1 /* 2 * LPDDR flash memory device operations. This module provides read, write, 3 * erase, lock/unlock support for LPDDR flash memories 4 * (C) 2008 Korolev Alexey <akorolev@infradead.org> 5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com> 6 * Many thanks to Roman Borisov for initial enabling 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 21 * 02110-1301, USA. 22 * TODO: 23 * Implement VPP management 24 * Implement XIP support 25 * Implement OTP support 26 */ 27 #include <linux/mtd/pfow.h> 28 #include <linux/mtd/qinfo.h> 29 #include <linux/slab.h> 30 #include <linux/module.h> 31 32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, 33 size_t *retlen, u_char *buf); 34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, 35 size_t len, size_t *retlen, const u_char *buf); 36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, 37 unsigned long count, loff_t to, size_t *retlen); 38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr); 39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 42 size_t *retlen, void **mtdbuf, resource_size_t *phys); 43 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); 44 static int get_chip(struct map_info *map, struct flchip *chip, int mode); 45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode); 46 static void put_chip(struct map_info *map, struct flchip *chip); 47 48 struct mtd_info *lpddr_cmdset(struct map_info *map) 49 { 50 struct lpddr_private *lpddr = map->fldrv_priv; 51 struct flchip_shared *shared; 52 struct flchip *chip; 53 struct mtd_info *mtd; 54 int numchips; 55 int i, j; 56 57 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); 58 if (!mtd) 59 return NULL; 60 mtd->priv = map; 61 mtd->type = MTD_NORFLASH; 62 63 /* Fill in the default mtd operations */ 64 mtd->_read = lpddr_read; 65 mtd->type = MTD_NORFLASH; 66 mtd->flags = MTD_CAP_NORFLASH; 67 mtd->flags &= ~MTD_BIT_WRITEABLE; 68 mtd->_erase = lpddr_erase; 69 mtd->_write = lpddr_write_buffers; 70 mtd->_writev = lpddr_writev; 71 mtd->_lock = lpddr_lock; 72 mtd->_unlock = lpddr_unlock; 73 if (map_is_linear(map)) { 74 mtd->_point = lpddr_point; 75 mtd->_unpoint = lpddr_unpoint; 76 } 77 mtd->size = 1 << lpddr->qinfo->DevSizeShift; 78 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift; 79 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift; 80 81 shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared), 82 GFP_KERNEL); 83 if (!shared) { 84 kfree(lpddr); 85 kfree(mtd); 86 return NULL; 87 } 88 89 chip = &lpddr->chips[0]; 90 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum; 91 for (i = 0; i < numchips; i++) { 92 shared[i].writing = shared[i].erasing = NULL; 93 mutex_init(&shared[i].lock); 94 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) { 95 *chip = lpddr->chips[i]; 96 chip->start += j << lpddr->chipshift; 97 chip->oldstate = chip->state = FL_READY; 98 chip->priv = &shared[i]; 99 /* those should be reset too since 100 they create memory references. */ 101 init_waitqueue_head(&chip->wq); 102 mutex_init(&chip->mutex); 103 chip++; 104 } 105 } 106 107 return mtd; 108 } 109 EXPORT_SYMBOL(lpddr_cmdset); 110 111 static int wait_for_ready(struct map_info *map, struct flchip *chip, 112 unsigned int chip_op_time) 113 { 114 unsigned int timeo, reset_timeo, sleep_time; 115 unsigned int dsr; 116 flstate_t chip_state = chip->state; 117 int ret = 0; 118 119 /* set our timeout to 8 times the expected delay */ 120 timeo = chip_op_time * 8; 121 if (!timeo) 122 timeo = 500000; 123 reset_timeo = timeo; 124 sleep_time = chip_op_time / 2; 125 126 for (;;) { 127 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR)); 128 if (dsr & DSR_READY_STATUS) 129 break; 130 if (!timeo) { 131 printk(KERN_ERR "%s: Flash timeout error state %d \n", 132 map->name, chip_state); 133 ret = -ETIME; 134 break; 135 } 136 137 /* OK Still waiting. Drop the lock, wait a while and retry. */ 138 mutex_unlock(&chip->mutex); 139 if (sleep_time >= 1000000/HZ) { 140 /* 141 * Half of the normal delay still remaining 142 * can be performed with a sleeping delay instead 143 * of busy waiting. 144 */ 145 msleep(sleep_time/1000); 146 timeo -= sleep_time; 147 sleep_time = 1000000/HZ; 148 } else { 149 udelay(1); 150 cond_resched(); 151 timeo--; 152 } 153 mutex_lock(&chip->mutex); 154 155 while (chip->state != chip_state) { 156 /* Someone's suspended the operation: sleep */ 157 DECLARE_WAITQUEUE(wait, current); 158 set_current_state(TASK_UNINTERRUPTIBLE); 159 add_wait_queue(&chip->wq, &wait); 160 mutex_unlock(&chip->mutex); 161 schedule(); 162 remove_wait_queue(&chip->wq, &wait); 163 mutex_lock(&chip->mutex); 164 } 165 if (chip->erase_suspended || chip->write_suspended) { 166 /* Suspend has occurred while sleep: reset timeout */ 167 timeo = reset_timeo; 168 chip->erase_suspended = chip->write_suspended = 0; 169 } 170 } 171 /* check status for errors */ 172 if (dsr & DSR_ERR) { 173 /* Clear DSR*/ 174 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR); 175 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n", 176 map->name, dsr); 177 print_drs_error(dsr); 178 ret = -EIO; 179 } 180 chip->state = FL_READY; 181 return ret; 182 } 183 184 static int get_chip(struct map_info *map, struct flchip *chip, int mode) 185 { 186 int ret; 187 DECLARE_WAITQUEUE(wait, current); 188 189 retry: 190 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING) 191 && chip->state != FL_SYNCING) { 192 /* 193 * OK. We have possibility for contension on the write/erase 194 * operations which are global to the real chip and not per 195 * partition. So let's fight it over in the partition which 196 * currently has authority on the operation. 197 * 198 * The rules are as follows: 199 * 200 * - any write operation must own shared->writing. 201 * 202 * - any erase operation must own _both_ shared->writing and 203 * shared->erasing. 204 * 205 * - contension arbitration is handled in the owner's context. 206 * 207 * The 'shared' struct can be read and/or written only when 208 * its lock is taken. 209 */ 210 struct flchip_shared *shared = chip->priv; 211 struct flchip *contender; 212 mutex_lock(&shared->lock); 213 contender = shared->writing; 214 if (contender && contender != chip) { 215 /* 216 * The engine to perform desired operation on this 217 * partition is already in use by someone else. 218 * Let's fight over it in the context of the chip 219 * currently using it. If it is possible to suspend, 220 * that other partition will do just that, otherwise 221 * it'll happily send us to sleep. In any case, when 222 * get_chip returns success we're clear to go ahead. 223 */ 224 ret = mutex_trylock(&contender->mutex); 225 mutex_unlock(&shared->lock); 226 if (!ret) 227 goto retry; 228 mutex_unlock(&chip->mutex); 229 ret = chip_ready(map, contender, mode); 230 mutex_lock(&chip->mutex); 231 232 if (ret == -EAGAIN) { 233 mutex_unlock(&contender->mutex); 234 goto retry; 235 } 236 if (ret) { 237 mutex_unlock(&contender->mutex); 238 return ret; 239 } 240 mutex_lock(&shared->lock); 241 242 /* We should not own chip if it is already in FL_SYNCING 243 * state. Put contender and retry. */ 244 if (chip->state == FL_SYNCING) { 245 put_chip(map, contender); 246 mutex_unlock(&contender->mutex); 247 goto retry; 248 } 249 mutex_unlock(&contender->mutex); 250 } 251 252 /* Check if we have suspended erase on this chip. 253 Must sleep in such a case. */ 254 if (mode == FL_ERASING && shared->erasing 255 && shared->erasing->oldstate == FL_ERASING) { 256 mutex_unlock(&shared->lock); 257 set_current_state(TASK_UNINTERRUPTIBLE); 258 add_wait_queue(&chip->wq, &wait); 259 mutex_unlock(&chip->mutex); 260 schedule(); 261 remove_wait_queue(&chip->wq, &wait); 262 mutex_lock(&chip->mutex); 263 goto retry; 264 } 265 266 /* We now own it */ 267 shared->writing = chip; 268 if (mode == FL_ERASING) 269 shared->erasing = chip; 270 mutex_unlock(&shared->lock); 271 } 272 273 ret = chip_ready(map, chip, mode); 274 if (ret == -EAGAIN) 275 goto retry; 276 277 return ret; 278 } 279 280 static int chip_ready(struct map_info *map, struct flchip *chip, int mode) 281 { 282 struct lpddr_private *lpddr = map->fldrv_priv; 283 int ret = 0; 284 DECLARE_WAITQUEUE(wait, current); 285 286 /* Prevent setting state FL_SYNCING for chip in suspended state. */ 287 if (FL_SYNCING == mode && FL_READY != chip->oldstate) 288 goto sleep; 289 290 switch (chip->state) { 291 case FL_READY: 292 case FL_JEDEC_QUERY: 293 return 0; 294 295 case FL_ERASING: 296 if (!lpddr->qinfo->SuspEraseSupp || 297 !(mode == FL_READY || mode == FL_POINT)) 298 goto sleep; 299 300 map_write(map, CMD(LPDDR_SUSPEND), 301 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND); 302 chip->oldstate = FL_ERASING; 303 chip->state = FL_ERASE_SUSPENDING; 304 ret = wait_for_ready(map, chip, 0); 305 if (ret) { 306 /* Oops. something got wrong. */ 307 /* Resume and pretend we weren't here. */ 308 put_chip(map, chip); 309 printk(KERN_ERR "%s: suspend operation failed." 310 "State may be wrong \n", map->name); 311 return -EIO; 312 } 313 chip->erase_suspended = 1; 314 chip->state = FL_READY; 315 return 0; 316 /* Erase suspend */ 317 case FL_POINT: 318 /* Only if there's no operation suspended... */ 319 if (mode == FL_READY && chip->oldstate == FL_READY) 320 return 0; 321 /* fall through */ 322 323 default: 324 sleep: 325 set_current_state(TASK_UNINTERRUPTIBLE); 326 add_wait_queue(&chip->wq, &wait); 327 mutex_unlock(&chip->mutex); 328 schedule(); 329 remove_wait_queue(&chip->wq, &wait); 330 mutex_lock(&chip->mutex); 331 return -EAGAIN; 332 } 333 } 334 335 static void put_chip(struct map_info *map, struct flchip *chip) 336 { 337 if (chip->priv) { 338 struct flchip_shared *shared = chip->priv; 339 mutex_lock(&shared->lock); 340 if (shared->writing == chip && chip->oldstate == FL_READY) { 341 /* We own the ability to write, but we're done */ 342 shared->writing = shared->erasing; 343 if (shared->writing && shared->writing != chip) { 344 /* give back the ownership */ 345 struct flchip *loaner = shared->writing; 346 mutex_lock(&loaner->mutex); 347 mutex_unlock(&shared->lock); 348 mutex_unlock(&chip->mutex); 349 put_chip(map, loaner); 350 mutex_lock(&chip->mutex); 351 mutex_unlock(&loaner->mutex); 352 wake_up(&chip->wq); 353 return; 354 } 355 shared->erasing = NULL; 356 shared->writing = NULL; 357 } else if (shared->erasing == chip && shared->writing != chip) { 358 /* 359 * We own the ability to erase without the ability 360 * to write, which means the erase was suspended 361 * and some other partition is currently writing. 362 * Don't let the switch below mess things up since 363 * we don't have ownership to resume anything. 364 */ 365 mutex_unlock(&shared->lock); 366 wake_up(&chip->wq); 367 return; 368 } 369 mutex_unlock(&shared->lock); 370 } 371 372 switch (chip->oldstate) { 373 case FL_ERASING: 374 map_write(map, CMD(LPDDR_RESUME), 375 map->pfow_base + PFOW_COMMAND_CODE); 376 map_write(map, CMD(LPDDR_START_EXECUTION), 377 map->pfow_base + PFOW_COMMAND_EXECUTE); 378 chip->oldstate = FL_READY; 379 chip->state = FL_ERASING; 380 break; 381 case FL_READY: 382 break; 383 default: 384 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n", 385 map->name, chip->oldstate); 386 } 387 wake_up(&chip->wq); 388 } 389 390 static int do_write_buffer(struct map_info *map, struct flchip *chip, 391 unsigned long adr, const struct kvec **pvec, 392 unsigned long *pvec_seek, int len) 393 { 394 struct lpddr_private *lpddr = map->fldrv_priv; 395 map_word datum; 396 int ret, wbufsize, word_gap, words; 397 const struct kvec *vec; 398 unsigned long vec_seek; 399 unsigned long prog_buf_ofs; 400 401 wbufsize = 1 << lpddr->qinfo->BufSizeShift; 402 403 mutex_lock(&chip->mutex); 404 ret = get_chip(map, chip, FL_WRITING); 405 if (ret) { 406 mutex_unlock(&chip->mutex); 407 return ret; 408 } 409 /* Figure out the number of words to write */ 410 word_gap = (-adr & (map_bankwidth(map)-1)); 411 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map); 412 if (!word_gap) { 413 words--; 414 } else { 415 word_gap = map_bankwidth(map) - word_gap; 416 adr -= word_gap; 417 datum = map_word_ff(map); 418 } 419 /* Write data */ 420 /* Get the program buffer offset from PFOW register data first*/ 421 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map, 422 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET)); 423 vec = *pvec; 424 vec_seek = *pvec_seek; 425 do { 426 int n = map_bankwidth(map) - word_gap; 427 428 if (n > vec->iov_len - vec_seek) 429 n = vec->iov_len - vec_seek; 430 if (n > len) 431 n = len; 432 433 if (!word_gap && (len < map_bankwidth(map))) 434 datum = map_word_ff(map); 435 436 datum = map_word_load_partial(map, datum, 437 vec->iov_base + vec_seek, word_gap, n); 438 439 len -= n; 440 word_gap += n; 441 if (!len || word_gap == map_bankwidth(map)) { 442 map_write(map, datum, prog_buf_ofs); 443 prog_buf_ofs += map_bankwidth(map); 444 word_gap = 0; 445 } 446 447 vec_seek += n; 448 if (vec_seek == vec->iov_len) { 449 vec++; 450 vec_seek = 0; 451 } 452 } while (len); 453 *pvec = vec; 454 *pvec_seek = vec_seek; 455 456 /* GO GO GO */ 457 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL); 458 chip->state = FL_WRITING; 459 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime)); 460 if (ret) { 461 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n", 462 map->name, ret, adr); 463 goto out; 464 } 465 466 out: put_chip(map, chip); 467 mutex_unlock(&chip->mutex); 468 return ret; 469 } 470 471 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) 472 { 473 struct map_info *map = mtd->priv; 474 struct lpddr_private *lpddr = map->fldrv_priv; 475 int chipnum = adr >> lpddr->chipshift; 476 struct flchip *chip = &lpddr->chips[chipnum]; 477 int ret; 478 479 mutex_lock(&chip->mutex); 480 ret = get_chip(map, chip, FL_ERASING); 481 if (ret) { 482 mutex_unlock(&chip->mutex); 483 return ret; 484 } 485 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL); 486 chip->state = FL_ERASING; 487 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000); 488 if (ret) { 489 printk(KERN_WARNING"%s Erase block error %d at : %llx\n", 490 map->name, ret, adr); 491 goto out; 492 } 493 out: put_chip(map, chip); 494 mutex_unlock(&chip->mutex); 495 return ret; 496 } 497 498 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, 499 size_t *retlen, u_char *buf) 500 { 501 struct map_info *map = mtd->priv; 502 struct lpddr_private *lpddr = map->fldrv_priv; 503 int chipnum = adr >> lpddr->chipshift; 504 struct flchip *chip = &lpddr->chips[chipnum]; 505 int ret = 0; 506 507 mutex_lock(&chip->mutex); 508 ret = get_chip(map, chip, FL_READY); 509 if (ret) { 510 mutex_unlock(&chip->mutex); 511 return ret; 512 } 513 514 map_copy_from(map, buf, adr, len); 515 *retlen = len; 516 517 put_chip(map, chip); 518 mutex_unlock(&chip->mutex); 519 return ret; 520 } 521 522 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 523 size_t *retlen, void **mtdbuf, resource_size_t *phys) 524 { 525 struct map_info *map = mtd->priv; 526 struct lpddr_private *lpddr = map->fldrv_priv; 527 int chipnum = adr >> lpddr->chipshift; 528 unsigned long ofs, last_end = 0; 529 struct flchip *chip = &lpddr->chips[chipnum]; 530 int ret = 0; 531 532 if (!map->virt) 533 return -EINVAL; 534 535 /* ofs: offset within the first chip that the first read should start */ 536 ofs = adr - (chipnum << lpddr->chipshift); 537 *mtdbuf = (void *)map->virt + chip->start + ofs; 538 539 while (len) { 540 unsigned long thislen; 541 542 if (chipnum >= lpddr->numchips) 543 break; 544 545 /* We cannot point across chips that are virtually disjoint */ 546 if (!last_end) 547 last_end = chip->start; 548 else if (chip->start != last_end) 549 break; 550 551 if ((len + ofs - 1) >> lpddr->chipshift) 552 thislen = (1<<lpddr->chipshift) - ofs; 553 else 554 thislen = len; 555 /* get the chip */ 556 mutex_lock(&chip->mutex); 557 ret = get_chip(map, chip, FL_POINT); 558 mutex_unlock(&chip->mutex); 559 if (ret) 560 break; 561 562 chip->state = FL_POINT; 563 chip->ref_point_counter++; 564 *retlen += thislen; 565 len -= thislen; 566 567 ofs = 0; 568 last_end += 1 << lpddr->chipshift; 569 chipnum++; 570 chip = &lpddr->chips[chipnum]; 571 } 572 return 0; 573 } 574 575 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) 576 { 577 struct map_info *map = mtd->priv; 578 struct lpddr_private *lpddr = map->fldrv_priv; 579 int chipnum = adr >> lpddr->chipshift, err = 0; 580 unsigned long ofs; 581 582 /* ofs: offset within the first chip that the first read should start */ 583 ofs = adr - (chipnum << lpddr->chipshift); 584 585 while (len) { 586 unsigned long thislen; 587 struct flchip *chip; 588 589 chip = &lpddr->chips[chipnum]; 590 if (chipnum >= lpddr->numchips) 591 break; 592 593 if ((len + ofs - 1) >> lpddr->chipshift) 594 thislen = (1<<lpddr->chipshift) - ofs; 595 else 596 thislen = len; 597 598 mutex_lock(&chip->mutex); 599 if (chip->state == FL_POINT) { 600 chip->ref_point_counter--; 601 if (chip->ref_point_counter == 0) 602 chip->state = FL_READY; 603 } else { 604 printk(KERN_WARNING "%s: Warning: unpoint called on non" 605 "pointed region\n", map->name); 606 err = -EINVAL; 607 } 608 609 put_chip(map, chip); 610 mutex_unlock(&chip->mutex); 611 612 len -= thislen; 613 ofs = 0; 614 chipnum++; 615 } 616 617 return err; 618 } 619 620 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, 621 size_t *retlen, const u_char *buf) 622 { 623 struct kvec vec; 624 625 vec.iov_base = (void *) buf; 626 vec.iov_len = len; 627 628 return lpddr_writev(mtd, &vec, 1, to, retlen); 629 } 630 631 632 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, 633 unsigned long count, loff_t to, size_t *retlen) 634 { 635 struct map_info *map = mtd->priv; 636 struct lpddr_private *lpddr = map->fldrv_priv; 637 int ret = 0; 638 int chipnum; 639 unsigned long ofs, vec_seek, i; 640 int wbufsize = 1 << lpddr->qinfo->BufSizeShift; 641 size_t len = 0; 642 643 for (i = 0; i < count; i++) 644 len += vecs[i].iov_len; 645 646 if (!len) 647 return 0; 648 649 chipnum = to >> lpddr->chipshift; 650 651 ofs = to; 652 vec_seek = 0; 653 654 do { 655 /* We must not cross write block boundaries */ 656 int size = wbufsize - (ofs & (wbufsize-1)); 657 658 if (size > len) 659 size = len; 660 661 ret = do_write_buffer(map, &lpddr->chips[chipnum], 662 ofs, &vecs, &vec_seek, size); 663 if (ret) 664 return ret; 665 666 ofs += size; 667 (*retlen) += size; 668 len -= size; 669 670 /* Be nice and reschedule with the chip in a usable 671 * state for other processes */ 672 cond_resched(); 673 674 } while (len); 675 676 return 0; 677 } 678 679 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) 680 { 681 unsigned long ofs, len; 682 int ret; 683 struct map_info *map = mtd->priv; 684 struct lpddr_private *lpddr = map->fldrv_priv; 685 int size = 1 << lpddr->qinfo->UniformBlockSizeShift; 686 687 ofs = instr->addr; 688 len = instr->len; 689 690 while (len > 0) { 691 ret = do_erase_oneblock(mtd, ofs); 692 if (ret) 693 return ret; 694 ofs += size; 695 len -= size; 696 } 697 698 return 0; 699 } 700 701 #define DO_XXLOCK_LOCK 1 702 #define DO_XXLOCK_UNLOCK 2 703 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) 704 { 705 int ret = 0; 706 struct map_info *map = mtd->priv; 707 struct lpddr_private *lpddr = map->fldrv_priv; 708 int chipnum = adr >> lpddr->chipshift; 709 struct flchip *chip = &lpddr->chips[chipnum]; 710 711 mutex_lock(&chip->mutex); 712 ret = get_chip(map, chip, FL_LOCKING); 713 if (ret) { 714 mutex_unlock(&chip->mutex); 715 return ret; 716 } 717 718 if (thunk == DO_XXLOCK_LOCK) { 719 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL); 720 chip->state = FL_LOCKING; 721 } else if (thunk == DO_XXLOCK_UNLOCK) { 722 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL); 723 chip->state = FL_UNLOCKING; 724 } else 725 BUG(); 726 727 ret = wait_for_ready(map, chip, 1); 728 if (ret) { 729 printk(KERN_ERR "%s: block unlock error status %d \n", 730 map->name, ret); 731 goto out; 732 } 733 out: put_chip(map, chip); 734 mutex_unlock(&chip->mutex); 735 return ret; 736 } 737 738 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 739 { 740 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK); 741 } 742 743 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 744 { 745 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK); 746 } 747 748 MODULE_LICENSE("GPL"); 749 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>"); 750 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips"); 751