xref: /openbmc/linux/drivers/mtd/mtdconcat.c (revision 82e6fdd6)
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34 
35 #include <asm/div64.h>
36 
37 /*
38  * Our storage structure:
39  * Subdev points to an array of pointers to struct mtd_info objects
40  * which is allocated along with this structure
41  *
42  */
43 struct mtd_concat {
44 	struct mtd_info mtd;
45 	int num_subdev;
46 	struct mtd_info **subdev;
47 };
48 
49 /*
50  * how to calculate the size required for the above structure,
51  * including the pointer array subdev points to:
52  */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
54 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55 
56 /*
57  * Given a pointer to the MTD object in the mtd_concat structure,
58  * we can retrieve the pointer to that structure with this macro.
59  */
60 #define CONCAT(x)  ((struct mtd_concat *)(x))
61 
62 /*
63  * MTD methods which look up the relevant subdevice, translate the
64  * effective address and pass through to the subdevice.
65  */
66 
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69 	    size_t * retlen, u_char * buf)
70 {
71 	struct mtd_concat *concat = CONCAT(mtd);
72 	int ret = 0, err;
73 	int i;
74 
75 	for (i = 0; i < concat->num_subdev; i++) {
76 		struct mtd_info *subdev = concat->subdev[i];
77 		size_t size, retsize;
78 
79 		if (from >= subdev->size) {
80 			/* Not destined for this subdev */
81 			size = 0;
82 			from -= subdev->size;
83 			continue;
84 		}
85 		if (from + len > subdev->size)
86 			/* First part goes into this subdev */
87 			size = subdev->size - from;
88 		else
89 			/* Entire transaction goes into this subdev */
90 			size = len;
91 
92 		err = mtd_read(subdev, from, size, &retsize, buf);
93 
94 		/* Save information about bitflips! */
95 		if (unlikely(err)) {
96 			if (mtd_is_eccerr(err)) {
97 				mtd->ecc_stats.failed++;
98 				ret = err;
99 			} else if (mtd_is_bitflip(err)) {
100 				mtd->ecc_stats.corrected++;
101 				/* Do not overwrite -EBADMSG !! */
102 				if (!ret)
103 					ret = err;
104 			} else
105 				return err;
106 		}
107 
108 		*retlen += retsize;
109 		len -= size;
110 		if (len == 0)
111 			return ret;
112 
113 		buf += size;
114 		from = 0;
115 	}
116 	return -EINVAL;
117 }
118 
119 static int
120 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121 	     size_t * retlen, const u_char * buf)
122 {
123 	struct mtd_concat *concat = CONCAT(mtd);
124 	int err = -EINVAL;
125 	int i;
126 
127 	for (i = 0; i < concat->num_subdev; i++) {
128 		struct mtd_info *subdev = concat->subdev[i];
129 		size_t size, retsize;
130 
131 		if (to >= subdev->size) {
132 			size = 0;
133 			to -= subdev->size;
134 			continue;
135 		}
136 		if (to + len > subdev->size)
137 			size = subdev->size - to;
138 		else
139 			size = len;
140 
141 		err = mtd_write(subdev, to, size, &retsize, buf);
142 		if (err)
143 			break;
144 
145 		*retlen += retsize;
146 		len -= size;
147 		if (len == 0)
148 			break;
149 
150 		err = -EINVAL;
151 		buf += size;
152 		to = 0;
153 	}
154 	return err;
155 }
156 
157 static int
158 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
159 		unsigned long count, loff_t to, size_t * retlen)
160 {
161 	struct mtd_concat *concat = CONCAT(mtd);
162 	struct kvec *vecs_copy;
163 	unsigned long entry_low, entry_high;
164 	size_t total_len = 0;
165 	int i;
166 	int err = -EINVAL;
167 
168 	/* Calculate total length of data */
169 	for (i = 0; i < count; i++)
170 		total_len += vecs[i].iov_len;
171 
172 	/* Check alignment */
173 	if (mtd->writesize > 1) {
174 		uint64_t __to = to;
175 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
176 			return -EINVAL;
177 	}
178 
179 	/* make a copy of vecs */
180 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
181 	if (!vecs_copy)
182 		return -ENOMEM;
183 
184 	entry_low = 0;
185 	for (i = 0; i < concat->num_subdev; i++) {
186 		struct mtd_info *subdev = concat->subdev[i];
187 		size_t size, wsize, retsize, old_iov_len;
188 
189 		if (to >= subdev->size) {
190 			to -= subdev->size;
191 			continue;
192 		}
193 
194 		size = min_t(uint64_t, total_len, subdev->size - to);
195 		wsize = size; /* store for future use */
196 
197 		entry_high = entry_low;
198 		while (entry_high < count) {
199 			if (size <= vecs_copy[entry_high].iov_len)
200 				break;
201 			size -= vecs_copy[entry_high++].iov_len;
202 		}
203 
204 		old_iov_len = vecs_copy[entry_high].iov_len;
205 		vecs_copy[entry_high].iov_len = size;
206 
207 		err = mtd_writev(subdev, &vecs_copy[entry_low],
208 				 entry_high - entry_low + 1, to, &retsize);
209 
210 		vecs_copy[entry_high].iov_len = old_iov_len - size;
211 		vecs_copy[entry_high].iov_base += size;
212 
213 		entry_low = entry_high;
214 
215 		if (err)
216 			break;
217 
218 		*retlen += retsize;
219 		total_len -= wsize;
220 
221 		if (total_len == 0)
222 			break;
223 
224 		err = -EINVAL;
225 		to = 0;
226 	}
227 
228 	kfree(vecs_copy);
229 	return err;
230 }
231 
232 static int
233 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
234 {
235 	struct mtd_concat *concat = CONCAT(mtd);
236 	struct mtd_oob_ops devops = *ops;
237 	int i, err, ret = 0;
238 
239 	ops->retlen = ops->oobretlen = 0;
240 
241 	for (i = 0; i < concat->num_subdev; i++) {
242 		struct mtd_info *subdev = concat->subdev[i];
243 
244 		if (from >= subdev->size) {
245 			from -= subdev->size;
246 			continue;
247 		}
248 
249 		/* partial read ? */
250 		if (from + devops.len > subdev->size)
251 			devops.len = subdev->size - from;
252 
253 		err = mtd_read_oob(subdev, from, &devops);
254 		ops->retlen += devops.retlen;
255 		ops->oobretlen += devops.oobretlen;
256 
257 		/* Save information about bitflips! */
258 		if (unlikely(err)) {
259 			if (mtd_is_eccerr(err)) {
260 				mtd->ecc_stats.failed++;
261 				ret = err;
262 			} else if (mtd_is_bitflip(err)) {
263 				mtd->ecc_stats.corrected++;
264 				/* Do not overwrite -EBADMSG !! */
265 				if (!ret)
266 					ret = err;
267 			} else
268 				return err;
269 		}
270 
271 		if (devops.datbuf) {
272 			devops.len = ops->len - ops->retlen;
273 			if (!devops.len)
274 				return ret;
275 			devops.datbuf += devops.retlen;
276 		}
277 		if (devops.oobbuf) {
278 			devops.ooblen = ops->ooblen - ops->oobretlen;
279 			if (!devops.ooblen)
280 				return ret;
281 			devops.oobbuf += ops->oobretlen;
282 		}
283 
284 		from = 0;
285 	}
286 	return -EINVAL;
287 }
288 
289 static int
290 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
291 {
292 	struct mtd_concat *concat = CONCAT(mtd);
293 	struct mtd_oob_ops devops = *ops;
294 	int i, err;
295 
296 	if (!(mtd->flags & MTD_WRITEABLE))
297 		return -EROFS;
298 
299 	ops->retlen = ops->oobretlen = 0;
300 
301 	for (i = 0; i < concat->num_subdev; i++) {
302 		struct mtd_info *subdev = concat->subdev[i];
303 
304 		if (to >= subdev->size) {
305 			to -= subdev->size;
306 			continue;
307 		}
308 
309 		/* partial write ? */
310 		if (to + devops.len > subdev->size)
311 			devops.len = subdev->size - to;
312 
313 		err = mtd_write_oob(subdev, to, &devops);
314 		ops->retlen += devops.retlen;
315 		ops->oobretlen += devops.oobretlen;
316 		if (err)
317 			return err;
318 
319 		if (devops.datbuf) {
320 			devops.len = ops->len - ops->retlen;
321 			if (!devops.len)
322 				return 0;
323 			devops.datbuf += devops.retlen;
324 		}
325 		if (devops.oobbuf) {
326 			devops.ooblen = ops->ooblen - ops->oobretlen;
327 			if (!devops.ooblen)
328 				return 0;
329 			devops.oobbuf += devops.oobretlen;
330 		}
331 		to = 0;
332 	}
333 	return -EINVAL;
334 }
335 
336 static void concat_erase_callback(struct erase_info *instr)
337 {
338 	wake_up((wait_queue_head_t *) instr->priv);
339 }
340 
341 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
342 {
343 	int err;
344 	wait_queue_head_t waitq;
345 	DECLARE_WAITQUEUE(wait, current);
346 
347 	/*
348 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
349 	 */
350 	init_waitqueue_head(&waitq);
351 
352 	erase->mtd = mtd;
353 	erase->callback = concat_erase_callback;
354 	erase->priv = (unsigned long) &waitq;
355 
356 	/*
357 	 * FIXME: Allow INTERRUPTIBLE. Which means
358 	 * not having the wait_queue head on the stack.
359 	 */
360 	err = mtd_erase(mtd, erase);
361 	if (!err) {
362 		set_current_state(TASK_UNINTERRUPTIBLE);
363 		add_wait_queue(&waitq, &wait);
364 		if (erase->state != MTD_ERASE_DONE
365 		    && erase->state != MTD_ERASE_FAILED)
366 			schedule();
367 		remove_wait_queue(&waitq, &wait);
368 		set_current_state(TASK_RUNNING);
369 
370 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
371 	}
372 	return err;
373 }
374 
375 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
376 {
377 	struct mtd_concat *concat = CONCAT(mtd);
378 	struct mtd_info *subdev;
379 	int i, err;
380 	uint64_t length, offset = 0;
381 	struct erase_info *erase;
382 
383 	/*
384 	 * Check for proper erase block alignment of the to-be-erased area.
385 	 * It is easier to do this based on the super device's erase
386 	 * region info rather than looking at each particular sub-device
387 	 * in turn.
388 	 */
389 	if (!concat->mtd.numeraseregions) {
390 		/* the easy case: device has uniform erase block size */
391 		if (instr->addr & (concat->mtd.erasesize - 1))
392 			return -EINVAL;
393 		if (instr->len & (concat->mtd.erasesize - 1))
394 			return -EINVAL;
395 	} else {
396 		/* device has variable erase size */
397 		struct mtd_erase_region_info *erase_regions =
398 		    concat->mtd.eraseregions;
399 
400 		/*
401 		 * Find the erase region where the to-be-erased area begins:
402 		 */
403 		for (i = 0; i < concat->mtd.numeraseregions &&
404 		     instr->addr >= erase_regions[i].offset; i++) ;
405 		--i;
406 
407 		/*
408 		 * Now erase_regions[i] is the region in which the
409 		 * to-be-erased area begins. Verify that the starting
410 		 * offset is aligned to this region's erase size:
411 		 */
412 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
413 			return -EINVAL;
414 
415 		/*
416 		 * now find the erase region where the to-be-erased area ends:
417 		 */
418 		for (; i < concat->mtd.numeraseregions &&
419 		     (instr->addr + instr->len) >= erase_regions[i].offset;
420 		     ++i) ;
421 		--i;
422 		/*
423 		 * check if the ending offset is aligned to this region's erase size
424 		 */
425 		if (i < 0 || ((instr->addr + instr->len) &
426 					(erase_regions[i].erasesize - 1)))
427 			return -EINVAL;
428 	}
429 
430 	/* make a local copy of instr to avoid modifying the caller's struct */
431 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
432 
433 	if (!erase)
434 		return -ENOMEM;
435 
436 	*erase = *instr;
437 	length = instr->len;
438 
439 	/*
440 	 * find the subdevice where the to-be-erased area begins, adjust
441 	 * starting offset to be relative to the subdevice start
442 	 */
443 	for (i = 0; i < concat->num_subdev; i++) {
444 		subdev = concat->subdev[i];
445 		if (subdev->size <= erase->addr) {
446 			erase->addr -= subdev->size;
447 			offset += subdev->size;
448 		} else {
449 			break;
450 		}
451 	}
452 
453 	/* must never happen since size limit has been verified above */
454 	BUG_ON(i >= concat->num_subdev);
455 
456 	/* now do the erase: */
457 	err = 0;
458 	for (; length > 0; i++) {
459 		/* loop for all subdevices affected by this request */
460 		subdev = concat->subdev[i];	/* get current subdevice */
461 
462 		/* limit length to subdevice's size: */
463 		if (erase->addr + length > subdev->size)
464 			erase->len = subdev->size - erase->addr;
465 		else
466 			erase->len = length;
467 
468 		length -= erase->len;
469 		if ((err = concat_dev_erase(subdev, erase))) {
470 			/* sanity check: should never happen since
471 			 * block alignment has been checked above */
472 			BUG_ON(err == -EINVAL);
473 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
474 				instr->fail_addr = erase->fail_addr + offset;
475 			break;
476 		}
477 		/*
478 		 * erase->addr specifies the offset of the area to be
479 		 * erased *within the current subdevice*. It can be
480 		 * non-zero only the first time through this loop, i.e.
481 		 * for the first subdevice where blocks need to be erased.
482 		 * All the following erases must begin at the start of the
483 		 * current subdevice, i.e. at offset zero.
484 		 */
485 		erase->addr = 0;
486 		offset += subdev->size;
487 	}
488 	instr->state = erase->state;
489 	kfree(erase);
490 	if (err)
491 		return err;
492 
493 	if (instr->callback)
494 		instr->callback(instr);
495 	return 0;
496 }
497 
498 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
499 {
500 	struct mtd_concat *concat = CONCAT(mtd);
501 	int i, err = -EINVAL;
502 
503 	for (i = 0; i < concat->num_subdev; i++) {
504 		struct mtd_info *subdev = concat->subdev[i];
505 		uint64_t size;
506 
507 		if (ofs >= subdev->size) {
508 			size = 0;
509 			ofs -= subdev->size;
510 			continue;
511 		}
512 		if (ofs + len > subdev->size)
513 			size = subdev->size - ofs;
514 		else
515 			size = len;
516 
517 		err = mtd_lock(subdev, ofs, size);
518 		if (err)
519 			break;
520 
521 		len -= size;
522 		if (len == 0)
523 			break;
524 
525 		err = -EINVAL;
526 		ofs = 0;
527 	}
528 
529 	return err;
530 }
531 
532 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
533 {
534 	struct mtd_concat *concat = CONCAT(mtd);
535 	int i, err = 0;
536 
537 	for (i = 0; i < concat->num_subdev; i++) {
538 		struct mtd_info *subdev = concat->subdev[i];
539 		uint64_t size;
540 
541 		if (ofs >= subdev->size) {
542 			size = 0;
543 			ofs -= subdev->size;
544 			continue;
545 		}
546 		if (ofs + len > subdev->size)
547 			size = subdev->size - ofs;
548 		else
549 			size = len;
550 
551 		err = mtd_unlock(subdev, ofs, size);
552 		if (err)
553 			break;
554 
555 		len -= size;
556 		if (len == 0)
557 			break;
558 
559 		err = -EINVAL;
560 		ofs = 0;
561 	}
562 
563 	return err;
564 }
565 
566 static void concat_sync(struct mtd_info *mtd)
567 {
568 	struct mtd_concat *concat = CONCAT(mtd);
569 	int i;
570 
571 	for (i = 0; i < concat->num_subdev; i++) {
572 		struct mtd_info *subdev = concat->subdev[i];
573 		mtd_sync(subdev);
574 	}
575 }
576 
577 static int concat_suspend(struct mtd_info *mtd)
578 {
579 	struct mtd_concat *concat = CONCAT(mtd);
580 	int i, rc = 0;
581 
582 	for (i = 0; i < concat->num_subdev; i++) {
583 		struct mtd_info *subdev = concat->subdev[i];
584 		if ((rc = mtd_suspend(subdev)) < 0)
585 			return rc;
586 	}
587 	return rc;
588 }
589 
590 static void concat_resume(struct mtd_info *mtd)
591 {
592 	struct mtd_concat *concat = CONCAT(mtd);
593 	int i;
594 
595 	for (i = 0; i < concat->num_subdev; i++) {
596 		struct mtd_info *subdev = concat->subdev[i];
597 		mtd_resume(subdev);
598 	}
599 }
600 
601 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
602 {
603 	struct mtd_concat *concat = CONCAT(mtd);
604 	int i, res = 0;
605 
606 	if (!mtd_can_have_bb(concat->subdev[0]))
607 		return res;
608 
609 	for (i = 0; i < concat->num_subdev; i++) {
610 		struct mtd_info *subdev = concat->subdev[i];
611 
612 		if (ofs >= subdev->size) {
613 			ofs -= subdev->size;
614 			continue;
615 		}
616 
617 		res = mtd_block_isbad(subdev, ofs);
618 		break;
619 	}
620 
621 	return res;
622 }
623 
624 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
625 {
626 	struct mtd_concat *concat = CONCAT(mtd);
627 	int i, err = -EINVAL;
628 
629 	for (i = 0; i < concat->num_subdev; i++) {
630 		struct mtd_info *subdev = concat->subdev[i];
631 
632 		if (ofs >= subdev->size) {
633 			ofs -= subdev->size;
634 			continue;
635 		}
636 
637 		err = mtd_block_markbad(subdev, ofs);
638 		if (!err)
639 			mtd->ecc_stats.badblocks++;
640 		break;
641 	}
642 
643 	return err;
644 }
645 
646 /*
647  * This function constructs a virtual MTD device by concatenating
648  * num_devs MTD devices. A pointer to the new device object is
649  * stored to *new_dev upon success. This function does _not_
650  * register any devices: this is the caller's responsibility.
651  */
652 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
653 				   int num_devs,	/* number of subdevices      */
654 				   const char *name)
655 {				/* name for the new device   */
656 	int i;
657 	size_t size;
658 	struct mtd_concat *concat;
659 	uint32_t max_erasesize, curr_erasesize;
660 	int num_erase_region;
661 	int max_writebufsize = 0;
662 
663 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
664 	for (i = 0; i < num_devs; i++)
665 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
666 	printk(KERN_NOTICE "into device \"%s\"\n", name);
667 
668 	/* allocate the device structure */
669 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
670 	concat = kzalloc(size, GFP_KERNEL);
671 	if (!concat) {
672 		printk
673 		    ("memory allocation error while creating concatenated device \"%s\"\n",
674 		     name);
675 		return NULL;
676 	}
677 	concat->subdev = (struct mtd_info **) (concat + 1);
678 
679 	/*
680 	 * Set up the new "super" device's MTD object structure, check for
681 	 * incompatibilities between the subdevices.
682 	 */
683 	concat->mtd.type = subdev[0]->type;
684 	concat->mtd.flags = subdev[0]->flags;
685 	concat->mtd.size = subdev[0]->size;
686 	concat->mtd.erasesize = subdev[0]->erasesize;
687 	concat->mtd.writesize = subdev[0]->writesize;
688 
689 	for (i = 0; i < num_devs; i++)
690 		if (max_writebufsize < subdev[i]->writebufsize)
691 			max_writebufsize = subdev[i]->writebufsize;
692 	concat->mtd.writebufsize = max_writebufsize;
693 
694 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
695 	concat->mtd.oobsize = subdev[0]->oobsize;
696 	concat->mtd.oobavail = subdev[0]->oobavail;
697 	if (subdev[0]->_writev)
698 		concat->mtd._writev = concat_writev;
699 	if (subdev[0]->_read_oob)
700 		concat->mtd._read_oob = concat_read_oob;
701 	if (subdev[0]->_write_oob)
702 		concat->mtd._write_oob = concat_write_oob;
703 	if (subdev[0]->_block_isbad)
704 		concat->mtd._block_isbad = concat_block_isbad;
705 	if (subdev[0]->_block_markbad)
706 		concat->mtd._block_markbad = concat_block_markbad;
707 
708 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
709 
710 	concat->subdev[0] = subdev[0];
711 
712 	for (i = 1; i < num_devs; i++) {
713 		if (concat->mtd.type != subdev[i]->type) {
714 			kfree(concat);
715 			printk("Incompatible device type on \"%s\"\n",
716 			       subdev[i]->name);
717 			return NULL;
718 		}
719 		if (concat->mtd.flags != subdev[i]->flags) {
720 			/*
721 			 * Expect all flags except MTD_WRITEABLE to be
722 			 * equal on all subdevices.
723 			 */
724 			if ((concat->mtd.flags ^ subdev[i]->
725 			     flags) & ~MTD_WRITEABLE) {
726 				kfree(concat);
727 				printk("Incompatible device flags on \"%s\"\n",
728 				       subdev[i]->name);
729 				return NULL;
730 			} else
731 				/* if writeable attribute differs,
732 				   make super device writeable */
733 				concat->mtd.flags |=
734 				    subdev[i]->flags & MTD_WRITEABLE;
735 		}
736 
737 		concat->mtd.size += subdev[i]->size;
738 		concat->mtd.ecc_stats.badblocks +=
739 			subdev[i]->ecc_stats.badblocks;
740 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
741 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
742 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
743 		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
744 		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
745 			kfree(concat);
746 			printk("Incompatible OOB or ECC data on \"%s\"\n",
747 			       subdev[i]->name);
748 			return NULL;
749 		}
750 		concat->subdev[i] = subdev[i];
751 
752 	}
753 
754 	mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
755 
756 	concat->num_subdev = num_devs;
757 	concat->mtd.name = name;
758 
759 	concat->mtd._erase = concat_erase;
760 	concat->mtd._read = concat_read;
761 	concat->mtd._write = concat_write;
762 	concat->mtd._sync = concat_sync;
763 	concat->mtd._lock = concat_lock;
764 	concat->mtd._unlock = concat_unlock;
765 	concat->mtd._suspend = concat_suspend;
766 	concat->mtd._resume = concat_resume;
767 
768 	/*
769 	 * Combine the erase block size info of the subdevices:
770 	 *
771 	 * first, walk the map of the new device and see how
772 	 * many changes in erase size we have
773 	 */
774 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
775 	num_erase_region = 1;
776 	for (i = 0; i < num_devs; i++) {
777 		if (subdev[i]->numeraseregions == 0) {
778 			/* current subdevice has uniform erase size */
779 			if (subdev[i]->erasesize != curr_erasesize) {
780 				/* if it differs from the last subdevice's erase size, count it */
781 				++num_erase_region;
782 				curr_erasesize = subdev[i]->erasesize;
783 				if (curr_erasesize > max_erasesize)
784 					max_erasesize = curr_erasesize;
785 			}
786 		} else {
787 			/* current subdevice has variable erase size */
788 			int j;
789 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
790 
791 				/* walk the list of erase regions, count any changes */
792 				if (subdev[i]->eraseregions[j].erasesize !=
793 				    curr_erasesize) {
794 					++num_erase_region;
795 					curr_erasesize =
796 					    subdev[i]->eraseregions[j].
797 					    erasesize;
798 					if (curr_erasesize > max_erasesize)
799 						max_erasesize = curr_erasesize;
800 				}
801 			}
802 		}
803 	}
804 
805 	if (num_erase_region == 1) {
806 		/*
807 		 * All subdevices have the same uniform erase size.
808 		 * This is easy:
809 		 */
810 		concat->mtd.erasesize = curr_erasesize;
811 		concat->mtd.numeraseregions = 0;
812 	} else {
813 		uint64_t tmp64;
814 
815 		/*
816 		 * erase block size varies across the subdevices: allocate
817 		 * space to store the data describing the variable erase regions
818 		 */
819 		struct mtd_erase_region_info *erase_region_p;
820 		uint64_t begin, position;
821 
822 		concat->mtd.erasesize = max_erasesize;
823 		concat->mtd.numeraseregions = num_erase_region;
824 		concat->mtd.eraseregions = erase_region_p =
825 		    kmalloc(num_erase_region *
826 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
827 		if (!erase_region_p) {
828 			kfree(concat);
829 			printk
830 			    ("memory allocation error while creating erase region list"
831 			     " for device \"%s\"\n", name);
832 			return NULL;
833 		}
834 
835 		/*
836 		 * walk the map of the new device once more and fill in
837 		 * in erase region info:
838 		 */
839 		curr_erasesize = subdev[0]->erasesize;
840 		begin = position = 0;
841 		for (i = 0; i < num_devs; i++) {
842 			if (subdev[i]->numeraseregions == 0) {
843 				/* current subdevice has uniform erase size */
844 				if (subdev[i]->erasesize != curr_erasesize) {
845 					/*
846 					 *  fill in an mtd_erase_region_info structure for the area
847 					 *  we have walked so far:
848 					 */
849 					erase_region_p->offset = begin;
850 					erase_region_p->erasesize =
851 					    curr_erasesize;
852 					tmp64 = position - begin;
853 					do_div(tmp64, curr_erasesize);
854 					erase_region_p->numblocks = tmp64;
855 					begin = position;
856 
857 					curr_erasesize = subdev[i]->erasesize;
858 					++erase_region_p;
859 				}
860 				position += subdev[i]->size;
861 			} else {
862 				/* current subdevice has variable erase size */
863 				int j;
864 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
865 					/* walk the list of erase regions, count any changes */
866 					if (subdev[i]->eraseregions[j].
867 					    erasesize != curr_erasesize) {
868 						erase_region_p->offset = begin;
869 						erase_region_p->erasesize =
870 						    curr_erasesize;
871 						tmp64 = position - begin;
872 						do_div(tmp64, curr_erasesize);
873 						erase_region_p->numblocks = tmp64;
874 						begin = position;
875 
876 						curr_erasesize =
877 						    subdev[i]->eraseregions[j].
878 						    erasesize;
879 						++erase_region_p;
880 					}
881 					position +=
882 					    subdev[i]->eraseregions[j].
883 					    numblocks * (uint64_t)curr_erasesize;
884 				}
885 			}
886 		}
887 		/* Now write the final entry */
888 		erase_region_p->offset = begin;
889 		erase_region_p->erasesize = curr_erasesize;
890 		tmp64 = position - begin;
891 		do_div(tmp64, curr_erasesize);
892 		erase_region_p->numblocks = tmp64;
893 	}
894 
895 	return &concat->mtd;
896 }
897 
898 /*
899  * This function destroys an MTD object obtained from concat_mtd_devs()
900  */
901 
902 void mtd_concat_destroy(struct mtd_info *mtd)
903 {
904 	struct mtd_concat *concat = CONCAT(mtd);
905 	if (concat->mtd.numeraseregions)
906 		kfree(concat->mtd.eraseregions);
907 	kfree(concat);
908 }
909 
910 EXPORT_SYMBOL(mtd_concat_create);
911 EXPORT_SYMBOL(mtd_concat_destroy);
912 
913 MODULE_LICENSE("GPL");
914 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
915 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
916