1 /* 2 * LPDDR flash memory device operations. This module provides read, write, 3 * erase, lock/unlock support for LPDDR flash memories 4 * (C) 2008 Korolev Alexey <akorolev@infradead.org> 5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com> 6 * Many thanks to Roman Borisov for initial enabling 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 21 * 02110-1301, USA. 22 * TODO: 23 * Implement VPP management 24 * Implement XIP support 25 * Implement OTP support 26 */ 27 #include <linux/mtd/pfow.h> 28 #include <linux/mtd/qinfo.h> 29 #include <linux/slab.h> 30 31 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, 32 size_t *retlen, u_char *buf); 33 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, 34 size_t len, size_t *retlen, const u_char *buf); 35 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, 36 unsigned long count, loff_t to, size_t *retlen); 37 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr); 38 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 39 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 40 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 41 size_t *retlen, void **mtdbuf, resource_size_t *phys); 42 static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); 43 static int get_chip(struct map_info *map, struct flchip *chip, int mode); 44 static int chip_ready(struct map_info *map, struct flchip *chip, int mode); 45 static void put_chip(struct map_info *map, struct flchip *chip); 46 47 struct mtd_info *lpddr_cmdset(struct map_info *map) 48 { 49 struct lpddr_private *lpddr = map->fldrv_priv; 50 struct flchip_shared *shared; 51 struct flchip *chip; 52 struct mtd_info *mtd; 53 int numchips; 54 int i, j; 55 56 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); 57 if (!mtd) { 58 printk(KERN_ERR "Failed to allocate memory for MTD device\n"); 59 return NULL; 60 } 61 mtd->priv = map; 62 mtd->type = MTD_NORFLASH; 63 64 /* Fill in the default mtd operations */ 65 mtd->read = lpddr_read; 66 mtd->type = MTD_NORFLASH; 67 mtd->flags = MTD_CAP_NORFLASH; 68 mtd->flags &= ~MTD_BIT_WRITEABLE; 69 mtd->erase = lpddr_erase; 70 mtd->write = lpddr_write_buffers; 71 mtd->writev = lpddr_writev; 72 mtd->read_oob = NULL; 73 mtd->write_oob = NULL; 74 mtd->sync = NULL; 75 mtd->lock = lpddr_lock; 76 mtd->unlock = lpddr_unlock; 77 mtd->suspend = NULL; 78 mtd->resume = NULL; 79 if (map_is_linear(map)) { 80 mtd->point = lpddr_point; 81 mtd->unpoint = lpddr_unpoint; 82 } 83 mtd->block_isbad = NULL; 84 mtd->block_markbad = NULL; 85 mtd->size = 1 << lpddr->qinfo->DevSizeShift; 86 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift; 87 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift; 88 89 shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips, 90 GFP_KERNEL); 91 if (!shared) { 92 kfree(lpddr); 93 kfree(mtd); 94 return NULL; 95 } 96 97 chip = &lpddr->chips[0]; 98 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum; 99 for (i = 0; i < numchips; i++) { 100 shared[i].writing = shared[i].erasing = NULL; 101 mutex_init(&shared[i].lock); 102 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) { 103 *chip = lpddr->chips[i]; 104 chip->start += j << lpddr->chipshift; 105 chip->oldstate = chip->state = FL_READY; 106 chip->priv = &shared[i]; 107 /* those should be reset too since 108 they create memory references. */ 109 init_waitqueue_head(&chip->wq); 110 mutex_init(&chip->mutex); 111 chip++; 112 } 113 } 114 115 return mtd; 116 } 117 EXPORT_SYMBOL(lpddr_cmdset); 118 119 static int wait_for_ready(struct map_info *map, struct flchip *chip, 120 unsigned int chip_op_time) 121 { 122 unsigned int timeo, reset_timeo, sleep_time; 123 unsigned int dsr; 124 flstate_t chip_state = chip->state; 125 int ret = 0; 126 127 /* set our timeout to 8 times the expected delay */ 128 timeo = chip_op_time * 8; 129 if (!timeo) 130 timeo = 500000; 131 reset_timeo = timeo; 132 sleep_time = chip_op_time / 2; 133 134 for (;;) { 135 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR)); 136 if (dsr & DSR_READY_STATUS) 137 break; 138 if (!timeo) { 139 printk(KERN_ERR "%s: Flash timeout error state %d \n", 140 map->name, chip_state); 141 ret = -ETIME; 142 break; 143 } 144 145 /* OK Still waiting. Drop the lock, wait a while and retry. */ 146 mutex_unlock(&chip->mutex); 147 if (sleep_time >= 1000000/HZ) { 148 /* 149 * Half of the normal delay still remaining 150 * can be performed with a sleeping delay instead 151 * of busy waiting. 152 */ 153 msleep(sleep_time/1000); 154 timeo -= sleep_time; 155 sleep_time = 1000000/HZ; 156 } else { 157 udelay(1); 158 cond_resched(); 159 timeo--; 160 } 161 mutex_lock(&chip->mutex); 162 163 while (chip->state != chip_state) { 164 /* Someone's suspended the operation: sleep */ 165 DECLARE_WAITQUEUE(wait, current); 166 set_current_state(TASK_UNINTERRUPTIBLE); 167 add_wait_queue(&chip->wq, &wait); 168 mutex_unlock(&chip->mutex); 169 schedule(); 170 remove_wait_queue(&chip->wq, &wait); 171 mutex_lock(&chip->mutex); 172 } 173 if (chip->erase_suspended || chip->write_suspended) { 174 /* Suspend has occurred while sleep: reset timeout */ 175 timeo = reset_timeo; 176 chip->erase_suspended = chip->write_suspended = 0; 177 } 178 } 179 /* check status for errors */ 180 if (dsr & DSR_ERR) { 181 /* Clear DSR*/ 182 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR); 183 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n", 184 map->name, dsr); 185 print_drs_error(dsr); 186 ret = -EIO; 187 } 188 chip->state = FL_READY; 189 return ret; 190 } 191 192 static int get_chip(struct map_info *map, struct flchip *chip, int mode) 193 { 194 int ret; 195 DECLARE_WAITQUEUE(wait, current); 196 197 retry: 198 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING) 199 && chip->state != FL_SYNCING) { 200 /* 201 * OK. We have possibility for contension on the write/erase 202 * operations which are global to the real chip and not per 203 * partition. So let's fight it over in the partition which 204 * currently has authority on the operation. 205 * 206 * The rules are as follows: 207 * 208 * - any write operation must own shared->writing. 209 * 210 * - any erase operation must own _both_ shared->writing and 211 * shared->erasing. 212 * 213 * - contension arbitration is handled in the owner's context. 214 * 215 * The 'shared' struct can be read and/or written only when 216 * its lock is taken. 217 */ 218 struct flchip_shared *shared = chip->priv; 219 struct flchip *contender; 220 mutex_lock(&shared->lock); 221 contender = shared->writing; 222 if (contender && contender != chip) { 223 /* 224 * The engine to perform desired operation on this 225 * partition is already in use by someone else. 226 * Let's fight over it in the context of the chip 227 * currently using it. If it is possible to suspend, 228 * that other partition will do just that, otherwise 229 * it'll happily send us to sleep. In any case, when 230 * get_chip returns success we're clear to go ahead. 231 */ 232 ret = mutex_trylock(&contender->mutex); 233 mutex_unlock(&shared->lock); 234 if (!ret) 235 goto retry; 236 mutex_unlock(&chip->mutex); 237 ret = chip_ready(map, contender, mode); 238 mutex_lock(&chip->mutex); 239 240 if (ret == -EAGAIN) { 241 mutex_unlock(&contender->mutex); 242 goto retry; 243 } 244 if (ret) { 245 mutex_unlock(&contender->mutex); 246 return ret; 247 } 248 mutex_lock(&shared->lock); 249 250 /* We should not own chip if it is already in FL_SYNCING 251 * state. Put contender and retry. */ 252 if (chip->state == FL_SYNCING) { 253 put_chip(map, contender); 254 mutex_unlock(&contender->mutex); 255 goto retry; 256 } 257 mutex_unlock(&contender->mutex); 258 } 259 260 /* Check if we have suspended erase on this chip. 261 Must sleep in such a case. */ 262 if (mode == FL_ERASING && shared->erasing 263 && shared->erasing->oldstate == FL_ERASING) { 264 mutex_unlock(&shared->lock); 265 set_current_state(TASK_UNINTERRUPTIBLE); 266 add_wait_queue(&chip->wq, &wait); 267 mutex_unlock(&chip->mutex); 268 schedule(); 269 remove_wait_queue(&chip->wq, &wait); 270 mutex_lock(&chip->mutex); 271 goto retry; 272 } 273 274 /* We now own it */ 275 shared->writing = chip; 276 if (mode == FL_ERASING) 277 shared->erasing = chip; 278 mutex_unlock(&shared->lock); 279 } 280 281 ret = chip_ready(map, chip, mode); 282 if (ret == -EAGAIN) 283 goto retry; 284 285 return ret; 286 } 287 288 static int chip_ready(struct map_info *map, struct flchip *chip, int mode) 289 { 290 struct lpddr_private *lpddr = map->fldrv_priv; 291 int ret = 0; 292 DECLARE_WAITQUEUE(wait, current); 293 294 /* Prevent setting state FL_SYNCING for chip in suspended state. */ 295 if (FL_SYNCING == mode && FL_READY != chip->oldstate) 296 goto sleep; 297 298 switch (chip->state) { 299 case FL_READY: 300 case FL_JEDEC_QUERY: 301 return 0; 302 303 case FL_ERASING: 304 if (!lpddr->qinfo->SuspEraseSupp || 305 !(mode == FL_READY || mode == FL_POINT)) 306 goto sleep; 307 308 map_write(map, CMD(LPDDR_SUSPEND), 309 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND); 310 chip->oldstate = FL_ERASING; 311 chip->state = FL_ERASE_SUSPENDING; 312 ret = wait_for_ready(map, chip, 0); 313 if (ret) { 314 /* Oops. something got wrong. */ 315 /* Resume and pretend we weren't here. */ 316 put_chip(map, chip); 317 printk(KERN_ERR "%s: suspend operation failed." 318 "State may be wrong \n", map->name); 319 return -EIO; 320 } 321 chip->erase_suspended = 1; 322 chip->state = FL_READY; 323 return 0; 324 /* Erase suspend */ 325 case FL_POINT: 326 /* Only if there's no operation suspended... */ 327 if (mode == FL_READY && chip->oldstate == FL_READY) 328 return 0; 329 330 default: 331 sleep: 332 set_current_state(TASK_UNINTERRUPTIBLE); 333 add_wait_queue(&chip->wq, &wait); 334 mutex_unlock(&chip->mutex); 335 schedule(); 336 remove_wait_queue(&chip->wq, &wait); 337 mutex_lock(&chip->mutex); 338 return -EAGAIN; 339 } 340 } 341 342 static void put_chip(struct map_info *map, struct flchip *chip) 343 { 344 if (chip->priv) { 345 struct flchip_shared *shared = chip->priv; 346 mutex_lock(&shared->lock); 347 if (shared->writing == chip && chip->oldstate == FL_READY) { 348 /* We own the ability to write, but we're done */ 349 shared->writing = shared->erasing; 350 if (shared->writing && shared->writing != chip) { 351 /* give back the ownership */ 352 struct flchip *loaner = shared->writing; 353 mutex_lock(&loaner->mutex); 354 mutex_unlock(&shared->lock); 355 mutex_unlock(&chip->mutex); 356 put_chip(map, loaner); 357 mutex_lock(&chip->mutex); 358 mutex_unlock(&loaner->mutex); 359 wake_up(&chip->wq); 360 return; 361 } 362 shared->erasing = NULL; 363 shared->writing = NULL; 364 } else if (shared->erasing == chip && shared->writing != chip) { 365 /* 366 * We own the ability to erase without the ability 367 * to write, which means the erase was suspended 368 * and some other partition is currently writing. 369 * Don't let the switch below mess things up since 370 * we don't have ownership to resume anything. 371 */ 372 mutex_unlock(&shared->lock); 373 wake_up(&chip->wq); 374 return; 375 } 376 mutex_unlock(&shared->lock); 377 } 378 379 switch (chip->oldstate) { 380 case FL_ERASING: 381 map_write(map, CMD(LPDDR_RESUME), 382 map->pfow_base + PFOW_COMMAND_CODE); 383 map_write(map, CMD(LPDDR_START_EXECUTION), 384 map->pfow_base + PFOW_COMMAND_EXECUTE); 385 chip->oldstate = FL_READY; 386 chip->state = FL_ERASING; 387 break; 388 case FL_READY: 389 break; 390 default: 391 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n", 392 map->name, chip->oldstate); 393 } 394 wake_up(&chip->wq); 395 } 396 397 int do_write_buffer(struct map_info *map, struct flchip *chip, 398 unsigned long adr, const struct kvec **pvec, 399 unsigned long *pvec_seek, int len) 400 { 401 struct lpddr_private *lpddr = map->fldrv_priv; 402 map_word datum; 403 int ret, wbufsize, word_gap, words; 404 const struct kvec *vec; 405 unsigned long vec_seek; 406 unsigned long prog_buf_ofs; 407 408 wbufsize = 1 << lpddr->qinfo->BufSizeShift; 409 410 mutex_lock(&chip->mutex); 411 ret = get_chip(map, chip, FL_WRITING); 412 if (ret) { 413 mutex_unlock(&chip->mutex); 414 return ret; 415 } 416 /* Figure out the number of words to write */ 417 word_gap = (-adr & (map_bankwidth(map)-1)); 418 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map); 419 if (!word_gap) { 420 words--; 421 } else { 422 word_gap = map_bankwidth(map) - word_gap; 423 adr -= word_gap; 424 datum = map_word_ff(map); 425 } 426 /* Write data */ 427 /* Get the program buffer offset from PFOW register data first*/ 428 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map, 429 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET)); 430 vec = *pvec; 431 vec_seek = *pvec_seek; 432 do { 433 int n = map_bankwidth(map) - word_gap; 434 435 if (n > vec->iov_len - vec_seek) 436 n = vec->iov_len - vec_seek; 437 if (n > len) 438 n = len; 439 440 if (!word_gap && (len < map_bankwidth(map))) 441 datum = map_word_ff(map); 442 443 datum = map_word_load_partial(map, datum, 444 vec->iov_base + vec_seek, word_gap, n); 445 446 len -= n; 447 word_gap += n; 448 if (!len || word_gap == map_bankwidth(map)) { 449 map_write(map, datum, prog_buf_ofs); 450 prog_buf_ofs += map_bankwidth(map); 451 word_gap = 0; 452 } 453 454 vec_seek += n; 455 if (vec_seek == vec->iov_len) { 456 vec++; 457 vec_seek = 0; 458 } 459 } while (len); 460 *pvec = vec; 461 *pvec_seek = vec_seek; 462 463 /* GO GO GO */ 464 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL); 465 chip->state = FL_WRITING; 466 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime)); 467 if (ret) { 468 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n", 469 map->name, ret, adr); 470 goto out; 471 } 472 473 out: put_chip(map, chip); 474 mutex_unlock(&chip->mutex); 475 return ret; 476 } 477 478 int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) 479 { 480 struct map_info *map = mtd->priv; 481 struct lpddr_private *lpddr = map->fldrv_priv; 482 int chipnum = adr >> lpddr->chipshift; 483 struct flchip *chip = &lpddr->chips[chipnum]; 484 int ret; 485 486 mutex_lock(&chip->mutex); 487 ret = get_chip(map, chip, FL_ERASING); 488 if (ret) { 489 mutex_unlock(&chip->mutex); 490 return ret; 491 } 492 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL); 493 chip->state = FL_ERASING; 494 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000); 495 if (ret) { 496 printk(KERN_WARNING"%s Erase block error %d at : %llx\n", 497 map->name, ret, adr); 498 goto out; 499 } 500 out: put_chip(map, chip); 501 mutex_unlock(&chip->mutex); 502 return ret; 503 } 504 505 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, 506 size_t *retlen, u_char *buf) 507 { 508 struct map_info *map = mtd->priv; 509 struct lpddr_private *lpddr = map->fldrv_priv; 510 int chipnum = adr >> lpddr->chipshift; 511 struct flchip *chip = &lpddr->chips[chipnum]; 512 int ret = 0; 513 514 mutex_lock(&chip->mutex); 515 ret = get_chip(map, chip, FL_READY); 516 if (ret) { 517 mutex_unlock(&chip->mutex); 518 return ret; 519 } 520 521 map_copy_from(map, buf, adr, len); 522 *retlen = len; 523 524 put_chip(map, chip); 525 mutex_unlock(&chip->mutex); 526 return ret; 527 } 528 529 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 530 size_t *retlen, void **mtdbuf, resource_size_t *phys) 531 { 532 struct map_info *map = mtd->priv; 533 struct lpddr_private *lpddr = map->fldrv_priv; 534 int chipnum = adr >> lpddr->chipshift; 535 unsigned long ofs, last_end = 0; 536 struct flchip *chip = &lpddr->chips[chipnum]; 537 int ret = 0; 538 539 if (!map->virt || (adr + len > mtd->size)) 540 return -EINVAL; 541 542 /* ofs: offset within the first chip that the first read should start */ 543 ofs = adr - (chipnum << lpddr->chipshift); 544 545 *mtdbuf = (void *)map->virt + chip->start + ofs; 546 *retlen = 0; 547 548 while (len) { 549 unsigned long thislen; 550 551 if (chipnum >= lpddr->numchips) 552 break; 553 554 /* We cannot point across chips that are virtually disjoint */ 555 if (!last_end) 556 last_end = chip->start; 557 else if (chip->start != last_end) 558 break; 559 560 if ((len + ofs - 1) >> lpddr->chipshift) 561 thislen = (1<<lpddr->chipshift) - ofs; 562 else 563 thislen = len; 564 /* get the chip */ 565 mutex_lock(&chip->mutex); 566 ret = get_chip(map, chip, FL_POINT); 567 mutex_unlock(&chip->mutex); 568 if (ret) 569 break; 570 571 chip->state = FL_POINT; 572 chip->ref_point_counter++; 573 *retlen += thislen; 574 len -= thislen; 575 576 ofs = 0; 577 last_end += 1 << lpddr->chipshift; 578 chipnum++; 579 chip = &lpddr->chips[chipnum]; 580 } 581 return 0; 582 } 583 584 static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) 585 { 586 struct map_info *map = mtd->priv; 587 struct lpddr_private *lpddr = map->fldrv_priv; 588 int chipnum = adr >> lpddr->chipshift; 589 unsigned long ofs; 590 591 /* ofs: offset within the first chip that the first read should start */ 592 ofs = adr - (chipnum << lpddr->chipshift); 593 594 while (len) { 595 unsigned long thislen; 596 struct flchip *chip; 597 598 chip = &lpddr->chips[chipnum]; 599 if (chipnum >= lpddr->numchips) 600 break; 601 602 if ((len + ofs - 1) >> lpddr->chipshift) 603 thislen = (1<<lpddr->chipshift) - ofs; 604 else 605 thislen = len; 606 607 mutex_lock(&chip->mutex); 608 if (chip->state == FL_POINT) { 609 chip->ref_point_counter--; 610 if (chip->ref_point_counter == 0) 611 chip->state = FL_READY; 612 } else 613 printk(KERN_WARNING "%s: Warning: unpoint called on non" 614 "pointed region\n", map->name); 615 616 put_chip(map, chip); 617 mutex_unlock(&chip->mutex); 618 619 len -= thislen; 620 ofs = 0; 621 chipnum++; 622 } 623 } 624 625 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, 626 size_t *retlen, const u_char *buf) 627 { 628 struct kvec vec; 629 630 vec.iov_base = (void *) buf; 631 vec.iov_len = len; 632 633 return lpddr_writev(mtd, &vec, 1, to, retlen); 634 } 635 636 637 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, 638 unsigned long count, loff_t to, size_t *retlen) 639 { 640 struct map_info *map = mtd->priv; 641 struct lpddr_private *lpddr = map->fldrv_priv; 642 int ret = 0; 643 int chipnum; 644 unsigned long ofs, vec_seek, i; 645 int wbufsize = 1 << lpddr->qinfo->BufSizeShift; 646 647 size_t len = 0; 648 649 for (i = 0; i < count; i++) 650 len += vecs[i].iov_len; 651 652 *retlen = 0; 653 if (!len) 654 return 0; 655 656 chipnum = to >> lpddr->chipshift; 657 658 ofs = to; 659 vec_seek = 0; 660 661 do { 662 /* We must not cross write block boundaries */ 663 int size = wbufsize - (ofs & (wbufsize-1)); 664 665 if (size > len) 666 size = len; 667 668 ret = do_write_buffer(map, &lpddr->chips[chipnum], 669 ofs, &vecs, &vec_seek, size); 670 if (ret) 671 return ret; 672 673 ofs += size; 674 (*retlen) += size; 675 len -= size; 676 677 /* Be nice and reschedule with the chip in a usable 678 * state for other processes */ 679 cond_resched(); 680 681 } while (len); 682 683 return 0; 684 } 685 686 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) 687 { 688 unsigned long ofs, len; 689 int ret; 690 struct map_info *map = mtd->priv; 691 struct lpddr_private *lpddr = map->fldrv_priv; 692 int size = 1 << lpddr->qinfo->UniformBlockSizeShift; 693 694 ofs = instr->addr; 695 len = instr->len; 696 697 if (ofs > mtd->size || (len + ofs) > mtd->size) 698 return -EINVAL; 699 700 while (len > 0) { 701 ret = do_erase_oneblock(mtd, ofs); 702 if (ret) 703 return ret; 704 ofs += size; 705 len -= size; 706 } 707 instr->state = MTD_ERASE_DONE; 708 mtd_erase_callback(instr); 709 710 return 0; 711 } 712 713 #define DO_XXLOCK_LOCK 1 714 #define DO_XXLOCK_UNLOCK 2 715 int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) 716 { 717 int ret = 0; 718 struct map_info *map = mtd->priv; 719 struct lpddr_private *lpddr = map->fldrv_priv; 720 int chipnum = adr >> lpddr->chipshift; 721 struct flchip *chip = &lpddr->chips[chipnum]; 722 723 mutex_lock(&chip->mutex); 724 ret = get_chip(map, chip, FL_LOCKING); 725 if (ret) { 726 mutex_unlock(&chip->mutex); 727 return ret; 728 } 729 730 if (thunk == DO_XXLOCK_LOCK) { 731 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL); 732 chip->state = FL_LOCKING; 733 } else if (thunk == DO_XXLOCK_UNLOCK) { 734 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL); 735 chip->state = FL_UNLOCKING; 736 } else 737 BUG(); 738 739 ret = wait_for_ready(map, chip, 1); 740 if (ret) { 741 printk(KERN_ERR "%s: block unlock error status %d \n", 742 map->name, ret); 743 goto out; 744 } 745 out: put_chip(map, chip); 746 mutex_unlock(&chip->mutex); 747 return ret; 748 } 749 750 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 751 { 752 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK); 753 } 754 755 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 756 { 757 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK); 758 } 759 760 int word_program(struct map_info *map, loff_t adr, uint32_t curval) 761 { 762 int ret; 763 struct lpddr_private *lpddr = map->fldrv_priv; 764 int chipnum = adr >> lpddr->chipshift; 765 struct flchip *chip = &lpddr->chips[chipnum]; 766 767 mutex_lock(&chip->mutex); 768 ret = get_chip(map, chip, FL_WRITING); 769 if (ret) { 770 mutex_unlock(&chip->mutex); 771 return ret; 772 } 773 774 send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval); 775 776 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime)); 777 if (ret) { 778 printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n", 779 map->name, adr, curval); 780 goto out; 781 } 782 783 out: put_chip(map, chip); 784 mutex_unlock(&chip->mutex); 785 return ret; 786 } 787 788 MODULE_LICENSE("GPL"); 789 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>"); 790 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips"); 791