xref: /openbmc/linux/drivers/mtd/mtdchar.c (revision 83775e158a3d2dc437132ab357ed6c9214ef0ae9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
4  */
5 
6 #include <linux/device.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/mutex.h>
16 #include <linux/backing-dev.h>
17 #include <linux/compat.h>
18 #include <linux/mount.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/major.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/mtd/partitions.h>
24 #include <linux/mtd/map.h>
25 
26 #include <linux/uaccess.h>
27 
28 #include "mtdcore.h"
29 
30 /*
31  * Data structure to hold the pointer to the mtd device as well
32  * as mode information of various use cases.
33  */
34 struct mtd_file_info {
35 	struct mtd_info *mtd;
36 	enum mtd_file_modes mode;
37 };
38 
39 static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig)
40 {
41 	struct mtd_file_info *mfi = file->private_data;
42 	return fixed_size_llseek(file, offset, orig, mfi->mtd->size);
43 }
44 
45 static int mtdchar_open(struct inode *inode, struct file *file)
46 {
47 	int minor = iminor(inode);
48 	int devnum = minor >> 1;
49 	int ret = 0;
50 	struct mtd_info *mtd;
51 	struct mtd_file_info *mfi;
52 
53 	pr_debug("MTD_open\n");
54 
55 	/* You can't open the RO devices RW */
56 	if ((file->f_mode & FMODE_WRITE) && (minor & 1))
57 		return -EACCES;
58 
59 	mtd = get_mtd_device(NULL, devnum);
60 
61 	if (IS_ERR(mtd))
62 		return PTR_ERR(mtd);
63 
64 	if (mtd->type == MTD_ABSENT) {
65 		ret = -ENODEV;
66 		goto out1;
67 	}
68 
69 	/* You can't open it RW if it's not a writeable device */
70 	if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) {
71 		ret = -EACCES;
72 		goto out1;
73 	}
74 
75 	mfi = kzalloc(sizeof(*mfi), GFP_KERNEL);
76 	if (!mfi) {
77 		ret = -ENOMEM;
78 		goto out1;
79 	}
80 	mfi->mtd = mtd;
81 	file->private_data = mfi;
82 	return 0;
83 
84 out1:
85 	put_mtd_device(mtd);
86 	return ret;
87 } /* mtdchar_open */
88 
89 /*====================================================================*/
90 
91 static int mtdchar_close(struct inode *inode, struct file *file)
92 {
93 	struct mtd_file_info *mfi = file->private_data;
94 	struct mtd_info *mtd = mfi->mtd;
95 
96 	pr_debug("MTD_close\n");
97 
98 	/* Only sync if opened RW */
99 	if ((file->f_mode & FMODE_WRITE))
100 		mtd_sync(mtd);
101 
102 	put_mtd_device(mtd);
103 	file->private_data = NULL;
104 	kfree(mfi);
105 
106 	return 0;
107 } /* mtdchar_close */
108 
109 /* Back in June 2001, dwmw2 wrote:
110  *
111  *   FIXME: This _really_ needs to die. In 2.5, we should lock the
112  *   userspace buffer down and use it directly with readv/writev.
113  *
114  * The implementation below, using mtd_kmalloc_up_to, mitigates
115  * allocation failures when the system is under low-memory situations
116  * or if memory is highly fragmented at the cost of reducing the
117  * performance of the requested transfer due to a smaller buffer size.
118  *
119  * A more complex but more memory-efficient implementation based on
120  * get_user_pages and iovecs to cover extents of those pages is a
121  * longer-term goal, as intimated by dwmw2 above. However, for the
122  * write case, this requires yet more complex head and tail transfer
123  * handling when those head and tail offsets and sizes are such that
124  * alignment requirements are not met in the NAND subdriver.
125  */
126 
127 static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count,
128 			loff_t *ppos)
129 {
130 	struct mtd_file_info *mfi = file->private_data;
131 	struct mtd_info *mtd = mfi->mtd;
132 	size_t retlen;
133 	size_t total_retlen=0;
134 	int ret=0;
135 	int len;
136 	size_t size = count;
137 	char *kbuf;
138 
139 	pr_debug("MTD_read\n");
140 
141 	if (*ppos + count > mtd->size) {
142 		if (*ppos < mtd->size)
143 			count = mtd->size - *ppos;
144 		else
145 			count = 0;
146 	}
147 
148 	if (!count)
149 		return 0;
150 
151 	kbuf = mtd_kmalloc_up_to(mtd, &size);
152 	if (!kbuf)
153 		return -ENOMEM;
154 
155 	while (count) {
156 		len = min_t(size_t, count, size);
157 
158 		switch (mfi->mode) {
159 		case MTD_FILE_MODE_OTP_FACTORY:
160 			ret = mtd_read_fact_prot_reg(mtd, *ppos, len,
161 						     &retlen, kbuf);
162 			break;
163 		case MTD_FILE_MODE_OTP_USER:
164 			ret = mtd_read_user_prot_reg(mtd, *ppos, len,
165 						     &retlen, kbuf);
166 			break;
167 		case MTD_FILE_MODE_RAW:
168 		{
169 			struct mtd_oob_ops ops = {};
170 
171 			ops.mode = MTD_OPS_RAW;
172 			ops.datbuf = kbuf;
173 			ops.oobbuf = NULL;
174 			ops.len = len;
175 
176 			ret = mtd_read_oob(mtd, *ppos, &ops);
177 			retlen = ops.retlen;
178 			break;
179 		}
180 		default:
181 			ret = mtd_read(mtd, *ppos, len, &retlen, kbuf);
182 		}
183 		/* Nand returns -EBADMSG on ECC errors, but it returns
184 		 * the data. For our userspace tools it is important
185 		 * to dump areas with ECC errors!
186 		 * For kernel internal usage it also might return -EUCLEAN
187 		 * to signal the caller that a bitflip has occurred and has
188 		 * been corrected by the ECC algorithm.
189 		 * Userspace software which accesses NAND this way
190 		 * must be aware of the fact that it deals with NAND
191 		 */
192 		if (!ret || mtd_is_bitflip_or_eccerr(ret)) {
193 			*ppos += retlen;
194 			if (copy_to_user(buf, kbuf, retlen)) {
195 				kfree(kbuf);
196 				return -EFAULT;
197 			}
198 			else
199 				total_retlen += retlen;
200 
201 			count -= retlen;
202 			buf += retlen;
203 			if (retlen == 0)
204 				count = 0;
205 		}
206 		else {
207 			kfree(kbuf);
208 			return ret;
209 		}
210 
211 	}
212 
213 	kfree(kbuf);
214 	return total_retlen;
215 } /* mtdchar_read */
216 
217 static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count,
218 			loff_t *ppos)
219 {
220 	struct mtd_file_info *mfi = file->private_data;
221 	struct mtd_info *mtd = mfi->mtd;
222 	size_t size = count;
223 	char *kbuf;
224 	size_t retlen;
225 	size_t total_retlen=0;
226 	int ret=0;
227 	int len;
228 
229 	pr_debug("MTD_write\n");
230 
231 	if (*ppos >= mtd->size)
232 		return -ENOSPC;
233 
234 	if (*ppos + count > mtd->size)
235 		count = mtd->size - *ppos;
236 
237 	if (!count)
238 		return 0;
239 
240 	kbuf = mtd_kmalloc_up_to(mtd, &size);
241 	if (!kbuf)
242 		return -ENOMEM;
243 
244 	while (count) {
245 		len = min_t(size_t, count, size);
246 
247 		if (copy_from_user(kbuf, buf, len)) {
248 			kfree(kbuf);
249 			return -EFAULT;
250 		}
251 
252 		switch (mfi->mode) {
253 		case MTD_FILE_MODE_OTP_FACTORY:
254 			ret = -EROFS;
255 			break;
256 		case MTD_FILE_MODE_OTP_USER:
257 			ret = mtd_write_user_prot_reg(mtd, *ppos, len,
258 						      &retlen, kbuf);
259 			break;
260 
261 		case MTD_FILE_MODE_RAW:
262 		{
263 			struct mtd_oob_ops ops = {};
264 
265 			ops.mode = MTD_OPS_RAW;
266 			ops.datbuf = kbuf;
267 			ops.oobbuf = NULL;
268 			ops.ooboffs = 0;
269 			ops.len = len;
270 
271 			ret = mtd_write_oob(mtd, *ppos, &ops);
272 			retlen = ops.retlen;
273 			break;
274 		}
275 
276 		default:
277 			ret = mtd_write(mtd, *ppos, len, &retlen, kbuf);
278 		}
279 
280 		/*
281 		 * Return -ENOSPC only if no data could be written at all.
282 		 * Otherwise just return the number of bytes that actually
283 		 * have been written.
284 		 */
285 		if ((ret == -ENOSPC) && (total_retlen))
286 			break;
287 
288 		if (!ret) {
289 			*ppos += retlen;
290 			total_retlen += retlen;
291 			count -= retlen;
292 			buf += retlen;
293 		}
294 		else {
295 			kfree(kbuf);
296 			return ret;
297 		}
298 	}
299 
300 	kfree(kbuf);
301 	return total_retlen;
302 } /* mtdchar_write */
303 
304 /*======================================================================
305 
306     IOCTL calls for getting device parameters.
307 
308 ======================================================================*/
309 
310 static int otp_select_filemode(struct mtd_file_info *mfi, int mode)
311 {
312 	struct mtd_info *mtd = mfi->mtd;
313 	size_t retlen;
314 
315 	switch (mode) {
316 	case MTD_OTP_FACTORY:
317 		if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) ==
318 				-EOPNOTSUPP)
319 			return -EOPNOTSUPP;
320 
321 		mfi->mode = MTD_FILE_MODE_OTP_FACTORY;
322 		break;
323 	case MTD_OTP_USER:
324 		if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) ==
325 				-EOPNOTSUPP)
326 			return -EOPNOTSUPP;
327 
328 		mfi->mode = MTD_FILE_MODE_OTP_USER;
329 		break;
330 	case MTD_OTP_OFF:
331 		mfi->mode = MTD_FILE_MODE_NORMAL;
332 		break;
333 	default:
334 		return -EINVAL;
335 	}
336 
337 	return 0;
338 }
339 
340 static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
341 	uint64_t start, uint32_t length, void __user *ptr,
342 	uint32_t __user *retp)
343 {
344 	struct mtd_info *master  = mtd_get_master(mtd);
345 	struct mtd_file_info *mfi = file->private_data;
346 	struct mtd_oob_ops ops = {};
347 	uint32_t retlen;
348 	int ret = 0;
349 
350 	if (length > 4096)
351 		return -EINVAL;
352 
353 	if (!master->_write_oob)
354 		return -EOPNOTSUPP;
355 
356 	ops.ooblen = length;
357 	ops.ooboffs = start & (mtd->writesize - 1);
358 	ops.datbuf = NULL;
359 	ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
360 		MTD_OPS_PLACE_OOB;
361 
362 	if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
363 		return -EINVAL;
364 
365 	ops.oobbuf = memdup_user(ptr, length);
366 	if (IS_ERR(ops.oobbuf))
367 		return PTR_ERR(ops.oobbuf);
368 
369 	start &= ~((uint64_t)mtd->writesize - 1);
370 	ret = mtd_write_oob(mtd, start, &ops);
371 
372 	if (ops.oobretlen > 0xFFFFFFFFU)
373 		ret = -EOVERFLOW;
374 	retlen = ops.oobretlen;
375 	if (copy_to_user(retp, &retlen, sizeof(length)))
376 		ret = -EFAULT;
377 
378 	kfree(ops.oobbuf);
379 	return ret;
380 }
381 
382 static int mtdchar_readoob(struct file *file, struct mtd_info *mtd,
383 	uint64_t start, uint32_t length, void __user *ptr,
384 	uint32_t __user *retp)
385 {
386 	struct mtd_file_info *mfi = file->private_data;
387 	struct mtd_oob_ops ops = {};
388 	int ret = 0;
389 
390 	if (length > 4096)
391 		return -EINVAL;
392 
393 	ops.ooblen = length;
394 	ops.ooboffs = start & (mtd->writesize - 1);
395 	ops.datbuf = NULL;
396 	ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
397 		MTD_OPS_PLACE_OOB;
398 
399 	if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
400 		return -EINVAL;
401 
402 	ops.oobbuf = kmalloc(length, GFP_KERNEL);
403 	if (!ops.oobbuf)
404 		return -ENOMEM;
405 
406 	start &= ~((uint64_t)mtd->writesize - 1);
407 	ret = mtd_read_oob(mtd, start, &ops);
408 
409 	if (put_user(ops.oobretlen, retp))
410 		ret = -EFAULT;
411 	else if (ops.oobretlen && copy_to_user(ptr, ops.oobbuf,
412 					    ops.oobretlen))
413 		ret = -EFAULT;
414 
415 	kfree(ops.oobbuf);
416 
417 	/*
418 	 * NAND returns -EBADMSG on ECC errors, but it returns the OOB
419 	 * data. For our userspace tools it is important to dump areas
420 	 * with ECC errors!
421 	 * For kernel internal usage it also might return -EUCLEAN
422 	 * to signal the caller that a bitflip has occurred and has
423 	 * been corrected by the ECC algorithm.
424 	 *
425 	 * Note: currently the standard NAND function, nand_read_oob_std,
426 	 * does not calculate ECC for the OOB area, so do not rely on
427 	 * this behavior unless you have replaced it with your own.
428 	 */
429 	if (mtd_is_bitflip_or_eccerr(ret))
430 		return 0;
431 
432 	return ret;
433 }
434 
435 /*
436  * Copies (and truncates, if necessary) OOB layout information to the
437  * deprecated layout struct, nand_ecclayout_user. This is necessary only to
438  * support the deprecated API ioctl ECCGETLAYOUT while allowing all new
439  * functionality to use mtd_ooblayout_ops flexibly (i.e. mtd_ooblayout_ops
440  * can describe any kind of OOB layout with almost zero overhead from a
441  * memory usage point of view).
442  */
443 static int shrink_ecclayout(struct mtd_info *mtd,
444 			    struct nand_ecclayout_user *to)
445 {
446 	struct mtd_oob_region oobregion;
447 	int i, section = 0, ret;
448 
449 	if (!mtd || !to)
450 		return -EINVAL;
451 
452 	memset(to, 0, sizeof(*to));
453 
454 	to->eccbytes = 0;
455 	for (i = 0; i < MTD_MAX_ECCPOS_ENTRIES;) {
456 		u32 eccpos;
457 
458 		ret = mtd_ooblayout_ecc(mtd, section++, &oobregion);
459 		if (ret < 0) {
460 			if (ret != -ERANGE)
461 				return ret;
462 
463 			break;
464 		}
465 
466 		eccpos = oobregion.offset;
467 		for (; i < MTD_MAX_ECCPOS_ENTRIES &&
468 		       eccpos < oobregion.offset + oobregion.length; i++) {
469 			to->eccpos[i] = eccpos++;
470 			to->eccbytes++;
471 		}
472 	}
473 
474 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) {
475 		ret = mtd_ooblayout_free(mtd, i, &oobregion);
476 		if (ret < 0) {
477 			if (ret != -ERANGE)
478 				return ret;
479 
480 			break;
481 		}
482 
483 		to->oobfree[i].offset = oobregion.offset;
484 		to->oobfree[i].length = oobregion.length;
485 		to->oobavail += to->oobfree[i].length;
486 	}
487 
488 	return 0;
489 }
490 
491 static int get_oobinfo(struct mtd_info *mtd, struct nand_oobinfo *to)
492 {
493 	struct mtd_oob_region oobregion;
494 	int i, section = 0, ret;
495 
496 	if (!mtd || !to)
497 		return -EINVAL;
498 
499 	memset(to, 0, sizeof(*to));
500 
501 	to->eccbytes = 0;
502 	for (i = 0; i < ARRAY_SIZE(to->eccpos);) {
503 		u32 eccpos;
504 
505 		ret = mtd_ooblayout_ecc(mtd, section++, &oobregion);
506 		if (ret < 0) {
507 			if (ret != -ERANGE)
508 				return ret;
509 
510 			break;
511 		}
512 
513 		if (oobregion.length + i > ARRAY_SIZE(to->eccpos))
514 			return -EINVAL;
515 
516 		eccpos = oobregion.offset;
517 		for (; eccpos < oobregion.offset + oobregion.length; i++) {
518 			to->eccpos[i] = eccpos++;
519 			to->eccbytes++;
520 		}
521 	}
522 
523 	for (i = 0; i < 8; i++) {
524 		ret = mtd_ooblayout_free(mtd, i, &oobregion);
525 		if (ret < 0) {
526 			if (ret != -ERANGE)
527 				return ret;
528 
529 			break;
530 		}
531 
532 		to->oobfree[i][0] = oobregion.offset;
533 		to->oobfree[i][1] = oobregion.length;
534 	}
535 
536 	to->useecc = MTD_NANDECC_AUTOPLACE;
537 
538 	return 0;
539 }
540 
541 static int mtdchar_blkpg_ioctl(struct mtd_info *mtd,
542 			       struct blkpg_ioctl_arg *arg)
543 {
544 	struct blkpg_partition p;
545 
546 	if (!capable(CAP_SYS_ADMIN))
547 		return -EPERM;
548 
549 	if (copy_from_user(&p, arg->data, sizeof(p)))
550 		return -EFAULT;
551 
552 	switch (arg->op) {
553 	case BLKPG_ADD_PARTITION:
554 
555 		/* Only master mtd device must be used to add partitions */
556 		if (mtd_is_partition(mtd))
557 			return -EINVAL;
558 
559 		/* Sanitize user input */
560 		p.devname[BLKPG_DEVNAMELTH - 1] = '\0';
561 
562 		return mtd_add_partition(mtd, p.devname, p.start, p.length);
563 
564 	case BLKPG_DEL_PARTITION:
565 
566 		if (p.pno < 0)
567 			return -EINVAL;
568 
569 		return mtd_del_partition(mtd, p.pno);
570 
571 	default:
572 		return -EINVAL;
573 	}
574 }
575 
576 static void adjust_oob_length(struct mtd_info *mtd, uint64_t start,
577 			      struct mtd_oob_ops *ops)
578 {
579 	uint32_t start_page, end_page;
580 	u32 oob_per_page;
581 
582 	if (ops->len == 0 || ops->ooblen == 0)
583 		return;
584 
585 	start_page = mtd_div_by_ws(start, mtd);
586 	end_page = mtd_div_by_ws(start + ops->len - 1, mtd);
587 	oob_per_page = mtd_oobavail(mtd, ops);
588 
589 	ops->ooblen = min_t(size_t, ops->ooblen,
590 			    (end_page - start_page + 1) * oob_per_page);
591 }
592 
593 static noinline_for_stack int
594 mtdchar_write_ioctl(struct mtd_info *mtd, struct mtd_write_req __user *argp)
595 {
596 	struct mtd_info *master = mtd_get_master(mtd);
597 	struct mtd_write_req req;
598 	const void __user *usr_data, *usr_oob;
599 	uint8_t *datbuf = NULL, *oobbuf = NULL;
600 	size_t datbuf_len, oobbuf_len;
601 	int ret = 0;
602 
603 	if (copy_from_user(&req, argp, sizeof(req)))
604 		return -EFAULT;
605 
606 	usr_data = (const void __user *)(uintptr_t)req.usr_data;
607 	usr_oob = (const void __user *)(uintptr_t)req.usr_oob;
608 
609 	if (!master->_write_oob)
610 		return -EOPNOTSUPP;
611 
612 	if (!usr_data)
613 		req.len = 0;
614 
615 	if (!usr_oob)
616 		req.ooblen = 0;
617 
618 	req.len &= 0xffffffff;
619 	req.ooblen &= 0xffffffff;
620 
621 	if (req.start + req.len > mtd->size)
622 		return -EINVAL;
623 
624 	datbuf_len = min_t(size_t, req.len, mtd->erasesize);
625 	if (datbuf_len > 0) {
626 		datbuf = kvmalloc(datbuf_len, GFP_KERNEL);
627 		if (!datbuf)
628 			return -ENOMEM;
629 	}
630 
631 	oobbuf_len = min_t(size_t, req.ooblen, mtd->erasesize);
632 	if (oobbuf_len > 0) {
633 		oobbuf = kvmalloc(oobbuf_len, GFP_KERNEL);
634 		if (!oobbuf) {
635 			kvfree(datbuf);
636 			return -ENOMEM;
637 		}
638 	}
639 
640 	while (req.len > 0 || (!usr_data && req.ooblen > 0)) {
641 		struct mtd_oob_ops ops = {
642 			.mode = req.mode,
643 			.len = min_t(size_t, req.len, datbuf_len),
644 			.ooblen = min_t(size_t, req.ooblen, oobbuf_len),
645 			.datbuf = datbuf,
646 			.oobbuf = oobbuf,
647 		};
648 
649 		/*
650 		 * Shorten non-page-aligned, eraseblock-sized writes so that
651 		 * the write ends on an eraseblock boundary.  This is necessary
652 		 * for adjust_oob_length() to properly handle non-page-aligned
653 		 * writes.
654 		 */
655 		if (ops.len == mtd->erasesize)
656 			ops.len -= mtd_mod_by_ws(req.start + ops.len, mtd);
657 
658 		/*
659 		 * For writes which are not OOB-only, adjust the amount of OOB
660 		 * data written according to the number of data pages written.
661 		 * This is necessary to prevent OOB data from being skipped
662 		 * over in data+OOB writes requiring multiple mtd_write_oob()
663 		 * calls to be completed.
664 		 */
665 		adjust_oob_length(mtd, req.start, &ops);
666 
667 		if (copy_from_user(datbuf, usr_data, ops.len) ||
668 		    copy_from_user(oobbuf, usr_oob, ops.ooblen)) {
669 			ret = -EFAULT;
670 			break;
671 		}
672 
673 		ret = mtd_write_oob(mtd, req.start, &ops);
674 		if (ret)
675 			break;
676 
677 		req.start += ops.retlen;
678 		req.len -= ops.retlen;
679 		usr_data += ops.retlen;
680 
681 		req.ooblen -= ops.oobretlen;
682 		usr_oob += ops.oobretlen;
683 	}
684 
685 	kvfree(datbuf);
686 	kvfree(oobbuf);
687 
688 	return ret;
689 }
690 
691 static noinline_for_stack int
692 mtdchar_read_ioctl(struct mtd_info *mtd, struct mtd_read_req __user *argp)
693 {
694 	struct mtd_info *master = mtd_get_master(mtd);
695 	struct mtd_read_req req;
696 	void __user *usr_data, *usr_oob;
697 	uint8_t *datbuf = NULL, *oobbuf = NULL;
698 	size_t datbuf_len, oobbuf_len;
699 	size_t orig_len, orig_ooblen;
700 	int ret = 0;
701 
702 	if (copy_from_user(&req, argp, sizeof(req)))
703 		return -EFAULT;
704 
705 	orig_len = req.len;
706 	orig_ooblen = req.ooblen;
707 
708 	usr_data = (void __user *)(uintptr_t)req.usr_data;
709 	usr_oob = (void __user *)(uintptr_t)req.usr_oob;
710 
711 	if (!master->_read_oob)
712 		return -EOPNOTSUPP;
713 
714 	if (!usr_data)
715 		req.len = 0;
716 
717 	if (!usr_oob)
718 		req.ooblen = 0;
719 
720 	req.ecc_stats.uncorrectable_errors = 0;
721 	req.ecc_stats.corrected_bitflips = 0;
722 	req.ecc_stats.max_bitflips = 0;
723 
724 	req.len &= 0xffffffff;
725 	req.ooblen &= 0xffffffff;
726 
727 	if (req.start + req.len > mtd->size) {
728 		ret = -EINVAL;
729 		goto out;
730 	}
731 
732 	datbuf_len = min_t(size_t, req.len, mtd->erasesize);
733 	if (datbuf_len > 0) {
734 		datbuf = kvmalloc(datbuf_len, GFP_KERNEL);
735 		if (!datbuf) {
736 			ret = -ENOMEM;
737 			goto out;
738 		}
739 	}
740 
741 	oobbuf_len = min_t(size_t, req.ooblen, mtd->erasesize);
742 	if (oobbuf_len > 0) {
743 		oobbuf = kvmalloc(oobbuf_len, GFP_KERNEL);
744 		if (!oobbuf) {
745 			ret = -ENOMEM;
746 			goto out;
747 		}
748 	}
749 
750 	while (req.len > 0 || (!usr_data && req.ooblen > 0)) {
751 		struct mtd_req_stats stats;
752 		struct mtd_oob_ops ops = {
753 			.mode = req.mode,
754 			.len = min_t(size_t, req.len, datbuf_len),
755 			.ooblen = min_t(size_t, req.ooblen, oobbuf_len),
756 			.datbuf = datbuf,
757 			.oobbuf = oobbuf,
758 			.stats = &stats,
759 		};
760 
761 		/*
762 		 * Shorten non-page-aligned, eraseblock-sized reads so that the
763 		 * read ends on an eraseblock boundary.  This is necessary in
764 		 * order to prevent OOB data for some pages from being
765 		 * duplicated in the output of non-page-aligned reads requiring
766 		 * multiple mtd_read_oob() calls to be completed.
767 		 */
768 		if (ops.len == mtd->erasesize)
769 			ops.len -= mtd_mod_by_ws(req.start + ops.len, mtd);
770 
771 		ret = mtd_read_oob(mtd, (loff_t)req.start, &ops);
772 
773 		req.ecc_stats.uncorrectable_errors +=
774 			stats.uncorrectable_errors;
775 		req.ecc_stats.corrected_bitflips += stats.corrected_bitflips;
776 		req.ecc_stats.max_bitflips =
777 			max(req.ecc_stats.max_bitflips, stats.max_bitflips);
778 
779 		if (ret && !mtd_is_bitflip_or_eccerr(ret))
780 			break;
781 
782 		if (copy_to_user(usr_data, ops.datbuf, ops.retlen) ||
783 		    copy_to_user(usr_oob, ops.oobbuf, ops.oobretlen)) {
784 			ret = -EFAULT;
785 			break;
786 		}
787 
788 		req.start += ops.retlen;
789 		req.len -= ops.retlen;
790 		usr_data += ops.retlen;
791 
792 		req.ooblen -= ops.oobretlen;
793 		usr_oob += ops.oobretlen;
794 	}
795 
796 	/*
797 	 * As multiple iterations of the above loop (and therefore multiple
798 	 * mtd_read_oob() calls) may be necessary to complete the read request,
799 	 * adjust the final return code to ensure it accounts for all detected
800 	 * ECC errors.
801 	 */
802 	if (!ret || mtd_is_bitflip(ret)) {
803 		if (req.ecc_stats.uncorrectable_errors > 0)
804 			ret = -EBADMSG;
805 		else if (req.ecc_stats.corrected_bitflips > 0)
806 			ret = -EUCLEAN;
807 	}
808 
809 out:
810 	req.len = orig_len - req.len;
811 	req.ooblen = orig_ooblen - req.ooblen;
812 
813 	if (copy_to_user(argp, &req, sizeof(req)))
814 		ret = -EFAULT;
815 
816 	kvfree(datbuf);
817 	kvfree(oobbuf);
818 
819 	return ret;
820 }
821 
822 static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
823 {
824 	struct mtd_file_info *mfi = file->private_data;
825 	struct mtd_info *mtd = mfi->mtd;
826 	struct mtd_info *master = mtd_get_master(mtd);
827 	void __user *argp = (void __user *)arg;
828 	int ret = 0;
829 	struct mtd_info_user info;
830 
831 	pr_debug("MTD_ioctl\n");
832 
833 	/*
834 	 * Check the file mode to require "dangerous" commands to have write
835 	 * permissions.
836 	 */
837 	switch (cmd) {
838 	/* "safe" commands */
839 	case MEMGETREGIONCOUNT:
840 	case MEMGETREGIONINFO:
841 	case MEMGETINFO:
842 	case MEMREADOOB:
843 	case MEMREADOOB64:
844 	case MEMREAD:
845 	case MEMISLOCKED:
846 	case MEMGETOOBSEL:
847 	case MEMGETBADBLOCK:
848 	case OTPSELECT:
849 	case OTPGETREGIONCOUNT:
850 	case OTPGETREGIONINFO:
851 	case ECCGETLAYOUT:
852 	case ECCGETSTATS:
853 	case MTDFILEMODE:
854 	case BLKPG:
855 	case BLKRRPART:
856 		break;
857 
858 	/* "dangerous" commands */
859 	case MEMERASE:
860 	case MEMERASE64:
861 	case MEMLOCK:
862 	case MEMUNLOCK:
863 	case MEMSETBADBLOCK:
864 	case MEMWRITEOOB:
865 	case MEMWRITEOOB64:
866 	case MEMWRITE:
867 	case OTPLOCK:
868 	case OTPERASE:
869 		if (!(file->f_mode & FMODE_WRITE))
870 			return -EPERM;
871 		break;
872 
873 	default:
874 		return -ENOTTY;
875 	}
876 
877 	switch (cmd) {
878 	case MEMGETREGIONCOUNT:
879 		if (copy_to_user(argp, &(mtd->numeraseregions), sizeof(int)))
880 			return -EFAULT;
881 		break;
882 
883 	case MEMGETREGIONINFO:
884 	{
885 		uint32_t ur_idx;
886 		struct mtd_erase_region_info *kr;
887 		struct region_info_user __user *ur = argp;
888 
889 		if (get_user(ur_idx, &(ur->regionindex)))
890 			return -EFAULT;
891 
892 		if (ur_idx >= mtd->numeraseregions)
893 			return -EINVAL;
894 
895 		kr = &(mtd->eraseregions[ur_idx]);
896 
897 		if (put_user(kr->offset, &(ur->offset))
898 		    || put_user(kr->erasesize, &(ur->erasesize))
899 		    || put_user(kr->numblocks, &(ur->numblocks)))
900 			return -EFAULT;
901 
902 		break;
903 	}
904 
905 	case MEMGETINFO:
906 		memset(&info, 0, sizeof(info));
907 		info.type	= mtd->type;
908 		info.flags	= mtd->flags;
909 		info.size	= mtd->size;
910 		info.erasesize	= mtd->erasesize;
911 		info.writesize	= mtd->writesize;
912 		info.oobsize	= mtd->oobsize;
913 		/* The below field is obsolete */
914 		info.padding	= 0;
915 		if (copy_to_user(argp, &info, sizeof(struct mtd_info_user)))
916 			return -EFAULT;
917 		break;
918 
919 	case MEMERASE:
920 	case MEMERASE64:
921 	{
922 		struct erase_info *erase;
923 
924 		erase=kzalloc(sizeof(struct erase_info),GFP_KERNEL);
925 		if (!erase)
926 			ret = -ENOMEM;
927 		else {
928 			if (cmd == MEMERASE64) {
929 				struct erase_info_user64 einfo64;
930 
931 				if (copy_from_user(&einfo64, argp,
932 					    sizeof(struct erase_info_user64))) {
933 					kfree(erase);
934 					return -EFAULT;
935 				}
936 				erase->addr = einfo64.start;
937 				erase->len = einfo64.length;
938 			} else {
939 				struct erase_info_user einfo32;
940 
941 				if (copy_from_user(&einfo32, argp,
942 					    sizeof(struct erase_info_user))) {
943 					kfree(erase);
944 					return -EFAULT;
945 				}
946 				erase->addr = einfo32.start;
947 				erase->len = einfo32.length;
948 			}
949 
950 			ret = mtd_erase(mtd, erase);
951 			kfree(erase);
952 		}
953 		break;
954 	}
955 
956 	case MEMWRITEOOB:
957 	{
958 		struct mtd_oob_buf buf;
959 		struct mtd_oob_buf __user *buf_user = argp;
960 
961 		/* NOTE: writes return length to buf_user->length */
962 		if (copy_from_user(&buf, argp, sizeof(buf)))
963 			ret = -EFAULT;
964 		else
965 			ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
966 				buf.ptr, &buf_user->length);
967 		break;
968 	}
969 
970 	case MEMREADOOB:
971 	{
972 		struct mtd_oob_buf buf;
973 		struct mtd_oob_buf __user *buf_user = argp;
974 
975 		/* NOTE: writes return length to buf_user->start */
976 		if (copy_from_user(&buf, argp, sizeof(buf)))
977 			ret = -EFAULT;
978 		else
979 			ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
980 				buf.ptr, &buf_user->start);
981 		break;
982 	}
983 
984 	case MEMWRITEOOB64:
985 	{
986 		struct mtd_oob_buf64 buf;
987 		struct mtd_oob_buf64 __user *buf_user = argp;
988 
989 		if (copy_from_user(&buf, argp, sizeof(buf)))
990 			ret = -EFAULT;
991 		else
992 			ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
993 				(void __user *)(uintptr_t)buf.usr_ptr,
994 				&buf_user->length);
995 		break;
996 	}
997 
998 	case MEMREADOOB64:
999 	{
1000 		struct mtd_oob_buf64 buf;
1001 		struct mtd_oob_buf64 __user *buf_user = argp;
1002 
1003 		if (copy_from_user(&buf, argp, sizeof(buf)))
1004 			ret = -EFAULT;
1005 		else
1006 			ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
1007 				(void __user *)(uintptr_t)buf.usr_ptr,
1008 				&buf_user->length);
1009 		break;
1010 	}
1011 
1012 	case MEMWRITE:
1013 	{
1014 		ret = mtdchar_write_ioctl(mtd,
1015 		      (struct mtd_write_req __user *)arg);
1016 		break;
1017 	}
1018 
1019 	case MEMREAD:
1020 	{
1021 		ret = mtdchar_read_ioctl(mtd,
1022 		      (struct mtd_read_req __user *)arg);
1023 		break;
1024 	}
1025 
1026 	case MEMLOCK:
1027 	{
1028 		struct erase_info_user einfo;
1029 
1030 		if (copy_from_user(&einfo, argp, sizeof(einfo)))
1031 			return -EFAULT;
1032 
1033 		ret = mtd_lock(mtd, einfo.start, einfo.length);
1034 		break;
1035 	}
1036 
1037 	case MEMUNLOCK:
1038 	{
1039 		struct erase_info_user einfo;
1040 
1041 		if (copy_from_user(&einfo, argp, sizeof(einfo)))
1042 			return -EFAULT;
1043 
1044 		ret = mtd_unlock(mtd, einfo.start, einfo.length);
1045 		break;
1046 	}
1047 
1048 	case MEMISLOCKED:
1049 	{
1050 		struct erase_info_user einfo;
1051 
1052 		if (copy_from_user(&einfo, argp, sizeof(einfo)))
1053 			return -EFAULT;
1054 
1055 		ret = mtd_is_locked(mtd, einfo.start, einfo.length);
1056 		break;
1057 	}
1058 
1059 	/* Legacy interface */
1060 	case MEMGETOOBSEL:
1061 	{
1062 		struct nand_oobinfo oi;
1063 
1064 		if (!master->ooblayout)
1065 			return -EOPNOTSUPP;
1066 
1067 		ret = get_oobinfo(mtd, &oi);
1068 		if (ret)
1069 			return ret;
1070 
1071 		if (copy_to_user(argp, &oi, sizeof(struct nand_oobinfo)))
1072 			return -EFAULT;
1073 		break;
1074 	}
1075 
1076 	case MEMGETBADBLOCK:
1077 	{
1078 		loff_t offs;
1079 
1080 		if (copy_from_user(&offs, argp, sizeof(loff_t)))
1081 			return -EFAULT;
1082 		return mtd_block_isbad(mtd, offs);
1083 	}
1084 
1085 	case MEMSETBADBLOCK:
1086 	{
1087 		loff_t offs;
1088 
1089 		if (copy_from_user(&offs, argp, sizeof(loff_t)))
1090 			return -EFAULT;
1091 		return mtd_block_markbad(mtd, offs);
1092 	}
1093 
1094 	case OTPSELECT:
1095 	{
1096 		int mode;
1097 		if (copy_from_user(&mode, argp, sizeof(int)))
1098 			return -EFAULT;
1099 
1100 		mfi->mode = MTD_FILE_MODE_NORMAL;
1101 
1102 		ret = otp_select_filemode(mfi, mode);
1103 
1104 		file->f_pos = 0;
1105 		break;
1106 	}
1107 
1108 	case OTPGETREGIONCOUNT:
1109 	case OTPGETREGIONINFO:
1110 	{
1111 		struct otp_info *buf = kmalloc(4096, GFP_KERNEL);
1112 		size_t retlen;
1113 		if (!buf)
1114 			return -ENOMEM;
1115 		switch (mfi->mode) {
1116 		case MTD_FILE_MODE_OTP_FACTORY:
1117 			ret = mtd_get_fact_prot_info(mtd, 4096, &retlen, buf);
1118 			break;
1119 		case MTD_FILE_MODE_OTP_USER:
1120 			ret = mtd_get_user_prot_info(mtd, 4096, &retlen, buf);
1121 			break;
1122 		default:
1123 			ret = -EINVAL;
1124 			break;
1125 		}
1126 		if (!ret) {
1127 			if (cmd == OTPGETREGIONCOUNT) {
1128 				int nbr = retlen / sizeof(struct otp_info);
1129 				ret = copy_to_user(argp, &nbr, sizeof(int));
1130 			} else
1131 				ret = copy_to_user(argp, buf, retlen);
1132 			if (ret)
1133 				ret = -EFAULT;
1134 		}
1135 		kfree(buf);
1136 		break;
1137 	}
1138 
1139 	case OTPLOCK:
1140 	case OTPERASE:
1141 	{
1142 		struct otp_info oinfo;
1143 
1144 		if (mfi->mode != MTD_FILE_MODE_OTP_USER)
1145 			return -EINVAL;
1146 		if (copy_from_user(&oinfo, argp, sizeof(oinfo)))
1147 			return -EFAULT;
1148 		if (cmd == OTPLOCK)
1149 			ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length);
1150 		else
1151 			ret = mtd_erase_user_prot_reg(mtd, oinfo.start, oinfo.length);
1152 		break;
1153 	}
1154 
1155 	/* This ioctl is being deprecated - it truncates the ECC layout */
1156 	case ECCGETLAYOUT:
1157 	{
1158 		struct nand_ecclayout_user *usrlay;
1159 
1160 		if (!master->ooblayout)
1161 			return -EOPNOTSUPP;
1162 
1163 		usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL);
1164 		if (!usrlay)
1165 			return -ENOMEM;
1166 
1167 		shrink_ecclayout(mtd, usrlay);
1168 
1169 		if (copy_to_user(argp, usrlay, sizeof(*usrlay)))
1170 			ret = -EFAULT;
1171 		kfree(usrlay);
1172 		break;
1173 	}
1174 
1175 	case ECCGETSTATS:
1176 	{
1177 		if (copy_to_user(argp, &mtd->ecc_stats,
1178 				 sizeof(struct mtd_ecc_stats)))
1179 			return -EFAULT;
1180 		break;
1181 	}
1182 
1183 	case MTDFILEMODE:
1184 	{
1185 		mfi->mode = 0;
1186 
1187 		switch(arg) {
1188 		case MTD_FILE_MODE_OTP_FACTORY:
1189 		case MTD_FILE_MODE_OTP_USER:
1190 			ret = otp_select_filemode(mfi, arg);
1191 			break;
1192 
1193 		case MTD_FILE_MODE_RAW:
1194 			if (!mtd_has_oob(mtd))
1195 				return -EOPNOTSUPP;
1196 			mfi->mode = arg;
1197 			break;
1198 
1199 		case MTD_FILE_MODE_NORMAL:
1200 			break;
1201 		default:
1202 			ret = -EINVAL;
1203 		}
1204 		file->f_pos = 0;
1205 		break;
1206 	}
1207 
1208 	case BLKPG:
1209 	{
1210 		struct blkpg_ioctl_arg __user *blk_arg = argp;
1211 		struct blkpg_ioctl_arg a;
1212 
1213 		if (copy_from_user(&a, blk_arg, sizeof(a)))
1214 			ret = -EFAULT;
1215 		else
1216 			ret = mtdchar_blkpg_ioctl(mtd, &a);
1217 		break;
1218 	}
1219 
1220 	case BLKRRPART:
1221 	{
1222 		/* No reread partition feature. Just return ok */
1223 		ret = 0;
1224 		break;
1225 	}
1226 	}
1227 
1228 	return ret;
1229 } /* memory_ioctl */
1230 
1231 static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg)
1232 {
1233 	struct mtd_file_info *mfi = file->private_data;
1234 	struct mtd_info *mtd = mfi->mtd;
1235 	struct mtd_info *master = mtd_get_master(mtd);
1236 	int ret;
1237 
1238 	mutex_lock(&master->master.chrdev_lock);
1239 	ret = mtdchar_ioctl(file, cmd, arg);
1240 	mutex_unlock(&master->master.chrdev_lock);
1241 
1242 	return ret;
1243 }
1244 
1245 #ifdef CONFIG_COMPAT
1246 
1247 struct mtd_oob_buf32 {
1248 	u_int32_t start;
1249 	u_int32_t length;
1250 	compat_caddr_t ptr;	/* unsigned char* */
1251 };
1252 
1253 #define MEMWRITEOOB32		_IOWR('M', 3, struct mtd_oob_buf32)
1254 #define MEMREADOOB32		_IOWR('M', 4, struct mtd_oob_buf32)
1255 
1256 static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd,
1257 	unsigned long arg)
1258 {
1259 	struct mtd_file_info *mfi = file->private_data;
1260 	struct mtd_info *mtd = mfi->mtd;
1261 	struct mtd_info *master = mtd_get_master(mtd);
1262 	void __user *argp = compat_ptr(arg);
1263 	int ret = 0;
1264 
1265 	mutex_lock(&master->master.chrdev_lock);
1266 
1267 	switch (cmd) {
1268 	case MEMWRITEOOB32:
1269 	{
1270 		struct mtd_oob_buf32 buf;
1271 		struct mtd_oob_buf32 __user *buf_user = argp;
1272 
1273 		if (!(file->f_mode & FMODE_WRITE)) {
1274 			ret = -EPERM;
1275 			break;
1276 		}
1277 
1278 		if (copy_from_user(&buf, argp, sizeof(buf)))
1279 			ret = -EFAULT;
1280 		else
1281 			ret = mtdchar_writeoob(file, mtd, buf.start,
1282 				buf.length, compat_ptr(buf.ptr),
1283 				&buf_user->length);
1284 		break;
1285 	}
1286 
1287 	case MEMREADOOB32:
1288 	{
1289 		struct mtd_oob_buf32 buf;
1290 		struct mtd_oob_buf32 __user *buf_user = argp;
1291 
1292 		/* NOTE: writes return length to buf->start */
1293 		if (copy_from_user(&buf, argp, sizeof(buf)))
1294 			ret = -EFAULT;
1295 		else
1296 			ret = mtdchar_readoob(file, mtd, buf.start,
1297 				buf.length, compat_ptr(buf.ptr),
1298 				&buf_user->start);
1299 		break;
1300 	}
1301 
1302 	case BLKPG:
1303 	{
1304 		/* Convert from blkpg_compat_ioctl_arg to blkpg_ioctl_arg */
1305 		struct blkpg_compat_ioctl_arg __user *uarg = argp;
1306 		struct blkpg_compat_ioctl_arg compat_arg;
1307 		struct blkpg_ioctl_arg a;
1308 
1309 		if (copy_from_user(&compat_arg, uarg, sizeof(compat_arg))) {
1310 			ret = -EFAULT;
1311 			break;
1312 		}
1313 
1314 		memset(&a, 0, sizeof(a));
1315 		a.op = compat_arg.op;
1316 		a.flags = compat_arg.flags;
1317 		a.datalen = compat_arg.datalen;
1318 		a.data = compat_ptr(compat_arg.data);
1319 
1320 		ret = mtdchar_blkpg_ioctl(mtd, &a);
1321 		break;
1322 	}
1323 
1324 	default:
1325 		ret = mtdchar_ioctl(file, cmd, (unsigned long)argp);
1326 	}
1327 
1328 	mutex_unlock(&master->master.chrdev_lock);
1329 
1330 	return ret;
1331 }
1332 
1333 #endif /* CONFIG_COMPAT */
1334 
1335 /*
1336  * try to determine where a shared mapping can be made
1337  * - only supported for NOMMU at the moment (MMU can't doesn't copy private
1338  *   mappings)
1339  */
1340 #ifndef CONFIG_MMU
1341 static unsigned long mtdchar_get_unmapped_area(struct file *file,
1342 					   unsigned long addr,
1343 					   unsigned long len,
1344 					   unsigned long pgoff,
1345 					   unsigned long flags)
1346 {
1347 	struct mtd_file_info *mfi = file->private_data;
1348 	struct mtd_info *mtd = mfi->mtd;
1349 	unsigned long offset;
1350 	int ret;
1351 
1352 	if (addr != 0)
1353 		return (unsigned long) -EINVAL;
1354 
1355 	if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT))
1356 		return (unsigned long) -EINVAL;
1357 
1358 	offset = pgoff << PAGE_SHIFT;
1359 	if (offset > mtd->size - len)
1360 		return (unsigned long) -EINVAL;
1361 
1362 	ret = mtd_get_unmapped_area(mtd, len, offset, flags);
1363 	return ret == -EOPNOTSUPP ? -ENODEV : ret;
1364 }
1365 
1366 static unsigned mtdchar_mmap_capabilities(struct file *file)
1367 {
1368 	struct mtd_file_info *mfi = file->private_data;
1369 
1370 	return mtd_mmap_capabilities(mfi->mtd);
1371 }
1372 #endif
1373 
1374 /*
1375  * set up a mapping for shared memory segments
1376  */
1377 static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma)
1378 {
1379 #ifdef CONFIG_MMU
1380 	struct mtd_file_info *mfi = file->private_data;
1381 	struct mtd_info *mtd = mfi->mtd;
1382 	struct map_info *map = mtd->priv;
1383 
1384         /* This is broken because it assumes the MTD device is map-based
1385 	   and that mtd->priv is a valid struct map_info.  It should be
1386 	   replaced with something that uses the mtd_get_unmapped_area()
1387 	   operation properly. */
1388 	if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) {
1389 #ifdef pgprot_noncached
1390 		if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory))
1391 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1392 #endif
1393 		return vm_iomap_memory(vma, map->phys, map->size);
1394 	}
1395 	return -ENODEV;
1396 #else
1397 	return vma->vm_flags & VM_SHARED ? 0 : -EACCES;
1398 #endif
1399 }
1400 
1401 static const struct file_operations mtd_fops = {
1402 	.owner		= THIS_MODULE,
1403 	.llseek		= mtdchar_lseek,
1404 	.read		= mtdchar_read,
1405 	.write		= mtdchar_write,
1406 	.unlocked_ioctl	= mtdchar_unlocked_ioctl,
1407 #ifdef CONFIG_COMPAT
1408 	.compat_ioctl	= mtdchar_compat_ioctl,
1409 #endif
1410 	.open		= mtdchar_open,
1411 	.release	= mtdchar_close,
1412 	.mmap		= mtdchar_mmap,
1413 #ifndef CONFIG_MMU
1414 	.get_unmapped_area = mtdchar_get_unmapped_area,
1415 	.mmap_capabilities = mtdchar_mmap_capabilities,
1416 #endif
1417 };
1418 
1419 int __init init_mtdchar(void)
1420 {
1421 	int ret;
1422 
1423 	ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS,
1424 				   "mtd", &mtd_fops);
1425 	if (ret < 0) {
1426 		pr_err("Can't allocate major number %d for MTD\n",
1427 		       MTD_CHAR_MAJOR);
1428 		return ret;
1429 	}
1430 
1431 	return ret;
1432 }
1433 
1434 void __exit cleanup_mtdchar(void)
1435 {
1436 	__unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
1437 }
1438 
1439 MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR);
1440