xref: /openbmc/linux/drivers/mtd/lpddr/lpddr_cmds.c (revision 293d5b43)
1 /*
2  * LPDDR flash memory device operations. This module provides read, write,
3  * erase, lock/unlock support for LPDDR flash memories
4  * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5  * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6  * Many thanks to Roman Borisov for initial enabling
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  * TODO:
23  * Implement VPP management
24  * Implement XIP support
25  * Implement OTP support
26  */
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 
32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
33 					size_t *retlen, u_char *buf);
34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
35 				size_t len, size_t *retlen, const u_char *buf);
36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
37 				unsigned long count, loff_t to, size_t *retlen);
38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42 			size_t *retlen, void **mtdbuf, resource_size_t *phys);
43 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46 static void put_chip(struct map_info *map, struct flchip *chip);
47 
48 struct mtd_info *lpddr_cmdset(struct map_info *map)
49 {
50 	struct lpddr_private *lpddr = map->fldrv_priv;
51 	struct flchip_shared *shared;
52 	struct flchip *chip;
53 	struct mtd_info *mtd;
54 	int numchips;
55 	int i, j;
56 
57 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
58 	if (!mtd)
59 		return NULL;
60 	mtd->priv = map;
61 	mtd->type = MTD_NORFLASH;
62 
63 	/* Fill in the default mtd operations */
64 	mtd->_read = lpddr_read;
65 	mtd->type = MTD_NORFLASH;
66 	mtd->flags = MTD_CAP_NORFLASH;
67 	mtd->flags &= ~MTD_BIT_WRITEABLE;
68 	mtd->_erase = lpddr_erase;
69 	mtd->_write = lpddr_write_buffers;
70 	mtd->_writev = lpddr_writev;
71 	mtd->_lock = lpddr_lock;
72 	mtd->_unlock = lpddr_unlock;
73 	if (map_is_linear(map)) {
74 		mtd->_point = lpddr_point;
75 		mtd->_unpoint = lpddr_unpoint;
76 	}
77 	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
78 	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
79 	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
80 
81 	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
82 						GFP_KERNEL);
83 	if (!shared) {
84 		kfree(lpddr);
85 		kfree(mtd);
86 		return NULL;
87 	}
88 
89 	chip = &lpddr->chips[0];
90 	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
91 	for (i = 0; i < numchips; i++) {
92 		shared[i].writing = shared[i].erasing = NULL;
93 		mutex_init(&shared[i].lock);
94 		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
95 			*chip = lpddr->chips[i];
96 			chip->start += j << lpddr->chipshift;
97 			chip->oldstate = chip->state = FL_READY;
98 			chip->priv = &shared[i];
99 			/* those should be reset too since
100 			   they create memory references. */
101 			init_waitqueue_head(&chip->wq);
102 			mutex_init(&chip->mutex);
103 			chip++;
104 		}
105 	}
106 
107 	return mtd;
108 }
109 EXPORT_SYMBOL(lpddr_cmdset);
110 
111 static int wait_for_ready(struct map_info *map, struct flchip *chip,
112 		unsigned int chip_op_time)
113 {
114 	unsigned int timeo, reset_timeo, sleep_time;
115 	unsigned int dsr;
116 	flstate_t chip_state = chip->state;
117 	int ret = 0;
118 
119 	/* set our timeout to 8 times the expected delay */
120 	timeo = chip_op_time * 8;
121 	if (!timeo)
122 		timeo = 500000;
123 	reset_timeo = timeo;
124 	sleep_time = chip_op_time / 2;
125 
126 	for (;;) {
127 		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
128 		if (dsr & DSR_READY_STATUS)
129 			break;
130 		if (!timeo) {
131 			printk(KERN_ERR "%s: Flash timeout error state %d \n",
132 							map->name, chip_state);
133 			ret = -ETIME;
134 			break;
135 		}
136 
137 		/* OK Still waiting. Drop the lock, wait a while and retry. */
138 		mutex_unlock(&chip->mutex);
139 		if (sleep_time >= 1000000/HZ) {
140 			/*
141 			 * Half of the normal delay still remaining
142 			 * can be performed with a sleeping delay instead
143 			 * of busy waiting.
144 			 */
145 			msleep(sleep_time/1000);
146 			timeo -= sleep_time;
147 			sleep_time = 1000000/HZ;
148 		} else {
149 			udelay(1);
150 			cond_resched();
151 			timeo--;
152 		}
153 		mutex_lock(&chip->mutex);
154 
155 		while (chip->state != chip_state) {
156 			/* Someone's suspended the operation: sleep */
157 			DECLARE_WAITQUEUE(wait, current);
158 			set_current_state(TASK_UNINTERRUPTIBLE);
159 			add_wait_queue(&chip->wq, &wait);
160 			mutex_unlock(&chip->mutex);
161 			schedule();
162 			remove_wait_queue(&chip->wq, &wait);
163 			mutex_lock(&chip->mutex);
164 		}
165 		if (chip->erase_suspended || chip->write_suspended)  {
166 			/* Suspend has occurred while sleep: reset timeout */
167 			timeo = reset_timeo;
168 			chip->erase_suspended = chip->write_suspended = 0;
169 		}
170 	}
171 	/* check status for errors */
172 	if (dsr & DSR_ERR) {
173 		/* Clear DSR*/
174 		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
175 		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
176 				map->name, dsr);
177 		print_drs_error(dsr);
178 		ret = -EIO;
179 	}
180 	chip->state = FL_READY;
181 	return ret;
182 }
183 
184 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
185 {
186 	int ret;
187 	DECLARE_WAITQUEUE(wait, current);
188 
189  retry:
190 	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
191 		&& chip->state != FL_SYNCING) {
192 		/*
193 		 * OK. We have possibility for contension on the write/erase
194 		 * operations which are global to the real chip and not per
195 		 * partition.  So let's fight it over in the partition which
196 		 * currently has authority on the operation.
197 		 *
198 		 * The rules are as follows:
199 		 *
200 		 * - any write operation must own shared->writing.
201 		 *
202 		 * - any erase operation must own _both_ shared->writing and
203 		 *   shared->erasing.
204 		 *
205 		 * - contension arbitration is handled in the owner's context.
206 		 *
207 		 * The 'shared' struct can be read and/or written only when
208 		 * its lock is taken.
209 		 */
210 		struct flchip_shared *shared = chip->priv;
211 		struct flchip *contender;
212 		mutex_lock(&shared->lock);
213 		contender = shared->writing;
214 		if (contender && contender != chip) {
215 			/*
216 			 * The engine to perform desired operation on this
217 			 * partition is already in use by someone else.
218 			 * Let's fight over it in the context of the chip
219 			 * currently using it.  If it is possible to suspend,
220 			 * that other partition will do just that, otherwise
221 			 * it'll happily send us to sleep.  In any case, when
222 			 * get_chip returns success we're clear to go ahead.
223 			 */
224 			ret = mutex_trylock(&contender->mutex);
225 			mutex_unlock(&shared->lock);
226 			if (!ret)
227 				goto retry;
228 			mutex_unlock(&chip->mutex);
229 			ret = chip_ready(map, contender, mode);
230 			mutex_lock(&chip->mutex);
231 
232 			if (ret == -EAGAIN) {
233 				mutex_unlock(&contender->mutex);
234 				goto retry;
235 			}
236 			if (ret) {
237 				mutex_unlock(&contender->mutex);
238 				return ret;
239 			}
240 			mutex_lock(&shared->lock);
241 
242 			/* We should not own chip if it is already in FL_SYNCING
243 			 * state. Put contender and retry. */
244 			if (chip->state == FL_SYNCING) {
245 				put_chip(map, contender);
246 				mutex_unlock(&contender->mutex);
247 				goto retry;
248 			}
249 			mutex_unlock(&contender->mutex);
250 		}
251 
252 		/* Check if we have suspended erase on this chip.
253 		   Must sleep in such a case. */
254 		if (mode == FL_ERASING && shared->erasing
255 		    && shared->erasing->oldstate == FL_ERASING) {
256 			mutex_unlock(&shared->lock);
257 			set_current_state(TASK_UNINTERRUPTIBLE);
258 			add_wait_queue(&chip->wq, &wait);
259 			mutex_unlock(&chip->mutex);
260 			schedule();
261 			remove_wait_queue(&chip->wq, &wait);
262 			mutex_lock(&chip->mutex);
263 			goto retry;
264 		}
265 
266 		/* We now own it */
267 		shared->writing = chip;
268 		if (mode == FL_ERASING)
269 			shared->erasing = chip;
270 		mutex_unlock(&shared->lock);
271 	}
272 
273 	ret = chip_ready(map, chip, mode);
274 	if (ret == -EAGAIN)
275 		goto retry;
276 
277 	return ret;
278 }
279 
280 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
281 {
282 	struct lpddr_private *lpddr = map->fldrv_priv;
283 	int ret = 0;
284 	DECLARE_WAITQUEUE(wait, current);
285 
286 	/* Prevent setting state FL_SYNCING for chip in suspended state. */
287 	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
288 		goto sleep;
289 
290 	switch (chip->state) {
291 	case FL_READY:
292 	case FL_JEDEC_QUERY:
293 		return 0;
294 
295 	case FL_ERASING:
296 		if (!lpddr->qinfo->SuspEraseSupp ||
297 			!(mode == FL_READY || mode == FL_POINT))
298 			goto sleep;
299 
300 		map_write(map, CMD(LPDDR_SUSPEND),
301 			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
302 		chip->oldstate = FL_ERASING;
303 		chip->state = FL_ERASE_SUSPENDING;
304 		ret = wait_for_ready(map, chip, 0);
305 		if (ret) {
306 			/* Oops. something got wrong. */
307 			/* Resume and pretend we weren't here.  */
308 			put_chip(map, chip);
309 			printk(KERN_ERR "%s: suspend operation failed."
310 					"State may be wrong \n", map->name);
311 			return -EIO;
312 		}
313 		chip->erase_suspended = 1;
314 		chip->state = FL_READY;
315 		return 0;
316 		/* Erase suspend */
317 	case FL_POINT:
318 		/* Only if there's no operation suspended... */
319 		if (mode == FL_READY && chip->oldstate == FL_READY)
320 			return 0;
321 
322 	default:
323 sleep:
324 		set_current_state(TASK_UNINTERRUPTIBLE);
325 		add_wait_queue(&chip->wq, &wait);
326 		mutex_unlock(&chip->mutex);
327 		schedule();
328 		remove_wait_queue(&chip->wq, &wait);
329 		mutex_lock(&chip->mutex);
330 		return -EAGAIN;
331 	}
332 }
333 
334 static void put_chip(struct map_info *map, struct flchip *chip)
335 {
336 	if (chip->priv) {
337 		struct flchip_shared *shared = chip->priv;
338 		mutex_lock(&shared->lock);
339 		if (shared->writing == chip && chip->oldstate == FL_READY) {
340 			/* We own the ability to write, but we're done */
341 			shared->writing = shared->erasing;
342 			if (shared->writing && shared->writing != chip) {
343 				/* give back the ownership */
344 				struct flchip *loaner = shared->writing;
345 				mutex_lock(&loaner->mutex);
346 				mutex_unlock(&shared->lock);
347 				mutex_unlock(&chip->mutex);
348 				put_chip(map, loaner);
349 				mutex_lock(&chip->mutex);
350 				mutex_unlock(&loaner->mutex);
351 				wake_up(&chip->wq);
352 				return;
353 			}
354 			shared->erasing = NULL;
355 			shared->writing = NULL;
356 		} else if (shared->erasing == chip && shared->writing != chip) {
357 			/*
358 			 * We own the ability to erase without the ability
359 			 * to write, which means the erase was suspended
360 			 * and some other partition is currently writing.
361 			 * Don't let the switch below mess things up since
362 			 * we don't have ownership to resume anything.
363 			 */
364 			mutex_unlock(&shared->lock);
365 			wake_up(&chip->wq);
366 			return;
367 		}
368 		mutex_unlock(&shared->lock);
369 	}
370 
371 	switch (chip->oldstate) {
372 	case FL_ERASING:
373 		map_write(map, CMD(LPDDR_RESUME),
374 				map->pfow_base + PFOW_COMMAND_CODE);
375 		map_write(map, CMD(LPDDR_START_EXECUTION),
376 				map->pfow_base + PFOW_COMMAND_EXECUTE);
377 		chip->oldstate = FL_READY;
378 		chip->state = FL_ERASING;
379 		break;
380 	case FL_READY:
381 		break;
382 	default:
383 		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
384 				map->name, chip->oldstate);
385 	}
386 	wake_up(&chip->wq);
387 }
388 
389 static int do_write_buffer(struct map_info *map, struct flchip *chip,
390 			unsigned long adr, const struct kvec **pvec,
391 			unsigned long *pvec_seek, int len)
392 {
393 	struct lpddr_private *lpddr = map->fldrv_priv;
394 	map_word datum;
395 	int ret, wbufsize, word_gap, words;
396 	const struct kvec *vec;
397 	unsigned long vec_seek;
398 	unsigned long prog_buf_ofs;
399 
400 	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
401 
402 	mutex_lock(&chip->mutex);
403 	ret = get_chip(map, chip, FL_WRITING);
404 	if (ret) {
405 		mutex_unlock(&chip->mutex);
406 		return ret;
407 	}
408 	/* Figure out the number of words to write */
409 	word_gap = (-adr & (map_bankwidth(map)-1));
410 	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
411 	if (!word_gap) {
412 		words--;
413 	} else {
414 		word_gap = map_bankwidth(map) - word_gap;
415 		adr -= word_gap;
416 		datum = map_word_ff(map);
417 	}
418 	/* Write data */
419 	/* Get the program buffer offset from PFOW register data first*/
420 	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
421 				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
422 	vec = *pvec;
423 	vec_seek = *pvec_seek;
424 	do {
425 		int n = map_bankwidth(map) - word_gap;
426 
427 		if (n > vec->iov_len - vec_seek)
428 			n = vec->iov_len - vec_seek;
429 		if (n > len)
430 			n = len;
431 
432 		if (!word_gap && (len < map_bankwidth(map)))
433 			datum = map_word_ff(map);
434 
435 		datum = map_word_load_partial(map, datum,
436 				vec->iov_base + vec_seek, word_gap, n);
437 
438 		len -= n;
439 		word_gap += n;
440 		if (!len || word_gap == map_bankwidth(map)) {
441 			map_write(map, datum, prog_buf_ofs);
442 			prog_buf_ofs += map_bankwidth(map);
443 			word_gap = 0;
444 		}
445 
446 		vec_seek += n;
447 		if (vec_seek == vec->iov_len) {
448 			vec++;
449 			vec_seek = 0;
450 		}
451 	} while (len);
452 	*pvec = vec;
453 	*pvec_seek = vec_seek;
454 
455 	/* GO GO GO */
456 	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
457 	chip->state = FL_WRITING;
458 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
459 	if (ret)	{
460 		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
461 			map->name, ret, adr);
462 		goto out;
463 	}
464 
465  out:	put_chip(map, chip);
466 	mutex_unlock(&chip->mutex);
467 	return ret;
468 }
469 
470 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
471 {
472 	struct map_info *map = mtd->priv;
473 	struct lpddr_private *lpddr = map->fldrv_priv;
474 	int chipnum = adr >> lpddr->chipshift;
475 	struct flchip *chip = &lpddr->chips[chipnum];
476 	int ret;
477 
478 	mutex_lock(&chip->mutex);
479 	ret = get_chip(map, chip, FL_ERASING);
480 	if (ret) {
481 		mutex_unlock(&chip->mutex);
482 		return ret;
483 	}
484 	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
485 	chip->state = FL_ERASING;
486 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
487 	if (ret) {
488 		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
489 			map->name, ret, adr);
490 		goto out;
491 	}
492  out:	put_chip(map, chip);
493 	mutex_unlock(&chip->mutex);
494 	return ret;
495 }
496 
497 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
498 			size_t *retlen, u_char *buf)
499 {
500 	struct map_info *map = mtd->priv;
501 	struct lpddr_private *lpddr = map->fldrv_priv;
502 	int chipnum = adr >> lpddr->chipshift;
503 	struct flchip *chip = &lpddr->chips[chipnum];
504 	int ret = 0;
505 
506 	mutex_lock(&chip->mutex);
507 	ret = get_chip(map, chip, FL_READY);
508 	if (ret) {
509 		mutex_unlock(&chip->mutex);
510 		return ret;
511 	}
512 
513 	map_copy_from(map, buf, adr, len);
514 	*retlen = len;
515 
516 	put_chip(map, chip);
517 	mutex_unlock(&chip->mutex);
518 	return ret;
519 }
520 
521 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
522 			size_t *retlen, void **mtdbuf, resource_size_t *phys)
523 {
524 	struct map_info *map = mtd->priv;
525 	struct lpddr_private *lpddr = map->fldrv_priv;
526 	int chipnum = adr >> lpddr->chipshift;
527 	unsigned long ofs, last_end = 0;
528 	struct flchip *chip = &lpddr->chips[chipnum];
529 	int ret = 0;
530 
531 	if (!map->virt)
532 		return -EINVAL;
533 
534 	/* ofs: offset within the first chip that the first read should start */
535 	ofs = adr - (chipnum << lpddr->chipshift);
536 	*mtdbuf = (void *)map->virt + chip->start + ofs;
537 
538 	while (len) {
539 		unsigned long thislen;
540 
541 		if (chipnum >= lpddr->numchips)
542 			break;
543 
544 		/* We cannot point across chips that are virtually disjoint */
545 		if (!last_end)
546 			last_end = chip->start;
547 		else if (chip->start != last_end)
548 			break;
549 
550 		if ((len + ofs - 1) >> lpddr->chipshift)
551 			thislen = (1<<lpddr->chipshift) - ofs;
552 		else
553 			thislen = len;
554 		/* get the chip */
555 		mutex_lock(&chip->mutex);
556 		ret = get_chip(map, chip, FL_POINT);
557 		mutex_unlock(&chip->mutex);
558 		if (ret)
559 			break;
560 
561 		chip->state = FL_POINT;
562 		chip->ref_point_counter++;
563 		*retlen += thislen;
564 		len -= thislen;
565 
566 		ofs = 0;
567 		last_end += 1 << lpddr->chipshift;
568 		chipnum++;
569 		chip = &lpddr->chips[chipnum];
570 	}
571 	return 0;
572 }
573 
574 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
575 {
576 	struct map_info *map = mtd->priv;
577 	struct lpddr_private *lpddr = map->fldrv_priv;
578 	int chipnum = adr >> lpddr->chipshift, err = 0;
579 	unsigned long ofs;
580 
581 	/* ofs: offset within the first chip that the first read should start */
582 	ofs = adr - (chipnum << lpddr->chipshift);
583 
584 	while (len) {
585 		unsigned long thislen;
586 		struct flchip *chip;
587 
588 		chip = &lpddr->chips[chipnum];
589 		if (chipnum >= lpddr->numchips)
590 			break;
591 
592 		if ((len + ofs - 1) >> lpddr->chipshift)
593 			thislen = (1<<lpddr->chipshift) - ofs;
594 		else
595 			thislen = len;
596 
597 		mutex_lock(&chip->mutex);
598 		if (chip->state == FL_POINT) {
599 			chip->ref_point_counter--;
600 			if (chip->ref_point_counter == 0)
601 				chip->state = FL_READY;
602 		} else {
603 			printk(KERN_WARNING "%s: Warning: unpoint called on non"
604 					"pointed region\n", map->name);
605 			err = -EINVAL;
606 		}
607 
608 		put_chip(map, chip);
609 		mutex_unlock(&chip->mutex);
610 
611 		len -= thislen;
612 		ofs = 0;
613 		chipnum++;
614 	}
615 
616 	return err;
617 }
618 
619 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
620 				size_t *retlen, const u_char *buf)
621 {
622 	struct kvec vec;
623 
624 	vec.iov_base = (void *) buf;
625 	vec.iov_len = len;
626 
627 	return lpddr_writev(mtd, &vec, 1, to, retlen);
628 }
629 
630 
631 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
632 				unsigned long count, loff_t to, size_t *retlen)
633 {
634 	struct map_info *map = mtd->priv;
635 	struct lpddr_private *lpddr = map->fldrv_priv;
636 	int ret = 0;
637 	int chipnum;
638 	unsigned long ofs, vec_seek, i;
639 	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
640 	size_t len = 0;
641 
642 	for (i = 0; i < count; i++)
643 		len += vecs[i].iov_len;
644 
645 	if (!len)
646 		return 0;
647 
648 	chipnum = to >> lpddr->chipshift;
649 
650 	ofs = to;
651 	vec_seek = 0;
652 
653 	do {
654 		/* We must not cross write block boundaries */
655 		int size = wbufsize - (ofs & (wbufsize-1));
656 
657 		if (size > len)
658 			size = len;
659 
660 		ret = do_write_buffer(map, &lpddr->chips[chipnum],
661 					  ofs, &vecs, &vec_seek, size);
662 		if (ret)
663 			return ret;
664 
665 		ofs += size;
666 		(*retlen) += size;
667 		len -= size;
668 
669 		/* Be nice and reschedule with the chip in a usable
670 		 * state for other processes */
671 		cond_resched();
672 
673 	} while (len);
674 
675 	return 0;
676 }
677 
678 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
679 {
680 	unsigned long ofs, len;
681 	int ret;
682 	struct map_info *map = mtd->priv;
683 	struct lpddr_private *lpddr = map->fldrv_priv;
684 	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
685 
686 	ofs = instr->addr;
687 	len = instr->len;
688 
689 	while (len > 0) {
690 		ret = do_erase_oneblock(mtd, ofs);
691 		if (ret)
692 			return ret;
693 		ofs += size;
694 		len -= size;
695 	}
696 	instr->state = MTD_ERASE_DONE;
697 	mtd_erase_callback(instr);
698 
699 	return 0;
700 }
701 
702 #define DO_XXLOCK_LOCK		1
703 #define DO_XXLOCK_UNLOCK	2
704 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
705 {
706 	int ret = 0;
707 	struct map_info *map = mtd->priv;
708 	struct lpddr_private *lpddr = map->fldrv_priv;
709 	int chipnum = adr >> lpddr->chipshift;
710 	struct flchip *chip = &lpddr->chips[chipnum];
711 
712 	mutex_lock(&chip->mutex);
713 	ret = get_chip(map, chip, FL_LOCKING);
714 	if (ret) {
715 		mutex_unlock(&chip->mutex);
716 		return ret;
717 	}
718 
719 	if (thunk == DO_XXLOCK_LOCK) {
720 		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
721 		chip->state = FL_LOCKING;
722 	} else if (thunk == DO_XXLOCK_UNLOCK) {
723 		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
724 		chip->state = FL_UNLOCKING;
725 	} else
726 		BUG();
727 
728 	ret = wait_for_ready(map, chip, 1);
729 	if (ret)	{
730 		printk(KERN_ERR "%s: block unlock error status %d \n",
731 				map->name, ret);
732 		goto out;
733 	}
734 out:	put_chip(map, chip);
735 	mutex_unlock(&chip->mutex);
736 	return ret;
737 }
738 
739 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
740 {
741 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
742 }
743 
744 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
745 {
746 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
747 }
748 
749 MODULE_LICENSE("GPL");
750 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
751 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
752