1 /* 2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 * 18 */ 19 20 #include <linux/device.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/init.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/mutex.h> 30 #include <linux/backing-dev.h> 31 #include <linux/compat.h> 32 #include <linux/mount.h> 33 #include <linux/blkpg.h> 34 #include <linux/magic.h> 35 #include <linux/major.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/partitions.h> 38 #include <linux/mtd/map.h> 39 40 #include <asm/uaccess.h> 41 42 #include "mtdcore.h" 43 44 static DEFINE_MUTEX(mtd_mutex); 45 46 /* 47 * Data structure to hold the pointer to the mtd device as well 48 * as mode information of various use cases. 49 */ 50 struct mtd_file_info { 51 struct mtd_info *mtd; 52 struct inode *ino; 53 enum mtd_file_modes mode; 54 }; 55 56 static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig) 57 { 58 struct mtd_file_info *mfi = file->private_data; 59 return fixed_size_llseek(file, offset, orig, mfi->mtd->size); 60 } 61 62 static int count; 63 static struct vfsmount *mnt; 64 static struct file_system_type mtd_inodefs_type; 65 66 static int mtdchar_open(struct inode *inode, struct file *file) 67 { 68 int minor = iminor(inode); 69 int devnum = minor >> 1; 70 int ret = 0; 71 struct mtd_info *mtd; 72 struct mtd_file_info *mfi; 73 struct inode *mtd_ino; 74 75 pr_debug("MTD_open\n"); 76 77 /* You can't open the RO devices RW */ 78 if ((file->f_mode & FMODE_WRITE) && (minor & 1)) 79 return -EACCES; 80 81 ret = simple_pin_fs(&mtd_inodefs_type, &mnt, &count); 82 if (ret) 83 return ret; 84 85 mutex_lock(&mtd_mutex); 86 mtd = get_mtd_device(NULL, devnum); 87 88 if (IS_ERR(mtd)) { 89 ret = PTR_ERR(mtd); 90 goto out; 91 } 92 93 if (mtd->type == MTD_ABSENT) { 94 ret = -ENODEV; 95 goto out1; 96 } 97 98 mtd_ino = iget_locked(mnt->mnt_sb, devnum); 99 if (!mtd_ino) { 100 ret = -ENOMEM; 101 goto out1; 102 } 103 if (mtd_ino->i_state & I_NEW) { 104 mtd_ino->i_private = mtd; 105 mtd_ino->i_mode = S_IFCHR; 106 mtd_ino->i_data.backing_dev_info = mtd->backing_dev_info; 107 unlock_new_inode(mtd_ino); 108 } 109 file->f_mapping = mtd_ino->i_mapping; 110 111 /* You can't open it RW if it's not a writeable device */ 112 if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) { 113 ret = -EACCES; 114 goto out2; 115 } 116 117 mfi = kzalloc(sizeof(*mfi), GFP_KERNEL); 118 if (!mfi) { 119 ret = -ENOMEM; 120 goto out2; 121 } 122 mfi->ino = mtd_ino; 123 mfi->mtd = mtd; 124 file->private_data = mfi; 125 mutex_unlock(&mtd_mutex); 126 return 0; 127 128 out2: 129 iput(mtd_ino); 130 out1: 131 put_mtd_device(mtd); 132 out: 133 mutex_unlock(&mtd_mutex); 134 simple_release_fs(&mnt, &count); 135 return ret; 136 } /* mtdchar_open */ 137 138 /*====================================================================*/ 139 140 static int mtdchar_close(struct inode *inode, struct file *file) 141 { 142 struct mtd_file_info *mfi = file->private_data; 143 struct mtd_info *mtd = mfi->mtd; 144 145 pr_debug("MTD_close\n"); 146 147 /* Only sync if opened RW */ 148 if ((file->f_mode & FMODE_WRITE)) 149 mtd_sync(mtd); 150 151 iput(mfi->ino); 152 153 put_mtd_device(mtd); 154 file->private_data = NULL; 155 kfree(mfi); 156 simple_release_fs(&mnt, &count); 157 158 return 0; 159 } /* mtdchar_close */ 160 161 /* Back in June 2001, dwmw2 wrote: 162 * 163 * FIXME: This _really_ needs to die. In 2.5, we should lock the 164 * userspace buffer down and use it directly with readv/writev. 165 * 166 * The implementation below, using mtd_kmalloc_up_to, mitigates 167 * allocation failures when the system is under low-memory situations 168 * or if memory is highly fragmented at the cost of reducing the 169 * performance of the requested transfer due to a smaller buffer size. 170 * 171 * A more complex but more memory-efficient implementation based on 172 * get_user_pages and iovecs to cover extents of those pages is a 173 * longer-term goal, as intimated by dwmw2 above. However, for the 174 * write case, this requires yet more complex head and tail transfer 175 * handling when those head and tail offsets and sizes are such that 176 * alignment requirements are not met in the NAND subdriver. 177 */ 178 179 static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count, 180 loff_t *ppos) 181 { 182 struct mtd_file_info *mfi = file->private_data; 183 struct mtd_info *mtd = mfi->mtd; 184 size_t retlen; 185 size_t total_retlen=0; 186 int ret=0; 187 int len; 188 size_t size = count; 189 char *kbuf; 190 191 pr_debug("MTD_read\n"); 192 193 if (*ppos + count > mtd->size) 194 count = mtd->size - *ppos; 195 196 if (!count) 197 return 0; 198 199 kbuf = mtd_kmalloc_up_to(mtd, &size); 200 if (!kbuf) 201 return -ENOMEM; 202 203 while (count) { 204 len = min_t(size_t, count, size); 205 206 switch (mfi->mode) { 207 case MTD_FILE_MODE_OTP_FACTORY: 208 ret = mtd_read_fact_prot_reg(mtd, *ppos, len, 209 &retlen, kbuf); 210 break; 211 case MTD_FILE_MODE_OTP_USER: 212 ret = mtd_read_user_prot_reg(mtd, *ppos, len, 213 &retlen, kbuf); 214 break; 215 case MTD_FILE_MODE_RAW: 216 { 217 struct mtd_oob_ops ops; 218 219 ops.mode = MTD_OPS_RAW; 220 ops.datbuf = kbuf; 221 ops.oobbuf = NULL; 222 ops.len = len; 223 224 ret = mtd_read_oob(mtd, *ppos, &ops); 225 retlen = ops.retlen; 226 break; 227 } 228 default: 229 ret = mtd_read(mtd, *ppos, len, &retlen, kbuf); 230 } 231 /* Nand returns -EBADMSG on ECC errors, but it returns 232 * the data. For our userspace tools it is important 233 * to dump areas with ECC errors! 234 * For kernel internal usage it also might return -EUCLEAN 235 * to signal the caller that a bitflip has occurred and has 236 * been corrected by the ECC algorithm. 237 * Userspace software which accesses NAND this way 238 * must be aware of the fact that it deals with NAND 239 */ 240 if (!ret || mtd_is_bitflip_or_eccerr(ret)) { 241 *ppos += retlen; 242 if (copy_to_user(buf, kbuf, retlen)) { 243 kfree(kbuf); 244 return -EFAULT; 245 } 246 else 247 total_retlen += retlen; 248 249 count -= retlen; 250 buf += retlen; 251 if (retlen == 0) 252 count = 0; 253 } 254 else { 255 kfree(kbuf); 256 return ret; 257 } 258 259 } 260 261 kfree(kbuf); 262 return total_retlen; 263 } /* mtdchar_read */ 264 265 static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count, 266 loff_t *ppos) 267 { 268 struct mtd_file_info *mfi = file->private_data; 269 struct mtd_info *mtd = mfi->mtd; 270 size_t size = count; 271 char *kbuf; 272 size_t retlen; 273 size_t total_retlen=0; 274 int ret=0; 275 int len; 276 277 pr_debug("MTD_write\n"); 278 279 if (*ppos == mtd->size) 280 return -ENOSPC; 281 282 if (*ppos + count > mtd->size) 283 count = mtd->size - *ppos; 284 285 if (!count) 286 return 0; 287 288 kbuf = mtd_kmalloc_up_to(mtd, &size); 289 if (!kbuf) 290 return -ENOMEM; 291 292 while (count) { 293 len = min_t(size_t, count, size); 294 295 if (copy_from_user(kbuf, buf, len)) { 296 kfree(kbuf); 297 return -EFAULT; 298 } 299 300 switch (mfi->mode) { 301 case MTD_FILE_MODE_OTP_FACTORY: 302 ret = -EROFS; 303 break; 304 case MTD_FILE_MODE_OTP_USER: 305 ret = mtd_write_user_prot_reg(mtd, *ppos, len, 306 &retlen, kbuf); 307 break; 308 309 case MTD_FILE_MODE_RAW: 310 { 311 struct mtd_oob_ops ops; 312 313 ops.mode = MTD_OPS_RAW; 314 ops.datbuf = kbuf; 315 ops.oobbuf = NULL; 316 ops.ooboffs = 0; 317 ops.len = len; 318 319 ret = mtd_write_oob(mtd, *ppos, &ops); 320 retlen = ops.retlen; 321 break; 322 } 323 324 default: 325 ret = mtd_write(mtd, *ppos, len, &retlen, kbuf); 326 } 327 if (!ret) { 328 *ppos += retlen; 329 total_retlen += retlen; 330 count -= retlen; 331 buf += retlen; 332 } 333 else { 334 kfree(kbuf); 335 return ret; 336 } 337 } 338 339 kfree(kbuf); 340 return total_retlen; 341 } /* mtdchar_write */ 342 343 /*====================================================================== 344 345 IOCTL calls for getting device parameters. 346 347 ======================================================================*/ 348 static void mtdchar_erase_callback (struct erase_info *instr) 349 { 350 wake_up((wait_queue_head_t *)instr->priv); 351 } 352 353 static int otp_select_filemode(struct mtd_file_info *mfi, int mode) 354 { 355 struct mtd_info *mtd = mfi->mtd; 356 size_t retlen; 357 358 switch (mode) { 359 case MTD_OTP_FACTORY: 360 if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) == 361 -EOPNOTSUPP) 362 return -EOPNOTSUPP; 363 364 mfi->mode = MTD_FILE_MODE_OTP_FACTORY; 365 break; 366 case MTD_OTP_USER: 367 if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) == 368 -EOPNOTSUPP) 369 return -EOPNOTSUPP; 370 371 mfi->mode = MTD_FILE_MODE_OTP_USER; 372 break; 373 case MTD_OTP_OFF: 374 mfi->mode = MTD_FILE_MODE_NORMAL; 375 break; 376 default: 377 return -EINVAL; 378 } 379 380 return 0; 381 } 382 383 static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd, 384 uint64_t start, uint32_t length, void __user *ptr, 385 uint32_t __user *retp) 386 { 387 struct mtd_file_info *mfi = file->private_data; 388 struct mtd_oob_ops ops; 389 uint32_t retlen; 390 int ret = 0; 391 392 if (!(file->f_mode & FMODE_WRITE)) 393 return -EPERM; 394 395 if (length > 4096) 396 return -EINVAL; 397 398 if (!mtd->_write_oob) 399 ret = -EOPNOTSUPP; 400 else 401 ret = access_ok(VERIFY_READ, ptr, length) ? 0 : -EFAULT; 402 403 if (ret) 404 return ret; 405 406 ops.ooblen = length; 407 ops.ooboffs = start & (mtd->writesize - 1); 408 ops.datbuf = NULL; 409 ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW : 410 MTD_OPS_PLACE_OOB; 411 412 if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs)) 413 return -EINVAL; 414 415 ops.oobbuf = memdup_user(ptr, length); 416 if (IS_ERR(ops.oobbuf)) 417 return PTR_ERR(ops.oobbuf); 418 419 start &= ~((uint64_t)mtd->writesize - 1); 420 ret = mtd_write_oob(mtd, start, &ops); 421 422 if (ops.oobretlen > 0xFFFFFFFFU) 423 ret = -EOVERFLOW; 424 retlen = ops.oobretlen; 425 if (copy_to_user(retp, &retlen, sizeof(length))) 426 ret = -EFAULT; 427 428 kfree(ops.oobbuf); 429 return ret; 430 } 431 432 static int mtdchar_readoob(struct file *file, struct mtd_info *mtd, 433 uint64_t start, uint32_t length, void __user *ptr, 434 uint32_t __user *retp) 435 { 436 struct mtd_file_info *mfi = file->private_data; 437 struct mtd_oob_ops ops; 438 int ret = 0; 439 440 if (length > 4096) 441 return -EINVAL; 442 443 if (!access_ok(VERIFY_WRITE, ptr, length)) 444 return -EFAULT; 445 446 ops.ooblen = length; 447 ops.ooboffs = start & (mtd->writesize - 1); 448 ops.datbuf = NULL; 449 ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW : 450 MTD_OPS_PLACE_OOB; 451 452 if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs)) 453 return -EINVAL; 454 455 ops.oobbuf = kmalloc(length, GFP_KERNEL); 456 if (!ops.oobbuf) 457 return -ENOMEM; 458 459 start &= ~((uint64_t)mtd->writesize - 1); 460 ret = mtd_read_oob(mtd, start, &ops); 461 462 if (put_user(ops.oobretlen, retp)) 463 ret = -EFAULT; 464 else if (ops.oobretlen && copy_to_user(ptr, ops.oobbuf, 465 ops.oobretlen)) 466 ret = -EFAULT; 467 468 kfree(ops.oobbuf); 469 470 /* 471 * NAND returns -EBADMSG on ECC errors, but it returns the OOB 472 * data. For our userspace tools it is important to dump areas 473 * with ECC errors! 474 * For kernel internal usage it also might return -EUCLEAN 475 * to signal the caller that a bitflip has occured and has 476 * been corrected by the ECC algorithm. 477 * 478 * Note: currently the standard NAND function, nand_read_oob_std, 479 * does not calculate ECC for the OOB area, so do not rely on 480 * this behavior unless you have replaced it with your own. 481 */ 482 if (mtd_is_bitflip_or_eccerr(ret)) 483 return 0; 484 485 return ret; 486 } 487 488 /* 489 * Copies (and truncates, if necessary) data from the larger struct, 490 * nand_ecclayout, to the smaller, deprecated layout struct, 491 * nand_ecclayout_user. This is necessary only to support the deprecated 492 * API ioctl ECCGETLAYOUT while allowing all new functionality to use 493 * nand_ecclayout flexibly (i.e. the struct may change size in new 494 * releases without requiring major rewrites). 495 */ 496 static int shrink_ecclayout(const struct nand_ecclayout *from, 497 struct nand_ecclayout_user *to) 498 { 499 int i; 500 501 if (!from || !to) 502 return -EINVAL; 503 504 memset(to, 0, sizeof(*to)); 505 506 to->eccbytes = min((int)from->eccbytes, MTD_MAX_ECCPOS_ENTRIES); 507 for (i = 0; i < to->eccbytes; i++) 508 to->eccpos[i] = from->eccpos[i]; 509 510 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) { 511 if (from->oobfree[i].length == 0 && 512 from->oobfree[i].offset == 0) 513 break; 514 to->oobavail += from->oobfree[i].length; 515 to->oobfree[i] = from->oobfree[i]; 516 } 517 518 return 0; 519 } 520 521 static int mtdchar_blkpg_ioctl(struct mtd_info *mtd, 522 struct blkpg_ioctl_arg __user *arg) 523 { 524 struct blkpg_ioctl_arg a; 525 struct blkpg_partition p; 526 527 if (!capable(CAP_SYS_ADMIN)) 528 return -EPERM; 529 530 if (copy_from_user(&a, arg, sizeof(struct blkpg_ioctl_arg))) 531 return -EFAULT; 532 533 if (copy_from_user(&p, a.data, sizeof(struct blkpg_partition))) 534 return -EFAULT; 535 536 switch (a.op) { 537 case BLKPG_ADD_PARTITION: 538 539 /* Only master mtd device must be used to add partitions */ 540 if (mtd_is_partition(mtd)) 541 return -EINVAL; 542 543 return mtd_add_partition(mtd, p.devname, p.start, p.length); 544 545 case BLKPG_DEL_PARTITION: 546 547 if (p.pno < 0) 548 return -EINVAL; 549 550 return mtd_del_partition(mtd, p.pno); 551 552 default: 553 return -EINVAL; 554 } 555 } 556 557 static int mtdchar_write_ioctl(struct mtd_info *mtd, 558 struct mtd_write_req __user *argp) 559 { 560 struct mtd_write_req req; 561 struct mtd_oob_ops ops; 562 void __user *usr_data, *usr_oob; 563 int ret; 564 565 if (copy_from_user(&req, argp, sizeof(req)) || 566 !access_ok(VERIFY_READ, req.usr_data, req.len) || 567 !access_ok(VERIFY_READ, req.usr_oob, req.ooblen)) 568 return -EFAULT; 569 if (!mtd->_write_oob) 570 return -EOPNOTSUPP; 571 572 ops.mode = req.mode; 573 ops.len = (size_t)req.len; 574 ops.ooblen = (size_t)req.ooblen; 575 ops.ooboffs = 0; 576 577 usr_data = (void __user *)(uintptr_t)req.usr_data; 578 usr_oob = (void __user *)(uintptr_t)req.usr_oob; 579 580 if (req.usr_data) { 581 ops.datbuf = memdup_user(usr_data, ops.len); 582 if (IS_ERR(ops.datbuf)) 583 return PTR_ERR(ops.datbuf); 584 } else { 585 ops.datbuf = NULL; 586 } 587 588 if (req.usr_oob) { 589 ops.oobbuf = memdup_user(usr_oob, ops.ooblen); 590 if (IS_ERR(ops.oobbuf)) { 591 kfree(ops.datbuf); 592 return PTR_ERR(ops.oobbuf); 593 } 594 } else { 595 ops.oobbuf = NULL; 596 } 597 598 ret = mtd_write_oob(mtd, (loff_t)req.start, &ops); 599 600 kfree(ops.datbuf); 601 kfree(ops.oobbuf); 602 603 return ret; 604 } 605 606 static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg) 607 { 608 struct mtd_file_info *mfi = file->private_data; 609 struct mtd_info *mtd = mfi->mtd; 610 void __user *argp = (void __user *)arg; 611 int ret = 0; 612 u_long size; 613 struct mtd_info_user info; 614 615 pr_debug("MTD_ioctl\n"); 616 617 size = (cmd & IOCSIZE_MASK) >> IOCSIZE_SHIFT; 618 if (cmd & IOC_IN) { 619 if (!access_ok(VERIFY_READ, argp, size)) 620 return -EFAULT; 621 } 622 if (cmd & IOC_OUT) { 623 if (!access_ok(VERIFY_WRITE, argp, size)) 624 return -EFAULT; 625 } 626 627 switch (cmd) { 628 case MEMGETREGIONCOUNT: 629 if (copy_to_user(argp, &(mtd->numeraseregions), sizeof(int))) 630 return -EFAULT; 631 break; 632 633 case MEMGETREGIONINFO: 634 { 635 uint32_t ur_idx; 636 struct mtd_erase_region_info *kr; 637 struct region_info_user __user *ur = argp; 638 639 if (get_user(ur_idx, &(ur->regionindex))) 640 return -EFAULT; 641 642 if (ur_idx >= mtd->numeraseregions) 643 return -EINVAL; 644 645 kr = &(mtd->eraseregions[ur_idx]); 646 647 if (put_user(kr->offset, &(ur->offset)) 648 || put_user(kr->erasesize, &(ur->erasesize)) 649 || put_user(kr->numblocks, &(ur->numblocks))) 650 return -EFAULT; 651 652 break; 653 } 654 655 case MEMGETINFO: 656 memset(&info, 0, sizeof(info)); 657 info.type = mtd->type; 658 info.flags = mtd->flags; 659 info.size = mtd->size; 660 info.erasesize = mtd->erasesize; 661 info.writesize = mtd->writesize; 662 info.oobsize = mtd->oobsize; 663 /* The below field is obsolete */ 664 info.padding = 0; 665 if (copy_to_user(argp, &info, sizeof(struct mtd_info_user))) 666 return -EFAULT; 667 break; 668 669 case MEMERASE: 670 case MEMERASE64: 671 { 672 struct erase_info *erase; 673 674 if(!(file->f_mode & FMODE_WRITE)) 675 return -EPERM; 676 677 erase=kzalloc(sizeof(struct erase_info),GFP_KERNEL); 678 if (!erase) 679 ret = -ENOMEM; 680 else { 681 wait_queue_head_t waitq; 682 DECLARE_WAITQUEUE(wait, current); 683 684 init_waitqueue_head(&waitq); 685 686 if (cmd == MEMERASE64) { 687 struct erase_info_user64 einfo64; 688 689 if (copy_from_user(&einfo64, argp, 690 sizeof(struct erase_info_user64))) { 691 kfree(erase); 692 return -EFAULT; 693 } 694 erase->addr = einfo64.start; 695 erase->len = einfo64.length; 696 } else { 697 struct erase_info_user einfo32; 698 699 if (copy_from_user(&einfo32, argp, 700 sizeof(struct erase_info_user))) { 701 kfree(erase); 702 return -EFAULT; 703 } 704 erase->addr = einfo32.start; 705 erase->len = einfo32.length; 706 } 707 erase->mtd = mtd; 708 erase->callback = mtdchar_erase_callback; 709 erase->priv = (unsigned long)&waitq; 710 711 /* 712 FIXME: Allow INTERRUPTIBLE. Which means 713 not having the wait_queue head on the stack. 714 715 If the wq_head is on the stack, and we 716 leave because we got interrupted, then the 717 wq_head is no longer there when the 718 callback routine tries to wake us up. 719 */ 720 ret = mtd_erase(mtd, erase); 721 if (!ret) { 722 set_current_state(TASK_UNINTERRUPTIBLE); 723 add_wait_queue(&waitq, &wait); 724 if (erase->state != MTD_ERASE_DONE && 725 erase->state != MTD_ERASE_FAILED) 726 schedule(); 727 remove_wait_queue(&waitq, &wait); 728 set_current_state(TASK_RUNNING); 729 730 ret = (erase->state == MTD_ERASE_FAILED)?-EIO:0; 731 } 732 kfree(erase); 733 } 734 break; 735 } 736 737 case MEMWRITEOOB: 738 { 739 struct mtd_oob_buf buf; 740 struct mtd_oob_buf __user *buf_user = argp; 741 742 /* NOTE: writes return length to buf_user->length */ 743 if (copy_from_user(&buf, argp, sizeof(buf))) 744 ret = -EFAULT; 745 else 746 ret = mtdchar_writeoob(file, mtd, buf.start, buf.length, 747 buf.ptr, &buf_user->length); 748 break; 749 } 750 751 case MEMREADOOB: 752 { 753 struct mtd_oob_buf buf; 754 struct mtd_oob_buf __user *buf_user = argp; 755 756 /* NOTE: writes return length to buf_user->start */ 757 if (copy_from_user(&buf, argp, sizeof(buf))) 758 ret = -EFAULT; 759 else 760 ret = mtdchar_readoob(file, mtd, buf.start, buf.length, 761 buf.ptr, &buf_user->start); 762 break; 763 } 764 765 case MEMWRITEOOB64: 766 { 767 struct mtd_oob_buf64 buf; 768 struct mtd_oob_buf64 __user *buf_user = argp; 769 770 if (copy_from_user(&buf, argp, sizeof(buf))) 771 ret = -EFAULT; 772 else 773 ret = mtdchar_writeoob(file, mtd, buf.start, buf.length, 774 (void __user *)(uintptr_t)buf.usr_ptr, 775 &buf_user->length); 776 break; 777 } 778 779 case MEMREADOOB64: 780 { 781 struct mtd_oob_buf64 buf; 782 struct mtd_oob_buf64 __user *buf_user = argp; 783 784 if (copy_from_user(&buf, argp, sizeof(buf))) 785 ret = -EFAULT; 786 else 787 ret = mtdchar_readoob(file, mtd, buf.start, buf.length, 788 (void __user *)(uintptr_t)buf.usr_ptr, 789 &buf_user->length); 790 break; 791 } 792 793 case MEMWRITE: 794 { 795 ret = mtdchar_write_ioctl(mtd, 796 (struct mtd_write_req __user *)arg); 797 break; 798 } 799 800 case MEMLOCK: 801 { 802 struct erase_info_user einfo; 803 804 if (copy_from_user(&einfo, argp, sizeof(einfo))) 805 return -EFAULT; 806 807 ret = mtd_lock(mtd, einfo.start, einfo.length); 808 break; 809 } 810 811 case MEMUNLOCK: 812 { 813 struct erase_info_user einfo; 814 815 if (copy_from_user(&einfo, argp, sizeof(einfo))) 816 return -EFAULT; 817 818 ret = mtd_unlock(mtd, einfo.start, einfo.length); 819 break; 820 } 821 822 case MEMISLOCKED: 823 { 824 struct erase_info_user einfo; 825 826 if (copy_from_user(&einfo, argp, sizeof(einfo))) 827 return -EFAULT; 828 829 ret = mtd_is_locked(mtd, einfo.start, einfo.length); 830 break; 831 } 832 833 /* Legacy interface */ 834 case MEMGETOOBSEL: 835 { 836 struct nand_oobinfo oi; 837 838 if (!mtd->ecclayout) 839 return -EOPNOTSUPP; 840 if (mtd->ecclayout->eccbytes > ARRAY_SIZE(oi.eccpos)) 841 return -EINVAL; 842 843 oi.useecc = MTD_NANDECC_AUTOPLACE; 844 memcpy(&oi.eccpos, mtd->ecclayout->eccpos, sizeof(oi.eccpos)); 845 memcpy(&oi.oobfree, mtd->ecclayout->oobfree, 846 sizeof(oi.oobfree)); 847 oi.eccbytes = mtd->ecclayout->eccbytes; 848 849 if (copy_to_user(argp, &oi, sizeof(struct nand_oobinfo))) 850 return -EFAULT; 851 break; 852 } 853 854 case MEMGETBADBLOCK: 855 { 856 loff_t offs; 857 858 if (copy_from_user(&offs, argp, sizeof(loff_t))) 859 return -EFAULT; 860 return mtd_block_isbad(mtd, offs); 861 break; 862 } 863 864 case MEMSETBADBLOCK: 865 { 866 loff_t offs; 867 868 if (copy_from_user(&offs, argp, sizeof(loff_t))) 869 return -EFAULT; 870 return mtd_block_markbad(mtd, offs); 871 break; 872 } 873 874 case OTPSELECT: 875 { 876 int mode; 877 if (copy_from_user(&mode, argp, sizeof(int))) 878 return -EFAULT; 879 880 mfi->mode = MTD_FILE_MODE_NORMAL; 881 882 ret = otp_select_filemode(mfi, mode); 883 884 file->f_pos = 0; 885 break; 886 } 887 888 case OTPGETREGIONCOUNT: 889 case OTPGETREGIONINFO: 890 { 891 struct otp_info *buf = kmalloc(4096, GFP_KERNEL); 892 if (!buf) 893 return -ENOMEM; 894 switch (mfi->mode) { 895 case MTD_FILE_MODE_OTP_FACTORY: 896 ret = mtd_get_fact_prot_info(mtd, buf, 4096); 897 break; 898 case MTD_FILE_MODE_OTP_USER: 899 ret = mtd_get_user_prot_info(mtd, buf, 4096); 900 break; 901 default: 902 ret = -EINVAL; 903 break; 904 } 905 if (ret >= 0) { 906 if (cmd == OTPGETREGIONCOUNT) { 907 int nbr = ret / sizeof(struct otp_info); 908 ret = copy_to_user(argp, &nbr, sizeof(int)); 909 } else 910 ret = copy_to_user(argp, buf, ret); 911 if (ret) 912 ret = -EFAULT; 913 } 914 kfree(buf); 915 break; 916 } 917 918 case OTPLOCK: 919 { 920 struct otp_info oinfo; 921 922 if (mfi->mode != MTD_FILE_MODE_OTP_USER) 923 return -EINVAL; 924 if (copy_from_user(&oinfo, argp, sizeof(oinfo))) 925 return -EFAULT; 926 ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length); 927 break; 928 } 929 930 /* This ioctl is being deprecated - it truncates the ECC layout */ 931 case ECCGETLAYOUT: 932 { 933 struct nand_ecclayout_user *usrlay; 934 935 if (!mtd->ecclayout) 936 return -EOPNOTSUPP; 937 938 usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL); 939 if (!usrlay) 940 return -ENOMEM; 941 942 shrink_ecclayout(mtd->ecclayout, usrlay); 943 944 if (copy_to_user(argp, usrlay, sizeof(*usrlay))) 945 ret = -EFAULT; 946 kfree(usrlay); 947 break; 948 } 949 950 case ECCGETSTATS: 951 { 952 if (copy_to_user(argp, &mtd->ecc_stats, 953 sizeof(struct mtd_ecc_stats))) 954 return -EFAULT; 955 break; 956 } 957 958 case MTDFILEMODE: 959 { 960 mfi->mode = 0; 961 962 switch(arg) { 963 case MTD_FILE_MODE_OTP_FACTORY: 964 case MTD_FILE_MODE_OTP_USER: 965 ret = otp_select_filemode(mfi, arg); 966 break; 967 968 case MTD_FILE_MODE_RAW: 969 if (!mtd_has_oob(mtd)) 970 return -EOPNOTSUPP; 971 mfi->mode = arg; 972 973 case MTD_FILE_MODE_NORMAL: 974 break; 975 default: 976 ret = -EINVAL; 977 } 978 file->f_pos = 0; 979 break; 980 } 981 982 case BLKPG: 983 { 984 ret = mtdchar_blkpg_ioctl(mtd, 985 (struct blkpg_ioctl_arg __user *)arg); 986 break; 987 } 988 989 case BLKRRPART: 990 { 991 /* No reread partition feature. Just return ok */ 992 ret = 0; 993 break; 994 } 995 996 default: 997 ret = -ENOTTY; 998 } 999 1000 return ret; 1001 } /* memory_ioctl */ 1002 1003 static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg) 1004 { 1005 int ret; 1006 1007 mutex_lock(&mtd_mutex); 1008 ret = mtdchar_ioctl(file, cmd, arg); 1009 mutex_unlock(&mtd_mutex); 1010 1011 return ret; 1012 } 1013 1014 #ifdef CONFIG_COMPAT 1015 1016 struct mtd_oob_buf32 { 1017 u_int32_t start; 1018 u_int32_t length; 1019 compat_caddr_t ptr; /* unsigned char* */ 1020 }; 1021 1022 #define MEMWRITEOOB32 _IOWR('M', 3, struct mtd_oob_buf32) 1023 #define MEMREADOOB32 _IOWR('M', 4, struct mtd_oob_buf32) 1024 1025 static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd, 1026 unsigned long arg) 1027 { 1028 struct mtd_file_info *mfi = file->private_data; 1029 struct mtd_info *mtd = mfi->mtd; 1030 void __user *argp = compat_ptr(arg); 1031 int ret = 0; 1032 1033 mutex_lock(&mtd_mutex); 1034 1035 switch (cmd) { 1036 case MEMWRITEOOB32: 1037 { 1038 struct mtd_oob_buf32 buf; 1039 struct mtd_oob_buf32 __user *buf_user = argp; 1040 1041 if (copy_from_user(&buf, argp, sizeof(buf))) 1042 ret = -EFAULT; 1043 else 1044 ret = mtdchar_writeoob(file, mtd, buf.start, 1045 buf.length, compat_ptr(buf.ptr), 1046 &buf_user->length); 1047 break; 1048 } 1049 1050 case MEMREADOOB32: 1051 { 1052 struct mtd_oob_buf32 buf; 1053 struct mtd_oob_buf32 __user *buf_user = argp; 1054 1055 /* NOTE: writes return length to buf->start */ 1056 if (copy_from_user(&buf, argp, sizeof(buf))) 1057 ret = -EFAULT; 1058 else 1059 ret = mtdchar_readoob(file, mtd, buf.start, 1060 buf.length, compat_ptr(buf.ptr), 1061 &buf_user->start); 1062 break; 1063 } 1064 default: 1065 ret = mtdchar_ioctl(file, cmd, (unsigned long)argp); 1066 } 1067 1068 mutex_unlock(&mtd_mutex); 1069 1070 return ret; 1071 } 1072 1073 #endif /* CONFIG_COMPAT */ 1074 1075 /* 1076 * try to determine where a shared mapping can be made 1077 * - only supported for NOMMU at the moment (MMU can't doesn't copy private 1078 * mappings) 1079 */ 1080 #ifndef CONFIG_MMU 1081 static unsigned long mtdchar_get_unmapped_area(struct file *file, 1082 unsigned long addr, 1083 unsigned long len, 1084 unsigned long pgoff, 1085 unsigned long flags) 1086 { 1087 struct mtd_file_info *mfi = file->private_data; 1088 struct mtd_info *mtd = mfi->mtd; 1089 unsigned long offset; 1090 int ret; 1091 1092 if (addr != 0) 1093 return (unsigned long) -EINVAL; 1094 1095 if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT)) 1096 return (unsigned long) -EINVAL; 1097 1098 offset = pgoff << PAGE_SHIFT; 1099 if (offset > mtd->size - len) 1100 return (unsigned long) -EINVAL; 1101 1102 ret = mtd_get_unmapped_area(mtd, len, offset, flags); 1103 return ret == -EOPNOTSUPP ? -ENODEV : ret; 1104 } 1105 #endif 1106 1107 /* 1108 * set up a mapping for shared memory segments 1109 */ 1110 static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma) 1111 { 1112 #ifdef CONFIG_MMU 1113 struct mtd_file_info *mfi = file->private_data; 1114 struct mtd_info *mtd = mfi->mtd; 1115 struct map_info *map = mtd->priv; 1116 1117 /* This is broken because it assumes the MTD device is map-based 1118 and that mtd->priv is a valid struct map_info. It should be 1119 replaced with something that uses the mtd_get_unmapped_area() 1120 operation properly. */ 1121 if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) { 1122 #ifdef pgprot_noncached 1123 if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory)) 1124 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1125 #endif 1126 return vm_iomap_memory(vma, map->phys, map->size); 1127 } 1128 return -ENODEV; 1129 #else 1130 return vma->vm_flags & VM_SHARED ? 0 : -EACCES; 1131 #endif 1132 } 1133 1134 static const struct file_operations mtd_fops = { 1135 .owner = THIS_MODULE, 1136 .llseek = mtdchar_lseek, 1137 .read = mtdchar_read, 1138 .write = mtdchar_write, 1139 .unlocked_ioctl = mtdchar_unlocked_ioctl, 1140 #ifdef CONFIG_COMPAT 1141 .compat_ioctl = mtdchar_compat_ioctl, 1142 #endif 1143 .open = mtdchar_open, 1144 .release = mtdchar_close, 1145 .mmap = mtdchar_mmap, 1146 #ifndef CONFIG_MMU 1147 .get_unmapped_area = mtdchar_get_unmapped_area, 1148 #endif 1149 }; 1150 1151 static const struct super_operations mtd_ops = { 1152 .drop_inode = generic_delete_inode, 1153 .statfs = simple_statfs, 1154 }; 1155 1156 static struct dentry *mtd_inodefs_mount(struct file_system_type *fs_type, 1157 int flags, const char *dev_name, void *data) 1158 { 1159 return mount_pseudo(fs_type, "mtd_inode:", &mtd_ops, NULL, MTD_INODE_FS_MAGIC); 1160 } 1161 1162 static struct file_system_type mtd_inodefs_type = { 1163 .name = "mtd_inodefs", 1164 .mount = mtd_inodefs_mount, 1165 .kill_sb = kill_anon_super, 1166 }; 1167 MODULE_ALIAS_FS("mtd_inodefs"); 1168 1169 int __init init_mtdchar(void) 1170 { 1171 int ret; 1172 1173 ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, 1174 "mtd", &mtd_fops); 1175 if (ret < 0) { 1176 pr_err("Can't allocate major number %d for MTD\n", 1177 MTD_CHAR_MAJOR); 1178 return ret; 1179 } 1180 1181 ret = register_filesystem(&mtd_inodefs_type); 1182 if (ret) { 1183 pr_err("Can't register mtd_inodefs filesystem, error %d\n", 1184 ret); 1185 goto err_unregister_chdev; 1186 } 1187 1188 return ret; 1189 1190 err_unregister_chdev: 1191 __unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd"); 1192 return ret; 1193 } 1194 1195 void __exit cleanup_mtdchar(void) 1196 { 1197 unregister_filesystem(&mtd_inodefs_type); 1198 __unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd"); 1199 } 1200 1201 MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR); 1202