xref: /openbmc/linux/drivers/mtd/mtdconcat.c (revision 7dd65feb)
1 /*
2  * MTD device concatenation layer
3  *
4  * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
5  *
6  * NAND support by Christian Gan <cgan@iders.ca>
7  *
8  * This code is GPL
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/types.h>
16 #include <linux/backing-dev.h>
17 
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/concat.h>
20 
21 #include <asm/div64.h>
22 
23 /*
24  * Our storage structure:
25  * Subdev points to an array of pointers to struct mtd_info objects
26  * which is allocated along with this structure
27  *
28  */
29 struct mtd_concat {
30 	struct mtd_info mtd;
31 	int num_subdev;
32 	struct mtd_info **subdev;
33 };
34 
35 /*
36  * how to calculate the size required for the above structure,
37  * including the pointer array subdev points to:
38  */
39 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
40 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
41 
42 /*
43  * Given a pointer to the MTD object in the mtd_concat structure,
44  * we can retrieve the pointer to that structure with this macro.
45  */
46 #define CONCAT(x)  ((struct mtd_concat *)(x))
47 
48 /*
49  * MTD methods which look up the relevant subdevice, translate the
50  * effective address and pass through to the subdevice.
51  */
52 
53 static int
54 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
55 	    size_t * retlen, u_char * buf)
56 {
57 	struct mtd_concat *concat = CONCAT(mtd);
58 	int ret = 0, err;
59 	int i;
60 
61 	*retlen = 0;
62 
63 	for (i = 0; i < concat->num_subdev; i++) {
64 		struct mtd_info *subdev = concat->subdev[i];
65 		size_t size, retsize;
66 
67 		if (from >= subdev->size) {
68 			/* Not destined for this subdev */
69 			size = 0;
70 			from -= subdev->size;
71 			continue;
72 		}
73 		if (from + len > subdev->size)
74 			/* First part goes into this subdev */
75 			size = subdev->size - from;
76 		else
77 			/* Entire transaction goes into this subdev */
78 			size = len;
79 
80 		err = subdev->read(subdev, from, size, &retsize, buf);
81 
82 		/* Save information about bitflips! */
83 		if (unlikely(err)) {
84 			if (err == -EBADMSG) {
85 				mtd->ecc_stats.failed++;
86 				ret = err;
87 			} else if (err == -EUCLEAN) {
88 				mtd->ecc_stats.corrected++;
89 				/* Do not overwrite -EBADMSG !! */
90 				if (!ret)
91 					ret = err;
92 			} else
93 				return err;
94 		}
95 
96 		*retlen += retsize;
97 		len -= size;
98 		if (len == 0)
99 			return ret;
100 
101 		buf += size;
102 		from = 0;
103 	}
104 	return -EINVAL;
105 }
106 
107 static int
108 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
109 	     size_t * retlen, const u_char * buf)
110 {
111 	struct mtd_concat *concat = CONCAT(mtd);
112 	int err = -EINVAL;
113 	int i;
114 
115 	if (!(mtd->flags & MTD_WRITEABLE))
116 		return -EROFS;
117 
118 	*retlen = 0;
119 
120 	for (i = 0; i < concat->num_subdev; i++) {
121 		struct mtd_info *subdev = concat->subdev[i];
122 		size_t size, retsize;
123 
124 		if (to >= subdev->size) {
125 			size = 0;
126 			to -= subdev->size;
127 			continue;
128 		}
129 		if (to + len > subdev->size)
130 			size = subdev->size - to;
131 		else
132 			size = len;
133 
134 		if (!(subdev->flags & MTD_WRITEABLE))
135 			err = -EROFS;
136 		else
137 			err = subdev->write(subdev, to, size, &retsize, buf);
138 
139 		if (err)
140 			break;
141 
142 		*retlen += retsize;
143 		len -= size;
144 		if (len == 0)
145 			break;
146 
147 		err = -EINVAL;
148 		buf += size;
149 		to = 0;
150 	}
151 	return err;
152 }
153 
154 static int
155 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
156 		unsigned long count, loff_t to, size_t * retlen)
157 {
158 	struct mtd_concat *concat = CONCAT(mtd);
159 	struct kvec *vecs_copy;
160 	unsigned long entry_low, entry_high;
161 	size_t total_len = 0;
162 	int i;
163 	int err = -EINVAL;
164 
165 	if (!(mtd->flags & MTD_WRITEABLE))
166 		return -EROFS;
167 
168 	*retlen = 0;
169 
170 	/* Calculate total length of data */
171 	for (i = 0; i < count; i++)
172 		total_len += vecs[i].iov_len;
173 
174 	/* Do not allow write past end of device */
175 	if ((to + total_len) > mtd->size)
176 		return -EINVAL;
177 
178 	/* Check alignment */
179 	if (mtd->writesize > 1) {
180 		uint64_t __to = to;
181 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
182 			return -EINVAL;
183 	}
184 
185 	/* make a copy of vecs */
186 	vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL);
187 	if (!vecs_copy)
188 		return -ENOMEM;
189 	memcpy(vecs_copy, vecs, sizeof(struct kvec) * count);
190 
191 	entry_low = 0;
192 	for (i = 0; i < concat->num_subdev; i++) {
193 		struct mtd_info *subdev = concat->subdev[i];
194 		size_t size, wsize, retsize, old_iov_len;
195 
196 		if (to >= subdev->size) {
197 			to -= subdev->size;
198 			continue;
199 		}
200 
201 		size = min_t(uint64_t, total_len, subdev->size - to);
202 		wsize = size; /* store for future use */
203 
204 		entry_high = entry_low;
205 		while (entry_high < count) {
206 			if (size <= vecs_copy[entry_high].iov_len)
207 				break;
208 			size -= vecs_copy[entry_high++].iov_len;
209 		}
210 
211 		old_iov_len = vecs_copy[entry_high].iov_len;
212 		vecs_copy[entry_high].iov_len = size;
213 
214 		if (!(subdev->flags & MTD_WRITEABLE))
215 			err = -EROFS;
216 		else
217 			err = subdev->writev(subdev, &vecs_copy[entry_low],
218 				entry_high - entry_low + 1, to, &retsize);
219 
220 		vecs_copy[entry_high].iov_len = old_iov_len - size;
221 		vecs_copy[entry_high].iov_base += size;
222 
223 		entry_low = entry_high;
224 
225 		if (err)
226 			break;
227 
228 		*retlen += retsize;
229 		total_len -= wsize;
230 
231 		if (total_len == 0)
232 			break;
233 
234 		err = -EINVAL;
235 		to = 0;
236 	}
237 
238 	kfree(vecs_copy);
239 	return err;
240 }
241 
242 static int
243 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
244 {
245 	struct mtd_concat *concat = CONCAT(mtd);
246 	struct mtd_oob_ops devops = *ops;
247 	int i, err, ret = 0;
248 
249 	ops->retlen = ops->oobretlen = 0;
250 
251 	for (i = 0; i < concat->num_subdev; i++) {
252 		struct mtd_info *subdev = concat->subdev[i];
253 
254 		if (from >= subdev->size) {
255 			from -= subdev->size;
256 			continue;
257 		}
258 
259 		/* partial read ? */
260 		if (from + devops.len > subdev->size)
261 			devops.len = subdev->size - from;
262 
263 		err = subdev->read_oob(subdev, from, &devops);
264 		ops->retlen += devops.retlen;
265 		ops->oobretlen += devops.oobretlen;
266 
267 		/* Save information about bitflips! */
268 		if (unlikely(err)) {
269 			if (err == -EBADMSG) {
270 				mtd->ecc_stats.failed++;
271 				ret = err;
272 			} else if (err == -EUCLEAN) {
273 				mtd->ecc_stats.corrected++;
274 				/* Do not overwrite -EBADMSG !! */
275 				if (!ret)
276 					ret = err;
277 			} else
278 				return err;
279 		}
280 
281 		if (devops.datbuf) {
282 			devops.len = ops->len - ops->retlen;
283 			if (!devops.len)
284 				return ret;
285 			devops.datbuf += devops.retlen;
286 		}
287 		if (devops.oobbuf) {
288 			devops.ooblen = ops->ooblen - ops->oobretlen;
289 			if (!devops.ooblen)
290 				return ret;
291 			devops.oobbuf += ops->oobretlen;
292 		}
293 
294 		from = 0;
295 	}
296 	return -EINVAL;
297 }
298 
299 static int
300 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
301 {
302 	struct mtd_concat *concat = CONCAT(mtd);
303 	struct mtd_oob_ops devops = *ops;
304 	int i, err;
305 
306 	if (!(mtd->flags & MTD_WRITEABLE))
307 		return -EROFS;
308 
309 	ops->retlen = 0;
310 
311 	for (i = 0; i < concat->num_subdev; i++) {
312 		struct mtd_info *subdev = concat->subdev[i];
313 
314 		if (to >= subdev->size) {
315 			to -= subdev->size;
316 			continue;
317 		}
318 
319 		/* partial write ? */
320 		if (to + devops.len > subdev->size)
321 			devops.len = subdev->size - to;
322 
323 		err = subdev->write_oob(subdev, to, &devops);
324 		ops->retlen += devops.retlen;
325 		if (err)
326 			return err;
327 
328 		if (devops.datbuf) {
329 			devops.len = ops->len - ops->retlen;
330 			if (!devops.len)
331 				return 0;
332 			devops.datbuf += devops.retlen;
333 		}
334 		if (devops.oobbuf) {
335 			devops.ooblen = ops->ooblen - ops->oobretlen;
336 			if (!devops.ooblen)
337 				return 0;
338 			devops.oobbuf += devops.oobretlen;
339 		}
340 		to = 0;
341 	}
342 	return -EINVAL;
343 }
344 
345 static void concat_erase_callback(struct erase_info *instr)
346 {
347 	wake_up((wait_queue_head_t *) instr->priv);
348 }
349 
350 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
351 {
352 	int err;
353 	wait_queue_head_t waitq;
354 	DECLARE_WAITQUEUE(wait, current);
355 
356 	/*
357 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
358 	 */
359 	init_waitqueue_head(&waitq);
360 
361 	erase->mtd = mtd;
362 	erase->callback = concat_erase_callback;
363 	erase->priv = (unsigned long) &waitq;
364 
365 	/*
366 	 * FIXME: Allow INTERRUPTIBLE. Which means
367 	 * not having the wait_queue head on the stack.
368 	 */
369 	err = mtd->erase(mtd, erase);
370 	if (!err) {
371 		set_current_state(TASK_UNINTERRUPTIBLE);
372 		add_wait_queue(&waitq, &wait);
373 		if (erase->state != MTD_ERASE_DONE
374 		    && erase->state != MTD_ERASE_FAILED)
375 			schedule();
376 		remove_wait_queue(&waitq, &wait);
377 		set_current_state(TASK_RUNNING);
378 
379 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
380 	}
381 	return err;
382 }
383 
384 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
385 {
386 	struct mtd_concat *concat = CONCAT(mtd);
387 	struct mtd_info *subdev;
388 	int i, err;
389 	uint64_t length, offset = 0;
390 	struct erase_info *erase;
391 
392 	if (!(mtd->flags & MTD_WRITEABLE))
393 		return -EROFS;
394 
395 	if (instr->addr > concat->mtd.size)
396 		return -EINVAL;
397 
398 	if (instr->len + instr->addr > concat->mtd.size)
399 		return -EINVAL;
400 
401 	/*
402 	 * Check for proper erase block alignment of the to-be-erased area.
403 	 * It is easier to do this based on the super device's erase
404 	 * region info rather than looking at each particular sub-device
405 	 * in turn.
406 	 */
407 	if (!concat->mtd.numeraseregions) {
408 		/* the easy case: device has uniform erase block size */
409 		if (instr->addr & (concat->mtd.erasesize - 1))
410 			return -EINVAL;
411 		if (instr->len & (concat->mtd.erasesize - 1))
412 			return -EINVAL;
413 	} else {
414 		/* device has variable erase size */
415 		struct mtd_erase_region_info *erase_regions =
416 		    concat->mtd.eraseregions;
417 
418 		/*
419 		 * Find the erase region where the to-be-erased area begins:
420 		 */
421 		for (i = 0; i < concat->mtd.numeraseregions &&
422 		     instr->addr >= erase_regions[i].offset; i++) ;
423 		--i;
424 
425 		/*
426 		 * Now erase_regions[i] is the region in which the
427 		 * to-be-erased area begins. Verify that the starting
428 		 * offset is aligned to this region's erase size:
429 		 */
430 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
431 			return -EINVAL;
432 
433 		/*
434 		 * now find the erase region where the to-be-erased area ends:
435 		 */
436 		for (; i < concat->mtd.numeraseregions &&
437 		     (instr->addr + instr->len) >= erase_regions[i].offset;
438 		     ++i) ;
439 		--i;
440 		/*
441 		 * check if the ending offset is aligned to this region's erase size
442 		 */
443 		if (i < 0 || ((instr->addr + instr->len) &
444 					(erase_regions[i].erasesize - 1)))
445 			return -EINVAL;
446 	}
447 
448 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
449 
450 	/* make a local copy of instr to avoid modifying the caller's struct */
451 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
452 
453 	if (!erase)
454 		return -ENOMEM;
455 
456 	*erase = *instr;
457 	length = instr->len;
458 
459 	/*
460 	 * find the subdevice where the to-be-erased area begins, adjust
461 	 * starting offset to be relative to the subdevice start
462 	 */
463 	for (i = 0; i < concat->num_subdev; i++) {
464 		subdev = concat->subdev[i];
465 		if (subdev->size <= erase->addr) {
466 			erase->addr -= subdev->size;
467 			offset += subdev->size;
468 		} else {
469 			break;
470 		}
471 	}
472 
473 	/* must never happen since size limit has been verified above */
474 	BUG_ON(i >= concat->num_subdev);
475 
476 	/* now do the erase: */
477 	err = 0;
478 	for (; length > 0; i++) {
479 		/* loop for all subdevices affected by this request */
480 		subdev = concat->subdev[i];	/* get current subdevice */
481 
482 		/* limit length to subdevice's size: */
483 		if (erase->addr + length > subdev->size)
484 			erase->len = subdev->size - erase->addr;
485 		else
486 			erase->len = length;
487 
488 		if (!(subdev->flags & MTD_WRITEABLE)) {
489 			err = -EROFS;
490 			break;
491 		}
492 		length -= erase->len;
493 		if ((err = concat_dev_erase(subdev, erase))) {
494 			/* sanity check: should never happen since
495 			 * block alignment has been checked above */
496 			BUG_ON(err == -EINVAL);
497 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
498 				instr->fail_addr = erase->fail_addr + offset;
499 			break;
500 		}
501 		/*
502 		 * erase->addr specifies the offset of the area to be
503 		 * erased *within the current subdevice*. It can be
504 		 * non-zero only the first time through this loop, i.e.
505 		 * for the first subdevice where blocks need to be erased.
506 		 * All the following erases must begin at the start of the
507 		 * current subdevice, i.e. at offset zero.
508 		 */
509 		erase->addr = 0;
510 		offset += subdev->size;
511 	}
512 	instr->state = erase->state;
513 	kfree(erase);
514 	if (err)
515 		return err;
516 
517 	if (instr->callback)
518 		instr->callback(instr);
519 	return 0;
520 }
521 
522 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
523 {
524 	struct mtd_concat *concat = CONCAT(mtd);
525 	int i, err = -EINVAL;
526 
527 	if ((len + ofs) > mtd->size)
528 		return -EINVAL;
529 
530 	for (i = 0; i < concat->num_subdev; i++) {
531 		struct mtd_info *subdev = concat->subdev[i];
532 		uint64_t size;
533 
534 		if (ofs >= subdev->size) {
535 			size = 0;
536 			ofs -= subdev->size;
537 			continue;
538 		}
539 		if (ofs + len > subdev->size)
540 			size = subdev->size - ofs;
541 		else
542 			size = len;
543 
544 		err = subdev->lock(subdev, ofs, size);
545 
546 		if (err)
547 			break;
548 
549 		len -= size;
550 		if (len == 0)
551 			break;
552 
553 		err = -EINVAL;
554 		ofs = 0;
555 	}
556 
557 	return err;
558 }
559 
560 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
561 {
562 	struct mtd_concat *concat = CONCAT(mtd);
563 	int i, err = 0;
564 
565 	if ((len + ofs) > mtd->size)
566 		return -EINVAL;
567 
568 	for (i = 0; i < concat->num_subdev; i++) {
569 		struct mtd_info *subdev = concat->subdev[i];
570 		uint64_t size;
571 
572 		if (ofs >= subdev->size) {
573 			size = 0;
574 			ofs -= subdev->size;
575 			continue;
576 		}
577 		if (ofs + len > subdev->size)
578 			size = subdev->size - ofs;
579 		else
580 			size = len;
581 
582 		err = subdev->unlock(subdev, ofs, size);
583 
584 		if (err)
585 			break;
586 
587 		len -= size;
588 		if (len == 0)
589 			break;
590 
591 		err = -EINVAL;
592 		ofs = 0;
593 	}
594 
595 	return err;
596 }
597 
598 static void concat_sync(struct mtd_info *mtd)
599 {
600 	struct mtd_concat *concat = CONCAT(mtd);
601 	int i;
602 
603 	for (i = 0; i < concat->num_subdev; i++) {
604 		struct mtd_info *subdev = concat->subdev[i];
605 		subdev->sync(subdev);
606 	}
607 }
608 
609 static int concat_suspend(struct mtd_info *mtd)
610 {
611 	struct mtd_concat *concat = CONCAT(mtd);
612 	int i, rc = 0;
613 
614 	for (i = 0; i < concat->num_subdev; i++) {
615 		struct mtd_info *subdev = concat->subdev[i];
616 		if ((rc = subdev->suspend(subdev)) < 0)
617 			return rc;
618 	}
619 	return rc;
620 }
621 
622 static void concat_resume(struct mtd_info *mtd)
623 {
624 	struct mtd_concat *concat = CONCAT(mtd);
625 	int i;
626 
627 	for (i = 0; i < concat->num_subdev; i++) {
628 		struct mtd_info *subdev = concat->subdev[i];
629 		subdev->resume(subdev);
630 	}
631 }
632 
633 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
634 {
635 	struct mtd_concat *concat = CONCAT(mtd);
636 	int i, res = 0;
637 
638 	if (!concat->subdev[0]->block_isbad)
639 		return res;
640 
641 	if (ofs > mtd->size)
642 		return -EINVAL;
643 
644 	for (i = 0; i < concat->num_subdev; i++) {
645 		struct mtd_info *subdev = concat->subdev[i];
646 
647 		if (ofs >= subdev->size) {
648 			ofs -= subdev->size;
649 			continue;
650 		}
651 
652 		res = subdev->block_isbad(subdev, ofs);
653 		break;
654 	}
655 
656 	return res;
657 }
658 
659 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
660 {
661 	struct mtd_concat *concat = CONCAT(mtd);
662 	int i, err = -EINVAL;
663 
664 	if (!concat->subdev[0]->block_markbad)
665 		return 0;
666 
667 	if (ofs > mtd->size)
668 		return -EINVAL;
669 
670 	for (i = 0; i < concat->num_subdev; i++) {
671 		struct mtd_info *subdev = concat->subdev[i];
672 
673 		if (ofs >= subdev->size) {
674 			ofs -= subdev->size;
675 			continue;
676 		}
677 
678 		err = subdev->block_markbad(subdev, ofs);
679 		if (!err)
680 			mtd->ecc_stats.badblocks++;
681 		break;
682 	}
683 
684 	return err;
685 }
686 
687 /*
688  * try to support NOMMU mmaps on concatenated devices
689  * - we don't support subdev spanning as we can't guarantee it'll work
690  */
691 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
692 					      unsigned long len,
693 					      unsigned long offset,
694 					      unsigned long flags)
695 {
696 	struct mtd_concat *concat = CONCAT(mtd);
697 	int i;
698 
699 	for (i = 0; i < concat->num_subdev; i++) {
700 		struct mtd_info *subdev = concat->subdev[i];
701 
702 		if (offset >= subdev->size) {
703 			offset -= subdev->size;
704 			continue;
705 		}
706 
707 		/* we've found the subdev over which the mapping will reside */
708 		if (offset + len > subdev->size)
709 			return (unsigned long) -EINVAL;
710 
711 		if (subdev->get_unmapped_area)
712 			return subdev->get_unmapped_area(subdev, len, offset,
713 							 flags);
714 
715 		break;
716 	}
717 
718 	return (unsigned long) -ENOSYS;
719 }
720 
721 /*
722  * This function constructs a virtual MTD device by concatenating
723  * num_devs MTD devices. A pointer to the new device object is
724  * stored to *new_dev upon success. This function does _not_
725  * register any devices: this is the caller's responsibility.
726  */
727 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
728 				   int num_devs,	/* number of subdevices      */
729 				   const char *name)
730 {				/* name for the new device   */
731 	int i;
732 	size_t size;
733 	struct mtd_concat *concat;
734 	uint32_t max_erasesize, curr_erasesize;
735 	int num_erase_region;
736 
737 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
738 	for (i = 0; i < num_devs; i++)
739 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
740 	printk(KERN_NOTICE "into device \"%s\"\n", name);
741 
742 	/* allocate the device structure */
743 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
744 	concat = kzalloc(size, GFP_KERNEL);
745 	if (!concat) {
746 		printk
747 		    ("memory allocation error while creating concatenated device \"%s\"\n",
748 		     name);
749 		return NULL;
750 	}
751 	concat->subdev = (struct mtd_info **) (concat + 1);
752 
753 	/*
754 	 * Set up the new "super" device's MTD object structure, check for
755 	 * incompatibilites between the subdevices.
756 	 */
757 	concat->mtd.type = subdev[0]->type;
758 	concat->mtd.flags = subdev[0]->flags;
759 	concat->mtd.size = subdev[0]->size;
760 	concat->mtd.erasesize = subdev[0]->erasesize;
761 	concat->mtd.writesize = subdev[0]->writesize;
762 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
763 	concat->mtd.oobsize = subdev[0]->oobsize;
764 	concat->mtd.oobavail = subdev[0]->oobavail;
765 	if (subdev[0]->writev)
766 		concat->mtd.writev = concat_writev;
767 	if (subdev[0]->read_oob)
768 		concat->mtd.read_oob = concat_read_oob;
769 	if (subdev[0]->write_oob)
770 		concat->mtd.write_oob = concat_write_oob;
771 	if (subdev[0]->block_isbad)
772 		concat->mtd.block_isbad = concat_block_isbad;
773 	if (subdev[0]->block_markbad)
774 		concat->mtd.block_markbad = concat_block_markbad;
775 
776 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
777 
778 	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
779 
780 	concat->subdev[0] = subdev[0];
781 
782 	for (i = 1; i < num_devs; i++) {
783 		if (concat->mtd.type != subdev[i]->type) {
784 			kfree(concat);
785 			printk("Incompatible device type on \"%s\"\n",
786 			       subdev[i]->name);
787 			return NULL;
788 		}
789 		if (concat->mtd.flags != subdev[i]->flags) {
790 			/*
791 			 * Expect all flags except MTD_WRITEABLE to be
792 			 * equal on all subdevices.
793 			 */
794 			if ((concat->mtd.flags ^ subdev[i]->
795 			     flags) & ~MTD_WRITEABLE) {
796 				kfree(concat);
797 				printk("Incompatible device flags on \"%s\"\n",
798 				       subdev[i]->name);
799 				return NULL;
800 			} else
801 				/* if writeable attribute differs,
802 				   make super device writeable */
803 				concat->mtd.flags |=
804 				    subdev[i]->flags & MTD_WRITEABLE;
805 		}
806 
807 		/* only permit direct mapping if the BDIs are all the same
808 		 * - copy-mapping is still permitted
809 		 */
810 		if (concat->mtd.backing_dev_info !=
811 		    subdev[i]->backing_dev_info)
812 			concat->mtd.backing_dev_info =
813 				&default_backing_dev_info;
814 
815 		concat->mtd.size += subdev[i]->size;
816 		concat->mtd.ecc_stats.badblocks +=
817 			subdev[i]->ecc_stats.badblocks;
818 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
819 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
820 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
821 		    !concat->mtd.read_oob  != !subdev[i]->read_oob ||
822 		    !concat->mtd.write_oob != !subdev[i]->write_oob) {
823 			kfree(concat);
824 			printk("Incompatible OOB or ECC data on \"%s\"\n",
825 			       subdev[i]->name);
826 			return NULL;
827 		}
828 		concat->subdev[i] = subdev[i];
829 
830 	}
831 
832 	concat->mtd.ecclayout = subdev[0]->ecclayout;
833 
834 	concat->num_subdev = num_devs;
835 	concat->mtd.name = name;
836 
837 	concat->mtd.erase = concat_erase;
838 	concat->mtd.read = concat_read;
839 	concat->mtd.write = concat_write;
840 	concat->mtd.sync = concat_sync;
841 	concat->mtd.lock = concat_lock;
842 	concat->mtd.unlock = concat_unlock;
843 	concat->mtd.suspend = concat_suspend;
844 	concat->mtd.resume = concat_resume;
845 	concat->mtd.get_unmapped_area = concat_get_unmapped_area;
846 
847 	/*
848 	 * Combine the erase block size info of the subdevices:
849 	 *
850 	 * first, walk the map of the new device and see how
851 	 * many changes in erase size we have
852 	 */
853 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
854 	num_erase_region = 1;
855 	for (i = 0; i < num_devs; i++) {
856 		if (subdev[i]->numeraseregions == 0) {
857 			/* current subdevice has uniform erase size */
858 			if (subdev[i]->erasesize != curr_erasesize) {
859 				/* if it differs from the last subdevice's erase size, count it */
860 				++num_erase_region;
861 				curr_erasesize = subdev[i]->erasesize;
862 				if (curr_erasesize > max_erasesize)
863 					max_erasesize = curr_erasesize;
864 			}
865 		} else {
866 			/* current subdevice has variable erase size */
867 			int j;
868 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
869 
870 				/* walk the list of erase regions, count any changes */
871 				if (subdev[i]->eraseregions[j].erasesize !=
872 				    curr_erasesize) {
873 					++num_erase_region;
874 					curr_erasesize =
875 					    subdev[i]->eraseregions[j].
876 					    erasesize;
877 					if (curr_erasesize > max_erasesize)
878 						max_erasesize = curr_erasesize;
879 				}
880 			}
881 		}
882 	}
883 
884 	if (num_erase_region == 1) {
885 		/*
886 		 * All subdevices have the same uniform erase size.
887 		 * This is easy:
888 		 */
889 		concat->mtd.erasesize = curr_erasesize;
890 		concat->mtd.numeraseregions = 0;
891 	} else {
892 		uint64_t tmp64;
893 
894 		/*
895 		 * erase block size varies across the subdevices: allocate
896 		 * space to store the data describing the variable erase regions
897 		 */
898 		struct mtd_erase_region_info *erase_region_p;
899 		uint64_t begin, position;
900 
901 		concat->mtd.erasesize = max_erasesize;
902 		concat->mtd.numeraseregions = num_erase_region;
903 		concat->mtd.eraseregions = erase_region_p =
904 		    kmalloc(num_erase_region *
905 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
906 		if (!erase_region_p) {
907 			kfree(concat);
908 			printk
909 			    ("memory allocation error while creating erase region list"
910 			     " for device \"%s\"\n", name);
911 			return NULL;
912 		}
913 
914 		/*
915 		 * walk the map of the new device once more and fill in
916 		 * in erase region info:
917 		 */
918 		curr_erasesize = subdev[0]->erasesize;
919 		begin = position = 0;
920 		for (i = 0; i < num_devs; i++) {
921 			if (subdev[i]->numeraseregions == 0) {
922 				/* current subdevice has uniform erase size */
923 				if (subdev[i]->erasesize != curr_erasesize) {
924 					/*
925 					 *  fill in an mtd_erase_region_info structure for the area
926 					 *  we have walked so far:
927 					 */
928 					erase_region_p->offset = begin;
929 					erase_region_p->erasesize =
930 					    curr_erasesize;
931 					tmp64 = position - begin;
932 					do_div(tmp64, curr_erasesize);
933 					erase_region_p->numblocks = tmp64;
934 					begin = position;
935 
936 					curr_erasesize = subdev[i]->erasesize;
937 					++erase_region_p;
938 				}
939 				position += subdev[i]->size;
940 			} else {
941 				/* current subdevice has variable erase size */
942 				int j;
943 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
944 					/* walk the list of erase regions, count any changes */
945 					if (subdev[i]->eraseregions[j].
946 					    erasesize != curr_erasesize) {
947 						erase_region_p->offset = begin;
948 						erase_region_p->erasesize =
949 						    curr_erasesize;
950 						tmp64 = position - begin;
951 						do_div(tmp64, curr_erasesize);
952 						erase_region_p->numblocks = tmp64;
953 						begin = position;
954 
955 						curr_erasesize =
956 						    subdev[i]->eraseregions[j].
957 						    erasesize;
958 						++erase_region_p;
959 					}
960 					position +=
961 					    subdev[i]->eraseregions[j].
962 					    numblocks * (uint64_t)curr_erasesize;
963 				}
964 			}
965 		}
966 		/* Now write the final entry */
967 		erase_region_p->offset = begin;
968 		erase_region_p->erasesize = curr_erasesize;
969 		tmp64 = position - begin;
970 		do_div(tmp64, curr_erasesize);
971 		erase_region_p->numblocks = tmp64;
972 	}
973 
974 	return &concat->mtd;
975 }
976 
977 /*
978  * This function destroys an MTD object obtained from concat_mtd_devs()
979  */
980 
981 void mtd_concat_destroy(struct mtd_info *mtd)
982 {
983 	struct mtd_concat *concat = CONCAT(mtd);
984 	if (concat->mtd.numeraseregions)
985 		kfree(concat->mtd.eraseregions);
986 	kfree(concat);
987 }
988 
989 EXPORT_SYMBOL(mtd_concat_create);
990 EXPORT_SYMBOL(mtd_concat_destroy);
991 
992 MODULE_LICENSE("GPL");
993 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
994 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
995