xref: /openbmc/linux/drivers/mtd/mtdchar.c (revision c4ee0af3)
1 /*
2  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  *
18  */
19 
20 #include <linux/device.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/mutex.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compat.h>
32 #include <linux/mount.h>
33 #include <linux/blkpg.h>
34 #include <linux/magic.h>
35 #include <linux/major.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/mtd/map.h>
39 
40 #include <asm/uaccess.h>
41 
42 #include "mtdcore.h"
43 
44 static DEFINE_MUTEX(mtd_mutex);
45 
46 /*
47  * Data structure to hold the pointer to the mtd device as well
48  * as mode information of various use cases.
49  */
50 struct mtd_file_info {
51 	struct mtd_info *mtd;
52 	struct inode *ino;
53 	enum mtd_file_modes mode;
54 };
55 
56 static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig)
57 {
58 	struct mtd_file_info *mfi = file->private_data;
59 	return fixed_size_llseek(file, offset, orig, mfi->mtd->size);
60 }
61 
62 static int count;
63 static struct vfsmount *mnt;
64 static struct file_system_type mtd_inodefs_type;
65 
66 static int mtdchar_open(struct inode *inode, struct file *file)
67 {
68 	int minor = iminor(inode);
69 	int devnum = minor >> 1;
70 	int ret = 0;
71 	struct mtd_info *mtd;
72 	struct mtd_file_info *mfi;
73 	struct inode *mtd_ino;
74 
75 	pr_debug("MTD_open\n");
76 
77 	/* You can't open the RO devices RW */
78 	if ((file->f_mode & FMODE_WRITE) && (minor & 1))
79 		return -EACCES;
80 
81 	ret = simple_pin_fs(&mtd_inodefs_type, &mnt, &count);
82 	if (ret)
83 		return ret;
84 
85 	mutex_lock(&mtd_mutex);
86 	mtd = get_mtd_device(NULL, devnum);
87 
88 	if (IS_ERR(mtd)) {
89 		ret = PTR_ERR(mtd);
90 		goto out;
91 	}
92 
93 	if (mtd->type == MTD_ABSENT) {
94 		ret = -ENODEV;
95 		goto out1;
96 	}
97 
98 	mtd_ino = iget_locked(mnt->mnt_sb, devnum);
99 	if (!mtd_ino) {
100 		ret = -ENOMEM;
101 		goto out1;
102 	}
103 	if (mtd_ino->i_state & I_NEW) {
104 		mtd_ino->i_private = mtd;
105 		mtd_ino->i_mode = S_IFCHR;
106 		mtd_ino->i_data.backing_dev_info = mtd->backing_dev_info;
107 		unlock_new_inode(mtd_ino);
108 	}
109 	file->f_mapping = mtd_ino->i_mapping;
110 
111 	/* You can't open it RW if it's not a writeable device */
112 	if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) {
113 		ret = -EACCES;
114 		goto out2;
115 	}
116 
117 	mfi = kzalloc(sizeof(*mfi), GFP_KERNEL);
118 	if (!mfi) {
119 		ret = -ENOMEM;
120 		goto out2;
121 	}
122 	mfi->ino = mtd_ino;
123 	mfi->mtd = mtd;
124 	file->private_data = mfi;
125 	mutex_unlock(&mtd_mutex);
126 	return 0;
127 
128 out2:
129 	iput(mtd_ino);
130 out1:
131 	put_mtd_device(mtd);
132 out:
133 	mutex_unlock(&mtd_mutex);
134 	simple_release_fs(&mnt, &count);
135 	return ret;
136 } /* mtdchar_open */
137 
138 /*====================================================================*/
139 
140 static int mtdchar_close(struct inode *inode, struct file *file)
141 {
142 	struct mtd_file_info *mfi = file->private_data;
143 	struct mtd_info *mtd = mfi->mtd;
144 
145 	pr_debug("MTD_close\n");
146 
147 	/* Only sync if opened RW */
148 	if ((file->f_mode & FMODE_WRITE))
149 		mtd_sync(mtd);
150 
151 	iput(mfi->ino);
152 
153 	put_mtd_device(mtd);
154 	file->private_data = NULL;
155 	kfree(mfi);
156 	simple_release_fs(&mnt, &count);
157 
158 	return 0;
159 } /* mtdchar_close */
160 
161 /* Back in June 2001, dwmw2 wrote:
162  *
163  *   FIXME: This _really_ needs to die. In 2.5, we should lock the
164  *   userspace buffer down and use it directly with readv/writev.
165  *
166  * The implementation below, using mtd_kmalloc_up_to, mitigates
167  * allocation failures when the system is under low-memory situations
168  * or if memory is highly fragmented at the cost of reducing the
169  * performance of the requested transfer due to a smaller buffer size.
170  *
171  * A more complex but more memory-efficient implementation based on
172  * get_user_pages and iovecs to cover extents of those pages is a
173  * longer-term goal, as intimated by dwmw2 above. However, for the
174  * write case, this requires yet more complex head and tail transfer
175  * handling when those head and tail offsets and sizes are such that
176  * alignment requirements are not met in the NAND subdriver.
177  */
178 
179 static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count,
180 			loff_t *ppos)
181 {
182 	struct mtd_file_info *mfi = file->private_data;
183 	struct mtd_info *mtd = mfi->mtd;
184 	size_t retlen;
185 	size_t total_retlen=0;
186 	int ret=0;
187 	int len;
188 	size_t size = count;
189 	char *kbuf;
190 
191 	pr_debug("MTD_read\n");
192 
193 	if (*ppos + count > mtd->size)
194 		count = mtd->size - *ppos;
195 
196 	if (!count)
197 		return 0;
198 
199 	kbuf = mtd_kmalloc_up_to(mtd, &size);
200 	if (!kbuf)
201 		return -ENOMEM;
202 
203 	while (count) {
204 		len = min_t(size_t, count, size);
205 
206 		switch (mfi->mode) {
207 		case MTD_FILE_MODE_OTP_FACTORY:
208 			ret = mtd_read_fact_prot_reg(mtd, *ppos, len,
209 						     &retlen, kbuf);
210 			break;
211 		case MTD_FILE_MODE_OTP_USER:
212 			ret = mtd_read_user_prot_reg(mtd, *ppos, len,
213 						     &retlen, kbuf);
214 			break;
215 		case MTD_FILE_MODE_RAW:
216 		{
217 			struct mtd_oob_ops ops;
218 
219 			ops.mode = MTD_OPS_RAW;
220 			ops.datbuf = kbuf;
221 			ops.oobbuf = NULL;
222 			ops.len = len;
223 
224 			ret = mtd_read_oob(mtd, *ppos, &ops);
225 			retlen = ops.retlen;
226 			break;
227 		}
228 		default:
229 			ret = mtd_read(mtd, *ppos, len, &retlen, kbuf);
230 		}
231 		/* Nand returns -EBADMSG on ECC errors, but it returns
232 		 * the data. For our userspace tools it is important
233 		 * to dump areas with ECC errors!
234 		 * For kernel internal usage it also might return -EUCLEAN
235 		 * to signal the caller that a bitflip has occurred and has
236 		 * been corrected by the ECC algorithm.
237 		 * Userspace software which accesses NAND this way
238 		 * must be aware of the fact that it deals with NAND
239 		 */
240 		if (!ret || mtd_is_bitflip_or_eccerr(ret)) {
241 			*ppos += retlen;
242 			if (copy_to_user(buf, kbuf, retlen)) {
243 				kfree(kbuf);
244 				return -EFAULT;
245 			}
246 			else
247 				total_retlen += retlen;
248 
249 			count -= retlen;
250 			buf += retlen;
251 			if (retlen == 0)
252 				count = 0;
253 		}
254 		else {
255 			kfree(kbuf);
256 			return ret;
257 		}
258 
259 	}
260 
261 	kfree(kbuf);
262 	return total_retlen;
263 } /* mtdchar_read */
264 
265 static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count,
266 			loff_t *ppos)
267 {
268 	struct mtd_file_info *mfi = file->private_data;
269 	struct mtd_info *mtd = mfi->mtd;
270 	size_t size = count;
271 	char *kbuf;
272 	size_t retlen;
273 	size_t total_retlen=0;
274 	int ret=0;
275 	int len;
276 
277 	pr_debug("MTD_write\n");
278 
279 	if (*ppos == mtd->size)
280 		return -ENOSPC;
281 
282 	if (*ppos + count > mtd->size)
283 		count = mtd->size - *ppos;
284 
285 	if (!count)
286 		return 0;
287 
288 	kbuf = mtd_kmalloc_up_to(mtd, &size);
289 	if (!kbuf)
290 		return -ENOMEM;
291 
292 	while (count) {
293 		len = min_t(size_t, count, size);
294 
295 		if (copy_from_user(kbuf, buf, len)) {
296 			kfree(kbuf);
297 			return -EFAULT;
298 		}
299 
300 		switch (mfi->mode) {
301 		case MTD_FILE_MODE_OTP_FACTORY:
302 			ret = -EROFS;
303 			break;
304 		case MTD_FILE_MODE_OTP_USER:
305 			ret = mtd_write_user_prot_reg(mtd, *ppos, len,
306 						      &retlen, kbuf);
307 			break;
308 
309 		case MTD_FILE_MODE_RAW:
310 		{
311 			struct mtd_oob_ops ops;
312 
313 			ops.mode = MTD_OPS_RAW;
314 			ops.datbuf = kbuf;
315 			ops.oobbuf = NULL;
316 			ops.ooboffs = 0;
317 			ops.len = len;
318 
319 			ret = mtd_write_oob(mtd, *ppos, &ops);
320 			retlen = ops.retlen;
321 			break;
322 		}
323 
324 		default:
325 			ret = mtd_write(mtd, *ppos, len, &retlen, kbuf);
326 		}
327 		if (!ret) {
328 			*ppos += retlen;
329 			total_retlen += retlen;
330 			count -= retlen;
331 			buf += retlen;
332 		}
333 		else {
334 			kfree(kbuf);
335 			return ret;
336 		}
337 	}
338 
339 	kfree(kbuf);
340 	return total_retlen;
341 } /* mtdchar_write */
342 
343 /*======================================================================
344 
345     IOCTL calls for getting device parameters.
346 
347 ======================================================================*/
348 static void mtdchar_erase_callback (struct erase_info *instr)
349 {
350 	wake_up((wait_queue_head_t *)instr->priv);
351 }
352 
353 static int otp_select_filemode(struct mtd_file_info *mfi, int mode)
354 {
355 	struct mtd_info *mtd = mfi->mtd;
356 	size_t retlen;
357 
358 	switch (mode) {
359 	case MTD_OTP_FACTORY:
360 		if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) ==
361 				-EOPNOTSUPP)
362 			return -EOPNOTSUPP;
363 
364 		mfi->mode = MTD_FILE_MODE_OTP_FACTORY;
365 		break;
366 	case MTD_OTP_USER:
367 		if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) ==
368 				-EOPNOTSUPP)
369 			return -EOPNOTSUPP;
370 
371 		mfi->mode = MTD_FILE_MODE_OTP_USER;
372 		break;
373 	case MTD_OTP_OFF:
374 		mfi->mode = MTD_FILE_MODE_NORMAL;
375 		break;
376 	default:
377 		return -EINVAL;
378 	}
379 
380 	return 0;
381 }
382 
383 static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
384 	uint64_t start, uint32_t length, void __user *ptr,
385 	uint32_t __user *retp)
386 {
387 	struct mtd_file_info *mfi = file->private_data;
388 	struct mtd_oob_ops ops;
389 	uint32_t retlen;
390 	int ret = 0;
391 
392 	if (!(file->f_mode & FMODE_WRITE))
393 		return -EPERM;
394 
395 	if (length > 4096)
396 		return -EINVAL;
397 
398 	if (!mtd->_write_oob)
399 		ret = -EOPNOTSUPP;
400 	else
401 		ret = access_ok(VERIFY_READ, ptr, length) ? 0 : -EFAULT;
402 
403 	if (ret)
404 		return ret;
405 
406 	ops.ooblen = length;
407 	ops.ooboffs = start & (mtd->writesize - 1);
408 	ops.datbuf = NULL;
409 	ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
410 		MTD_OPS_PLACE_OOB;
411 
412 	if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
413 		return -EINVAL;
414 
415 	ops.oobbuf = memdup_user(ptr, length);
416 	if (IS_ERR(ops.oobbuf))
417 		return PTR_ERR(ops.oobbuf);
418 
419 	start &= ~((uint64_t)mtd->writesize - 1);
420 	ret = mtd_write_oob(mtd, start, &ops);
421 
422 	if (ops.oobretlen > 0xFFFFFFFFU)
423 		ret = -EOVERFLOW;
424 	retlen = ops.oobretlen;
425 	if (copy_to_user(retp, &retlen, sizeof(length)))
426 		ret = -EFAULT;
427 
428 	kfree(ops.oobbuf);
429 	return ret;
430 }
431 
432 static int mtdchar_readoob(struct file *file, struct mtd_info *mtd,
433 	uint64_t start, uint32_t length, void __user *ptr,
434 	uint32_t __user *retp)
435 {
436 	struct mtd_file_info *mfi = file->private_data;
437 	struct mtd_oob_ops ops;
438 	int ret = 0;
439 
440 	if (length > 4096)
441 		return -EINVAL;
442 
443 	if (!access_ok(VERIFY_WRITE, ptr, length))
444 		return -EFAULT;
445 
446 	ops.ooblen = length;
447 	ops.ooboffs = start & (mtd->writesize - 1);
448 	ops.datbuf = NULL;
449 	ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
450 		MTD_OPS_PLACE_OOB;
451 
452 	if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
453 		return -EINVAL;
454 
455 	ops.oobbuf = kmalloc(length, GFP_KERNEL);
456 	if (!ops.oobbuf)
457 		return -ENOMEM;
458 
459 	start &= ~((uint64_t)mtd->writesize - 1);
460 	ret = mtd_read_oob(mtd, start, &ops);
461 
462 	if (put_user(ops.oobretlen, retp))
463 		ret = -EFAULT;
464 	else if (ops.oobretlen && copy_to_user(ptr, ops.oobbuf,
465 					    ops.oobretlen))
466 		ret = -EFAULT;
467 
468 	kfree(ops.oobbuf);
469 
470 	/*
471 	 * NAND returns -EBADMSG on ECC errors, but it returns the OOB
472 	 * data. For our userspace tools it is important to dump areas
473 	 * with ECC errors!
474 	 * For kernel internal usage it also might return -EUCLEAN
475 	 * to signal the caller that a bitflip has occured and has
476 	 * been corrected by the ECC algorithm.
477 	 *
478 	 * Note: currently the standard NAND function, nand_read_oob_std,
479 	 * does not calculate ECC for the OOB area, so do not rely on
480 	 * this behavior unless you have replaced it with your own.
481 	 */
482 	if (mtd_is_bitflip_or_eccerr(ret))
483 		return 0;
484 
485 	return ret;
486 }
487 
488 /*
489  * Copies (and truncates, if necessary) data from the larger struct,
490  * nand_ecclayout, to the smaller, deprecated layout struct,
491  * nand_ecclayout_user. This is necessary only to support the deprecated
492  * API ioctl ECCGETLAYOUT while allowing all new functionality to use
493  * nand_ecclayout flexibly (i.e. the struct may change size in new
494  * releases without requiring major rewrites).
495  */
496 static int shrink_ecclayout(const struct nand_ecclayout *from,
497 		struct nand_ecclayout_user *to)
498 {
499 	int i;
500 
501 	if (!from || !to)
502 		return -EINVAL;
503 
504 	memset(to, 0, sizeof(*to));
505 
506 	to->eccbytes = min((int)from->eccbytes, MTD_MAX_ECCPOS_ENTRIES);
507 	for (i = 0; i < to->eccbytes; i++)
508 		to->eccpos[i] = from->eccpos[i];
509 
510 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) {
511 		if (from->oobfree[i].length == 0 &&
512 				from->oobfree[i].offset == 0)
513 			break;
514 		to->oobavail += from->oobfree[i].length;
515 		to->oobfree[i] = from->oobfree[i];
516 	}
517 
518 	return 0;
519 }
520 
521 static int mtdchar_blkpg_ioctl(struct mtd_info *mtd,
522 			   struct blkpg_ioctl_arg __user *arg)
523 {
524 	struct blkpg_ioctl_arg a;
525 	struct blkpg_partition p;
526 
527 	if (!capable(CAP_SYS_ADMIN))
528 		return -EPERM;
529 
530 	if (copy_from_user(&a, arg, sizeof(struct blkpg_ioctl_arg)))
531 		return -EFAULT;
532 
533 	if (copy_from_user(&p, a.data, sizeof(struct blkpg_partition)))
534 		return -EFAULT;
535 
536 	switch (a.op) {
537 	case BLKPG_ADD_PARTITION:
538 
539 		/* Only master mtd device must be used to add partitions */
540 		if (mtd_is_partition(mtd))
541 			return -EINVAL;
542 
543 		return mtd_add_partition(mtd, p.devname, p.start, p.length);
544 
545 	case BLKPG_DEL_PARTITION:
546 
547 		if (p.pno < 0)
548 			return -EINVAL;
549 
550 		return mtd_del_partition(mtd, p.pno);
551 
552 	default:
553 		return -EINVAL;
554 	}
555 }
556 
557 static int mtdchar_write_ioctl(struct mtd_info *mtd,
558 		struct mtd_write_req __user *argp)
559 {
560 	struct mtd_write_req req;
561 	struct mtd_oob_ops ops;
562 	void __user *usr_data, *usr_oob;
563 	int ret;
564 
565 	if (copy_from_user(&req, argp, sizeof(req)) ||
566 			!access_ok(VERIFY_READ, req.usr_data, req.len) ||
567 			!access_ok(VERIFY_READ, req.usr_oob, req.ooblen))
568 		return -EFAULT;
569 	if (!mtd->_write_oob)
570 		return -EOPNOTSUPP;
571 
572 	ops.mode = req.mode;
573 	ops.len = (size_t)req.len;
574 	ops.ooblen = (size_t)req.ooblen;
575 	ops.ooboffs = 0;
576 
577 	usr_data = (void __user *)(uintptr_t)req.usr_data;
578 	usr_oob = (void __user *)(uintptr_t)req.usr_oob;
579 
580 	if (req.usr_data) {
581 		ops.datbuf = memdup_user(usr_data, ops.len);
582 		if (IS_ERR(ops.datbuf))
583 			return PTR_ERR(ops.datbuf);
584 	} else {
585 		ops.datbuf = NULL;
586 	}
587 
588 	if (req.usr_oob) {
589 		ops.oobbuf = memdup_user(usr_oob, ops.ooblen);
590 		if (IS_ERR(ops.oobbuf)) {
591 			kfree(ops.datbuf);
592 			return PTR_ERR(ops.oobbuf);
593 		}
594 	} else {
595 		ops.oobbuf = NULL;
596 	}
597 
598 	ret = mtd_write_oob(mtd, (loff_t)req.start, &ops);
599 
600 	kfree(ops.datbuf);
601 	kfree(ops.oobbuf);
602 
603 	return ret;
604 }
605 
606 static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
607 {
608 	struct mtd_file_info *mfi = file->private_data;
609 	struct mtd_info *mtd = mfi->mtd;
610 	void __user *argp = (void __user *)arg;
611 	int ret = 0;
612 	u_long size;
613 	struct mtd_info_user info;
614 
615 	pr_debug("MTD_ioctl\n");
616 
617 	size = (cmd & IOCSIZE_MASK) >> IOCSIZE_SHIFT;
618 	if (cmd & IOC_IN) {
619 		if (!access_ok(VERIFY_READ, argp, size))
620 			return -EFAULT;
621 	}
622 	if (cmd & IOC_OUT) {
623 		if (!access_ok(VERIFY_WRITE, argp, size))
624 			return -EFAULT;
625 	}
626 
627 	switch (cmd) {
628 	case MEMGETREGIONCOUNT:
629 		if (copy_to_user(argp, &(mtd->numeraseregions), sizeof(int)))
630 			return -EFAULT;
631 		break;
632 
633 	case MEMGETREGIONINFO:
634 	{
635 		uint32_t ur_idx;
636 		struct mtd_erase_region_info *kr;
637 		struct region_info_user __user *ur = argp;
638 
639 		if (get_user(ur_idx, &(ur->regionindex)))
640 			return -EFAULT;
641 
642 		if (ur_idx >= mtd->numeraseregions)
643 			return -EINVAL;
644 
645 		kr = &(mtd->eraseregions[ur_idx]);
646 
647 		if (put_user(kr->offset, &(ur->offset))
648 		    || put_user(kr->erasesize, &(ur->erasesize))
649 		    || put_user(kr->numblocks, &(ur->numblocks)))
650 			return -EFAULT;
651 
652 		break;
653 	}
654 
655 	case MEMGETINFO:
656 		memset(&info, 0, sizeof(info));
657 		info.type	= mtd->type;
658 		info.flags	= mtd->flags;
659 		info.size	= mtd->size;
660 		info.erasesize	= mtd->erasesize;
661 		info.writesize	= mtd->writesize;
662 		info.oobsize	= mtd->oobsize;
663 		/* The below field is obsolete */
664 		info.padding	= 0;
665 		if (copy_to_user(argp, &info, sizeof(struct mtd_info_user)))
666 			return -EFAULT;
667 		break;
668 
669 	case MEMERASE:
670 	case MEMERASE64:
671 	{
672 		struct erase_info *erase;
673 
674 		if(!(file->f_mode & FMODE_WRITE))
675 			return -EPERM;
676 
677 		erase=kzalloc(sizeof(struct erase_info),GFP_KERNEL);
678 		if (!erase)
679 			ret = -ENOMEM;
680 		else {
681 			wait_queue_head_t waitq;
682 			DECLARE_WAITQUEUE(wait, current);
683 
684 			init_waitqueue_head(&waitq);
685 
686 			if (cmd == MEMERASE64) {
687 				struct erase_info_user64 einfo64;
688 
689 				if (copy_from_user(&einfo64, argp,
690 					    sizeof(struct erase_info_user64))) {
691 					kfree(erase);
692 					return -EFAULT;
693 				}
694 				erase->addr = einfo64.start;
695 				erase->len = einfo64.length;
696 			} else {
697 				struct erase_info_user einfo32;
698 
699 				if (copy_from_user(&einfo32, argp,
700 					    sizeof(struct erase_info_user))) {
701 					kfree(erase);
702 					return -EFAULT;
703 				}
704 				erase->addr = einfo32.start;
705 				erase->len = einfo32.length;
706 			}
707 			erase->mtd = mtd;
708 			erase->callback = mtdchar_erase_callback;
709 			erase->priv = (unsigned long)&waitq;
710 
711 			/*
712 			  FIXME: Allow INTERRUPTIBLE. Which means
713 			  not having the wait_queue head on the stack.
714 
715 			  If the wq_head is on the stack, and we
716 			  leave because we got interrupted, then the
717 			  wq_head is no longer there when the
718 			  callback routine tries to wake us up.
719 			*/
720 			ret = mtd_erase(mtd, erase);
721 			if (!ret) {
722 				set_current_state(TASK_UNINTERRUPTIBLE);
723 				add_wait_queue(&waitq, &wait);
724 				if (erase->state != MTD_ERASE_DONE &&
725 				    erase->state != MTD_ERASE_FAILED)
726 					schedule();
727 				remove_wait_queue(&waitq, &wait);
728 				set_current_state(TASK_RUNNING);
729 
730 				ret = (erase->state == MTD_ERASE_FAILED)?-EIO:0;
731 			}
732 			kfree(erase);
733 		}
734 		break;
735 	}
736 
737 	case MEMWRITEOOB:
738 	{
739 		struct mtd_oob_buf buf;
740 		struct mtd_oob_buf __user *buf_user = argp;
741 
742 		/* NOTE: writes return length to buf_user->length */
743 		if (copy_from_user(&buf, argp, sizeof(buf)))
744 			ret = -EFAULT;
745 		else
746 			ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
747 				buf.ptr, &buf_user->length);
748 		break;
749 	}
750 
751 	case MEMREADOOB:
752 	{
753 		struct mtd_oob_buf buf;
754 		struct mtd_oob_buf __user *buf_user = argp;
755 
756 		/* NOTE: writes return length to buf_user->start */
757 		if (copy_from_user(&buf, argp, sizeof(buf)))
758 			ret = -EFAULT;
759 		else
760 			ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
761 				buf.ptr, &buf_user->start);
762 		break;
763 	}
764 
765 	case MEMWRITEOOB64:
766 	{
767 		struct mtd_oob_buf64 buf;
768 		struct mtd_oob_buf64 __user *buf_user = argp;
769 
770 		if (copy_from_user(&buf, argp, sizeof(buf)))
771 			ret = -EFAULT;
772 		else
773 			ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
774 				(void __user *)(uintptr_t)buf.usr_ptr,
775 				&buf_user->length);
776 		break;
777 	}
778 
779 	case MEMREADOOB64:
780 	{
781 		struct mtd_oob_buf64 buf;
782 		struct mtd_oob_buf64 __user *buf_user = argp;
783 
784 		if (copy_from_user(&buf, argp, sizeof(buf)))
785 			ret = -EFAULT;
786 		else
787 			ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
788 				(void __user *)(uintptr_t)buf.usr_ptr,
789 				&buf_user->length);
790 		break;
791 	}
792 
793 	case MEMWRITE:
794 	{
795 		ret = mtdchar_write_ioctl(mtd,
796 		      (struct mtd_write_req __user *)arg);
797 		break;
798 	}
799 
800 	case MEMLOCK:
801 	{
802 		struct erase_info_user einfo;
803 
804 		if (copy_from_user(&einfo, argp, sizeof(einfo)))
805 			return -EFAULT;
806 
807 		ret = mtd_lock(mtd, einfo.start, einfo.length);
808 		break;
809 	}
810 
811 	case MEMUNLOCK:
812 	{
813 		struct erase_info_user einfo;
814 
815 		if (copy_from_user(&einfo, argp, sizeof(einfo)))
816 			return -EFAULT;
817 
818 		ret = mtd_unlock(mtd, einfo.start, einfo.length);
819 		break;
820 	}
821 
822 	case MEMISLOCKED:
823 	{
824 		struct erase_info_user einfo;
825 
826 		if (copy_from_user(&einfo, argp, sizeof(einfo)))
827 			return -EFAULT;
828 
829 		ret = mtd_is_locked(mtd, einfo.start, einfo.length);
830 		break;
831 	}
832 
833 	/* Legacy interface */
834 	case MEMGETOOBSEL:
835 	{
836 		struct nand_oobinfo oi;
837 
838 		if (!mtd->ecclayout)
839 			return -EOPNOTSUPP;
840 		if (mtd->ecclayout->eccbytes > ARRAY_SIZE(oi.eccpos))
841 			return -EINVAL;
842 
843 		oi.useecc = MTD_NANDECC_AUTOPLACE;
844 		memcpy(&oi.eccpos, mtd->ecclayout->eccpos, sizeof(oi.eccpos));
845 		memcpy(&oi.oobfree, mtd->ecclayout->oobfree,
846 		       sizeof(oi.oobfree));
847 		oi.eccbytes = mtd->ecclayout->eccbytes;
848 
849 		if (copy_to_user(argp, &oi, sizeof(struct nand_oobinfo)))
850 			return -EFAULT;
851 		break;
852 	}
853 
854 	case MEMGETBADBLOCK:
855 	{
856 		loff_t offs;
857 
858 		if (copy_from_user(&offs, argp, sizeof(loff_t)))
859 			return -EFAULT;
860 		return mtd_block_isbad(mtd, offs);
861 		break;
862 	}
863 
864 	case MEMSETBADBLOCK:
865 	{
866 		loff_t offs;
867 
868 		if (copy_from_user(&offs, argp, sizeof(loff_t)))
869 			return -EFAULT;
870 		return mtd_block_markbad(mtd, offs);
871 		break;
872 	}
873 
874 	case OTPSELECT:
875 	{
876 		int mode;
877 		if (copy_from_user(&mode, argp, sizeof(int)))
878 			return -EFAULT;
879 
880 		mfi->mode = MTD_FILE_MODE_NORMAL;
881 
882 		ret = otp_select_filemode(mfi, mode);
883 
884 		file->f_pos = 0;
885 		break;
886 	}
887 
888 	case OTPGETREGIONCOUNT:
889 	case OTPGETREGIONINFO:
890 	{
891 		struct otp_info *buf = kmalloc(4096, GFP_KERNEL);
892 		if (!buf)
893 			return -ENOMEM;
894 		switch (mfi->mode) {
895 		case MTD_FILE_MODE_OTP_FACTORY:
896 			ret = mtd_get_fact_prot_info(mtd, buf, 4096);
897 			break;
898 		case MTD_FILE_MODE_OTP_USER:
899 			ret = mtd_get_user_prot_info(mtd, buf, 4096);
900 			break;
901 		default:
902 			ret = -EINVAL;
903 			break;
904 		}
905 		if (ret >= 0) {
906 			if (cmd == OTPGETREGIONCOUNT) {
907 				int nbr = ret / sizeof(struct otp_info);
908 				ret = copy_to_user(argp, &nbr, sizeof(int));
909 			} else
910 				ret = copy_to_user(argp, buf, ret);
911 			if (ret)
912 				ret = -EFAULT;
913 		}
914 		kfree(buf);
915 		break;
916 	}
917 
918 	case OTPLOCK:
919 	{
920 		struct otp_info oinfo;
921 
922 		if (mfi->mode != MTD_FILE_MODE_OTP_USER)
923 			return -EINVAL;
924 		if (copy_from_user(&oinfo, argp, sizeof(oinfo)))
925 			return -EFAULT;
926 		ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length);
927 		break;
928 	}
929 
930 	/* This ioctl is being deprecated - it truncates the ECC layout */
931 	case ECCGETLAYOUT:
932 	{
933 		struct nand_ecclayout_user *usrlay;
934 
935 		if (!mtd->ecclayout)
936 			return -EOPNOTSUPP;
937 
938 		usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL);
939 		if (!usrlay)
940 			return -ENOMEM;
941 
942 		shrink_ecclayout(mtd->ecclayout, usrlay);
943 
944 		if (copy_to_user(argp, usrlay, sizeof(*usrlay)))
945 			ret = -EFAULT;
946 		kfree(usrlay);
947 		break;
948 	}
949 
950 	case ECCGETSTATS:
951 	{
952 		if (copy_to_user(argp, &mtd->ecc_stats,
953 				 sizeof(struct mtd_ecc_stats)))
954 			return -EFAULT;
955 		break;
956 	}
957 
958 	case MTDFILEMODE:
959 	{
960 		mfi->mode = 0;
961 
962 		switch(arg) {
963 		case MTD_FILE_MODE_OTP_FACTORY:
964 		case MTD_FILE_MODE_OTP_USER:
965 			ret = otp_select_filemode(mfi, arg);
966 			break;
967 
968 		case MTD_FILE_MODE_RAW:
969 			if (!mtd_has_oob(mtd))
970 				return -EOPNOTSUPP;
971 			mfi->mode = arg;
972 
973 		case MTD_FILE_MODE_NORMAL:
974 			break;
975 		default:
976 			ret = -EINVAL;
977 		}
978 		file->f_pos = 0;
979 		break;
980 	}
981 
982 	case BLKPG:
983 	{
984 		ret = mtdchar_blkpg_ioctl(mtd,
985 		      (struct blkpg_ioctl_arg __user *)arg);
986 		break;
987 	}
988 
989 	case BLKRRPART:
990 	{
991 		/* No reread partition feature. Just return ok */
992 		ret = 0;
993 		break;
994 	}
995 
996 	default:
997 		ret = -ENOTTY;
998 	}
999 
1000 	return ret;
1001 } /* memory_ioctl */
1002 
1003 static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg)
1004 {
1005 	int ret;
1006 
1007 	mutex_lock(&mtd_mutex);
1008 	ret = mtdchar_ioctl(file, cmd, arg);
1009 	mutex_unlock(&mtd_mutex);
1010 
1011 	return ret;
1012 }
1013 
1014 #ifdef CONFIG_COMPAT
1015 
1016 struct mtd_oob_buf32 {
1017 	u_int32_t start;
1018 	u_int32_t length;
1019 	compat_caddr_t ptr;	/* unsigned char* */
1020 };
1021 
1022 #define MEMWRITEOOB32		_IOWR('M', 3, struct mtd_oob_buf32)
1023 #define MEMREADOOB32		_IOWR('M', 4, struct mtd_oob_buf32)
1024 
1025 static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd,
1026 	unsigned long arg)
1027 {
1028 	struct mtd_file_info *mfi = file->private_data;
1029 	struct mtd_info *mtd = mfi->mtd;
1030 	void __user *argp = compat_ptr(arg);
1031 	int ret = 0;
1032 
1033 	mutex_lock(&mtd_mutex);
1034 
1035 	switch (cmd) {
1036 	case MEMWRITEOOB32:
1037 	{
1038 		struct mtd_oob_buf32 buf;
1039 		struct mtd_oob_buf32 __user *buf_user = argp;
1040 
1041 		if (copy_from_user(&buf, argp, sizeof(buf)))
1042 			ret = -EFAULT;
1043 		else
1044 			ret = mtdchar_writeoob(file, mtd, buf.start,
1045 				buf.length, compat_ptr(buf.ptr),
1046 				&buf_user->length);
1047 		break;
1048 	}
1049 
1050 	case MEMREADOOB32:
1051 	{
1052 		struct mtd_oob_buf32 buf;
1053 		struct mtd_oob_buf32 __user *buf_user = argp;
1054 
1055 		/* NOTE: writes return length to buf->start */
1056 		if (copy_from_user(&buf, argp, sizeof(buf)))
1057 			ret = -EFAULT;
1058 		else
1059 			ret = mtdchar_readoob(file, mtd, buf.start,
1060 				buf.length, compat_ptr(buf.ptr),
1061 				&buf_user->start);
1062 		break;
1063 	}
1064 	default:
1065 		ret = mtdchar_ioctl(file, cmd, (unsigned long)argp);
1066 	}
1067 
1068 	mutex_unlock(&mtd_mutex);
1069 
1070 	return ret;
1071 }
1072 
1073 #endif /* CONFIG_COMPAT */
1074 
1075 /*
1076  * try to determine where a shared mapping can be made
1077  * - only supported for NOMMU at the moment (MMU can't doesn't copy private
1078  *   mappings)
1079  */
1080 #ifndef CONFIG_MMU
1081 static unsigned long mtdchar_get_unmapped_area(struct file *file,
1082 					   unsigned long addr,
1083 					   unsigned long len,
1084 					   unsigned long pgoff,
1085 					   unsigned long flags)
1086 {
1087 	struct mtd_file_info *mfi = file->private_data;
1088 	struct mtd_info *mtd = mfi->mtd;
1089 	unsigned long offset;
1090 	int ret;
1091 
1092 	if (addr != 0)
1093 		return (unsigned long) -EINVAL;
1094 
1095 	if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT))
1096 		return (unsigned long) -EINVAL;
1097 
1098 	offset = pgoff << PAGE_SHIFT;
1099 	if (offset > mtd->size - len)
1100 		return (unsigned long) -EINVAL;
1101 
1102 	ret = mtd_get_unmapped_area(mtd, len, offset, flags);
1103 	return ret == -EOPNOTSUPP ? -ENODEV : ret;
1104 }
1105 #endif
1106 
1107 /*
1108  * set up a mapping for shared memory segments
1109  */
1110 static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma)
1111 {
1112 #ifdef CONFIG_MMU
1113 	struct mtd_file_info *mfi = file->private_data;
1114 	struct mtd_info *mtd = mfi->mtd;
1115 	struct map_info *map = mtd->priv;
1116 
1117         /* This is broken because it assumes the MTD device is map-based
1118 	   and that mtd->priv is a valid struct map_info.  It should be
1119 	   replaced with something that uses the mtd_get_unmapped_area()
1120 	   operation properly. */
1121 	if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) {
1122 #ifdef pgprot_noncached
1123 		if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory))
1124 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1125 #endif
1126 		return vm_iomap_memory(vma, map->phys, map->size);
1127 	}
1128 	return -ENODEV;
1129 #else
1130 	return vma->vm_flags & VM_SHARED ? 0 : -EACCES;
1131 #endif
1132 }
1133 
1134 static const struct file_operations mtd_fops = {
1135 	.owner		= THIS_MODULE,
1136 	.llseek		= mtdchar_lseek,
1137 	.read		= mtdchar_read,
1138 	.write		= mtdchar_write,
1139 	.unlocked_ioctl	= mtdchar_unlocked_ioctl,
1140 #ifdef CONFIG_COMPAT
1141 	.compat_ioctl	= mtdchar_compat_ioctl,
1142 #endif
1143 	.open		= mtdchar_open,
1144 	.release	= mtdchar_close,
1145 	.mmap		= mtdchar_mmap,
1146 #ifndef CONFIG_MMU
1147 	.get_unmapped_area = mtdchar_get_unmapped_area,
1148 #endif
1149 };
1150 
1151 static const struct super_operations mtd_ops = {
1152 	.drop_inode = generic_delete_inode,
1153 	.statfs = simple_statfs,
1154 };
1155 
1156 static struct dentry *mtd_inodefs_mount(struct file_system_type *fs_type,
1157 				int flags, const char *dev_name, void *data)
1158 {
1159 	return mount_pseudo(fs_type, "mtd_inode:", &mtd_ops, NULL, MTD_INODE_FS_MAGIC);
1160 }
1161 
1162 static struct file_system_type mtd_inodefs_type = {
1163        .name = "mtd_inodefs",
1164        .mount = mtd_inodefs_mount,
1165        .kill_sb = kill_anon_super,
1166 };
1167 MODULE_ALIAS_FS("mtd_inodefs");
1168 
1169 int __init init_mtdchar(void)
1170 {
1171 	int ret;
1172 
1173 	ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS,
1174 				   "mtd", &mtd_fops);
1175 	if (ret < 0) {
1176 		pr_err("Can't allocate major number %d for MTD\n",
1177 		       MTD_CHAR_MAJOR);
1178 		return ret;
1179 	}
1180 
1181 	ret = register_filesystem(&mtd_inodefs_type);
1182 	if (ret) {
1183 		pr_err("Can't register mtd_inodefs filesystem, error %d\n",
1184 		       ret);
1185 		goto err_unregister_chdev;
1186 	}
1187 
1188 	return ret;
1189 
1190 err_unregister_chdev:
1191 	__unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
1192 	return ret;
1193 }
1194 
1195 void __exit cleanup_mtdchar(void)
1196 {
1197 	unregister_filesystem(&mtd_inodefs_type);
1198 	__unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
1199 }
1200 
1201 MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR);
1202