xref: /openbmc/linux/drivers/mtd/mtdconcat.c (revision 588b48ca)
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34 
35 #include <asm/div64.h>
36 
37 /*
38  * Our storage structure:
39  * Subdev points to an array of pointers to struct mtd_info objects
40  * which is allocated along with this structure
41  *
42  */
43 struct mtd_concat {
44 	struct mtd_info mtd;
45 	int num_subdev;
46 	struct mtd_info **subdev;
47 };
48 
49 /*
50  * how to calculate the size required for the above structure,
51  * including the pointer array subdev points to:
52  */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
54 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55 
56 /*
57  * Given a pointer to the MTD object in the mtd_concat structure,
58  * we can retrieve the pointer to that structure with this macro.
59  */
60 #define CONCAT(x)  ((struct mtd_concat *)(x))
61 
62 /*
63  * MTD methods which look up the relevant subdevice, translate the
64  * effective address and pass through to the subdevice.
65  */
66 
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69 	    size_t * retlen, u_char * buf)
70 {
71 	struct mtd_concat *concat = CONCAT(mtd);
72 	int ret = 0, err;
73 	int i;
74 
75 	for (i = 0; i < concat->num_subdev; i++) {
76 		struct mtd_info *subdev = concat->subdev[i];
77 		size_t size, retsize;
78 
79 		if (from >= subdev->size) {
80 			/* Not destined for this subdev */
81 			size = 0;
82 			from -= subdev->size;
83 			continue;
84 		}
85 		if (from + len > subdev->size)
86 			/* First part goes into this subdev */
87 			size = subdev->size - from;
88 		else
89 			/* Entire transaction goes into this subdev */
90 			size = len;
91 
92 		err = mtd_read(subdev, from, size, &retsize, buf);
93 
94 		/* Save information about bitflips! */
95 		if (unlikely(err)) {
96 			if (mtd_is_eccerr(err)) {
97 				mtd->ecc_stats.failed++;
98 				ret = err;
99 			} else if (mtd_is_bitflip(err)) {
100 				mtd->ecc_stats.corrected++;
101 				/* Do not overwrite -EBADMSG !! */
102 				if (!ret)
103 					ret = err;
104 			} else
105 				return err;
106 		}
107 
108 		*retlen += retsize;
109 		len -= size;
110 		if (len == 0)
111 			return ret;
112 
113 		buf += size;
114 		from = 0;
115 	}
116 	return -EINVAL;
117 }
118 
119 static int
120 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121 	     size_t * retlen, const u_char * buf)
122 {
123 	struct mtd_concat *concat = CONCAT(mtd);
124 	int err = -EINVAL;
125 	int i;
126 
127 	for (i = 0; i < concat->num_subdev; i++) {
128 		struct mtd_info *subdev = concat->subdev[i];
129 		size_t size, retsize;
130 
131 		if (to >= subdev->size) {
132 			size = 0;
133 			to -= subdev->size;
134 			continue;
135 		}
136 		if (to + len > subdev->size)
137 			size = subdev->size - to;
138 		else
139 			size = len;
140 
141 		err = mtd_write(subdev, to, size, &retsize, buf);
142 		if (err)
143 			break;
144 
145 		*retlen += retsize;
146 		len -= size;
147 		if (len == 0)
148 			break;
149 
150 		err = -EINVAL;
151 		buf += size;
152 		to = 0;
153 	}
154 	return err;
155 }
156 
157 static int
158 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
159 		unsigned long count, loff_t to, size_t * retlen)
160 {
161 	struct mtd_concat *concat = CONCAT(mtd);
162 	struct kvec *vecs_copy;
163 	unsigned long entry_low, entry_high;
164 	size_t total_len = 0;
165 	int i;
166 	int err = -EINVAL;
167 
168 	/* Calculate total length of data */
169 	for (i = 0; i < count; i++)
170 		total_len += vecs[i].iov_len;
171 
172 	/* Check alignment */
173 	if (mtd->writesize > 1) {
174 		uint64_t __to = to;
175 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
176 			return -EINVAL;
177 	}
178 
179 	/* make a copy of vecs */
180 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
181 	if (!vecs_copy)
182 		return -ENOMEM;
183 
184 	entry_low = 0;
185 	for (i = 0; i < concat->num_subdev; i++) {
186 		struct mtd_info *subdev = concat->subdev[i];
187 		size_t size, wsize, retsize, old_iov_len;
188 
189 		if (to >= subdev->size) {
190 			to -= subdev->size;
191 			continue;
192 		}
193 
194 		size = min_t(uint64_t, total_len, subdev->size - to);
195 		wsize = size; /* store for future use */
196 
197 		entry_high = entry_low;
198 		while (entry_high < count) {
199 			if (size <= vecs_copy[entry_high].iov_len)
200 				break;
201 			size -= vecs_copy[entry_high++].iov_len;
202 		}
203 
204 		old_iov_len = vecs_copy[entry_high].iov_len;
205 		vecs_copy[entry_high].iov_len = size;
206 
207 		err = mtd_writev(subdev, &vecs_copy[entry_low],
208 				 entry_high - entry_low + 1, to, &retsize);
209 
210 		vecs_copy[entry_high].iov_len = old_iov_len - size;
211 		vecs_copy[entry_high].iov_base += size;
212 
213 		entry_low = entry_high;
214 
215 		if (err)
216 			break;
217 
218 		*retlen += retsize;
219 		total_len -= wsize;
220 
221 		if (total_len == 0)
222 			break;
223 
224 		err = -EINVAL;
225 		to = 0;
226 	}
227 
228 	kfree(vecs_copy);
229 	return err;
230 }
231 
232 static int
233 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
234 {
235 	struct mtd_concat *concat = CONCAT(mtd);
236 	struct mtd_oob_ops devops = *ops;
237 	int i, err, ret = 0;
238 
239 	ops->retlen = ops->oobretlen = 0;
240 
241 	for (i = 0; i < concat->num_subdev; i++) {
242 		struct mtd_info *subdev = concat->subdev[i];
243 
244 		if (from >= subdev->size) {
245 			from -= subdev->size;
246 			continue;
247 		}
248 
249 		/* partial read ? */
250 		if (from + devops.len > subdev->size)
251 			devops.len = subdev->size - from;
252 
253 		err = mtd_read_oob(subdev, from, &devops);
254 		ops->retlen += devops.retlen;
255 		ops->oobretlen += devops.oobretlen;
256 
257 		/* Save information about bitflips! */
258 		if (unlikely(err)) {
259 			if (mtd_is_eccerr(err)) {
260 				mtd->ecc_stats.failed++;
261 				ret = err;
262 			} else if (mtd_is_bitflip(err)) {
263 				mtd->ecc_stats.corrected++;
264 				/* Do not overwrite -EBADMSG !! */
265 				if (!ret)
266 					ret = err;
267 			} else
268 				return err;
269 		}
270 
271 		if (devops.datbuf) {
272 			devops.len = ops->len - ops->retlen;
273 			if (!devops.len)
274 				return ret;
275 			devops.datbuf += devops.retlen;
276 		}
277 		if (devops.oobbuf) {
278 			devops.ooblen = ops->ooblen - ops->oobretlen;
279 			if (!devops.ooblen)
280 				return ret;
281 			devops.oobbuf += ops->oobretlen;
282 		}
283 
284 		from = 0;
285 	}
286 	return -EINVAL;
287 }
288 
289 static int
290 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
291 {
292 	struct mtd_concat *concat = CONCAT(mtd);
293 	struct mtd_oob_ops devops = *ops;
294 	int i, err;
295 
296 	if (!(mtd->flags & MTD_WRITEABLE))
297 		return -EROFS;
298 
299 	ops->retlen = ops->oobretlen = 0;
300 
301 	for (i = 0; i < concat->num_subdev; i++) {
302 		struct mtd_info *subdev = concat->subdev[i];
303 
304 		if (to >= subdev->size) {
305 			to -= subdev->size;
306 			continue;
307 		}
308 
309 		/* partial write ? */
310 		if (to + devops.len > subdev->size)
311 			devops.len = subdev->size - to;
312 
313 		err = mtd_write_oob(subdev, to, &devops);
314 		ops->retlen += devops.oobretlen;
315 		if (err)
316 			return err;
317 
318 		if (devops.datbuf) {
319 			devops.len = ops->len - ops->retlen;
320 			if (!devops.len)
321 				return 0;
322 			devops.datbuf += devops.retlen;
323 		}
324 		if (devops.oobbuf) {
325 			devops.ooblen = ops->ooblen - ops->oobretlen;
326 			if (!devops.ooblen)
327 				return 0;
328 			devops.oobbuf += devops.oobretlen;
329 		}
330 		to = 0;
331 	}
332 	return -EINVAL;
333 }
334 
335 static void concat_erase_callback(struct erase_info *instr)
336 {
337 	wake_up((wait_queue_head_t *) instr->priv);
338 }
339 
340 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
341 {
342 	int err;
343 	wait_queue_head_t waitq;
344 	DECLARE_WAITQUEUE(wait, current);
345 
346 	/*
347 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
348 	 */
349 	init_waitqueue_head(&waitq);
350 
351 	erase->mtd = mtd;
352 	erase->callback = concat_erase_callback;
353 	erase->priv = (unsigned long) &waitq;
354 
355 	/*
356 	 * FIXME: Allow INTERRUPTIBLE. Which means
357 	 * not having the wait_queue head on the stack.
358 	 */
359 	err = mtd_erase(mtd, erase);
360 	if (!err) {
361 		set_current_state(TASK_UNINTERRUPTIBLE);
362 		add_wait_queue(&waitq, &wait);
363 		if (erase->state != MTD_ERASE_DONE
364 		    && erase->state != MTD_ERASE_FAILED)
365 			schedule();
366 		remove_wait_queue(&waitq, &wait);
367 		set_current_state(TASK_RUNNING);
368 
369 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
370 	}
371 	return err;
372 }
373 
374 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
375 {
376 	struct mtd_concat *concat = CONCAT(mtd);
377 	struct mtd_info *subdev;
378 	int i, err;
379 	uint64_t length, offset = 0;
380 	struct erase_info *erase;
381 
382 	/*
383 	 * Check for proper erase block alignment of the to-be-erased area.
384 	 * It is easier to do this based on the super device's erase
385 	 * region info rather than looking at each particular sub-device
386 	 * in turn.
387 	 */
388 	if (!concat->mtd.numeraseregions) {
389 		/* the easy case: device has uniform erase block size */
390 		if (instr->addr & (concat->mtd.erasesize - 1))
391 			return -EINVAL;
392 		if (instr->len & (concat->mtd.erasesize - 1))
393 			return -EINVAL;
394 	} else {
395 		/* device has variable erase size */
396 		struct mtd_erase_region_info *erase_regions =
397 		    concat->mtd.eraseregions;
398 
399 		/*
400 		 * Find the erase region where the to-be-erased area begins:
401 		 */
402 		for (i = 0; i < concat->mtd.numeraseregions &&
403 		     instr->addr >= erase_regions[i].offset; i++) ;
404 		--i;
405 
406 		/*
407 		 * Now erase_regions[i] is the region in which the
408 		 * to-be-erased area begins. Verify that the starting
409 		 * offset is aligned to this region's erase size:
410 		 */
411 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
412 			return -EINVAL;
413 
414 		/*
415 		 * now find the erase region where the to-be-erased area ends:
416 		 */
417 		for (; i < concat->mtd.numeraseregions &&
418 		     (instr->addr + instr->len) >= erase_regions[i].offset;
419 		     ++i) ;
420 		--i;
421 		/*
422 		 * check if the ending offset is aligned to this region's erase size
423 		 */
424 		if (i < 0 || ((instr->addr + instr->len) &
425 					(erase_regions[i].erasesize - 1)))
426 			return -EINVAL;
427 	}
428 
429 	/* make a local copy of instr to avoid modifying the caller's struct */
430 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
431 
432 	if (!erase)
433 		return -ENOMEM;
434 
435 	*erase = *instr;
436 	length = instr->len;
437 
438 	/*
439 	 * find the subdevice where the to-be-erased area begins, adjust
440 	 * starting offset to be relative to the subdevice start
441 	 */
442 	for (i = 0; i < concat->num_subdev; i++) {
443 		subdev = concat->subdev[i];
444 		if (subdev->size <= erase->addr) {
445 			erase->addr -= subdev->size;
446 			offset += subdev->size;
447 		} else {
448 			break;
449 		}
450 	}
451 
452 	/* must never happen since size limit has been verified above */
453 	BUG_ON(i >= concat->num_subdev);
454 
455 	/* now do the erase: */
456 	err = 0;
457 	for (; length > 0; i++) {
458 		/* loop for all subdevices affected by this request */
459 		subdev = concat->subdev[i];	/* get current subdevice */
460 
461 		/* limit length to subdevice's size: */
462 		if (erase->addr + length > subdev->size)
463 			erase->len = subdev->size - erase->addr;
464 		else
465 			erase->len = length;
466 
467 		length -= erase->len;
468 		if ((err = concat_dev_erase(subdev, erase))) {
469 			/* sanity check: should never happen since
470 			 * block alignment has been checked above */
471 			BUG_ON(err == -EINVAL);
472 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
473 				instr->fail_addr = erase->fail_addr + offset;
474 			break;
475 		}
476 		/*
477 		 * erase->addr specifies the offset of the area to be
478 		 * erased *within the current subdevice*. It can be
479 		 * non-zero only the first time through this loop, i.e.
480 		 * for the first subdevice where blocks need to be erased.
481 		 * All the following erases must begin at the start of the
482 		 * current subdevice, i.e. at offset zero.
483 		 */
484 		erase->addr = 0;
485 		offset += subdev->size;
486 	}
487 	instr->state = erase->state;
488 	kfree(erase);
489 	if (err)
490 		return err;
491 
492 	if (instr->callback)
493 		instr->callback(instr);
494 	return 0;
495 }
496 
497 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
498 {
499 	struct mtd_concat *concat = CONCAT(mtd);
500 	int i, err = -EINVAL;
501 
502 	for (i = 0; i < concat->num_subdev; i++) {
503 		struct mtd_info *subdev = concat->subdev[i];
504 		uint64_t size;
505 
506 		if (ofs >= subdev->size) {
507 			size = 0;
508 			ofs -= subdev->size;
509 			continue;
510 		}
511 		if (ofs + len > subdev->size)
512 			size = subdev->size - ofs;
513 		else
514 			size = len;
515 
516 		err = mtd_lock(subdev, ofs, size);
517 		if (err)
518 			break;
519 
520 		len -= size;
521 		if (len == 0)
522 			break;
523 
524 		err = -EINVAL;
525 		ofs = 0;
526 	}
527 
528 	return err;
529 }
530 
531 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
532 {
533 	struct mtd_concat *concat = CONCAT(mtd);
534 	int i, err = 0;
535 
536 	for (i = 0; i < concat->num_subdev; i++) {
537 		struct mtd_info *subdev = concat->subdev[i];
538 		uint64_t size;
539 
540 		if (ofs >= subdev->size) {
541 			size = 0;
542 			ofs -= subdev->size;
543 			continue;
544 		}
545 		if (ofs + len > subdev->size)
546 			size = subdev->size - ofs;
547 		else
548 			size = len;
549 
550 		err = mtd_unlock(subdev, ofs, size);
551 		if (err)
552 			break;
553 
554 		len -= size;
555 		if (len == 0)
556 			break;
557 
558 		err = -EINVAL;
559 		ofs = 0;
560 	}
561 
562 	return err;
563 }
564 
565 static void concat_sync(struct mtd_info *mtd)
566 {
567 	struct mtd_concat *concat = CONCAT(mtd);
568 	int i;
569 
570 	for (i = 0; i < concat->num_subdev; i++) {
571 		struct mtd_info *subdev = concat->subdev[i];
572 		mtd_sync(subdev);
573 	}
574 }
575 
576 static int concat_suspend(struct mtd_info *mtd)
577 {
578 	struct mtd_concat *concat = CONCAT(mtd);
579 	int i, rc = 0;
580 
581 	for (i = 0; i < concat->num_subdev; i++) {
582 		struct mtd_info *subdev = concat->subdev[i];
583 		if ((rc = mtd_suspend(subdev)) < 0)
584 			return rc;
585 	}
586 	return rc;
587 }
588 
589 static void concat_resume(struct mtd_info *mtd)
590 {
591 	struct mtd_concat *concat = CONCAT(mtd);
592 	int i;
593 
594 	for (i = 0; i < concat->num_subdev; i++) {
595 		struct mtd_info *subdev = concat->subdev[i];
596 		mtd_resume(subdev);
597 	}
598 }
599 
600 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
601 {
602 	struct mtd_concat *concat = CONCAT(mtd);
603 	int i, res = 0;
604 
605 	if (!mtd_can_have_bb(concat->subdev[0]))
606 		return res;
607 
608 	for (i = 0; i < concat->num_subdev; i++) {
609 		struct mtd_info *subdev = concat->subdev[i];
610 
611 		if (ofs >= subdev->size) {
612 			ofs -= subdev->size;
613 			continue;
614 		}
615 
616 		res = mtd_block_isbad(subdev, ofs);
617 		break;
618 	}
619 
620 	return res;
621 }
622 
623 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
624 {
625 	struct mtd_concat *concat = CONCAT(mtd);
626 	int i, err = -EINVAL;
627 
628 	for (i = 0; i < concat->num_subdev; i++) {
629 		struct mtd_info *subdev = concat->subdev[i];
630 
631 		if (ofs >= subdev->size) {
632 			ofs -= subdev->size;
633 			continue;
634 		}
635 
636 		err = mtd_block_markbad(subdev, ofs);
637 		if (!err)
638 			mtd->ecc_stats.badblocks++;
639 		break;
640 	}
641 
642 	return err;
643 }
644 
645 /*
646  * try to support NOMMU mmaps on concatenated devices
647  * - we don't support subdev spanning as we can't guarantee it'll work
648  */
649 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
650 					      unsigned long len,
651 					      unsigned long offset,
652 					      unsigned long flags)
653 {
654 	struct mtd_concat *concat = CONCAT(mtd);
655 	int i;
656 
657 	for (i = 0; i < concat->num_subdev; i++) {
658 		struct mtd_info *subdev = concat->subdev[i];
659 
660 		if (offset >= subdev->size) {
661 			offset -= subdev->size;
662 			continue;
663 		}
664 
665 		return mtd_get_unmapped_area(subdev, len, offset, flags);
666 	}
667 
668 	return (unsigned long) -ENOSYS;
669 }
670 
671 /*
672  * This function constructs a virtual MTD device by concatenating
673  * num_devs MTD devices. A pointer to the new device object is
674  * stored to *new_dev upon success. This function does _not_
675  * register any devices: this is the caller's responsibility.
676  */
677 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
678 				   int num_devs,	/* number of subdevices      */
679 				   const char *name)
680 {				/* name for the new device   */
681 	int i;
682 	size_t size;
683 	struct mtd_concat *concat;
684 	uint32_t max_erasesize, curr_erasesize;
685 	int num_erase_region;
686 	int max_writebufsize = 0;
687 
688 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
689 	for (i = 0; i < num_devs; i++)
690 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
691 	printk(KERN_NOTICE "into device \"%s\"\n", name);
692 
693 	/* allocate the device structure */
694 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
695 	concat = kzalloc(size, GFP_KERNEL);
696 	if (!concat) {
697 		printk
698 		    ("memory allocation error while creating concatenated device \"%s\"\n",
699 		     name);
700 		return NULL;
701 	}
702 	concat->subdev = (struct mtd_info **) (concat + 1);
703 
704 	/*
705 	 * Set up the new "super" device's MTD object structure, check for
706 	 * incompatibilities between the subdevices.
707 	 */
708 	concat->mtd.type = subdev[0]->type;
709 	concat->mtd.flags = subdev[0]->flags;
710 	concat->mtd.size = subdev[0]->size;
711 	concat->mtd.erasesize = subdev[0]->erasesize;
712 	concat->mtd.writesize = subdev[0]->writesize;
713 
714 	for (i = 0; i < num_devs; i++)
715 		if (max_writebufsize < subdev[i]->writebufsize)
716 			max_writebufsize = subdev[i]->writebufsize;
717 	concat->mtd.writebufsize = max_writebufsize;
718 
719 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
720 	concat->mtd.oobsize = subdev[0]->oobsize;
721 	concat->mtd.oobavail = subdev[0]->oobavail;
722 	if (subdev[0]->_writev)
723 		concat->mtd._writev = concat_writev;
724 	if (subdev[0]->_read_oob)
725 		concat->mtd._read_oob = concat_read_oob;
726 	if (subdev[0]->_write_oob)
727 		concat->mtd._write_oob = concat_write_oob;
728 	if (subdev[0]->_block_isbad)
729 		concat->mtd._block_isbad = concat_block_isbad;
730 	if (subdev[0]->_block_markbad)
731 		concat->mtd._block_markbad = concat_block_markbad;
732 
733 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
734 
735 	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
736 
737 	concat->subdev[0] = subdev[0];
738 
739 	for (i = 1; i < num_devs; i++) {
740 		if (concat->mtd.type != subdev[i]->type) {
741 			kfree(concat);
742 			printk("Incompatible device type on \"%s\"\n",
743 			       subdev[i]->name);
744 			return NULL;
745 		}
746 		if (concat->mtd.flags != subdev[i]->flags) {
747 			/*
748 			 * Expect all flags except MTD_WRITEABLE to be
749 			 * equal on all subdevices.
750 			 */
751 			if ((concat->mtd.flags ^ subdev[i]->
752 			     flags) & ~MTD_WRITEABLE) {
753 				kfree(concat);
754 				printk("Incompatible device flags on \"%s\"\n",
755 				       subdev[i]->name);
756 				return NULL;
757 			} else
758 				/* if writeable attribute differs,
759 				   make super device writeable */
760 				concat->mtd.flags |=
761 				    subdev[i]->flags & MTD_WRITEABLE;
762 		}
763 
764 		/* only permit direct mapping if the BDIs are all the same
765 		 * - copy-mapping is still permitted
766 		 */
767 		if (concat->mtd.backing_dev_info !=
768 		    subdev[i]->backing_dev_info)
769 			concat->mtd.backing_dev_info =
770 				&default_backing_dev_info;
771 
772 		concat->mtd.size += subdev[i]->size;
773 		concat->mtd.ecc_stats.badblocks +=
774 			subdev[i]->ecc_stats.badblocks;
775 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
776 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
777 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
778 		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
779 		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
780 			kfree(concat);
781 			printk("Incompatible OOB or ECC data on \"%s\"\n",
782 			       subdev[i]->name);
783 			return NULL;
784 		}
785 		concat->subdev[i] = subdev[i];
786 
787 	}
788 
789 	concat->mtd.ecclayout = subdev[0]->ecclayout;
790 
791 	concat->num_subdev = num_devs;
792 	concat->mtd.name = name;
793 
794 	concat->mtd._erase = concat_erase;
795 	concat->mtd._read = concat_read;
796 	concat->mtd._write = concat_write;
797 	concat->mtd._sync = concat_sync;
798 	concat->mtd._lock = concat_lock;
799 	concat->mtd._unlock = concat_unlock;
800 	concat->mtd._suspend = concat_suspend;
801 	concat->mtd._resume = concat_resume;
802 	concat->mtd._get_unmapped_area = concat_get_unmapped_area;
803 
804 	/*
805 	 * Combine the erase block size info of the subdevices:
806 	 *
807 	 * first, walk the map of the new device and see how
808 	 * many changes in erase size we have
809 	 */
810 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
811 	num_erase_region = 1;
812 	for (i = 0; i < num_devs; i++) {
813 		if (subdev[i]->numeraseregions == 0) {
814 			/* current subdevice has uniform erase size */
815 			if (subdev[i]->erasesize != curr_erasesize) {
816 				/* if it differs from the last subdevice's erase size, count it */
817 				++num_erase_region;
818 				curr_erasesize = subdev[i]->erasesize;
819 				if (curr_erasesize > max_erasesize)
820 					max_erasesize = curr_erasesize;
821 			}
822 		} else {
823 			/* current subdevice has variable erase size */
824 			int j;
825 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
826 
827 				/* walk the list of erase regions, count any changes */
828 				if (subdev[i]->eraseregions[j].erasesize !=
829 				    curr_erasesize) {
830 					++num_erase_region;
831 					curr_erasesize =
832 					    subdev[i]->eraseregions[j].
833 					    erasesize;
834 					if (curr_erasesize > max_erasesize)
835 						max_erasesize = curr_erasesize;
836 				}
837 			}
838 		}
839 	}
840 
841 	if (num_erase_region == 1) {
842 		/*
843 		 * All subdevices have the same uniform erase size.
844 		 * This is easy:
845 		 */
846 		concat->mtd.erasesize = curr_erasesize;
847 		concat->mtd.numeraseregions = 0;
848 	} else {
849 		uint64_t tmp64;
850 
851 		/*
852 		 * erase block size varies across the subdevices: allocate
853 		 * space to store the data describing the variable erase regions
854 		 */
855 		struct mtd_erase_region_info *erase_region_p;
856 		uint64_t begin, position;
857 
858 		concat->mtd.erasesize = max_erasesize;
859 		concat->mtd.numeraseregions = num_erase_region;
860 		concat->mtd.eraseregions = erase_region_p =
861 		    kmalloc(num_erase_region *
862 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
863 		if (!erase_region_p) {
864 			kfree(concat);
865 			printk
866 			    ("memory allocation error while creating erase region list"
867 			     " for device \"%s\"\n", name);
868 			return NULL;
869 		}
870 
871 		/*
872 		 * walk the map of the new device once more and fill in
873 		 * in erase region info:
874 		 */
875 		curr_erasesize = subdev[0]->erasesize;
876 		begin = position = 0;
877 		for (i = 0; i < num_devs; i++) {
878 			if (subdev[i]->numeraseregions == 0) {
879 				/* current subdevice has uniform erase size */
880 				if (subdev[i]->erasesize != curr_erasesize) {
881 					/*
882 					 *  fill in an mtd_erase_region_info structure for the area
883 					 *  we have walked so far:
884 					 */
885 					erase_region_p->offset = begin;
886 					erase_region_p->erasesize =
887 					    curr_erasesize;
888 					tmp64 = position - begin;
889 					do_div(tmp64, curr_erasesize);
890 					erase_region_p->numblocks = tmp64;
891 					begin = position;
892 
893 					curr_erasesize = subdev[i]->erasesize;
894 					++erase_region_p;
895 				}
896 				position += subdev[i]->size;
897 			} else {
898 				/* current subdevice has variable erase size */
899 				int j;
900 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
901 					/* walk the list of erase regions, count any changes */
902 					if (subdev[i]->eraseregions[j].
903 					    erasesize != curr_erasesize) {
904 						erase_region_p->offset = begin;
905 						erase_region_p->erasesize =
906 						    curr_erasesize;
907 						tmp64 = position - begin;
908 						do_div(tmp64, curr_erasesize);
909 						erase_region_p->numblocks = tmp64;
910 						begin = position;
911 
912 						curr_erasesize =
913 						    subdev[i]->eraseregions[j].
914 						    erasesize;
915 						++erase_region_p;
916 					}
917 					position +=
918 					    subdev[i]->eraseregions[j].
919 					    numblocks * (uint64_t)curr_erasesize;
920 				}
921 			}
922 		}
923 		/* Now write the final entry */
924 		erase_region_p->offset = begin;
925 		erase_region_p->erasesize = curr_erasesize;
926 		tmp64 = position - begin;
927 		do_div(tmp64, curr_erasesize);
928 		erase_region_p->numblocks = tmp64;
929 	}
930 
931 	return &concat->mtd;
932 }
933 
934 /*
935  * This function destroys an MTD object obtained from concat_mtd_devs()
936  */
937 
938 void mtd_concat_destroy(struct mtd_info *mtd)
939 {
940 	struct mtd_concat *concat = CONCAT(mtd);
941 	if (concat->mtd.numeraseregions)
942 		kfree(concat->mtd.eraseregions);
943 	kfree(concat);
944 }
945 
946 EXPORT_SYMBOL(mtd_concat_create);
947 EXPORT_SYMBOL(mtd_concat_destroy);
948 
949 MODULE_LICENSE("GPL");
950 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
951 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
952