1 /* 2 * LPDDR flash memory device operations. This module provides read, write, 3 * erase, lock/unlock support for LPDDR flash memories 4 * (C) 2008 Korolev Alexey <akorolev@infradead.org> 5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com> 6 * Many thanks to Roman Borisov for intial enabling 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 21 * 02110-1301, USA. 22 * TODO: 23 * Implement VPP management 24 * Implement XIP support 25 * Implement OTP support 26 */ 27 #include <linux/mtd/pfow.h> 28 #include <linux/mtd/qinfo.h> 29 30 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, 31 size_t *retlen, u_char *buf); 32 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, 33 size_t len, size_t *retlen, const u_char *buf); 34 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, 35 unsigned long count, loff_t to, size_t *retlen); 36 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr); 37 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 38 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 39 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 40 size_t *retlen, void **mtdbuf, resource_size_t *phys); 41 static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); 42 static int get_chip(struct map_info *map, struct flchip *chip, int mode); 43 static int chip_ready(struct map_info *map, struct flchip *chip, int mode); 44 static void put_chip(struct map_info *map, struct flchip *chip); 45 46 struct mtd_info *lpddr_cmdset(struct map_info *map) 47 { 48 struct lpddr_private *lpddr = map->fldrv_priv; 49 struct flchip_shared *shared; 50 struct flchip *chip; 51 struct mtd_info *mtd; 52 int numchips; 53 int i, j; 54 55 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); 56 if (!mtd) { 57 printk(KERN_ERR "Failed to allocate memory for MTD device\n"); 58 return NULL; 59 } 60 mtd->priv = map; 61 mtd->type = MTD_NORFLASH; 62 63 /* Fill in the default mtd operations */ 64 mtd->read = lpddr_read; 65 mtd->type = MTD_NORFLASH; 66 mtd->flags = MTD_CAP_NORFLASH; 67 mtd->flags &= ~MTD_BIT_WRITEABLE; 68 mtd->erase = lpddr_erase; 69 mtd->write = lpddr_write_buffers; 70 mtd->writev = lpddr_writev; 71 mtd->read_oob = NULL; 72 mtd->write_oob = NULL; 73 mtd->sync = NULL; 74 mtd->lock = lpddr_lock; 75 mtd->unlock = lpddr_unlock; 76 mtd->suspend = NULL; 77 mtd->resume = NULL; 78 if (map_is_linear(map)) { 79 mtd->point = lpddr_point; 80 mtd->unpoint = lpddr_unpoint; 81 } 82 mtd->block_isbad = NULL; 83 mtd->block_markbad = NULL; 84 mtd->size = 1 << lpddr->qinfo->DevSizeShift; 85 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift; 86 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift; 87 88 shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips, 89 GFP_KERNEL); 90 if (!shared) { 91 kfree(lpddr); 92 kfree(mtd); 93 return NULL; 94 } 95 96 chip = &lpddr->chips[0]; 97 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum; 98 for (i = 0; i < numchips; i++) { 99 shared[i].writing = shared[i].erasing = NULL; 100 spin_lock_init(&shared[i].lock); 101 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) { 102 *chip = lpddr->chips[i]; 103 chip->start += j << lpddr->chipshift; 104 chip->oldstate = chip->state = FL_READY; 105 chip->priv = &shared[i]; 106 /* those should be reset too since 107 they create memory references. */ 108 init_waitqueue_head(&chip->wq); 109 spin_lock_init(&chip->_spinlock); 110 chip->mutex = &chip->_spinlock; 111 chip++; 112 } 113 } 114 115 return mtd; 116 } 117 EXPORT_SYMBOL(lpddr_cmdset); 118 119 static int wait_for_ready(struct map_info *map, struct flchip *chip, 120 unsigned int chip_op_time) 121 { 122 unsigned int timeo, reset_timeo, sleep_time; 123 unsigned int dsr; 124 flstate_t chip_state = chip->state; 125 int ret = 0; 126 127 /* set our timeout to 8 times the expected delay */ 128 timeo = chip_op_time * 8; 129 if (!timeo) 130 timeo = 500000; 131 reset_timeo = timeo; 132 sleep_time = chip_op_time / 2; 133 134 for (;;) { 135 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR)); 136 if (dsr & DSR_READY_STATUS) 137 break; 138 if (!timeo) { 139 printk(KERN_ERR "%s: Flash timeout error state %d \n", 140 map->name, chip_state); 141 ret = -ETIME; 142 break; 143 } 144 145 /* OK Still waiting. Drop the lock, wait a while and retry. */ 146 spin_unlock(chip->mutex); 147 if (sleep_time >= 1000000/HZ) { 148 /* 149 * Half of the normal delay still remaining 150 * can be performed with a sleeping delay instead 151 * of busy waiting. 152 */ 153 msleep(sleep_time/1000); 154 timeo -= sleep_time; 155 sleep_time = 1000000/HZ; 156 } else { 157 udelay(1); 158 cond_resched(); 159 timeo--; 160 } 161 spin_lock(chip->mutex); 162 163 while (chip->state != chip_state) { 164 /* Someone's suspended the operation: sleep */ 165 DECLARE_WAITQUEUE(wait, current); 166 set_current_state(TASK_UNINTERRUPTIBLE); 167 add_wait_queue(&chip->wq, &wait); 168 spin_unlock(chip->mutex); 169 schedule(); 170 remove_wait_queue(&chip->wq, &wait); 171 spin_lock(chip->mutex); 172 } 173 if (chip->erase_suspended || chip->write_suspended) { 174 /* Suspend has occured while sleep: reset timeout */ 175 timeo = reset_timeo; 176 chip->erase_suspended = chip->write_suspended = 0; 177 } 178 } 179 /* check status for errors */ 180 if (dsr & DSR_ERR) { 181 /* Clear DSR*/ 182 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR); 183 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n", 184 map->name, dsr); 185 print_drs_error(dsr); 186 ret = -EIO; 187 } 188 chip->state = FL_READY; 189 return ret; 190 } 191 192 static int get_chip(struct map_info *map, struct flchip *chip, int mode) 193 { 194 int ret; 195 DECLARE_WAITQUEUE(wait, current); 196 197 retry: 198 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING) 199 && chip->state != FL_SYNCING) { 200 /* 201 * OK. We have possibility for contension on the write/erase 202 * operations which are global to the real chip and not per 203 * partition. So let's fight it over in the partition which 204 * currently has authority on the operation. 205 * 206 * The rules are as follows: 207 * 208 * - any write operation must own shared->writing. 209 * 210 * - any erase operation must own _both_ shared->writing and 211 * shared->erasing. 212 * 213 * - contension arbitration is handled in the owner's context. 214 * 215 * The 'shared' struct can be read and/or written only when 216 * its lock is taken. 217 */ 218 struct flchip_shared *shared = chip->priv; 219 struct flchip *contender; 220 spin_lock(&shared->lock); 221 contender = shared->writing; 222 if (contender && contender != chip) { 223 /* 224 * The engine to perform desired operation on this 225 * partition is already in use by someone else. 226 * Let's fight over it in the context of the chip 227 * currently using it. If it is possible to suspend, 228 * that other partition will do just that, otherwise 229 * it'll happily send us to sleep. In any case, when 230 * get_chip returns success we're clear to go ahead. 231 */ 232 ret = spin_trylock(contender->mutex); 233 spin_unlock(&shared->lock); 234 if (!ret) 235 goto retry; 236 spin_unlock(chip->mutex); 237 ret = chip_ready(map, contender, mode); 238 spin_lock(chip->mutex); 239 240 if (ret == -EAGAIN) { 241 spin_unlock(contender->mutex); 242 goto retry; 243 } 244 if (ret) { 245 spin_unlock(contender->mutex); 246 return ret; 247 } 248 spin_lock(&shared->lock); 249 250 /* We should not own chip if it is already in FL_SYNCING 251 * state. Put contender and retry. */ 252 if (chip->state == FL_SYNCING) { 253 put_chip(map, contender); 254 spin_unlock(contender->mutex); 255 goto retry; 256 } 257 spin_unlock(contender->mutex); 258 } 259 260 /* Check if we have suspended erase on this chip. 261 Must sleep in such a case. */ 262 if (mode == FL_ERASING && shared->erasing 263 && shared->erasing->oldstate == FL_ERASING) { 264 spin_unlock(&shared->lock); 265 set_current_state(TASK_UNINTERRUPTIBLE); 266 add_wait_queue(&chip->wq, &wait); 267 spin_unlock(chip->mutex); 268 schedule(); 269 remove_wait_queue(&chip->wq, &wait); 270 spin_lock(chip->mutex); 271 goto retry; 272 } 273 274 /* We now own it */ 275 shared->writing = chip; 276 if (mode == FL_ERASING) 277 shared->erasing = chip; 278 spin_unlock(&shared->lock); 279 } 280 281 ret = chip_ready(map, chip, mode); 282 if (ret == -EAGAIN) 283 goto retry; 284 285 return ret; 286 } 287 288 static int chip_ready(struct map_info *map, struct flchip *chip, int mode) 289 { 290 struct lpddr_private *lpddr = map->fldrv_priv; 291 int ret = 0; 292 DECLARE_WAITQUEUE(wait, current); 293 294 /* Prevent setting state FL_SYNCING for chip in suspended state. */ 295 if (FL_SYNCING == mode && FL_READY != chip->oldstate) 296 goto sleep; 297 298 switch (chip->state) { 299 case FL_READY: 300 case FL_JEDEC_QUERY: 301 return 0; 302 303 case FL_ERASING: 304 if (!lpddr->qinfo->SuspEraseSupp || 305 !(mode == FL_READY || mode == FL_POINT)) 306 goto sleep; 307 308 map_write(map, CMD(LPDDR_SUSPEND), 309 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND); 310 chip->oldstate = FL_ERASING; 311 chip->state = FL_ERASE_SUSPENDING; 312 ret = wait_for_ready(map, chip, 0); 313 if (ret) { 314 /* Oops. something got wrong. */ 315 /* Resume and pretend we weren't here. */ 316 map_write(map, CMD(LPDDR_RESUME), 317 map->pfow_base + PFOW_COMMAND_CODE); 318 map_write(map, CMD(LPDDR_START_EXECUTION), 319 map->pfow_base + PFOW_COMMAND_EXECUTE); 320 chip->state = FL_ERASING; 321 chip->oldstate = FL_READY; 322 printk(KERN_ERR "%s: suspend operation failed." 323 "State may be wrong \n", map->name); 324 return -EIO; 325 } 326 chip->erase_suspended = 1; 327 chip->state = FL_READY; 328 return 0; 329 /* Erase suspend */ 330 case FL_POINT: 331 /* Only if there's no operation suspended... */ 332 if (mode == FL_READY && chip->oldstate == FL_READY) 333 return 0; 334 335 default: 336 sleep: 337 set_current_state(TASK_UNINTERRUPTIBLE); 338 add_wait_queue(&chip->wq, &wait); 339 spin_unlock(chip->mutex); 340 schedule(); 341 remove_wait_queue(&chip->wq, &wait); 342 spin_lock(chip->mutex); 343 return -EAGAIN; 344 } 345 } 346 347 static void put_chip(struct map_info *map, struct flchip *chip) 348 { 349 if (chip->priv) { 350 struct flchip_shared *shared = chip->priv; 351 spin_lock(&shared->lock); 352 if (shared->writing == chip && chip->oldstate == FL_READY) { 353 /* We own the ability to write, but we're done */ 354 shared->writing = shared->erasing; 355 if (shared->writing && shared->writing != chip) { 356 /* give back the ownership */ 357 struct flchip *loaner = shared->writing; 358 spin_lock(loaner->mutex); 359 spin_unlock(&shared->lock); 360 spin_unlock(chip->mutex); 361 put_chip(map, loaner); 362 spin_lock(chip->mutex); 363 spin_unlock(loaner->mutex); 364 wake_up(&chip->wq); 365 return; 366 } 367 shared->erasing = NULL; 368 shared->writing = NULL; 369 } else if (shared->erasing == chip && shared->writing != chip) { 370 /* 371 * We own the ability to erase without the ability 372 * to write, which means the erase was suspended 373 * and some other partition is currently writing. 374 * Don't let the switch below mess things up since 375 * we don't have ownership to resume anything. 376 */ 377 spin_unlock(&shared->lock); 378 wake_up(&chip->wq); 379 return; 380 } 381 spin_unlock(&shared->lock); 382 } 383 384 switch (chip->oldstate) { 385 case FL_ERASING: 386 chip->state = chip->oldstate; 387 map_write(map, CMD(LPDDR_RESUME), 388 map->pfow_base + PFOW_COMMAND_CODE); 389 map_write(map, CMD(LPDDR_START_EXECUTION), 390 map->pfow_base + PFOW_COMMAND_EXECUTE); 391 chip->oldstate = FL_READY; 392 chip->state = FL_ERASING; 393 break; 394 case FL_READY: 395 break; 396 default: 397 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n", 398 map->name, chip->oldstate); 399 } 400 wake_up(&chip->wq); 401 } 402 403 int do_write_buffer(struct map_info *map, struct flchip *chip, 404 unsigned long adr, const struct kvec **pvec, 405 unsigned long *pvec_seek, int len) 406 { 407 struct lpddr_private *lpddr = map->fldrv_priv; 408 map_word datum; 409 int ret, wbufsize, word_gap, words; 410 const struct kvec *vec; 411 unsigned long vec_seek; 412 unsigned long prog_buf_ofs; 413 414 wbufsize = 1 << lpddr->qinfo->BufSizeShift; 415 416 spin_lock(chip->mutex); 417 ret = get_chip(map, chip, FL_WRITING); 418 if (ret) { 419 spin_unlock(chip->mutex); 420 return ret; 421 } 422 /* Figure out the number of words to write */ 423 word_gap = (-adr & (map_bankwidth(map)-1)); 424 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map); 425 if (!word_gap) { 426 words--; 427 } else { 428 word_gap = map_bankwidth(map) - word_gap; 429 adr -= word_gap; 430 datum = map_word_ff(map); 431 } 432 /* Write data */ 433 /* Get the program buffer offset from PFOW register data first*/ 434 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map, 435 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET)); 436 vec = *pvec; 437 vec_seek = *pvec_seek; 438 do { 439 int n = map_bankwidth(map) - word_gap; 440 441 if (n > vec->iov_len - vec_seek) 442 n = vec->iov_len - vec_seek; 443 if (n > len) 444 n = len; 445 446 if (!word_gap && (len < map_bankwidth(map))) 447 datum = map_word_ff(map); 448 449 datum = map_word_load_partial(map, datum, 450 vec->iov_base + vec_seek, word_gap, n); 451 452 len -= n; 453 word_gap += n; 454 if (!len || word_gap == map_bankwidth(map)) { 455 map_write(map, datum, prog_buf_ofs); 456 prog_buf_ofs += map_bankwidth(map); 457 word_gap = 0; 458 } 459 460 vec_seek += n; 461 if (vec_seek == vec->iov_len) { 462 vec++; 463 vec_seek = 0; 464 } 465 } while (len); 466 *pvec = vec; 467 *pvec_seek = vec_seek; 468 469 /* GO GO GO */ 470 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL); 471 chip->state = FL_WRITING; 472 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime)); 473 if (ret) { 474 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n", 475 map->name, ret, adr); 476 goto out; 477 } 478 479 out: put_chip(map, chip); 480 spin_unlock(chip->mutex); 481 return ret; 482 } 483 484 int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) 485 { 486 struct map_info *map = mtd->priv; 487 struct lpddr_private *lpddr = map->fldrv_priv; 488 int chipnum = adr >> lpddr->chipshift; 489 struct flchip *chip = &lpddr->chips[chipnum]; 490 int ret; 491 492 spin_lock(chip->mutex); 493 ret = get_chip(map, chip, FL_ERASING); 494 if (ret) { 495 spin_unlock(chip->mutex); 496 return ret; 497 } 498 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL); 499 chip->state = FL_ERASING; 500 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000); 501 if (ret) { 502 printk(KERN_WARNING"%s Erase block error %d at : %llx\n", 503 map->name, ret, adr); 504 goto out; 505 } 506 out: put_chip(map, chip); 507 spin_unlock(chip->mutex); 508 return ret; 509 } 510 511 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, 512 size_t *retlen, u_char *buf) 513 { 514 struct map_info *map = mtd->priv; 515 struct lpddr_private *lpddr = map->fldrv_priv; 516 int chipnum = adr >> lpddr->chipshift; 517 struct flchip *chip = &lpddr->chips[chipnum]; 518 int ret = 0; 519 520 spin_lock(chip->mutex); 521 ret = get_chip(map, chip, FL_READY); 522 if (ret) { 523 spin_unlock(chip->mutex); 524 return ret; 525 } 526 527 map_copy_from(map, buf, adr, len); 528 *retlen = len; 529 530 put_chip(map, chip); 531 spin_unlock(chip->mutex); 532 return ret; 533 } 534 535 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 536 size_t *retlen, void **mtdbuf, resource_size_t *phys) 537 { 538 struct map_info *map = mtd->priv; 539 struct lpddr_private *lpddr = map->fldrv_priv; 540 int chipnum = adr >> lpddr->chipshift; 541 unsigned long ofs, last_end = 0; 542 struct flchip *chip = &lpddr->chips[chipnum]; 543 int ret = 0; 544 545 if (!map->virt || (adr + len > mtd->size)) 546 return -EINVAL; 547 548 /* ofs: offset within the first chip that the first read should start */ 549 ofs = adr - (chipnum << lpddr->chipshift); 550 551 *mtdbuf = (void *)map->virt + chip->start + ofs; 552 *retlen = 0; 553 554 while (len) { 555 unsigned long thislen; 556 557 if (chipnum >= lpddr->numchips) 558 break; 559 560 /* We cannot point across chips that are virtually disjoint */ 561 if (!last_end) 562 last_end = chip->start; 563 else if (chip->start != last_end) 564 break; 565 566 if ((len + ofs - 1) >> lpddr->chipshift) 567 thislen = (1<<lpddr->chipshift) - ofs; 568 else 569 thislen = len; 570 /* get the chip */ 571 spin_lock(chip->mutex); 572 ret = get_chip(map, chip, FL_POINT); 573 spin_unlock(chip->mutex); 574 if (ret) 575 break; 576 577 chip->state = FL_POINT; 578 chip->ref_point_counter++; 579 *retlen += thislen; 580 len -= thislen; 581 582 ofs = 0; 583 last_end += 1 << lpddr->chipshift; 584 chipnum++; 585 chip = &lpddr->chips[chipnum]; 586 } 587 return 0; 588 } 589 590 static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) 591 { 592 struct map_info *map = mtd->priv; 593 struct lpddr_private *lpddr = map->fldrv_priv; 594 int chipnum = adr >> lpddr->chipshift; 595 unsigned long ofs; 596 597 /* ofs: offset within the first chip that the first read should start */ 598 ofs = adr - (chipnum << lpddr->chipshift); 599 600 while (len) { 601 unsigned long thislen; 602 struct flchip *chip; 603 604 chip = &lpddr->chips[chipnum]; 605 if (chipnum >= lpddr->numchips) 606 break; 607 608 if ((len + ofs - 1) >> lpddr->chipshift) 609 thislen = (1<<lpddr->chipshift) - ofs; 610 else 611 thislen = len; 612 613 spin_lock(chip->mutex); 614 if (chip->state == FL_POINT) { 615 chip->ref_point_counter--; 616 if (chip->ref_point_counter == 0) 617 chip->state = FL_READY; 618 } else 619 printk(KERN_WARNING "%s: Warning: unpoint called on non" 620 "pointed region\n", map->name); 621 622 put_chip(map, chip); 623 spin_unlock(chip->mutex); 624 625 len -= thislen; 626 ofs = 0; 627 chipnum++; 628 } 629 } 630 631 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, 632 size_t *retlen, const u_char *buf) 633 { 634 struct kvec vec; 635 636 vec.iov_base = (void *) buf; 637 vec.iov_len = len; 638 639 return lpddr_writev(mtd, &vec, 1, to, retlen); 640 } 641 642 643 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, 644 unsigned long count, loff_t to, size_t *retlen) 645 { 646 struct map_info *map = mtd->priv; 647 struct lpddr_private *lpddr = map->fldrv_priv; 648 int ret = 0; 649 int chipnum; 650 unsigned long ofs, vec_seek, i; 651 int wbufsize = 1 << lpddr->qinfo->BufSizeShift; 652 653 size_t len = 0; 654 655 for (i = 0; i < count; i++) 656 len += vecs[i].iov_len; 657 658 *retlen = 0; 659 if (!len) 660 return 0; 661 662 chipnum = to >> lpddr->chipshift; 663 664 ofs = to; 665 vec_seek = 0; 666 667 do { 668 /* We must not cross write block boundaries */ 669 int size = wbufsize - (ofs & (wbufsize-1)); 670 671 if (size > len) 672 size = len; 673 674 ret = do_write_buffer(map, &lpddr->chips[chipnum], 675 ofs, &vecs, &vec_seek, size); 676 if (ret) 677 return ret; 678 679 ofs += size; 680 (*retlen) += size; 681 len -= size; 682 683 /* Be nice and reschedule with the chip in a usable 684 * state for other processes */ 685 cond_resched(); 686 687 } while (len); 688 689 return 0; 690 } 691 692 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) 693 { 694 unsigned long ofs, len; 695 int ret; 696 struct map_info *map = mtd->priv; 697 struct lpddr_private *lpddr = map->fldrv_priv; 698 int size = 1 << lpddr->qinfo->UniformBlockSizeShift; 699 700 ofs = instr->addr; 701 len = instr->len; 702 703 if (ofs > mtd->size || (len + ofs) > mtd->size) 704 return -EINVAL; 705 706 while (len > 0) { 707 ret = do_erase_oneblock(mtd, ofs); 708 if (ret) 709 return ret; 710 ofs += size; 711 len -= size; 712 } 713 instr->state = MTD_ERASE_DONE; 714 mtd_erase_callback(instr); 715 716 return 0; 717 } 718 719 #define DO_XXLOCK_LOCK 1 720 #define DO_XXLOCK_UNLOCK 2 721 int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) 722 { 723 int ret = 0; 724 struct map_info *map = mtd->priv; 725 struct lpddr_private *lpddr = map->fldrv_priv; 726 int chipnum = adr >> lpddr->chipshift; 727 struct flchip *chip = &lpddr->chips[chipnum]; 728 729 spin_lock(chip->mutex); 730 ret = get_chip(map, chip, FL_LOCKING); 731 if (ret) { 732 spin_unlock(chip->mutex); 733 return ret; 734 } 735 736 if (thunk == DO_XXLOCK_LOCK) { 737 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL); 738 chip->state = FL_LOCKING; 739 } else if (thunk == DO_XXLOCK_UNLOCK) { 740 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL); 741 chip->state = FL_UNLOCKING; 742 } else 743 BUG(); 744 745 ret = wait_for_ready(map, chip, 1); 746 if (ret) { 747 printk(KERN_ERR "%s: block unlock error status %d \n", 748 map->name, ret); 749 goto out; 750 } 751 out: put_chip(map, chip); 752 spin_unlock(chip->mutex); 753 return ret; 754 } 755 756 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 757 { 758 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK); 759 } 760 761 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 762 { 763 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK); 764 } 765 766 int word_program(struct map_info *map, loff_t adr, uint32_t curval) 767 { 768 int ret; 769 struct lpddr_private *lpddr = map->fldrv_priv; 770 int chipnum = adr >> lpddr->chipshift; 771 struct flchip *chip = &lpddr->chips[chipnum]; 772 773 spin_lock(chip->mutex); 774 ret = get_chip(map, chip, FL_WRITING); 775 if (ret) { 776 spin_unlock(chip->mutex); 777 return ret; 778 } 779 780 send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval); 781 782 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime)); 783 if (ret) { 784 printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n", 785 map->name, adr, curval); 786 goto out; 787 } 788 789 out: put_chip(map, chip); 790 spin_unlock(chip->mutex); 791 return ret; 792 } 793 794 MODULE_LICENSE("GPL"); 795 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>"); 796 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips"); 797