1 /* 2 * MTD device concatenation layer 3 * 4 * (C) 2002 Robert Kaiser <rkaiser@sysgo.de> 5 * 6 * NAND support by Christian Gan <cgan@iders.ca> 7 * 8 * This code is GPL 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/sched.h> 15 #include <linux/types.h> 16 #include <linux/backing-dev.h> 17 18 #include <linux/mtd/mtd.h> 19 #include <linux/mtd/concat.h> 20 21 #include <asm/div64.h> 22 23 /* 24 * Our storage structure: 25 * Subdev points to an array of pointers to struct mtd_info objects 26 * which is allocated along with this structure 27 * 28 */ 29 struct mtd_concat { 30 struct mtd_info mtd; 31 int num_subdev; 32 struct mtd_info **subdev; 33 }; 34 35 /* 36 * how to calculate the size required for the above structure, 37 * including the pointer array subdev points to: 38 */ 39 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ 40 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) 41 42 /* 43 * Given a pointer to the MTD object in the mtd_concat structure, 44 * we can retrieve the pointer to that structure with this macro. 45 */ 46 #define CONCAT(x) ((struct mtd_concat *)(x)) 47 48 /* 49 * MTD methods which look up the relevant subdevice, translate the 50 * effective address and pass through to the subdevice. 51 */ 52 53 static int 54 concat_read(struct mtd_info *mtd, loff_t from, size_t len, 55 size_t * retlen, u_char * buf) 56 { 57 struct mtd_concat *concat = CONCAT(mtd); 58 int ret = 0, err; 59 int i; 60 61 *retlen = 0; 62 63 for (i = 0; i < concat->num_subdev; i++) { 64 struct mtd_info *subdev = concat->subdev[i]; 65 size_t size, retsize; 66 67 if (from >= subdev->size) { 68 /* Not destined for this subdev */ 69 size = 0; 70 from -= subdev->size; 71 continue; 72 } 73 if (from + len > subdev->size) 74 /* First part goes into this subdev */ 75 size = subdev->size - from; 76 else 77 /* Entire transaction goes into this subdev */ 78 size = len; 79 80 err = subdev->read(subdev, from, size, &retsize, buf); 81 82 /* Save information about bitflips! */ 83 if (unlikely(err)) { 84 if (err == -EBADMSG) { 85 mtd->ecc_stats.failed++; 86 ret = err; 87 } else if (err == -EUCLEAN) { 88 mtd->ecc_stats.corrected++; 89 /* Do not overwrite -EBADMSG !! */ 90 if (!ret) 91 ret = err; 92 } else 93 return err; 94 } 95 96 *retlen += retsize; 97 len -= size; 98 if (len == 0) 99 return ret; 100 101 buf += size; 102 from = 0; 103 } 104 return -EINVAL; 105 } 106 107 static int 108 concat_write(struct mtd_info *mtd, loff_t to, size_t len, 109 size_t * retlen, const u_char * buf) 110 { 111 struct mtd_concat *concat = CONCAT(mtd); 112 int err = -EINVAL; 113 int i; 114 115 if (!(mtd->flags & MTD_WRITEABLE)) 116 return -EROFS; 117 118 *retlen = 0; 119 120 for (i = 0; i < concat->num_subdev; i++) { 121 struct mtd_info *subdev = concat->subdev[i]; 122 size_t size, retsize; 123 124 if (to >= subdev->size) { 125 size = 0; 126 to -= subdev->size; 127 continue; 128 } 129 if (to + len > subdev->size) 130 size = subdev->size - to; 131 else 132 size = len; 133 134 if (!(subdev->flags & MTD_WRITEABLE)) 135 err = -EROFS; 136 else 137 err = subdev->write(subdev, to, size, &retsize, buf); 138 139 if (err) 140 break; 141 142 *retlen += retsize; 143 len -= size; 144 if (len == 0) 145 break; 146 147 err = -EINVAL; 148 buf += size; 149 to = 0; 150 } 151 return err; 152 } 153 154 static int 155 concat_writev(struct mtd_info *mtd, const struct kvec *vecs, 156 unsigned long count, loff_t to, size_t * retlen) 157 { 158 struct mtd_concat *concat = CONCAT(mtd); 159 struct kvec *vecs_copy; 160 unsigned long entry_low, entry_high; 161 size_t total_len = 0; 162 int i; 163 int err = -EINVAL; 164 165 if (!(mtd->flags & MTD_WRITEABLE)) 166 return -EROFS; 167 168 *retlen = 0; 169 170 /* Calculate total length of data */ 171 for (i = 0; i < count; i++) 172 total_len += vecs[i].iov_len; 173 174 /* Do not allow write past end of device */ 175 if ((to + total_len) > mtd->size) 176 return -EINVAL; 177 178 /* Check alignment */ 179 if (mtd->writesize > 1) { 180 uint64_t __to = to; 181 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) 182 return -EINVAL; 183 } 184 185 /* make a copy of vecs */ 186 vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL); 187 if (!vecs_copy) 188 return -ENOMEM; 189 memcpy(vecs_copy, vecs, sizeof(struct kvec) * count); 190 191 entry_low = 0; 192 for (i = 0; i < concat->num_subdev; i++) { 193 struct mtd_info *subdev = concat->subdev[i]; 194 size_t size, wsize, retsize, old_iov_len; 195 196 if (to >= subdev->size) { 197 to -= subdev->size; 198 continue; 199 } 200 201 size = min_t(uint64_t, total_len, subdev->size - to); 202 wsize = size; /* store for future use */ 203 204 entry_high = entry_low; 205 while (entry_high < count) { 206 if (size <= vecs_copy[entry_high].iov_len) 207 break; 208 size -= vecs_copy[entry_high++].iov_len; 209 } 210 211 old_iov_len = vecs_copy[entry_high].iov_len; 212 vecs_copy[entry_high].iov_len = size; 213 214 if (!(subdev->flags & MTD_WRITEABLE)) 215 err = -EROFS; 216 else 217 err = subdev->writev(subdev, &vecs_copy[entry_low], 218 entry_high - entry_low + 1, to, &retsize); 219 220 vecs_copy[entry_high].iov_len = old_iov_len - size; 221 vecs_copy[entry_high].iov_base += size; 222 223 entry_low = entry_high; 224 225 if (err) 226 break; 227 228 *retlen += retsize; 229 total_len -= wsize; 230 231 if (total_len == 0) 232 break; 233 234 err = -EINVAL; 235 to = 0; 236 } 237 238 kfree(vecs_copy); 239 return err; 240 } 241 242 static int 243 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 244 { 245 struct mtd_concat *concat = CONCAT(mtd); 246 struct mtd_oob_ops devops = *ops; 247 int i, err, ret = 0; 248 249 ops->retlen = ops->oobretlen = 0; 250 251 for (i = 0; i < concat->num_subdev; i++) { 252 struct mtd_info *subdev = concat->subdev[i]; 253 254 if (from >= subdev->size) { 255 from -= subdev->size; 256 continue; 257 } 258 259 /* partial read ? */ 260 if (from + devops.len > subdev->size) 261 devops.len = subdev->size - from; 262 263 err = subdev->read_oob(subdev, from, &devops); 264 ops->retlen += devops.retlen; 265 ops->oobretlen += devops.oobretlen; 266 267 /* Save information about bitflips! */ 268 if (unlikely(err)) { 269 if (err == -EBADMSG) { 270 mtd->ecc_stats.failed++; 271 ret = err; 272 } else if (err == -EUCLEAN) { 273 mtd->ecc_stats.corrected++; 274 /* Do not overwrite -EBADMSG !! */ 275 if (!ret) 276 ret = err; 277 } else 278 return err; 279 } 280 281 if (devops.datbuf) { 282 devops.len = ops->len - ops->retlen; 283 if (!devops.len) 284 return ret; 285 devops.datbuf += devops.retlen; 286 } 287 if (devops.oobbuf) { 288 devops.ooblen = ops->ooblen - ops->oobretlen; 289 if (!devops.ooblen) 290 return ret; 291 devops.oobbuf += ops->oobretlen; 292 } 293 294 from = 0; 295 } 296 return -EINVAL; 297 } 298 299 static int 300 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) 301 { 302 struct mtd_concat *concat = CONCAT(mtd); 303 struct mtd_oob_ops devops = *ops; 304 int i, err; 305 306 if (!(mtd->flags & MTD_WRITEABLE)) 307 return -EROFS; 308 309 ops->retlen = 0; 310 311 for (i = 0; i < concat->num_subdev; i++) { 312 struct mtd_info *subdev = concat->subdev[i]; 313 314 if (to >= subdev->size) { 315 to -= subdev->size; 316 continue; 317 } 318 319 /* partial write ? */ 320 if (to + devops.len > subdev->size) 321 devops.len = subdev->size - to; 322 323 err = subdev->write_oob(subdev, to, &devops); 324 ops->retlen += devops.retlen; 325 if (err) 326 return err; 327 328 if (devops.datbuf) { 329 devops.len = ops->len - ops->retlen; 330 if (!devops.len) 331 return 0; 332 devops.datbuf += devops.retlen; 333 } 334 if (devops.oobbuf) { 335 devops.ooblen = ops->ooblen - ops->oobretlen; 336 if (!devops.ooblen) 337 return 0; 338 devops.oobbuf += devops.oobretlen; 339 } 340 to = 0; 341 } 342 return -EINVAL; 343 } 344 345 static void concat_erase_callback(struct erase_info *instr) 346 { 347 wake_up((wait_queue_head_t *) instr->priv); 348 } 349 350 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) 351 { 352 int err; 353 wait_queue_head_t waitq; 354 DECLARE_WAITQUEUE(wait, current); 355 356 /* 357 * This code was stol^H^H^H^Hinspired by mtdchar.c 358 */ 359 init_waitqueue_head(&waitq); 360 361 erase->mtd = mtd; 362 erase->callback = concat_erase_callback; 363 erase->priv = (unsigned long) &waitq; 364 365 /* 366 * FIXME: Allow INTERRUPTIBLE. Which means 367 * not having the wait_queue head on the stack. 368 */ 369 err = mtd->erase(mtd, erase); 370 if (!err) { 371 set_current_state(TASK_UNINTERRUPTIBLE); 372 add_wait_queue(&waitq, &wait); 373 if (erase->state != MTD_ERASE_DONE 374 && erase->state != MTD_ERASE_FAILED) 375 schedule(); 376 remove_wait_queue(&waitq, &wait); 377 set_current_state(TASK_RUNNING); 378 379 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0; 380 } 381 return err; 382 } 383 384 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) 385 { 386 struct mtd_concat *concat = CONCAT(mtd); 387 struct mtd_info *subdev; 388 int i, err; 389 uint64_t length, offset = 0; 390 struct erase_info *erase; 391 392 if (!(mtd->flags & MTD_WRITEABLE)) 393 return -EROFS; 394 395 if (instr->addr > concat->mtd.size) 396 return -EINVAL; 397 398 if (instr->len + instr->addr > concat->mtd.size) 399 return -EINVAL; 400 401 /* 402 * Check for proper erase block alignment of the to-be-erased area. 403 * It is easier to do this based on the super device's erase 404 * region info rather than looking at each particular sub-device 405 * in turn. 406 */ 407 if (!concat->mtd.numeraseregions) { 408 /* the easy case: device has uniform erase block size */ 409 if (instr->addr & (concat->mtd.erasesize - 1)) 410 return -EINVAL; 411 if (instr->len & (concat->mtd.erasesize - 1)) 412 return -EINVAL; 413 } else { 414 /* device has variable erase size */ 415 struct mtd_erase_region_info *erase_regions = 416 concat->mtd.eraseregions; 417 418 /* 419 * Find the erase region where the to-be-erased area begins: 420 */ 421 for (i = 0; i < concat->mtd.numeraseregions && 422 instr->addr >= erase_regions[i].offset; i++) ; 423 --i; 424 425 /* 426 * Now erase_regions[i] is the region in which the 427 * to-be-erased area begins. Verify that the starting 428 * offset is aligned to this region's erase size: 429 */ 430 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1)) 431 return -EINVAL; 432 433 /* 434 * now find the erase region where the to-be-erased area ends: 435 */ 436 for (; i < concat->mtd.numeraseregions && 437 (instr->addr + instr->len) >= erase_regions[i].offset; 438 ++i) ; 439 --i; 440 /* 441 * check if the ending offset is aligned to this region's erase size 442 */ 443 if (i < 0 || ((instr->addr + instr->len) & 444 (erase_regions[i].erasesize - 1))) 445 return -EINVAL; 446 } 447 448 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 449 450 /* make a local copy of instr to avoid modifying the caller's struct */ 451 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 452 453 if (!erase) 454 return -ENOMEM; 455 456 *erase = *instr; 457 length = instr->len; 458 459 /* 460 * find the subdevice where the to-be-erased area begins, adjust 461 * starting offset to be relative to the subdevice start 462 */ 463 for (i = 0; i < concat->num_subdev; i++) { 464 subdev = concat->subdev[i]; 465 if (subdev->size <= erase->addr) { 466 erase->addr -= subdev->size; 467 offset += subdev->size; 468 } else { 469 break; 470 } 471 } 472 473 /* must never happen since size limit has been verified above */ 474 BUG_ON(i >= concat->num_subdev); 475 476 /* now do the erase: */ 477 err = 0; 478 for (; length > 0; i++) { 479 /* loop for all subdevices affected by this request */ 480 subdev = concat->subdev[i]; /* get current subdevice */ 481 482 /* limit length to subdevice's size: */ 483 if (erase->addr + length > subdev->size) 484 erase->len = subdev->size - erase->addr; 485 else 486 erase->len = length; 487 488 if (!(subdev->flags & MTD_WRITEABLE)) { 489 err = -EROFS; 490 break; 491 } 492 length -= erase->len; 493 if ((err = concat_dev_erase(subdev, erase))) { 494 /* sanity check: should never happen since 495 * block alignment has been checked above */ 496 BUG_ON(err == -EINVAL); 497 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 498 instr->fail_addr = erase->fail_addr + offset; 499 break; 500 } 501 /* 502 * erase->addr specifies the offset of the area to be 503 * erased *within the current subdevice*. It can be 504 * non-zero only the first time through this loop, i.e. 505 * for the first subdevice where blocks need to be erased. 506 * All the following erases must begin at the start of the 507 * current subdevice, i.e. at offset zero. 508 */ 509 erase->addr = 0; 510 offset += subdev->size; 511 } 512 instr->state = erase->state; 513 kfree(erase); 514 if (err) 515 return err; 516 517 if (instr->callback) 518 instr->callback(instr); 519 return 0; 520 } 521 522 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 523 { 524 struct mtd_concat *concat = CONCAT(mtd); 525 int i, err = -EINVAL; 526 527 if ((len + ofs) > mtd->size) 528 return -EINVAL; 529 530 for (i = 0; i < concat->num_subdev; i++) { 531 struct mtd_info *subdev = concat->subdev[i]; 532 uint64_t size; 533 534 if (ofs >= subdev->size) { 535 size = 0; 536 ofs -= subdev->size; 537 continue; 538 } 539 if (ofs + len > subdev->size) 540 size = subdev->size - ofs; 541 else 542 size = len; 543 544 err = subdev->lock(subdev, ofs, size); 545 546 if (err) 547 break; 548 549 len -= size; 550 if (len == 0) 551 break; 552 553 err = -EINVAL; 554 ofs = 0; 555 } 556 557 return err; 558 } 559 560 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 561 { 562 struct mtd_concat *concat = CONCAT(mtd); 563 int i, err = 0; 564 565 if ((len + ofs) > mtd->size) 566 return -EINVAL; 567 568 for (i = 0; i < concat->num_subdev; i++) { 569 struct mtd_info *subdev = concat->subdev[i]; 570 uint64_t size; 571 572 if (ofs >= subdev->size) { 573 size = 0; 574 ofs -= subdev->size; 575 continue; 576 } 577 if (ofs + len > subdev->size) 578 size = subdev->size - ofs; 579 else 580 size = len; 581 582 err = subdev->unlock(subdev, ofs, size); 583 584 if (err) 585 break; 586 587 len -= size; 588 if (len == 0) 589 break; 590 591 err = -EINVAL; 592 ofs = 0; 593 } 594 595 return err; 596 } 597 598 static void concat_sync(struct mtd_info *mtd) 599 { 600 struct mtd_concat *concat = CONCAT(mtd); 601 int i; 602 603 for (i = 0; i < concat->num_subdev; i++) { 604 struct mtd_info *subdev = concat->subdev[i]; 605 subdev->sync(subdev); 606 } 607 } 608 609 static int concat_suspend(struct mtd_info *mtd) 610 { 611 struct mtd_concat *concat = CONCAT(mtd); 612 int i, rc = 0; 613 614 for (i = 0; i < concat->num_subdev; i++) { 615 struct mtd_info *subdev = concat->subdev[i]; 616 if ((rc = subdev->suspend(subdev)) < 0) 617 return rc; 618 } 619 return rc; 620 } 621 622 static void concat_resume(struct mtd_info *mtd) 623 { 624 struct mtd_concat *concat = CONCAT(mtd); 625 int i; 626 627 for (i = 0; i < concat->num_subdev; i++) { 628 struct mtd_info *subdev = concat->subdev[i]; 629 subdev->resume(subdev); 630 } 631 } 632 633 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) 634 { 635 struct mtd_concat *concat = CONCAT(mtd); 636 int i, res = 0; 637 638 if (!concat->subdev[0]->block_isbad) 639 return res; 640 641 if (ofs > mtd->size) 642 return -EINVAL; 643 644 for (i = 0; i < concat->num_subdev; i++) { 645 struct mtd_info *subdev = concat->subdev[i]; 646 647 if (ofs >= subdev->size) { 648 ofs -= subdev->size; 649 continue; 650 } 651 652 res = subdev->block_isbad(subdev, ofs); 653 break; 654 } 655 656 return res; 657 } 658 659 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) 660 { 661 struct mtd_concat *concat = CONCAT(mtd); 662 int i, err = -EINVAL; 663 664 if (!concat->subdev[0]->block_markbad) 665 return 0; 666 667 if (ofs > mtd->size) 668 return -EINVAL; 669 670 for (i = 0; i < concat->num_subdev; i++) { 671 struct mtd_info *subdev = concat->subdev[i]; 672 673 if (ofs >= subdev->size) { 674 ofs -= subdev->size; 675 continue; 676 } 677 678 err = subdev->block_markbad(subdev, ofs); 679 if (!err) 680 mtd->ecc_stats.badblocks++; 681 break; 682 } 683 684 return err; 685 } 686 687 /* 688 * try to support NOMMU mmaps on concatenated devices 689 * - we don't support subdev spanning as we can't guarantee it'll work 690 */ 691 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd, 692 unsigned long len, 693 unsigned long offset, 694 unsigned long flags) 695 { 696 struct mtd_concat *concat = CONCAT(mtd); 697 int i; 698 699 for (i = 0; i < concat->num_subdev; i++) { 700 struct mtd_info *subdev = concat->subdev[i]; 701 702 if (offset >= subdev->size) { 703 offset -= subdev->size; 704 continue; 705 } 706 707 /* we've found the subdev over which the mapping will reside */ 708 if (offset + len > subdev->size) 709 return (unsigned long) -EINVAL; 710 711 if (subdev->get_unmapped_area) 712 return subdev->get_unmapped_area(subdev, len, offset, 713 flags); 714 715 break; 716 } 717 718 return (unsigned long) -ENOSYS; 719 } 720 721 /* 722 * This function constructs a virtual MTD device by concatenating 723 * num_devs MTD devices. A pointer to the new device object is 724 * stored to *new_dev upon success. This function does _not_ 725 * register any devices: this is the caller's responsibility. 726 */ 727 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ 728 int num_devs, /* number of subdevices */ 729 const char *name) 730 { /* name for the new device */ 731 int i; 732 size_t size; 733 struct mtd_concat *concat; 734 uint32_t max_erasesize, curr_erasesize; 735 int num_erase_region; 736 737 printk(KERN_NOTICE "Concatenating MTD devices:\n"); 738 for (i = 0; i < num_devs; i++) 739 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); 740 printk(KERN_NOTICE "into device \"%s\"\n", name); 741 742 /* allocate the device structure */ 743 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); 744 concat = kzalloc(size, GFP_KERNEL); 745 if (!concat) { 746 printk 747 ("memory allocation error while creating concatenated device \"%s\"\n", 748 name); 749 return NULL; 750 } 751 concat->subdev = (struct mtd_info **) (concat + 1); 752 753 /* 754 * Set up the new "super" device's MTD object structure, check for 755 * incompatibilites between the subdevices. 756 */ 757 concat->mtd.type = subdev[0]->type; 758 concat->mtd.flags = subdev[0]->flags; 759 concat->mtd.size = subdev[0]->size; 760 concat->mtd.erasesize = subdev[0]->erasesize; 761 concat->mtd.writesize = subdev[0]->writesize; 762 concat->mtd.subpage_sft = subdev[0]->subpage_sft; 763 concat->mtd.oobsize = subdev[0]->oobsize; 764 concat->mtd.oobavail = subdev[0]->oobavail; 765 if (subdev[0]->writev) 766 concat->mtd.writev = concat_writev; 767 if (subdev[0]->read_oob) 768 concat->mtd.read_oob = concat_read_oob; 769 if (subdev[0]->write_oob) 770 concat->mtd.write_oob = concat_write_oob; 771 if (subdev[0]->block_isbad) 772 concat->mtd.block_isbad = concat_block_isbad; 773 if (subdev[0]->block_markbad) 774 concat->mtd.block_markbad = concat_block_markbad; 775 776 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 777 778 concat->mtd.backing_dev_info = subdev[0]->backing_dev_info; 779 780 concat->subdev[0] = subdev[0]; 781 782 for (i = 1; i < num_devs; i++) { 783 if (concat->mtd.type != subdev[i]->type) { 784 kfree(concat); 785 printk("Incompatible device type on \"%s\"\n", 786 subdev[i]->name); 787 return NULL; 788 } 789 if (concat->mtd.flags != subdev[i]->flags) { 790 /* 791 * Expect all flags except MTD_WRITEABLE to be 792 * equal on all subdevices. 793 */ 794 if ((concat->mtd.flags ^ subdev[i]-> 795 flags) & ~MTD_WRITEABLE) { 796 kfree(concat); 797 printk("Incompatible device flags on \"%s\"\n", 798 subdev[i]->name); 799 return NULL; 800 } else 801 /* if writeable attribute differs, 802 make super device writeable */ 803 concat->mtd.flags |= 804 subdev[i]->flags & MTD_WRITEABLE; 805 } 806 807 /* only permit direct mapping if the BDIs are all the same 808 * - copy-mapping is still permitted 809 */ 810 if (concat->mtd.backing_dev_info != 811 subdev[i]->backing_dev_info) 812 concat->mtd.backing_dev_info = 813 &default_backing_dev_info; 814 815 concat->mtd.size += subdev[i]->size; 816 concat->mtd.ecc_stats.badblocks += 817 subdev[i]->ecc_stats.badblocks; 818 if (concat->mtd.writesize != subdev[i]->writesize || 819 concat->mtd.subpage_sft != subdev[i]->subpage_sft || 820 concat->mtd.oobsize != subdev[i]->oobsize || 821 !concat->mtd.read_oob != !subdev[i]->read_oob || 822 !concat->mtd.write_oob != !subdev[i]->write_oob) { 823 kfree(concat); 824 printk("Incompatible OOB or ECC data on \"%s\"\n", 825 subdev[i]->name); 826 return NULL; 827 } 828 concat->subdev[i] = subdev[i]; 829 830 } 831 832 concat->mtd.ecclayout = subdev[0]->ecclayout; 833 834 concat->num_subdev = num_devs; 835 concat->mtd.name = name; 836 837 concat->mtd.erase = concat_erase; 838 concat->mtd.read = concat_read; 839 concat->mtd.write = concat_write; 840 concat->mtd.sync = concat_sync; 841 concat->mtd.lock = concat_lock; 842 concat->mtd.unlock = concat_unlock; 843 concat->mtd.suspend = concat_suspend; 844 concat->mtd.resume = concat_resume; 845 concat->mtd.get_unmapped_area = concat_get_unmapped_area; 846 847 /* 848 * Combine the erase block size info of the subdevices: 849 * 850 * first, walk the map of the new device and see how 851 * many changes in erase size we have 852 */ 853 max_erasesize = curr_erasesize = subdev[0]->erasesize; 854 num_erase_region = 1; 855 for (i = 0; i < num_devs; i++) { 856 if (subdev[i]->numeraseregions == 0) { 857 /* current subdevice has uniform erase size */ 858 if (subdev[i]->erasesize != curr_erasesize) { 859 /* if it differs from the last subdevice's erase size, count it */ 860 ++num_erase_region; 861 curr_erasesize = subdev[i]->erasesize; 862 if (curr_erasesize > max_erasesize) 863 max_erasesize = curr_erasesize; 864 } 865 } else { 866 /* current subdevice has variable erase size */ 867 int j; 868 for (j = 0; j < subdev[i]->numeraseregions; j++) { 869 870 /* walk the list of erase regions, count any changes */ 871 if (subdev[i]->eraseregions[j].erasesize != 872 curr_erasesize) { 873 ++num_erase_region; 874 curr_erasesize = 875 subdev[i]->eraseregions[j]. 876 erasesize; 877 if (curr_erasesize > max_erasesize) 878 max_erasesize = curr_erasesize; 879 } 880 } 881 } 882 } 883 884 if (num_erase_region == 1) { 885 /* 886 * All subdevices have the same uniform erase size. 887 * This is easy: 888 */ 889 concat->mtd.erasesize = curr_erasesize; 890 concat->mtd.numeraseregions = 0; 891 } else { 892 uint64_t tmp64; 893 894 /* 895 * erase block size varies across the subdevices: allocate 896 * space to store the data describing the variable erase regions 897 */ 898 struct mtd_erase_region_info *erase_region_p; 899 uint64_t begin, position; 900 901 concat->mtd.erasesize = max_erasesize; 902 concat->mtd.numeraseregions = num_erase_region; 903 concat->mtd.eraseregions = erase_region_p = 904 kmalloc(num_erase_region * 905 sizeof (struct mtd_erase_region_info), GFP_KERNEL); 906 if (!erase_region_p) { 907 kfree(concat); 908 printk 909 ("memory allocation error while creating erase region list" 910 " for device \"%s\"\n", name); 911 return NULL; 912 } 913 914 /* 915 * walk the map of the new device once more and fill in 916 * in erase region info: 917 */ 918 curr_erasesize = subdev[0]->erasesize; 919 begin = position = 0; 920 for (i = 0; i < num_devs; i++) { 921 if (subdev[i]->numeraseregions == 0) { 922 /* current subdevice has uniform erase size */ 923 if (subdev[i]->erasesize != curr_erasesize) { 924 /* 925 * fill in an mtd_erase_region_info structure for the area 926 * we have walked so far: 927 */ 928 erase_region_p->offset = begin; 929 erase_region_p->erasesize = 930 curr_erasesize; 931 tmp64 = position - begin; 932 do_div(tmp64, curr_erasesize); 933 erase_region_p->numblocks = tmp64; 934 begin = position; 935 936 curr_erasesize = subdev[i]->erasesize; 937 ++erase_region_p; 938 } 939 position += subdev[i]->size; 940 } else { 941 /* current subdevice has variable erase size */ 942 int j; 943 for (j = 0; j < subdev[i]->numeraseregions; j++) { 944 /* walk the list of erase regions, count any changes */ 945 if (subdev[i]->eraseregions[j]. 946 erasesize != curr_erasesize) { 947 erase_region_p->offset = begin; 948 erase_region_p->erasesize = 949 curr_erasesize; 950 tmp64 = position - begin; 951 do_div(tmp64, curr_erasesize); 952 erase_region_p->numblocks = tmp64; 953 begin = position; 954 955 curr_erasesize = 956 subdev[i]->eraseregions[j]. 957 erasesize; 958 ++erase_region_p; 959 } 960 position += 961 subdev[i]->eraseregions[j]. 962 numblocks * (uint64_t)curr_erasesize; 963 } 964 } 965 } 966 /* Now write the final entry */ 967 erase_region_p->offset = begin; 968 erase_region_p->erasesize = curr_erasesize; 969 tmp64 = position - begin; 970 do_div(tmp64, curr_erasesize); 971 erase_region_p->numblocks = tmp64; 972 } 973 974 return &concat->mtd; 975 } 976 977 /* 978 * This function destroys an MTD object obtained from concat_mtd_devs() 979 */ 980 981 void mtd_concat_destroy(struct mtd_info *mtd) 982 { 983 struct mtd_concat *concat = CONCAT(mtd); 984 if (concat->mtd.numeraseregions) 985 kfree(concat->mtd.eraseregions); 986 kfree(concat); 987 } 988 989 EXPORT_SYMBOL(mtd_concat_create); 990 EXPORT_SYMBOL(mtd_concat_destroy); 991 992 MODULE_LICENSE("GPL"); 993 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); 994 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); 995