1 /* 2 * MTD device concatenation layer 3 * 4 * (C) 2002 Robert Kaiser <rkaiser@sysgo.de> 5 * 6 * NAND support by Christian Gan <cgan@iders.ca> 7 * 8 * This code is GPL 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/sched.h> 15 #include <linux/types.h> 16 17 #include <linux/mtd/mtd.h> 18 #include <linux/mtd/concat.h> 19 20 #include <asm/div64.h> 21 22 /* 23 * Our storage structure: 24 * Subdev points to an array of pointers to struct mtd_info objects 25 * which is allocated along with this structure 26 * 27 */ 28 struct mtd_concat { 29 struct mtd_info mtd; 30 int num_subdev; 31 struct mtd_info **subdev; 32 }; 33 34 /* 35 * how to calculate the size required for the above structure, 36 * including the pointer array subdev points to: 37 */ 38 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ 39 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) 40 41 /* 42 * Given a pointer to the MTD object in the mtd_concat structure, 43 * we can retrieve the pointer to that structure with this macro. 44 */ 45 #define CONCAT(x) ((struct mtd_concat *)(x)) 46 47 /* 48 * MTD methods which look up the relevant subdevice, translate the 49 * effective address and pass through to the subdevice. 50 */ 51 52 static int 53 concat_read(struct mtd_info *mtd, loff_t from, size_t len, 54 size_t * retlen, u_char * buf) 55 { 56 struct mtd_concat *concat = CONCAT(mtd); 57 int ret = 0, err; 58 int i; 59 60 *retlen = 0; 61 62 for (i = 0; i < concat->num_subdev; i++) { 63 struct mtd_info *subdev = concat->subdev[i]; 64 size_t size, retsize; 65 66 if (from >= subdev->size) { 67 /* Not destined for this subdev */ 68 size = 0; 69 from -= subdev->size; 70 continue; 71 } 72 if (from + len > subdev->size) 73 /* First part goes into this subdev */ 74 size = subdev->size - from; 75 else 76 /* Entire transaction goes into this subdev */ 77 size = len; 78 79 err = subdev->read(subdev, from, size, &retsize, buf); 80 81 /* Save information about bitflips! */ 82 if (unlikely(err)) { 83 if (err == -EBADMSG) { 84 mtd->ecc_stats.failed++; 85 ret = err; 86 } else if (err == -EUCLEAN) { 87 mtd->ecc_stats.corrected++; 88 /* Do not overwrite -EBADMSG !! */ 89 if (!ret) 90 ret = err; 91 } else 92 return err; 93 } 94 95 *retlen += retsize; 96 len -= size; 97 if (len == 0) 98 return ret; 99 100 buf += size; 101 from = 0; 102 } 103 return -EINVAL; 104 } 105 106 static int 107 concat_write(struct mtd_info *mtd, loff_t to, size_t len, 108 size_t * retlen, const u_char * buf) 109 { 110 struct mtd_concat *concat = CONCAT(mtd); 111 int err = -EINVAL; 112 int i; 113 114 if (!(mtd->flags & MTD_WRITEABLE)) 115 return -EROFS; 116 117 *retlen = 0; 118 119 for (i = 0; i < concat->num_subdev; i++) { 120 struct mtd_info *subdev = concat->subdev[i]; 121 size_t size, retsize; 122 123 if (to >= subdev->size) { 124 size = 0; 125 to -= subdev->size; 126 continue; 127 } 128 if (to + len > subdev->size) 129 size = subdev->size - to; 130 else 131 size = len; 132 133 if (!(subdev->flags & MTD_WRITEABLE)) 134 err = -EROFS; 135 else 136 err = subdev->write(subdev, to, size, &retsize, buf); 137 138 if (err) 139 break; 140 141 *retlen += retsize; 142 len -= size; 143 if (len == 0) 144 break; 145 146 err = -EINVAL; 147 buf += size; 148 to = 0; 149 } 150 return err; 151 } 152 153 static int 154 concat_writev(struct mtd_info *mtd, const struct kvec *vecs, 155 unsigned long count, loff_t to, size_t * retlen) 156 { 157 struct mtd_concat *concat = CONCAT(mtd); 158 struct kvec *vecs_copy; 159 unsigned long entry_low, entry_high; 160 size_t total_len = 0; 161 int i; 162 int err = -EINVAL; 163 164 if (!(mtd->flags & MTD_WRITEABLE)) 165 return -EROFS; 166 167 *retlen = 0; 168 169 /* Calculate total length of data */ 170 for (i = 0; i < count; i++) 171 total_len += vecs[i].iov_len; 172 173 /* Do not allow write past end of device */ 174 if ((to + total_len) > mtd->size) 175 return -EINVAL; 176 177 /* Check alignment */ 178 if (mtd->writesize > 1) { 179 uint64_t __to = to; 180 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) 181 return -EINVAL; 182 } 183 184 /* make a copy of vecs */ 185 vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL); 186 if (!vecs_copy) 187 return -ENOMEM; 188 memcpy(vecs_copy, vecs, sizeof(struct kvec) * count); 189 190 entry_low = 0; 191 for (i = 0; i < concat->num_subdev; i++) { 192 struct mtd_info *subdev = concat->subdev[i]; 193 size_t size, wsize, retsize, old_iov_len; 194 195 if (to >= subdev->size) { 196 to -= subdev->size; 197 continue; 198 } 199 200 size = min(total_len, (size_t)(subdev->size - to)); 201 wsize = size; /* store for future use */ 202 203 entry_high = entry_low; 204 while (entry_high < count) { 205 if (size <= vecs_copy[entry_high].iov_len) 206 break; 207 size -= vecs_copy[entry_high++].iov_len; 208 } 209 210 old_iov_len = vecs_copy[entry_high].iov_len; 211 vecs_copy[entry_high].iov_len = size; 212 213 if (!(subdev->flags & MTD_WRITEABLE)) 214 err = -EROFS; 215 else 216 err = subdev->writev(subdev, &vecs_copy[entry_low], 217 entry_high - entry_low + 1, to, &retsize); 218 219 vecs_copy[entry_high].iov_len = old_iov_len - size; 220 vecs_copy[entry_high].iov_base += size; 221 222 entry_low = entry_high; 223 224 if (err) 225 break; 226 227 *retlen += retsize; 228 total_len -= wsize; 229 230 if (total_len == 0) 231 break; 232 233 err = -EINVAL; 234 to = 0; 235 } 236 237 kfree(vecs_copy); 238 return err; 239 } 240 241 static int 242 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 243 { 244 struct mtd_concat *concat = CONCAT(mtd); 245 struct mtd_oob_ops devops = *ops; 246 int i, err, ret = 0; 247 248 ops->retlen = ops->oobretlen = 0; 249 250 for (i = 0; i < concat->num_subdev; i++) { 251 struct mtd_info *subdev = concat->subdev[i]; 252 253 if (from >= subdev->size) { 254 from -= subdev->size; 255 continue; 256 } 257 258 /* partial read ? */ 259 if (from + devops.len > subdev->size) 260 devops.len = subdev->size - from; 261 262 err = subdev->read_oob(subdev, from, &devops); 263 ops->retlen += devops.retlen; 264 ops->oobretlen += devops.oobretlen; 265 266 /* Save information about bitflips! */ 267 if (unlikely(err)) { 268 if (err == -EBADMSG) { 269 mtd->ecc_stats.failed++; 270 ret = err; 271 } else if (err == -EUCLEAN) { 272 mtd->ecc_stats.corrected++; 273 /* Do not overwrite -EBADMSG !! */ 274 if (!ret) 275 ret = err; 276 } else 277 return err; 278 } 279 280 if (devops.datbuf) { 281 devops.len = ops->len - ops->retlen; 282 if (!devops.len) 283 return ret; 284 devops.datbuf += devops.retlen; 285 } 286 if (devops.oobbuf) { 287 devops.ooblen = ops->ooblen - ops->oobretlen; 288 if (!devops.ooblen) 289 return ret; 290 devops.oobbuf += ops->oobretlen; 291 } 292 293 from = 0; 294 } 295 return -EINVAL; 296 } 297 298 static int 299 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) 300 { 301 struct mtd_concat *concat = CONCAT(mtd); 302 struct mtd_oob_ops devops = *ops; 303 int i, err; 304 305 if (!(mtd->flags & MTD_WRITEABLE)) 306 return -EROFS; 307 308 ops->retlen = 0; 309 310 for (i = 0; i < concat->num_subdev; i++) { 311 struct mtd_info *subdev = concat->subdev[i]; 312 313 if (to >= subdev->size) { 314 to -= subdev->size; 315 continue; 316 } 317 318 /* partial write ? */ 319 if (to + devops.len > subdev->size) 320 devops.len = subdev->size - to; 321 322 err = subdev->write_oob(subdev, to, &devops); 323 ops->retlen += devops.retlen; 324 if (err) 325 return err; 326 327 if (devops.datbuf) { 328 devops.len = ops->len - ops->retlen; 329 if (!devops.len) 330 return 0; 331 devops.datbuf += devops.retlen; 332 } 333 if (devops.oobbuf) { 334 devops.ooblen = ops->ooblen - ops->oobretlen; 335 if (!devops.ooblen) 336 return 0; 337 devops.oobbuf += devops.oobretlen; 338 } 339 to = 0; 340 } 341 return -EINVAL; 342 } 343 344 static void concat_erase_callback(struct erase_info *instr) 345 { 346 wake_up((wait_queue_head_t *) instr->priv); 347 } 348 349 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) 350 { 351 int err; 352 wait_queue_head_t waitq; 353 DECLARE_WAITQUEUE(wait, current); 354 355 /* 356 * This code was stol^H^H^H^Hinspired by mtdchar.c 357 */ 358 init_waitqueue_head(&waitq); 359 360 erase->mtd = mtd; 361 erase->callback = concat_erase_callback; 362 erase->priv = (unsigned long) &waitq; 363 364 /* 365 * FIXME: Allow INTERRUPTIBLE. Which means 366 * not having the wait_queue head on the stack. 367 */ 368 err = mtd->erase(mtd, erase); 369 if (!err) { 370 set_current_state(TASK_UNINTERRUPTIBLE); 371 add_wait_queue(&waitq, &wait); 372 if (erase->state != MTD_ERASE_DONE 373 && erase->state != MTD_ERASE_FAILED) 374 schedule(); 375 remove_wait_queue(&waitq, &wait); 376 set_current_state(TASK_RUNNING); 377 378 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0; 379 } 380 return err; 381 } 382 383 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) 384 { 385 struct mtd_concat *concat = CONCAT(mtd); 386 struct mtd_info *subdev; 387 int i, err; 388 u_int32_t length, offset = 0; 389 struct erase_info *erase; 390 391 if (!(mtd->flags & MTD_WRITEABLE)) 392 return -EROFS; 393 394 if (instr->addr > concat->mtd.size) 395 return -EINVAL; 396 397 if (instr->len + instr->addr > concat->mtd.size) 398 return -EINVAL; 399 400 /* 401 * Check for proper erase block alignment of the to-be-erased area. 402 * It is easier to do this based on the super device's erase 403 * region info rather than looking at each particular sub-device 404 * in turn. 405 */ 406 if (!concat->mtd.numeraseregions) { 407 /* the easy case: device has uniform erase block size */ 408 if (instr->addr & (concat->mtd.erasesize - 1)) 409 return -EINVAL; 410 if (instr->len & (concat->mtd.erasesize - 1)) 411 return -EINVAL; 412 } else { 413 /* device has variable erase size */ 414 struct mtd_erase_region_info *erase_regions = 415 concat->mtd.eraseregions; 416 417 /* 418 * Find the erase region where the to-be-erased area begins: 419 */ 420 for (i = 0; i < concat->mtd.numeraseregions && 421 instr->addr >= erase_regions[i].offset; i++) ; 422 --i; 423 424 /* 425 * Now erase_regions[i] is the region in which the 426 * to-be-erased area begins. Verify that the starting 427 * offset is aligned to this region's erase size: 428 */ 429 if (instr->addr & (erase_regions[i].erasesize - 1)) 430 return -EINVAL; 431 432 /* 433 * now find the erase region where the to-be-erased area ends: 434 */ 435 for (; i < concat->mtd.numeraseregions && 436 (instr->addr + instr->len) >= erase_regions[i].offset; 437 ++i) ; 438 --i; 439 /* 440 * check if the ending offset is aligned to this region's erase size 441 */ 442 if ((instr->addr + instr->len) & (erase_regions[i].erasesize - 443 1)) 444 return -EINVAL; 445 } 446 447 instr->fail_addr = 0xffffffff; 448 449 /* make a local copy of instr to avoid modifying the caller's struct */ 450 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 451 452 if (!erase) 453 return -ENOMEM; 454 455 *erase = *instr; 456 length = instr->len; 457 458 /* 459 * find the subdevice where the to-be-erased area begins, adjust 460 * starting offset to be relative to the subdevice start 461 */ 462 for (i = 0; i < concat->num_subdev; i++) { 463 subdev = concat->subdev[i]; 464 if (subdev->size <= erase->addr) { 465 erase->addr -= subdev->size; 466 offset += subdev->size; 467 } else { 468 break; 469 } 470 } 471 472 /* must never happen since size limit has been verified above */ 473 BUG_ON(i >= concat->num_subdev); 474 475 /* now do the erase: */ 476 err = 0; 477 for (; length > 0; i++) { 478 /* loop for all subdevices affected by this request */ 479 subdev = concat->subdev[i]; /* get current subdevice */ 480 481 /* limit length to subdevice's size: */ 482 if (erase->addr + length > subdev->size) 483 erase->len = subdev->size - erase->addr; 484 else 485 erase->len = length; 486 487 if (!(subdev->flags & MTD_WRITEABLE)) { 488 err = -EROFS; 489 break; 490 } 491 length -= erase->len; 492 if ((err = concat_dev_erase(subdev, erase))) { 493 /* sanity check: should never happen since 494 * block alignment has been checked above */ 495 BUG_ON(err == -EINVAL); 496 if (erase->fail_addr != 0xffffffff) 497 instr->fail_addr = erase->fail_addr + offset; 498 break; 499 } 500 /* 501 * erase->addr specifies the offset of the area to be 502 * erased *within the current subdevice*. It can be 503 * non-zero only the first time through this loop, i.e. 504 * for the first subdevice where blocks need to be erased. 505 * All the following erases must begin at the start of the 506 * current subdevice, i.e. at offset zero. 507 */ 508 erase->addr = 0; 509 offset += subdev->size; 510 } 511 instr->state = erase->state; 512 kfree(erase); 513 if (err) 514 return err; 515 516 if (instr->callback) 517 instr->callback(instr); 518 return 0; 519 } 520 521 static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len) 522 { 523 struct mtd_concat *concat = CONCAT(mtd); 524 int i, err = -EINVAL; 525 526 if ((len + ofs) > mtd->size) 527 return -EINVAL; 528 529 for (i = 0; i < concat->num_subdev; i++) { 530 struct mtd_info *subdev = concat->subdev[i]; 531 size_t size; 532 533 if (ofs >= subdev->size) { 534 size = 0; 535 ofs -= subdev->size; 536 continue; 537 } 538 if (ofs + len > subdev->size) 539 size = subdev->size - ofs; 540 else 541 size = len; 542 543 err = subdev->lock(subdev, ofs, size); 544 545 if (err) 546 break; 547 548 len -= size; 549 if (len == 0) 550 break; 551 552 err = -EINVAL; 553 ofs = 0; 554 } 555 556 return err; 557 } 558 559 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) 560 { 561 struct mtd_concat *concat = CONCAT(mtd); 562 int i, err = 0; 563 564 if ((len + ofs) > mtd->size) 565 return -EINVAL; 566 567 for (i = 0; i < concat->num_subdev; i++) { 568 struct mtd_info *subdev = concat->subdev[i]; 569 size_t size; 570 571 if (ofs >= subdev->size) { 572 size = 0; 573 ofs -= subdev->size; 574 continue; 575 } 576 if (ofs + len > subdev->size) 577 size = subdev->size - ofs; 578 else 579 size = len; 580 581 err = subdev->unlock(subdev, ofs, size); 582 583 if (err) 584 break; 585 586 len -= size; 587 if (len == 0) 588 break; 589 590 err = -EINVAL; 591 ofs = 0; 592 } 593 594 return err; 595 } 596 597 static void concat_sync(struct mtd_info *mtd) 598 { 599 struct mtd_concat *concat = CONCAT(mtd); 600 int i; 601 602 for (i = 0; i < concat->num_subdev; i++) { 603 struct mtd_info *subdev = concat->subdev[i]; 604 subdev->sync(subdev); 605 } 606 } 607 608 static int concat_suspend(struct mtd_info *mtd) 609 { 610 struct mtd_concat *concat = CONCAT(mtd); 611 int i, rc = 0; 612 613 for (i = 0; i < concat->num_subdev; i++) { 614 struct mtd_info *subdev = concat->subdev[i]; 615 if ((rc = subdev->suspend(subdev)) < 0) 616 return rc; 617 } 618 return rc; 619 } 620 621 static void concat_resume(struct mtd_info *mtd) 622 { 623 struct mtd_concat *concat = CONCAT(mtd); 624 int i; 625 626 for (i = 0; i < concat->num_subdev; i++) { 627 struct mtd_info *subdev = concat->subdev[i]; 628 subdev->resume(subdev); 629 } 630 } 631 632 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) 633 { 634 struct mtd_concat *concat = CONCAT(mtd); 635 int i, res = 0; 636 637 if (!concat->subdev[0]->block_isbad) 638 return res; 639 640 if (ofs > mtd->size) 641 return -EINVAL; 642 643 for (i = 0; i < concat->num_subdev; i++) { 644 struct mtd_info *subdev = concat->subdev[i]; 645 646 if (ofs >= subdev->size) { 647 ofs -= subdev->size; 648 continue; 649 } 650 651 res = subdev->block_isbad(subdev, ofs); 652 break; 653 } 654 655 return res; 656 } 657 658 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) 659 { 660 struct mtd_concat *concat = CONCAT(mtd); 661 int i, err = -EINVAL; 662 663 if (!concat->subdev[0]->block_markbad) 664 return 0; 665 666 if (ofs > mtd->size) 667 return -EINVAL; 668 669 for (i = 0; i < concat->num_subdev; i++) { 670 struct mtd_info *subdev = concat->subdev[i]; 671 672 if (ofs >= subdev->size) { 673 ofs -= subdev->size; 674 continue; 675 } 676 677 err = subdev->block_markbad(subdev, ofs); 678 if (!err) 679 mtd->ecc_stats.badblocks++; 680 break; 681 } 682 683 return err; 684 } 685 686 /* 687 * This function constructs a virtual MTD device by concatenating 688 * num_devs MTD devices. A pointer to the new device object is 689 * stored to *new_dev upon success. This function does _not_ 690 * register any devices: this is the caller's responsibility. 691 */ 692 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ 693 int num_devs, /* number of subdevices */ 694 char *name) 695 { /* name for the new device */ 696 int i; 697 size_t size; 698 struct mtd_concat *concat; 699 u_int32_t max_erasesize, curr_erasesize; 700 int num_erase_region; 701 702 printk(KERN_NOTICE "Concatenating MTD devices:\n"); 703 for (i = 0; i < num_devs; i++) 704 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); 705 printk(KERN_NOTICE "into device \"%s\"\n", name); 706 707 /* allocate the device structure */ 708 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); 709 concat = kzalloc(size, GFP_KERNEL); 710 if (!concat) { 711 printk 712 ("memory allocation error while creating concatenated device \"%s\"\n", 713 name); 714 return NULL; 715 } 716 concat->subdev = (struct mtd_info **) (concat + 1); 717 718 /* 719 * Set up the new "super" device's MTD object structure, check for 720 * incompatibilites between the subdevices. 721 */ 722 concat->mtd.type = subdev[0]->type; 723 concat->mtd.flags = subdev[0]->flags; 724 concat->mtd.size = subdev[0]->size; 725 concat->mtd.erasesize = subdev[0]->erasesize; 726 concat->mtd.writesize = subdev[0]->writesize; 727 concat->mtd.subpage_sft = subdev[0]->subpage_sft; 728 concat->mtd.oobsize = subdev[0]->oobsize; 729 concat->mtd.oobavail = subdev[0]->oobavail; 730 if (subdev[0]->writev) 731 concat->mtd.writev = concat_writev; 732 if (subdev[0]->read_oob) 733 concat->mtd.read_oob = concat_read_oob; 734 if (subdev[0]->write_oob) 735 concat->mtd.write_oob = concat_write_oob; 736 if (subdev[0]->block_isbad) 737 concat->mtd.block_isbad = concat_block_isbad; 738 if (subdev[0]->block_markbad) 739 concat->mtd.block_markbad = concat_block_markbad; 740 741 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 742 743 concat->subdev[0] = subdev[0]; 744 745 for (i = 1; i < num_devs; i++) { 746 if (concat->mtd.type != subdev[i]->type) { 747 kfree(concat); 748 printk("Incompatible device type on \"%s\"\n", 749 subdev[i]->name); 750 return NULL; 751 } 752 if (concat->mtd.flags != subdev[i]->flags) { 753 /* 754 * Expect all flags except MTD_WRITEABLE to be 755 * equal on all subdevices. 756 */ 757 if ((concat->mtd.flags ^ subdev[i]-> 758 flags) & ~MTD_WRITEABLE) { 759 kfree(concat); 760 printk("Incompatible device flags on \"%s\"\n", 761 subdev[i]->name); 762 return NULL; 763 } else 764 /* if writeable attribute differs, 765 make super device writeable */ 766 concat->mtd.flags |= 767 subdev[i]->flags & MTD_WRITEABLE; 768 } 769 concat->mtd.size += subdev[i]->size; 770 concat->mtd.ecc_stats.badblocks += 771 subdev[i]->ecc_stats.badblocks; 772 if (concat->mtd.writesize != subdev[i]->writesize || 773 concat->mtd.subpage_sft != subdev[i]->subpage_sft || 774 concat->mtd.oobsize != subdev[i]->oobsize || 775 !concat->mtd.read_oob != !subdev[i]->read_oob || 776 !concat->mtd.write_oob != !subdev[i]->write_oob) { 777 kfree(concat); 778 printk("Incompatible OOB or ECC data on \"%s\"\n", 779 subdev[i]->name); 780 return NULL; 781 } 782 concat->subdev[i] = subdev[i]; 783 784 } 785 786 concat->mtd.ecclayout = subdev[0]->ecclayout; 787 788 concat->num_subdev = num_devs; 789 concat->mtd.name = name; 790 791 concat->mtd.erase = concat_erase; 792 concat->mtd.read = concat_read; 793 concat->mtd.write = concat_write; 794 concat->mtd.sync = concat_sync; 795 concat->mtd.lock = concat_lock; 796 concat->mtd.unlock = concat_unlock; 797 concat->mtd.suspend = concat_suspend; 798 concat->mtd.resume = concat_resume; 799 800 /* 801 * Combine the erase block size info of the subdevices: 802 * 803 * first, walk the map of the new device and see how 804 * many changes in erase size we have 805 */ 806 max_erasesize = curr_erasesize = subdev[0]->erasesize; 807 num_erase_region = 1; 808 for (i = 0; i < num_devs; i++) { 809 if (subdev[i]->numeraseregions == 0) { 810 /* current subdevice has uniform erase size */ 811 if (subdev[i]->erasesize != curr_erasesize) { 812 /* if it differs from the last subdevice's erase size, count it */ 813 ++num_erase_region; 814 curr_erasesize = subdev[i]->erasesize; 815 if (curr_erasesize > max_erasesize) 816 max_erasesize = curr_erasesize; 817 } 818 } else { 819 /* current subdevice has variable erase size */ 820 int j; 821 for (j = 0; j < subdev[i]->numeraseregions; j++) { 822 823 /* walk the list of erase regions, count any changes */ 824 if (subdev[i]->eraseregions[j].erasesize != 825 curr_erasesize) { 826 ++num_erase_region; 827 curr_erasesize = 828 subdev[i]->eraseregions[j]. 829 erasesize; 830 if (curr_erasesize > max_erasesize) 831 max_erasesize = curr_erasesize; 832 } 833 } 834 } 835 } 836 837 if (num_erase_region == 1) { 838 /* 839 * All subdevices have the same uniform erase size. 840 * This is easy: 841 */ 842 concat->mtd.erasesize = curr_erasesize; 843 concat->mtd.numeraseregions = 0; 844 } else { 845 /* 846 * erase block size varies across the subdevices: allocate 847 * space to store the data describing the variable erase regions 848 */ 849 struct mtd_erase_region_info *erase_region_p; 850 u_int32_t begin, position; 851 852 concat->mtd.erasesize = max_erasesize; 853 concat->mtd.numeraseregions = num_erase_region; 854 concat->mtd.eraseregions = erase_region_p = 855 kmalloc(num_erase_region * 856 sizeof (struct mtd_erase_region_info), GFP_KERNEL); 857 if (!erase_region_p) { 858 kfree(concat); 859 printk 860 ("memory allocation error while creating erase region list" 861 " for device \"%s\"\n", name); 862 return NULL; 863 } 864 865 /* 866 * walk the map of the new device once more and fill in 867 * in erase region info: 868 */ 869 curr_erasesize = subdev[0]->erasesize; 870 begin = position = 0; 871 for (i = 0; i < num_devs; i++) { 872 if (subdev[i]->numeraseregions == 0) { 873 /* current subdevice has uniform erase size */ 874 if (subdev[i]->erasesize != curr_erasesize) { 875 /* 876 * fill in an mtd_erase_region_info structure for the area 877 * we have walked so far: 878 */ 879 erase_region_p->offset = begin; 880 erase_region_p->erasesize = 881 curr_erasesize; 882 erase_region_p->numblocks = 883 (position - begin) / curr_erasesize; 884 begin = position; 885 886 curr_erasesize = subdev[i]->erasesize; 887 ++erase_region_p; 888 } 889 position += subdev[i]->size; 890 } else { 891 /* current subdevice has variable erase size */ 892 int j; 893 for (j = 0; j < subdev[i]->numeraseregions; j++) { 894 /* walk the list of erase regions, count any changes */ 895 if (subdev[i]->eraseregions[j]. 896 erasesize != curr_erasesize) { 897 erase_region_p->offset = begin; 898 erase_region_p->erasesize = 899 curr_erasesize; 900 erase_region_p->numblocks = 901 (position - 902 begin) / curr_erasesize; 903 begin = position; 904 905 curr_erasesize = 906 subdev[i]->eraseregions[j]. 907 erasesize; 908 ++erase_region_p; 909 } 910 position += 911 subdev[i]->eraseregions[j]. 912 numblocks * curr_erasesize; 913 } 914 } 915 } 916 /* Now write the final entry */ 917 erase_region_p->offset = begin; 918 erase_region_p->erasesize = curr_erasesize; 919 erase_region_p->numblocks = (position - begin) / curr_erasesize; 920 } 921 922 return &concat->mtd; 923 } 924 925 /* 926 * This function destroys an MTD object obtained from concat_mtd_devs() 927 */ 928 929 void mtd_concat_destroy(struct mtd_info *mtd) 930 { 931 struct mtd_concat *concat = CONCAT(mtd); 932 if (concat->mtd.numeraseregions) 933 kfree(concat->mtd.eraseregions); 934 kfree(concat); 935 } 936 937 EXPORT_SYMBOL(mtd_concat_create); 938 EXPORT_SYMBOL(mtd_concat_destroy); 939 940 MODULE_LICENSE("GPL"); 941 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); 942 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); 943