xref: /openbmc/linux/drivers/mtd/lpddr/lpddr_cmds.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * LPDDR flash memory device operations. This module provides read, write,
4  * erase, lock/unlock support for LPDDR flash memories
5  * (C) 2008 Korolev Alexey <akorolev@infradead.org>
6  * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
7  * Many thanks to Roman Borisov for initial enabling
8  *
9  * TODO:
10  * Implement VPP management
11  * Implement XIP support
12  * Implement OTP support
13  */
14 #include <linux/mtd/pfow.h>
15 #include <linux/mtd/qinfo.h>
16 #include <linux/slab.h>
17 #include <linux/module.h>
18 
19 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
20 					size_t *retlen, u_char *buf);
21 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
22 				size_t len, size_t *retlen, const u_char *buf);
23 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
24 				unsigned long count, loff_t to, size_t *retlen);
25 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
26 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
27 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
28 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
29 			size_t *retlen, void **mtdbuf, resource_size_t *phys);
30 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
31 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
32 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
33 static void put_chip(struct map_info *map, struct flchip *chip);
34 
35 struct mtd_info *lpddr_cmdset(struct map_info *map)
36 {
37 	struct lpddr_private *lpddr = map->fldrv_priv;
38 	struct flchip_shared *shared;
39 	struct flchip *chip;
40 	struct mtd_info *mtd;
41 	int numchips;
42 	int i, j;
43 
44 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
45 	if (!mtd)
46 		return NULL;
47 	mtd->priv = map;
48 	mtd->type = MTD_NORFLASH;
49 
50 	/* Fill in the default mtd operations */
51 	mtd->_read = lpddr_read;
52 	mtd->type = MTD_NORFLASH;
53 	mtd->flags = MTD_CAP_NORFLASH;
54 	mtd->flags &= ~MTD_BIT_WRITEABLE;
55 	mtd->_erase = lpddr_erase;
56 	mtd->_write = lpddr_write_buffers;
57 	mtd->_writev = lpddr_writev;
58 	mtd->_lock = lpddr_lock;
59 	mtd->_unlock = lpddr_unlock;
60 	if (map_is_linear(map)) {
61 		mtd->_point = lpddr_point;
62 		mtd->_unpoint = lpddr_unpoint;
63 	}
64 	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
65 	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
66 	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
67 
68 	shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
69 						GFP_KERNEL);
70 	if (!shared) {
71 		kfree(lpddr);
72 		kfree(mtd);
73 		return NULL;
74 	}
75 
76 	chip = &lpddr->chips[0];
77 	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
78 	for (i = 0; i < numchips; i++) {
79 		shared[i].writing = shared[i].erasing = NULL;
80 		mutex_init(&shared[i].lock);
81 		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
82 			*chip = lpddr->chips[i];
83 			chip->start += j << lpddr->chipshift;
84 			chip->oldstate = chip->state = FL_READY;
85 			chip->priv = &shared[i];
86 			/* those should be reset too since
87 			   they create memory references. */
88 			init_waitqueue_head(&chip->wq);
89 			mutex_init(&chip->mutex);
90 			chip++;
91 		}
92 	}
93 
94 	return mtd;
95 }
96 EXPORT_SYMBOL(lpddr_cmdset);
97 
98 static int wait_for_ready(struct map_info *map, struct flchip *chip,
99 		unsigned int chip_op_time)
100 {
101 	unsigned int timeo, reset_timeo, sleep_time;
102 	unsigned int dsr;
103 	flstate_t chip_state = chip->state;
104 	int ret = 0;
105 
106 	/* set our timeout to 8 times the expected delay */
107 	timeo = chip_op_time * 8;
108 	if (!timeo)
109 		timeo = 500000;
110 	reset_timeo = timeo;
111 	sleep_time = chip_op_time / 2;
112 
113 	for (;;) {
114 		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
115 		if (dsr & DSR_READY_STATUS)
116 			break;
117 		if (!timeo) {
118 			printk(KERN_ERR "%s: Flash timeout error state %d \n",
119 							map->name, chip_state);
120 			ret = -ETIME;
121 			break;
122 		}
123 
124 		/* OK Still waiting. Drop the lock, wait a while and retry. */
125 		mutex_unlock(&chip->mutex);
126 		if (sleep_time >= 1000000/HZ) {
127 			/*
128 			 * Half of the normal delay still remaining
129 			 * can be performed with a sleeping delay instead
130 			 * of busy waiting.
131 			 */
132 			msleep(sleep_time/1000);
133 			timeo -= sleep_time;
134 			sleep_time = 1000000/HZ;
135 		} else {
136 			udelay(1);
137 			cond_resched();
138 			timeo--;
139 		}
140 		mutex_lock(&chip->mutex);
141 
142 		while (chip->state != chip_state) {
143 			/* Someone's suspended the operation: sleep */
144 			DECLARE_WAITQUEUE(wait, current);
145 			set_current_state(TASK_UNINTERRUPTIBLE);
146 			add_wait_queue(&chip->wq, &wait);
147 			mutex_unlock(&chip->mutex);
148 			schedule();
149 			remove_wait_queue(&chip->wq, &wait);
150 			mutex_lock(&chip->mutex);
151 		}
152 		if (chip->erase_suspended || chip->write_suspended)  {
153 			/* Suspend has occurred while sleep: reset timeout */
154 			timeo = reset_timeo;
155 			chip->erase_suspended = chip->write_suspended = 0;
156 		}
157 	}
158 	/* check status for errors */
159 	if (dsr & DSR_ERR) {
160 		/* Clear DSR*/
161 		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
162 		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
163 				map->name, dsr);
164 		print_drs_error(dsr);
165 		ret = -EIO;
166 	}
167 	chip->state = FL_READY;
168 	return ret;
169 }
170 
171 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
172 {
173 	int ret;
174 	DECLARE_WAITQUEUE(wait, current);
175 
176  retry:
177 	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
178 		&& chip->state != FL_SYNCING) {
179 		/*
180 		 * OK. We have possibility for contension on the write/erase
181 		 * operations which are global to the real chip and not per
182 		 * partition.  So let's fight it over in the partition which
183 		 * currently has authority on the operation.
184 		 *
185 		 * The rules are as follows:
186 		 *
187 		 * - any write operation must own shared->writing.
188 		 *
189 		 * - any erase operation must own _both_ shared->writing and
190 		 *   shared->erasing.
191 		 *
192 		 * - contension arbitration is handled in the owner's context.
193 		 *
194 		 * The 'shared' struct can be read and/or written only when
195 		 * its lock is taken.
196 		 */
197 		struct flchip_shared *shared = chip->priv;
198 		struct flchip *contender;
199 		mutex_lock(&shared->lock);
200 		contender = shared->writing;
201 		if (contender && contender != chip) {
202 			/*
203 			 * The engine to perform desired operation on this
204 			 * partition is already in use by someone else.
205 			 * Let's fight over it in the context of the chip
206 			 * currently using it.  If it is possible to suspend,
207 			 * that other partition will do just that, otherwise
208 			 * it'll happily send us to sleep.  In any case, when
209 			 * get_chip returns success we're clear to go ahead.
210 			 */
211 			ret = mutex_trylock(&contender->mutex);
212 			mutex_unlock(&shared->lock);
213 			if (!ret)
214 				goto retry;
215 			mutex_unlock(&chip->mutex);
216 			ret = chip_ready(map, contender, mode);
217 			mutex_lock(&chip->mutex);
218 
219 			if (ret == -EAGAIN) {
220 				mutex_unlock(&contender->mutex);
221 				goto retry;
222 			}
223 			if (ret) {
224 				mutex_unlock(&contender->mutex);
225 				return ret;
226 			}
227 			mutex_lock(&shared->lock);
228 
229 			/* We should not own chip if it is already in FL_SYNCING
230 			 * state. Put contender and retry. */
231 			if (chip->state == FL_SYNCING) {
232 				put_chip(map, contender);
233 				mutex_unlock(&contender->mutex);
234 				goto retry;
235 			}
236 			mutex_unlock(&contender->mutex);
237 		}
238 
239 		/* Check if we have suspended erase on this chip.
240 		   Must sleep in such a case. */
241 		if (mode == FL_ERASING && shared->erasing
242 		    && shared->erasing->oldstate == FL_ERASING) {
243 			mutex_unlock(&shared->lock);
244 			set_current_state(TASK_UNINTERRUPTIBLE);
245 			add_wait_queue(&chip->wq, &wait);
246 			mutex_unlock(&chip->mutex);
247 			schedule();
248 			remove_wait_queue(&chip->wq, &wait);
249 			mutex_lock(&chip->mutex);
250 			goto retry;
251 		}
252 
253 		/* We now own it */
254 		shared->writing = chip;
255 		if (mode == FL_ERASING)
256 			shared->erasing = chip;
257 		mutex_unlock(&shared->lock);
258 	}
259 
260 	ret = chip_ready(map, chip, mode);
261 	if (ret == -EAGAIN)
262 		goto retry;
263 
264 	return ret;
265 }
266 
267 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
268 {
269 	struct lpddr_private *lpddr = map->fldrv_priv;
270 	int ret = 0;
271 	DECLARE_WAITQUEUE(wait, current);
272 
273 	/* Prevent setting state FL_SYNCING for chip in suspended state. */
274 	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
275 		goto sleep;
276 
277 	switch (chip->state) {
278 	case FL_READY:
279 	case FL_JEDEC_QUERY:
280 		return 0;
281 
282 	case FL_ERASING:
283 		if (!lpddr->qinfo->SuspEraseSupp ||
284 			!(mode == FL_READY || mode == FL_POINT))
285 			goto sleep;
286 
287 		map_write(map, CMD(LPDDR_SUSPEND),
288 			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
289 		chip->oldstate = FL_ERASING;
290 		chip->state = FL_ERASE_SUSPENDING;
291 		ret = wait_for_ready(map, chip, 0);
292 		if (ret) {
293 			/* Oops. something got wrong. */
294 			/* Resume and pretend we weren't here.  */
295 			put_chip(map, chip);
296 			printk(KERN_ERR "%s: suspend operation failed."
297 					"State may be wrong \n", map->name);
298 			return -EIO;
299 		}
300 		chip->erase_suspended = 1;
301 		chip->state = FL_READY;
302 		return 0;
303 		/* Erase suspend */
304 	case FL_POINT:
305 		/* Only if there's no operation suspended... */
306 		if (mode == FL_READY && chip->oldstate == FL_READY)
307 			return 0;
308 		/* fall through */
309 
310 	default:
311 sleep:
312 		set_current_state(TASK_UNINTERRUPTIBLE);
313 		add_wait_queue(&chip->wq, &wait);
314 		mutex_unlock(&chip->mutex);
315 		schedule();
316 		remove_wait_queue(&chip->wq, &wait);
317 		mutex_lock(&chip->mutex);
318 		return -EAGAIN;
319 	}
320 }
321 
322 static void put_chip(struct map_info *map, struct flchip *chip)
323 {
324 	if (chip->priv) {
325 		struct flchip_shared *shared = chip->priv;
326 		mutex_lock(&shared->lock);
327 		if (shared->writing == chip && chip->oldstate == FL_READY) {
328 			/* We own the ability to write, but we're done */
329 			shared->writing = shared->erasing;
330 			if (shared->writing && shared->writing != chip) {
331 				/* give back the ownership */
332 				struct flchip *loaner = shared->writing;
333 				mutex_lock(&loaner->mutex);
334 				mutex_unlock(&shared->lock);
335 				mutex_unlock(&chip->mutex);
336 				put_chip(map, loaner);
337 				mutex_lock(&chip->mutex);
338 				mutex_unlock(&loaner->mutex);
339 				wake_up(&chip->wq);
340 				return;
341 			}
342 			shared->erasing = NULL;
343 			shared->writing = NULL;
344 		} else if (shared->erasing == chip && shared->writing != chip) {
345 			/*
346 			 * We own the ability to erase without the ability
347 			 * to write, which means the erase was suspended
348 			 * and some other partition is currently writing.
349 			 * Don't let the switch below mess things up since
350 			 * we don't have ownership to resume anything.
351 			 */
352 			mutex_unlock(&shared->lock);
353 			wake_up(&chip->wq);
354 			return;
355 		}
356 		mutex_unlock(&shared->lock);
357 	}
358 
359 	switch (chip->oldstate) {
360 	case FL_ERASING:
361 		map_write(map, CMD(LPDDR_RESUME),
362 				map->pfow_base + PFOW_COMMAND_CODE);
363 		map_write(map, CMD(LPDDR_START_EXECUTION),
364 				map->pfow_base + PFOW_COMMAND_EXECUTE);
365 		chip->oldstate = FL_READY;
366 		chip->state = FL_ERASING;
367 		break;
368 	case FL_READY:
369 		break;
370 	default:
371 		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
372 				map->name, chip->oldstate);
373 	}
374 	wake_up(&chip->wq);
375 }
376 
377 static int do_write_buffer(struct map_info *map, struct flchip *chip,
378 			unsigned long adr, const struct kvec **pvec,
379 			unsigned long *pvec_seek, int len)
380 {
381 	struct lpddr_private *lpddr = map->fldrv_priv;
382 	map_word datum;
383 	int ret, wbufsize, word_gap, words;
384 	const struct kvec *vec;
385 	unsigned long vec_seek;
386 	unsigned long prog_buf_ofs;
387 
388 	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
389 
390 	mutex_lock(&chip->mutex);
391 	ret = get_chip(map, chip, FL_WRITING);
392 	if (ret) {
393 		mutex_unlock(&chip->mutex);
394 		return ret;
395 	}
396 	/* Figure out the number of words to write */
397 	word_gap = (-adr & (map_bankwidth(map)-1));
398 	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
399 	if (!word_gap) {
400 		words--;
401 	} else {
402 		word_gap = map_bankwidth(map) - word_gap;
403 		adr -= word_gap;
404 		datum = map_word_ff(map);
405 	}
406 	/* Write data */
407 	/* Get the program buffer offset from PFOW register data first*/
408 	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
409 				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
410 	vec = *pvec;
411 	vec_seek = *pvec_seek;
412 	do {
413 		int n = map_bankwidth(map) - word_gap;
414 
415 		if (n > vec->iov_len - vec_seek)
416 			n = vec->iov_len - vec_seek;
417 		if (n > len)
418 			n = len;
419 
420 		if (!word_gap && (len < map_bankwidth(map)))
421 			datum = map_word_ff(map);
422 
423 		datum = map_word_load_partial(map, datum,
424 				vec->iov_base + vec_seek, word_gap, n);
425 
426 		len -= n;
427 		word_gap += n;
428 		if (!len || word_gap == map_bankwidth(map)) {
429 			map_write(map, datum, prog_buf_ofs);
430 			prog_buf_ofs += map_bankwidth(map);
431 			word_gap = 0;
432 		}
433 
434 		vec_seek += n;
435 		if (vec_seek == vec->iov_len) {
436 			vec++;
437 			vec_seek = 0;
438 		}
439 	} while (len);
440 	*pvec = vec;
441 	*pvec_seek = vec_seek;
442 
443 	/* GO GO GO */
444 	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
445 	chip->state = FL_WRITING;
446 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
447 	if (ret)	{
448 		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
449 			map->name, ret, adr);
450 		goto out;
451 	}
452 
453  out:	put_chip(map, chip);
454 	mutex_unlock(&chip->mutex);
455 	return ret;
456 }
457 
458 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
459 {
460 	struct map_info *map = mtd->priv;
461 	struct lpddr_private *lpddr = map->fldrv_priv;
462 	int chipnum = adr >> lpddr->chipshift;
463 	struct flchip *chip = &lpddr->chips[chipnum];
464 	int ret;
465 
466 	mutex_lock(&chip->mutex);
467 	ret = get_chip(map, chip, FL_ERASING);
468 	if (ret) {
469 		mutex_unlock(&chip->mutex);
470 		return ret;
471 	}
472 	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
473 	chip->state = FL_ERASING;
474 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
475 	if (ret) {
476 		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
477 			map->name, ret, adr);
478 		goto out;
479 	}
480  out:	put_chip(map, chip);
481 	mutex_unlock(&chip->mutex);
482 	return ret;
483 }
484 
485 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
486 			size_t *retlen, u_char *buf)
487 {
488 	struct map_info *map = mtd->priv;
489 	struct lpddr_private *lpddr = map->fldrv_priv;
490 	int chipnum = adr >> lpddr->chipshift;
491 	struct flchip *chip = &lpddr->chips[chipnum];
492 	int ret = 0;
493 
494 	mutex_lock(&chip->mutex);
495 	ret = get_chip(map, chip, FL_READY);
496 	if (ret) {
497 		mutex_unlock(&chip->mutex);
498 		return ret;
499 	}
500 
501 	map_copy_from(map, buf, adr, len);
502 	*retlen = len;
503 
504 	put_chip(map, chip);
505 	mutex_unlock(&chip->mutex);
506 	return ret;
507 }
508 
509 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
510 			size_t *retlen, void **mtdbuf, resource_size_t *phys)
511 {
512 	struct map_info *map = mtd->priv;
513 	struct lpddr_private *lpddr = map->fldrv_priv;
514 	int chipnum = adr >> lpddr->chipshift;
515 	unsigned long ofs, last_end = 0;
516 	struct flchip *chip = &lpddr->chips[chipnum];
517 	int ret = 0;
518 
519 	if (!map->virt)
520 		return -EINVAL;
521 
522 	/* ofs: offset within the first chip that the first read should start */
523 	ofs = adr - (chipnum << lpddr->chipshift);
524 	*mtdbuf = (void *)map->virt + chip->start + ofs;
525 
526 	while (len) {
527 		unsigned long thislen;
528 
529 		if (chipnum >= lpddr->numchips)
530 			break;
531 
532 		/* We cannot point across chips that are virtually disjoint */
533 		if (!last_end)
534 			last_end = chip->start;
535 		else if (chip->start != last_end)
536 			break;
537 
538 		if ((len + ofs - 1) >> lpddr->chipshift)
539 			thislen = (1<<lpddr->chipshift) - ofs;
540 		else
541 			thislen = len;
542 		/* get the chip */
543 		mutex_lock(&chip->mutex);
544 		ret = get_chip(map, chip, FL_POINT);
545 		mutex_unlock(&chip->mutex);
546 		if (ret)
547 			break;
548 
549 		chip->state = FL_POINT;
550 		chip->ref_point_counter++;
551 		*retlen += thislen;
552 		len -= thislen;
553 
554 		ofs = 0;
555 		last_end += 1 << lpddr->chipshift;
556 		chipnum++;
557 		chip = &lpddr->chips[chipnum];
558 	}
559 	return 0;
560 }
561 
562 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
563 {
564 	struct map_info *map = mtd->priv;
565 	struct lpddr_private *lpddr = map->fldrv_priv;
566 	int chipnum = adr >> lpddr->chipshift, err = 0;
567 	unsigned long ofs;
568 
569 	/* ofs: offset within the first chip that the first read should start */
570 	ofs = adr - (chipnum << lpddr->chipshift);
571 
572 	while (len) {
573 		unsigned long thislen;
574 		struct flchip *chip;
575 
576 		chip = &lpddr->chips[chipnum];
577 		if (chipnum >= lpddr->numchips)
578 			break;
579 
580 		if ((len + ofs - 1) >> lpddr->chipshift)
581 			thislen = (1<<lpddr->chipshift) - ofs;
582 		else
583 			thislen = len;
584 
585 		mutex_lock(&chip->mutex);
586 		if (chip->state == FL_POINT) {
587 			chip->ref_point_counter--;
588 			if (chip->ref_point_counter == 0)
589 				chip->state = FL_READY;
590 		} else {
591 			printk(KERN_WARNING "%s: Warning: unpoint called on non"
592 					"pointed region\n", map->name);
593 			err = -EINVAL;
594 		}
595 
596 		put_chip(map, chip);
597 		mutex_unlock(&chip->mutex);
598 
599 		len -= thislen;
600 		ofs = 0;
601 		chipnum++;
602 	}
603 
604 	return err;
605 }
606 
607 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
608 				size_t *retlen, const u_char *buf)
609 {
610 	struct kvec vec;
611 
612 	vec.iov_base = (void *) buf;
613 	vec.iov_len = len;
614 
615 	return lpddr_writev(mtd, &vec, 1, to, retlen);
616 }
617 
618 
619 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
620 				unsigned long count, loff_t to, size_t *retlen)
621 {
622 	struct map_info *map = mtd->priv;
623 	struct lpddr_private *lpddr = map->fldrv_priv;
624 	int ret = 0;
625 	int chipnum;
626 	unsigned long ofs, vec_seek, i;
627 	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
628 	size_t len = 0;
629 
630 	for (i = 0; i < count; i++)
631 		len += vecs[i].iov_len;
632 
633 	if (!len)
634 		return 0;
635 
636 	chipnum = to >> lpddr->chipshift;
637 
638 	ofs = to;
639 	vec_seek = 0;
640 
641 	do {
642 		/* We must not cross write block boundaries */
643 		int size = wbufsize - (ofs & (wbufsize-1));
644 
645 		if (size > len)
646 			size = len;
647 
648 		ret = do_write_buffer(map, &lpddr->chips[chipnum],
649 					  ofs, &vecs, &vec_seek, size);
650 		if (ret)
651 			return ret;
652 
653 		ofs += size;
654 		(*retlen) += size;
655 		len -= size;
656 
657 		/* Be nice and reschedule with the chip in a usable
658 		 * state for other processes */
659 		cond_resched();
660 
661 	} while (len);
662 
663 	return 0;
664 }
665 
666 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
667 {
668 	unsigned long ofs, len;
669 	int ret;
670 	struct map_info *map = mtd->priv;
671 	struct lpddr_private *lpddr = map->fldrv_priv;
672 	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
673 
674 	ofs = instr->addr;
675 	len = instr->len;
676 
677 	while (len > 0) {
678 		ret = do_erase_oneblock(mtd, ofs);
679 		if (ret)
680 			return ret;
681 		ofs += size;
682 		len -= size;
683 	}
684 
685 	return 0;
686 }
687 
688 #define DO_XXLOCK_LOCK		1
689 #define DO_XXLOCK_UNLOCK	2
690 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
691 {
692 	int ret = 0;
693 	struct map_info *map = mtd->priv;
694 	struct lpddr_private *lpddr = map->fldrv_priv;
695 	int chipnum = adr >> lpddr->chipshift;
696 	struct flchip *chip = &lpddr->chips[chipnum];
697 
698 	mutex_lock(&chip->mutex);
699 	ret = get_chip(map, chip, FL_LOCKING);
700 	if (ret) {
701 		mutex_unlock(&chip->mutex);
702 		return ret;
703 	}
704 
705 	if (thunk == DO_XXLOCK_LOCK) {
706 		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
707 		chip->state = FL_LOCKING;
708 	} else if (thunk == DO_XXLOCK_UNLOCK) {
709 		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
710 		chip->state = FL_UNLOCKING;
711 	} else
712 		BUG();
713 
714 	ret = wait_for_ready(map, chip, 1);
715 	if (ret)	{
716 		printk(KERN_ERR "%s: block unlock error status %d \n",
717 				map->name, ret);
718 		goto out;
719 	}
720 out:	put_chip(map, chip);
721 	mutex_unlock(&chip->mutex);
722 	return ret;
723 }
724 
725 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
726 {
727 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
728 }
729 
730 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
731 {
732 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
733 }
734 
735 MODULE_LICENSE("GPL");
736 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
737 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
738