xref: /openbmc/linux/drivers/mtd/mtdconcat.c (revision 384740dc)
1 /*
2  * MTD device concatenation layer
3  *
4  * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
5  *
6  * NAND support by Christian Gan <cgan@iders.ca>
7  *
8  * This code is GPL
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/types.h>
16 
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/concat.h>
19 
20 #include <asm/div64.h>
21 
22 /*
23  * Our storage structure:
24  * Subdev points to an array of pointers to struct mtd_info objects
25  * which is allocated along with this structure
26  *
27  */
28 struct mtd_concat {
29 	struct mtd_info mtd;
30 	int num_subdev;
31 	struct mtd_info **subdev;
32 };
33 
34 /*
35  * how to calculate the size required for the above structure,
36  * including the pointer array subdev points to:
37  */
38 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
39 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
40 
41 /*
42  * Given a pointer to the MTD object in the mtd_concat structure,
43  * we can retrieve the pointer to that structure with this macro.
44  */
45 #define CONCAT(x)  ((struct mtd_concat *)(x))
46 
47 /*
48  * MTD methods which look up the relevant subdevice, translate the
49  * effective address and pass through to the subdevice.
50  */
51 
52 static int
53 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
54 	    size_t * retlen, u_char * buf)
55 {
56 	struct mtd_concat *concat = CONCAT(mtd);
57 	int ret = 0, err;
58 	int i;
59 
60 	*retlen = 0;
61 
62 	for (i = 0; i < concat->num_subdev; i++) {
63 		struct mtd_info *subdev = concat->subdev[i];
64 		size_t size, retsize;
65 
66 		if (from >= subdev->size) {
67 			/* Not destined for this subdev */
68 			size = 0;
69 			from -= subdev->size;
70 			continue;
71 		}
72 		if (from + len > subdev->size)
73 			/* First part goes into this subdev */
74 			size = subdev->size - from;
75 		else
76 			/* Entire transaction goes into this subdev */
77 			size = len;
78 
79 		err = subdev->read(subdev, from, size, &retsize, buf);
80 
81 		/* Save information about bitflips! */
82 		if (unlikely(err)) {
83 			if (err == -EBADMSG) {
84 				mtd->ecc_stats.failed++;
85 				ret = err;
86 			} else if (err == -EUCLEAN) {
87 				mtd->ecc_stats.corrected++;
88 				/* Do not overwrite -EBADMSG !! */
89 				if (!ret)
90 					ret = err;
91 			} else
92 				return err;
93 		}
94 
95 		*retlen += retsize;
96 		len -= size;
97 		if (len == 0)
98 			return ret;
99 
100 		buf += size;
101 		from = 0;
102 	}
103 	return -EINVAL;
104 }
105 
106 static int
107 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
108 	     size_t * retlen, const u_char * buf)
109 {
110 	struct mtd_concat *concat = CONCAT(mtd);
111 	int err = -EINVAL;
112 	int i;
113 
114 	if (!(mtd->flags & MTD_WRITEABLE))
115 		return -EROFS;
116 
117 	*retlen = 0;
118 
119 	for (i = 0; i < concat->num_subdev; i++) {
120 		struct mtd_info *subdev = concat->subdev[i];
121 		size_t size, retsize;
122 
123 		if (to >= subdev->size) {
124 			size = 0;
125 			to -= subdev->size;
126 			continue;
127 		}
128 		if (to + len > subdev->size)
129 			size = subdev->size - to;
130 		else
131 			size = len;
132 
133 		if (!(subdev->flags & MTD_WRITEABLE))
134 			err = -EROFS;
135 		else
136 			err = subdev->write(subdev, to, size, &retsize, buf);
137 
138 		if (err)
139 			break;
140 
141 		*retlen += retsize;
142 		len -= size;
143 		if (len == 0)
144 			break;
145 
146 		err = -EINVAL;
147 		buf += size;
148 		to = 0;
149 	}
150 	return err;
151 }
152 
153 static int
154 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
155 		unsigned long count, loff_t to, size_t * retlen)
156 {
157 	struct mtd_concat *concat = CONCAT(mtd);
158 	struct kvec *vecs_copy;
159 	unsigned long entry_low, entry_high;
160 	size_t total_len = 0;
161 	int i;
162 	int err = -EINVAL;
163 
164 	if (!(mtd->flags & MTD_WRITEABLE))
165 		return -EROFS;
166 
167 	*retlen = 0;
168 
169 	/* Calculate total length of data */
170 	for (i = 0; i < count; i++)
171 		total_len += vecs[i].iov_len;
172 
173 	/* Do not allow write past end of device */
174 	if ((to + total_len) > mtd->size)
175 		return -EINVAL;
176 
177 	/* Check alignment */
178 	if (mtd->writesize > 1) {
179 		uint64_t __to = to;
180 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
181 			return -EINVAL;
182 	}
183 
184 	/* make a copy of vecs */
185 	vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL);
186 	if (!vecs_copy)
187 		return -ENOMEM;
188 	memcpy(vecs_copy, vecs, sizeof(struct kvec) * count);
189 
190 	entry_low = 0;
191 	for (i = 0; i < concat->num_subdev; i++) {
192 		struct mtd_info *subdev = concat->subdev[i];
193 		size_t size, wsize, retsize, old_iov_len;
194 
195 		if (to >= subdev->size) {
196 			to -= subdev->size;
197 			continue;
198 		}
199 
200 		size = min(total_len, (size_t)(subdev->size - to));
201 		wsize = size; /* store for future use */
202 
203 		entry_high = entry_low;
204 		while (entry_high < count) {
205 			if (size <= vecs_copy[entry_high].iov_len)
206 				break;
207 			size -= vecs_copy[entry_high++].iov_len;
208 		}
209 
210 		old_iov_len = vecs_copy[entry_high].iov_len;
211 		vecs_copy[entry_high].iov_len = size;
212 
213 		if (!(subdev->flags & MTD_WRITEABLE))
214 			err = -EROFS;
215 		else
216 			err = subdev->writev(subdev, &vecs_copy[entry_low],
217 				entry_high - entry_low + 1, to, &retsize);
218 
219 		vecs_copy[entry_high].iov_len = old_iov_len - size;
220 		vecs_copy[entry_high].iov_base += size;
221 
222 		entry_low = entry_high;
223 
224 		if (err)
225 			break;
226 
227 		*retlen += retsize;
228 		total_len -= wsize;
229 
230 		if (total_len == 0)
231 			break;
232 
233 		err = -EINVAL;
234 		to = 0;
235 	}
236 
237 	kfree(vecs_copy);
238 	return err;
239 }
240 
241 static int
242 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
243 {
244 	struct mtd_concat *concat = CONCAT(mtd);
245 	struct mtd_oob_ops devops = *ops;
246 	int i, err, ret = 0;
247 
248 	ops->retlen = ops->oobretlen = 0;
249 
250 	for (i = 0; i < concat->num_subdev; i++) {
251 		struct mtd_info *subdev = concat->subdev[i];
252 
253 		if (from >= subdev->size) {
254 			from -= subdev->size;
255 			continue;
256 		}
257 
258 		/* partial read ? */
259 		if (from + devops.len > subdev->size)
260 			devops.len = subdev->size - from;
261 
262 		err = subdev->read_oob(subdev, from, &devops);
263 		ops->retlen += devops.retlen;
264 		ops->oobretlen += devops.oobretlen;
265 
266 		/* Save information about bitflips! */
267 		if (unlikely(err)) {
268 			if (err == -EBADMSG) {
269 				mtd->ecc_stats.failed++;
270 				ret = err;
271 			} else if (err == -EUCLEAN) {
272 				mtd->ecc_stats.corrected++;
273 				/* Do not overwrite -EBADMSG !! */
274 				if (!ret)
275 					ret = err;
276 			} else
277 				return err;
278 		}
279 
280 		if (devops.datbuf) {
281 			devops.len = ops->len - ops->retlen;
282 			if (!devops.len)
283 				return ret;
284 			devops.datbuf += devops.retlen;
285 		}
286 		if (devops.oobbuf) {
287 			devops.ooblen = ops->ooblen - ops->oobretlen;
288 			if (!devops.ooblen)
289 				return ret;
290 			devops.oobbuf += ops->oobretlen;
291 		}
292 
293 		from = 0;
294 	}
295 	return -EINVAL;
296 }
297 
298 static int
299 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
300 {
301 	struct mtd_concat *concat = CONCAT(mtd);
302 	struct mtd_oob_ops devops = *ops;
303 	int i, err;
304 
305 	if (!(mtd->flags & MTD_WRITEABLE))
306 		return -EROFS;
307 
308 	ops->retlen = 0;
309 
310 	for (i = 0; i < concat->num_subdev; i++) {
311 		struct mtd_info *subdev = concat->subdev[i];
312 
313 		if (to >= subdev->size) {
314 			to -= subdev->size;
315 			continue;
316 		}
317 
318 		/* partial write ? */
319 		if (to + devops.len > subdev->size)
320 			devops.len = subdev->size - to;
321 
322 		err = subdev->write_oob(subdev, to, &devops);
323 		ops->retlen += devops.retlen;
324 		if (err)
325 			return err;
326 
327 		if (devops.datbuf) {
328 			devops.len = ops->len - ops->retlen;
329 			if (!devops.len)
330 				return 0;
331 			devops.datbuf += devops.retlen;
332 		}
333 		if (devops.oobbuf) {
334 			devops.ooblen = ops->ooblen - ops->oobretlen;
335 			if (!devops.ooblen)
336 				return 0;
337 			devops.oobbuf += devops.oobretlen;
338 		}
339 		to = 0;
340 	}
341 	return -EINVAL;
342 }
343 
344 static void concat_erase_callback(struct erase_info *instr)
345 {
346 	wake_up((wait_queue_head_t *) instr->priv);
347 }
348 
349 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
350 {
351 	int err;
352 	wait_queue_head_t waitq;
353 	DECLARE_WAITQUEUE(wait, current);
354 
355 	/*
356 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
357 	 */
358 	init_waitqueue_head(&waitq);
359 
360 	erase->mtd = mtd;
361 	erase->callback = concat_erase_callback;
362 	erase->priv = (unsigned long) &waitq;
363 
364 	/*
365 	 * FIXME: Allow INTERRUPTIBLE. Which means
366 	 * not having the wait_queue head on the stack.
367 	 */
368 	err = mtd->erase(mtd, erase);
369 	if (!err) {
370 		set_current_state(TASK_UNINTERRUPTIBLE);
371 		add_wait_queue(&waitq, &wait);
372 		if (erase->state != MTD_ERASE_DONE
373 		    && erase->state != MTD_ERASE_FAILED)
374 			schedule();
375 		remove_wait_queue(&waitq, &wait);
376 		set_current_state(TASK_RUNNING);
377 
378 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
379 	}
380 	return err;
381 }
382 
383 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
384 {
385 	struct mtd_concat *concat = CONCAT(mtd);
386 	struct mtd_info *subdev;
387 	int i, err;
388 	u_int32_t length, offset = 0;
389 	struct erase_info *erase;
390 
391 	if (!(mtd->flags & MTD_WRITEABLE))
392 		return -EROFS;
393 
394 	if (instr->addr > concat->mtd.size)
395 		return -EINVAL;
396 
397 	if (instr->len + instr->addr > concat->mtd.size)
398 		return -EINVAL;
399 
400 	/*
401 	 * Check for proper erase block alignment of the to-be-erased area.
402 	 * It is easier to do this based on the super device's erase
403 	 * region info rather than looking at each particular sub-device
404 	 * in turn.
405 	 */
406 	if (!concat->mtd.numeraseregions) {
407 		/* the easy case: device has uniform erase block size */
408 		if (instr->addr & (concat->mtd.erasesize - 1))
409 			return -EINVAL;
410 		if (instr->len & (concat->mtd.erasesize - 1))
411 			return -EINVAL;
412 	} else {
413 		/* device has variable erase size */
414 		struct mtd_erase_region_info *erase_regions =
415 		    concat->mtd.eraseregions;
416 
417 		/*
418 		 * Find the erase region where the to-be-erased area begins:
419 		 */
420 		for (i = 0; i < concat->mtd.numeraseregions &&
421 		     instr->addr >= erase_regions[i].offset; i++) ;
422 		--i;
423 
424 		/*
425 		 * Now erase_regions[i] is the region in which the
426 		 * to-be-erased area begins. Verify that the starting
427 		 * offset is aligned to this region's erase size:
428 		 */
429 		if (instr->addr & (erase_regions[i].erasesize - 1))
430 			return -EINVAL;
431 
432 		/*
433 		 * now find the erase region where the to-be-erased area ends:
434 		 */
435 		for (; i < concat->mtd.numeraseregions &&
436 		     (instr->addr + instr->len) >= erase_regions[i].offset;
437 		     ++i) ;
438 		--i;
439 		/*
440 		 * check if the ending offset is aligned to this region's erase size
441 		 */
442 		if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
443 						  1))
444 			return -EINVAL;
445 	}
446 
447 	instr->fail_addr = 0xffffffff;
448 
449 	/* make a local copy of instr to avoid modifying the caller's struct */
450 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
451 
452 	if (!erase)
453 		return -ENOMEM;
454 
455 	*erase = *instr;
456 	length = instr->len;
457 
458 	/*
459 	 * find the subdevice where the to-be-erased area begins, adjust
460 	 * starting offset to be relative to the subdevice start
461 	 */
462 	for (i = 0; i < concat->num_subdev; i++) {
463 		subdev = concat->subdev[i];
464 		if (subdev->size <= erase->addr) {
465 			erase->addr -= subdev->size;
466 			offset += subdev->size;
467 		} else {
468 			break;
469 		}
470 	}
471 
472 	/* must never happen since size limit has been verified above */
473 	BUG_ON(i >= concat->num_subdev);
474 
475 	/* now do the erase: */
476 	err = 0;
477 	for (; length > 0; i++) {
478 		/* loop for all subdevices affected by this request */
479 		subdev = concat->subdev[i];	/* get current subdevice */
480 
481 		/* limit length to subdevice's size: */
482 		if (erase->addr + length > subdev->size)
483 			erase->len = subdev->size - erase->addr;
484 		else
485 			erase->len = length;
486 
487 		if (!(subdev->flags & MTD_WRITEABLE)) {
488 			err = -EROFS;
489 			break;
490 		}
491 		length -= erase->len;
492 		if ((err = concat_dev_erase(subdev, erase))) {
493 			/* sanity check: should never happen since
494 			 * block alignment has been checked above */
495 			BUG_ON(err == -EINVAL);
496 			if (erase->fail_addr != 0xffffffff)
497 				instr->fail_addr = erase->fail_addr + offset;
498 			break;
499 		}
500 		/*
501 		 * erase->addr specifies the offset of the area to be
502 		 * erased *within the current subdevice*. It can be
503 		 * non-zero only the first time through this loop, i.e.
504 		 * for the first subdevice where blocks need to be erased.
505 		 * All the following erases must begin at the start of the
506 		 * current subdevice, i.e. at offset zero.
507 		 */
508 		erase->addr = 0;
509 		offset += subdev->size;
510 	}
511 	instr->state = erase->state;
512 	kfree(erase);
513 	if (err)
514 		return err;
515 
516 	if (instr->callback)
517 		instr->callback(instr);
518 	return 0;
519 }
520 
521 static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
522 {
523 	struct mtd_concat *concat = CONCAT(mtd);
524 	int i, err = -EINVAL;
525 
526 	if ((len + ofs) > mtd->size)
527 		return -EINVAL;
528 
529 	for (i = 0; i < concat->num_subdev; i++) {
530 		struct mtd_info *subdev = concat->subdev[i];
531 		size_t size;
532 
533 		if (ofs >= subdev->size) {
534 			size = 0;
535 			ofs -= subdev->size;
536 			continue;
537 		}
538 		if (ofs + len > subdev->size)
539 			size = subdev->size - ofs;
540 		else
541 			size = len;
542 
543 		err = subdev->lock(subdev, ofs, size);
544 
545 		if (err)
546 			break;
547 
548 		len -= size;
549 		if (len == 0)
550 			break;
551 
552 		err = -EINVAL;
553 		ofs = 0;
554 	}
555 
556 	return err;
557 }
558 
559 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
560 {
561 	struct mtd_concat *concat = CONCAT(mtd);
562 	int i, err = 0;
563 
564 	if ((len + ofs) > mtd->size)
565 		return -EINVAL;
566 
567 	for (i = 0; i < concat->num_subdev; i++) {
568 		struct mtd_info *subdev = concat->subdev[i];
569 		size_t size;
570 
571 		if (ofs >= subdev->size) {
572 			size = 0;
573 			ofs -= subdev->size;
574 			continue;
575 		}
576 		if (ofs + len > subdev->size)
577 			size = subdev->size - ofs;
578 		else
579 			size = len;
580 
581 		err = subdev->unlock(subdev, ofs, size);
582 
583 		if (err)
584 			break;
585 
586 		len -= size;
587 		if (len == 0)
588 			break;
589 
590 		err = -EINVAL;
591 		ofs = 0;
592 	}
593 
594 	return err;
595 }
596 
597 static void concat_sync(struct mtd_info *mtd)
598 {
599 	struct mtd_concat *concat = CONCAT(mtd);
600 	int i;
601 
602 	for (i = 0; i < concat->num_subdev; i++) {
603 		struct mtd_info *subdev = concat->subdev[i];
604 		subdev->sync(subdev);
605 	}
606 }
607 
608 static int concat_suspend(struct mtd_info *mtd)
609 {
610 	struct mtd_concat *concat = CONCAT(mtd);
611 	int i, rc = 0;
612 
613 	for (i = 0; i < concat->num_subdev; i++) {
614 		struct mtd_info *subdev = concat->subdev[i];
615 		if ((rc = subdev->suspend(subdev)) < 0)
616 			return rc;
617 	}
618 	return rc;
619 }
620 
621 static void concat_resume(struct mtd_info *mtd)
622 {
623 	struct mtd_concat *concat = CONCAT(mtd);
624 	int i;
625 
626 	for (i = 0; i < concat->num_subdev; i++) {
627 		struct mtd_info *subdev = concat->subdev[i];
628 		subdev->resume(subdev);
629 	}
630 }
631 
632 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
633 {
634 	struct mtd_concat *concat = CONCAT(mtd);
635 	int i, res = 0;
636 
637 	if (!concat->subdev[0]->block_isbad)
638 		return res;
639 
640 	if (ofs > mtd->size)
641 		return -EINVAL;
642 
643 	for (i = 0; i < concat->num_subdev; i++) {
644 		struct mtd_info *subdev = concat->subdev[i];
645 
646 		if (ofs >= subdev->size) {
647 			ofs -= subdev->size;
648 			continue;
649 		}
650 
651 		res = subdev->block_isbad(subdev, ofs);
652 		break;
653 	}
654 
655 	return res;
656 }
657 
658 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
659 {
660 	struct mtd_concat *concat = CONCAT(mtd);
661 	int i, err = -EINVAL;
662 
663 	if (!concat->subdev[0]->block_markbad)
664 		return 0;
665 
666 	if (ofs > mtd->size)
667 		return -EINVAL;
668 
669 	for (i = 0; i < concat->num_subdev; i++) {
670 		struct mtd_info *subdev = concat->subdev[i];
671 
672 		if (ofs >= subdev->size) {
673 			ofs -= subdev->size;
674 			continue;
675 		}
676 
677 		err = subdev->block_markbad(subdev, ofs);
678 		if (!err)
679 			mtd->ecc_stats.badblocks++;
680 		break;
681 	}
682 
683 	return err;
684 }
685 
686 /*
687  * This function constructs a virtual MTD device by concatenating
688  * num_devs MTD devices. A pointer to the new device object is
689  * stored to *new_dev upon success. This function does _not_
690  * register any devices: this is the caller's responsibility.
691  */
692 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
693 				   int num_devs,	/* number of subdevices      */
694 				   char *name)
695 {				/* name for the new device   */
696 	int i;
697 	size_t size;
698 	struct mtd_concat *concat;
699 	u_int32_t max_erasesize, curr_erasesize;
700 	int num_erase_region;
701 
702 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
703 	for (i = 0; i < num_devs; i++)
704 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
705 	printk(KERN_NOTICE "into device \"%s\"\n", name);
706 
707 	/* allocate the device structure */
708 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
709 	concat = kzalloc(size, GFP_KERNEL);
710 	if (!concat) {
711 		printk
712 		    ("memory allocation error while creating concatenated device \"%s\"\n",
713 		     name);
714 		return NULL;
715 	}
716 	concat->subdev = (struct mtd_info **) (concat + 1);
717 
718 	/*
719 	 * Set up the new "super" device's MTD object structure, check for
720 	 * incompatibilites between the subdevices.
721 	 */
722 	concat->mtd.type = subdev[0]->type;
723 	concat->mtd.flags = subdev[0]->flags;
724 	concat->mtd.size = subdev[0]->size;
725 	concat->mtd.erasesize = subdev[0]->erasesize;
726 	concat->mtd.writesize = subdev[0]->writesize;
727 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
728 	concat->mtd.oobsize = subdev[0]->oobsize;
729 	concat->mtd.oobavail = subdev[0]->oobavail;
730 	if (subdev[0]->writev)
731 		concat->mtd.writev = concat_writev;
732 	if (subdev[0]->read_oob)
733 		concat->mtd.read_oob = concat_read_oob;
734 	if (subdev[0]->write_oob)
735 		concat->mtd.write_oob = concat_write_oob;
736 	if (subdev[0]->block_isbad)
737 		concat->mtd.block_isbad = concat_block_isbad;
738 	if (subdev[0]->block_markbad)
739 		concat->mtd.block_markbad = concat_block_markbad;
740 
741 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
742 
743 	concat->subdev[0] = subdev[0];
744 
745 	for (i = 1; i < num_devs; i++) {
746 		if (concat->mtd.type != subdev[i]->type) {
747 			kfree(concat);
748 			printk("Incompatible device type on \"%s\"\n",
749 			       subdev[i]->name);
750 			return NULL;
751 		}
752 		if (concat->mtd.flags != subdev[i]->flags) {
753 			/*
754 			 * Expect all flags except MTD_WRITEABLE to be
755 			 * equal on all subdevices.
756 			 */
757 			if ((concat->mtd.flags ^ subdev[i]->
758 			     flags) & ~MTD_WRITEABLE) {
759 				kfree(concat);
760 				printk("Incompatible device flags on \"%s\"\n",
761 				       subdev[i]->name);
762 				return NULL;
763 			} else
764 				/* if writeable attribute differs,
765 				   make super device writeable */
766 				concat->mtd.flags |=
767 				    subdev[i]->flags & MTD_WRITEABLE;
768 		}
769 		concat->mtd.size += subdev[i]->size;
770 		concat->mtd.ecc_stats.badblocks +=
771 			subdev[i]->ecc_stats.badblocks;
772 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
773 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
774 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
775 		    !concat->mtd.read_oob  != !subdev[i]->read_oob ||
776 		    !concat->mtd.write_oob != !subdev[i]->write_oob) {
777 			kfree(concat);
778 			printk("Incompatible OOB or ECC data on \"%s\"\n",
779 			       subdev[i]->name);
780 			return NULL;
781 		}
782 		concat->subdev[i] = subdev[i];
783 
784 	}
785 
786 	concat->mtd.ecclayout = subdev[0]->ecclayout;
787 
788 	concat->num_subdev = num_devs;
789 	concat->mtd.name = name;
790 
791 	concat->mtd.erase = concat_erase;
792 	concat->mtd.read = concat_read;
793 	concat->mtd.write = concat_write;
794 	concat->mtd.sync = concat_sync;
795 	concat->mtd.lock = concat_lock;
796 	concat->mtd.unlock = concat_unlock;
797 	concat->mtd.suspend = concat_suspend;
798 	concat->mtd.resume = concat_resume;
799 
800 	/*
801 	 * Combine the erase block size info of the subdevices:
802 	 *
803 	 * first, walk the map of the new device and see how
804 	 * many changes in erase size we have
805 	 */
806 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
807 	num_erase_region = 1;
808 	for (i = 0; i < num_devs; i++) {
809 		if (subdev[i]->numeraseregions == 0) {
810 			/* current subdevice has uniform erase size */
811 			if (subdev[i]->erasesize != curr_erasesize) {
812 				/* if it differs from the last subdevice's erase size, count it */
813 				++num_erase_region;
814 				curr_erasesize = subdev[i]->erasesize;
815 				if (curr_erasesize > max_erasesize)
816 					max_erasesize = curr_erasesize;
817 			}
818 		} else {
819 			/* current subdevice has variable erase size */
820 			int j;
821 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
822 
823 				/* walk the list of erase regions, count any changes */
824 				if (subdev[i]->eraseregions[j].erasesize !=
825 				    curr_erasesize) {
826 					++num_erase_region;
827 					curr_erasesize =
828 					    subdev[i]->eraseregions[j].
829 					    erasesize;
830 					if (curr_erasesize > max_erasesize)
831 						max_erasesize = curr_erasesize;
832 				}
833 			}
834 		}
835 	}
836 
837 	if (num_erase_region == 1) {
838 		/*
839 		 * All subdevices have the same uniform erase size.
840 		 * This is easy:
841 		 */
842 		concat->mtd.erasesize = curr_erasesize;
843 		concat->mtd.numeraseregions = 0;
844 	} else {
845 		/*
846 		 * erase block size varies across the subdevices: allocate
847 		 * space to store the data describing the variable erase regions
848 		 */
849 		struct mtd_erase_region_info *erase_region_p;
850 		u_int32_t begin, position;
851 
852 		concat->mtd.erasesize = max_erasesize;
853 		concat->mtd.numeraseregions = num_erase_region;
854 		concat->mtd.eraseregions = erase_region_p =
855 		    kmalloc(num_erase_region *
856 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
857 		if (!erase_region_p) {
858 			kfree(concat);
859 			printk
860 			    ("memory allocation error while creating erase region list"
861 			     " for device \"%s\"\n", name);
862 			return NULL;
863 		}
864 
865 		/*
866 		 * walk the map of the new device once more and fill in
867 		 * in erase region info:
868 		 */
869 		curr_erasesize = subdev[0]->erasesize;
870 		begin = position = 0;
871 		for (i = 0; i < num_devs; i++) {
872 			if (subdev[i]->numeraseregions == 0) {
873 				/* current subdevice has uniform erase size */
874 				if (subdev[i]->erasesize != curr_erasesize) {
875 					/*
876 					 *  fill in an mtd_erase_region_info structure for the area
877 					 *  we have walked so far:
878 					 */
879 					erase_region_p->offset = begin;
880 					erase_region_p->erasesize =
881 					    curr_erasesize;
882 					erase_region_p->numblocks =
883 					    (position - begin) / curr_erasesize;
884 					begin = position;
885 
886 					curr_erasesize = subdev[i]->erasesize;
887 					++erase_region_p;
888 				}
889 				position += subdev[i]->size;
890 			} else {
891 				/* current subdevice has variable erase size */
892 				int j;
893 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
894 					/* walk the list of erase regions, count any changes */
895 					if (subdev[i]->eraseregions[j].
896 					    erasesize != curr_erasesize) {
897 						erase_region_p->offset = begin;
898 						erase_region_p->erasesize =
899 						    curr_erasesize;
900 						erase_region_p->numblocks =
901 						    (position -
902 						     begin) / curr_erasesize;
903 						begin = position;
904 
905 						curr_erasesize =
906 						    subdev[i]->eraseregions[j].
907 						    erasesize;
908 						++erase_region_p;
909 					}
910 					position +=
911 					    subdev[i]->eraseregions[j].
912 					    numblocks * curr_erasesize;
913 				}
914 			}
915 		}
916 		/* Now write the final entry */
917 		erase_region_p->offset = begin;
918 		erase_region_p->erasesize = curr_erasesize;
919 		erase_region_p->numblocks = (position - begin) / curr_erasesize;
920 	}
921 
922 	return &concat->mtd;
923 }
924 
925 /*
926  * This function destroys an MTD object obtained from concat_mtd_devs()
927  */
928 
929 void mtd_concat_destroy(struct mtd_info *mtd)
930 {
931 	struct mtd_concat *concat = CONCAT(mtd);
932 	if (concat->mtd.numeraseregions)
933 		kfree(concat->mtd.eraseregions);
934 	kfree(concat);
935 }
936 
937 EXPORT_SYMBOL(mtd_concat_create);
938 EXPORT_SYMBOL(mtd_concat_destroy);
939 
940 MODULE_LICENSE("GPL");
941 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
942 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
943