(subdev); 530 } 531 } 532 533 static int concat_suspend(struct mtd_info *mtd) 534 { 535 struct mtd_concat *concat = CONCAT(mtd); 536 int i, rc = 0; 537 538 for (i = 0; i < concat->num_subdev; i++) { 539 struct mtd_info *subdev = concat->subdev[i]; 540 if ((rc = mtd_suspend(subdev)) < 0) 541 return rc; 542 } 543 return rc; 544 } 545 546 static void concat_resume(struct mtd_info *mtd) 547 { 548 struct mtd_concat *concat = CONCAT(mtd); 549 int i; 550 551 for (i = 0; i < concat->num_subdev; i++) { 552 struct mtd_info *subdev = concat->subdev[i]; 553 mtd_resume(subdev); 554 } 555 } 556 557 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) 558 { 559 struct mtd_concat *concat = CONCAT(mtd); 560 int i, res = 0; 561 562 if (!mtd_can_have_bb(concat->subdev[0])) 563 return res; 564 565 for (i = 0; i < concat->num_subdev; i++) { 566 struct mtd_info *subdev = concat->subdev[i]; 567 568 if (ofs >= subdev->size) { 569 ofs -= subdev->size; 570 continue; 571 } 572 573 res = mtd_block_isbad(subdev, ofs); 574 break; 575 } 576 577 return res; 578 } 579 580 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) 581 { 582 struct mtd_concat *concat = CONCAT(mtd); 583 int i, err = -EINVAL; 584 585 for (i = 0; i < concat->num_subdev; i++) { 586 struct mtd_info *subdev = concat->subdev[i]; 587 588 if (ofs >= subdev->size) { 589 ofs -= subdev->size; 590 continue; 591 } 592 593 err = mtd_block_markbad(subdev, ofs); 594 if (!err) 595 mtd->ecc_stats.badblocks++; 596 break; 597 } 598 599 return err; 600 } 601 602 /* 603 * This function constructs a virtual MTD device by concatenating 604 * num_devs MTD devices. A pointer to the new device object is 605 * stored to *new_dev upon success. This function does _not_ 606 * register any devices: this is the caller's responsibility. 607 */ 608 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ 609 int num_devs, /* number of subdevices */ 610 const char *name) 611 { /* name for the new device */ 612 int i; 613 size_t size; 614 struct mtd_concat *concat; 615 uint32_t max_erasesize, curr_erasesize; 616 int num_erase_region; 617 int max_writebufsize = 0; 618 619 printk(KERN_NOTICE "Concatenating MTD devices:\n"); 620 for (i = 0; i < num_devs; i++) 621 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); 622 printk(KERN_NOTICE "into device \"%s\"\n", name); 623 624 /* allocate the device structure */ 625 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); 626 concat = kzalloc(size, GFP_KERNEL); 627 if (!concat) { 628 printk 629 ("memory allocation error while creating concatenated device \"%s\"\n", 630 name); 631 return NULL; 632 } 633 concat->subdev = (struct mtd_info **) (concat + 1); 634 635 /* 636 * Set up the new "super" device's MTD object structure, check for 637 * incompatibilities between the subdevices. 638 */ 639 concat->mtd.type = subdev[0]->type; 640 concat->mtd.flags = subdev[0]->flags; 641 concat->mtd.size = subdev[0]->size; 642 concat->mtd.erasesize = subdev[0]->erasesize; 643 concat->mtd.writesize = subdev[0]->writesize; 644 645 for (i = 0; i < num_devs; i++) 646 if (max_writebufsize < subdev[i]->writebufsize) 647 max_writebufsize = subdev[i]->writebufsize; 648 concat->mtd.writebufsize = max_writebufsize; 649 650 concat->mtd.subpage_sft = subdev[0]->subpage_sft; 651 concat->mtd.oobsize = subdev[0]->oobsize; 652 concat->mtd.oobavail = subdev[0]->oobavail; 653 if (subdev[0]->_writev) 654 concat->mtd._writev = concat_writev; 655 if (subdev[0]->_read_oob) 656 concat->mtd._read_oob = concat_read_oob; 657 if (subdev[0]->_write_oob) 658 concat->mtd._write_oob = concat_write_oob; 659 if (subdev[0]->_block_isbad) 660 concat->mtd._block_isbad = concat_block_isbad; 661 if (subdev[0]->_block_markbad) 662 concat->mtd._block_markbad = concat_block_markbad; 663 664 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 665 666 concat->subdev[0] = subdev[0]; 667 668 for (i = 1; i < num_devs; i++) { 669 if (concat->mtd.type != subdev[i]->type) { 670 kfree(concat); 671 printk("Incompatible device type on \"%s\"\n", 672 subdev[i]->name); 673 return NULL; 674 } 675 if (concat->mtd.flags != subdev[i]->flags) { 676 /* 677 * Expect all flags except MTD_WRITEABLE to be 678 * equal on all subdevices. 679 */ 680 if ((concat->mtd.flags ^ subdev[i]-> 681 flags) & ~MTD_WRITEABLE) { 682 kfree(concat); 683 printk("Incompatible device flags on \"%s\"\n", 684 subdev[i]->name); 685 return NULL; 686 } else 687 /* if writeable attribute differs, 688 make super device writeable */ 689 concat->mtd.flags |= 690 subdev[i]->flags & MTD_WRITEABLE; 691 } 692 693 concat->mtd.size += subdev[i]->size; 694 concat->mtd.ecc_stats.badblocks += 695 subdev[i]->ecc_stats.badblocks; 696 if (concat->mtd.writesize != subdev[i]->writesize || 697 concat->mtd.subpage_sft != subdev[i]->subpage_sft || 698 concat->mtd.oobsize != subdev[i]->oobsize || 699 !concat->mtd._read_oob != !subdev[i]->_read_oob || 700 !concat->mtd._write_oob != !subdev[i]->_write_oob) { 701 kfree(concat); 702 printk("Incompatible OOB or ECC data on \"%s\"\n", 703 subdev[i]->name); 704 return NULL; 705 } 706 concat->subdev[i] = subdev[i]; 707 708 } 709 710 mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout); 711 712 concat->num_subdev = num_devs; 713 concat->mtd.name = name; 714 715 concat->mtd._erase = concat_erase; 716 concat->mtd._read = concat_read; 717 concat->mtd._write = concat_write; 718 concat->mtd._sync = concat_sync; 719 concat->mtd._lock = concat_lock; 720 concat->mtd._unlock = concat_unlock; 721 concat->mtd._suspend = concat_suspend; 722 concat->mtd._resume = concat_resume; 723 724 /* 725 * Combine the erase block size info of the subdevices: 726 * 727 * first, walk the map of the new device and see how 728 * many changes in erase size we have 729 */ 730 max_erasesize = curr_erasesize = subdev[0]->erasesize; 731 num_erase_region = 1; 732 for (i = 0; i < num_devs; i++) { 733 if (subdev[i]->numeraseregions == 0) { 734 /* current subdevice has uniform erase size */ 735 if (subdev[i]->erasesize != curr_erasesize) { 736 /* if it differs from the last subdevice's erase size, count it */ 737 ++num_erase_region; 738 curr_erasesize = subdev[i]->erasesize; 739 if (curr_erasesize > max_erasesize) 740 max_erasesize = curr_erasesize; 741 } 742 } else { 743 /* current subdevice has variable erase size */ 744 int j; 745 for (j = 0; j < subdev[i]->numeraseregions; j++) { 746 747 /* walk the list of erase regions, count any changes */ 748 if (subdev[i]->eraseregions[j].erasesize != 749 curr_erasesize) { 750 ++num_erase_region; 751 curr_erasesize = 752 subdev[i]->eraseregions[j]. 753 erasesize; 754 if (curr_erasesize > max_erasesize) 755 max_erasesize = curr_erasesize; 756 } 757 } 758 } 759 } 760 761 if (num_erase_region == 1) { 762 /* 763 * All subdevices have the same uniform erase size. 764 * This is easy: 765 */ 766 concat->mtd.erasesize = curr_erasesize; 767 concat->mtd.numeraseregions = 0; 768 } else { 769 uint64_t tmp64; 770 771 /* 772 * erase block size varies across the subdevices: allocate 773 * space to store the data describing the variable erase regions 774 */ 775 struct mtd_erase_region_info *erase_region_p; 776 uint64_t begin, position; 777 778 concat->mtd.erasesize = max_erasesize; 779 concat->mtd.numeraseregions = num_erase_region; 780 concat->mtd.eraseregions = erase_region_p = 781 kmalloc_array(num_erase_region, 782 sizeof(struct mtd_erase_region_info), 783 GFP_KERNEL); 784 if (!erase_region_p) { 785 kfree(concat); 786 printk 787 ("memory allocation error while creating erase region list" 788 " for device \"%s\"\n", name); 789 return NULL; 790 } 791 792 /* 793 * walk the map of the new device once more and fill in 794 * in erase region info: 795 */ 796 curr_erasesize = subdev[0]->erasesize; 797 begin = position = 0; 798 for (i = 0; i < num_devs; i++) { 799 if (subdev[i]->numeraseregions == 0) { 800 /* current subdevice has uniform erase size */ 801 if (subdev[i]->erasesize != curr_erasesize) { 802 /* 803 * fill in an mtd_erase_region_info structure for the area 804 * we have walked so far: 805 */ 806 erase_region_p->offset = begin; 807 erase_region_p->erasesize = 808 curr_erasesize; 809 tmp64 = position - begin; 810 do_div(tmp64, curr_erasesize); 811 erase_region_p->numblocks = tmp64; 812 begin = position; 813 814 curr_erasesize = subdev[i]->erasesize; 815 ++erase_region_p; 816 } 817 position += subdev[i]->size; 818 } else { 819 /* current subdevice has variable erase size */ 820 int j; 821 for (j = 0; j < subdev[i]->numeraseregions; j++) { 822 /* walk the list of erase regions, count any changes */ 823 if (subdev[i]->eraseregions[j]. 824 erasesize != curr_erasesize) { 825 erase_region_p->offset = begin; 826 erase_region_p->erasesize = 827 curr_erasesize; 828 tmp64 = position - begin; 829 do_div(tmp64, curr_erasesize); 830 erase_region_p->numblocks = tmp64; 831 begin = position; 832 833 curr_erasesize = 834 subdev[i]->eraseregions[j]. 835 erasesize; 836 ++erase_region_p; 837 } 838 position += 839 subdev[i]->eraseregions[j]. 840 numblocks * (uint64_t)curr_erasesize; 841 } 842 } 843 } 844 /* Now write the final entry */ 845 erase_region_p->offset = begin; 846 erase_region_p->erasesize = curr_erasesize; 847 tmp64 = position - begin; 848 do_div(tmp64, curr_erasesize); 849 erase_region_p->numblocks = tmp64; 850 } 851 852 return &concat->mtd; 853 } 854 855 /* 856 * This function destroys an MTD object obtained from concat_mtd_devs() 857 */ 858 859 void mtd_concat_destroy(struct mtd_info *mtd) 860 { 861 struct mtd_concat *concat = CONCAT(mtd); 862 if (concat->mtd.numeraseregions) 863 kfree(concat->mtd.eraseregions); 864 kfree(concat); 865 } 866 867 EXPORT_SYMBOL(mtd_concat_create); 868 EXPORT_SYMBOL(mtd_concat_destroy); 869 870 MODULE_LICENSE("GPL"); 871 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); 872 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); 873