xref: /openbmc/linux/drivers/mtd/lpddr/lpddr_cmds.c (revision 151f4e2b)
1 /*
2  * LPDDR flash memory device operations. This module provides read, write,
3  * erase, lock/unlock support for LPDDR flash memories
4  * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5  * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6  * Many thanks to Roman Borisov for initial enabling
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  * TODO:
23  * Implement VPP management
24  * Implement XIP support
25  * Implement OTP support
26  */
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 
32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
33 					size_t *retlen, u_char *buf);
34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
35 				size_t len, size_t *retlen, const u_char *buf);
36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
37 				unsigned long count, loff_t to, size_t *retlen);
38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42 			size_t *retlen, void **mtdbuf, resource_size_t *phys);
43 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46 static void put_chip(struct map_info *map, struct flchip *chip);
47 
48 struct mtd_info *lpddr_cmdset(struct map_info *map)
49 {
50 	struct lpddr_private *lpddr = map->fldrv_priv;
51 	struct flchip_shared *shared;
52 	struct flchip *chip;
53 	struct mtd_info *mtd;
54 	int numchips;
55 	int i, j;
56 
57 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
58 	if (!mtd)
59 		return NULL;
60 	mtd->priv = map;
61 	mtd->type = MTD_NORFLASH;
62 
63 	/* Fill in the default mtd operations */
64 	mtd->_read = lpddr_read;
65 	mtd->type = MTD_NORFLASH;
66 	mtd->flags = MTD_CAP_NORFLASH;
67 	mtd->flags &= ~MTD_BIT_WRITEABLE;
68 	mtd->_erase = lpddr_erase;
69 	mtd->_write = lpddr_write_buffers;
70 	mtd->_writev = lpddr_writev;
71 	mtd->_lock = lpddr_lock;
72 	mtd->_unlock = lpddr_unlock;
73 	if (map_is_linear(map)) {
74 		mtd->_point = lpddr_point;
75 		mtd->_unpoint = lpddr_unpoint;
76 	}
77 	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
78 	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
79 	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
80 
81 	shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
82 						GFP_KERNEL);
83 	if (!shared) {
84 		kfree(lpddr);
85 		kfree(mtd);
86 		return NULL;
87 	}
88 
89 	chip = &lpddr->chips[0];
90 	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
91 	for (i = 0; i < numchips; i++) {
92 		shared[i].writing = shared[i].erasing = NULL;
93 		mutex_init(&shared[i].lock);
94 		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
95 			*chip = lpddr->chips[i];
96 			chip->start += j << lpddr->chipshift;
97 			chip->oldstate = chip->state = FL_READY;
98 			chip->priv = &shared[i];
99 			/* those should be reset too since
100 			   they create memory references. */
101 			init_waitqueue_head(&chip->wq);
102 			mutex_init(&chip->mutex);
103 			chip++;
104 		}
105 	}
106 
107 	return mtd;
108 }
109 EXPORT_SYMBOL(lpddr_cmdset);
110 
111 static int wait_for_ready(struct map_info *map, struct flchip *chip,
112 		unsigned int chip_op_time)
113 {
114 	unsigned int timeo, reset_timeo, sleep_time;
115 	unsigned int dsr;
116 	flstate_t chip_state = chip->state;
117 	int ret = 0;
118 
119 	/* set our timeout to 8 times the expected delay */
120 	timeo = chip_op_time * 8;
121 	if (!timeo)
122 		timeo = 500000;
123 	reset_timeo = timeo;
124 	sleep_time = chip_op_time / 2;
125 
126 	for (;;) {
127 		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
128 		if (dsr & DSR_READY_STATUS)
129 			break;
130 		if (!timeo) {
131 			printk(KERN_ERR "%s: Flash timeout error state %d \n",
132 							map->name, chip_state);
133 			ret = -ETIME;
134 			break;
135 		}
136 
137 		/* OK Still waiting. Drop the lock, wait a while and retry. */
138 		mutex_unlock(&chip->mutex);
139 		if (sleep_time >= 1000000/HZ) {
140 			/*
141 			 * Half of the normal delay still remaining
142 			 * can be performed with a sleeping delay instead
143 			 * of busy waiting.
144 			 */
145 			msleep(sleep_time/1000);
146 			timeo -= sleep_time;
147 			sleep_time = 1000000/HZ;
148 		} else {
149 			udelay(1);
150 			cond_resched();
151 			timeo--;
152 		}
153 		mutex_lock(&chip->mutex);
154 
155 		while (chip->state != chip_state) {
156 			/* Someone's suspended the operation: sleep */
157 			DECLARE_WAITQUEUE(wait, current);
158 			set_current_state(TASK_UNINTERRUPTIBLE);
159 			add_wait_queue(&chip->wq, &wait);
160 			mutex_unlock(&chip->mutex);
161 			schedule();
162 			remove_wait_queue(&chip->wq, &wait);
163 			mutex_lock(&chip->mutex);
164 		}
165 		if (chip->erase_suspended || chip->write_suspended)  {
166 			/* Suspend has occurred while sleep: reset timeout */
167 			timeo = reset_timeo;
168 			chip->erase_suspended = chip->write_suspended = 0;
169 		}
170 	}
171 	/* check status for errors */
172 	if (dsr & DSR_ERR) {
173 		/* Clear DSR*/
174 		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
175 		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
176 				map->name, dsr);
177 		print_drs_error(dsr);
178 		ret = -EIO;
179 	}
180 	chip->state = FL_READY;
181 	return ret;
182 }
183 
184 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
185 {
186 	int ret;
187 	DECLARE_WAITQUEUE(wait, current);
188 
189  retry:
190 	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
191 		&& chip->state != FL_SYNCING) {
192 		/*
193 		 * OK. We have possibility for contension on the write/erase
194 		 * operations which are global to the real chip and not per
195 		 * partition.  So let's fight it over in the partition which
196 		 * currently has authority on the operation.
197 		 *
198 		 * The rules are as follows:
199 		 *
200 		 * - any write operation must own shared->writing.
201 		 *
202 		 * - any erase operation must own _both_ shared->writing and
203 		 *   shared->erasing.
204 		 *
205 		 * - contension arbitration is handled in the owner's context.
206 		 *
207 		 * The 'shared' struct can be read and/or written only when
208 		 * its lock is taken.
209 		 */
210 		struct flchip_shared *shared = chip->priv;
211 		struct flchip *contender;
212 		mutex_lock(&shared->lock);
213 		contender = shared->writing;
214 		if (contender && contender != chip) {
215 			/*
216 			 * The engine to perform desired operation on this
217 			 * partition is already in use by someone else.
218 			 * Let's fight over it in the context of the chip
219 			 * currently using it.  If it is possible to suspend,
220 			 * that other partition will do just that, otherwise
221 			 * it'll happily send us to sleep.  In any case, when
222 			 * get_chip returns success we're clear to go ahead.
223 			 */
224 			ret = mutex_trylock(&contender->mutex);
225 			mutex_unlock(&shared->lock);
226 			if (!ret)
227 				goto retry;
228 			mutex_unlock(&chip->mutex);
229 			ret = chip_ready(map, contender, mode);
230 			mutex_lock(&chip->mutex);
231 
232 			if (ret == -EAGAIN) {
233 				mutex_unlock(&contender->mutex);
234 				goto retry;
235 			}
236 			if (ret) {
237 				mutex_unlock(&contender->mutex);
238 				return ret;
239 			}
240 			mutex_lock(&shared->lock);
241 
242 			/* We should not own chip if it is already in FL_SYNCING
243 			 * state. Put contender and retry. */
244 			if (chip->state == FL_SYNCING) {
245 				put_chip(map, contender);
246 				mutex_unlock(&contender->mutex);
247 				goto retry;
248 			}
249 			mutex_unlock(&contender->mutex);
250 		}
251 
252 		/* Check if we have suspended erase on this chip.
253 		   Must sleep in such a case. */
254 		if (mode == FL_ERASING && shared->erasing
255 		    && shared->erasing->oldstate == FL_ERASING) {
256 			mutex_unlock(&shared->lock);
257 			set_current_state(TASK_UNINTERRUPTIBLE);
258 			add_wait_queue(&chip->wq, &wait);
259 			mutex_unlock(&chip->mutex);
260 			schedule();
261 			remove_wait_queue(&chip->wq, &wait);
262 			mutex_lock(&chip->mutex);
263 			goto retry;
264 		}
265 
266 		/* We now own it */
267 		shared->writing = chip;
268 		if (mode == FL_ERASING)
269 			shared->erasing = chip;
270 		mutex_unlock(&shared->lock);
271 	}
272 
273 	ret = chip_ready(map, chip, mode);
274 	if (ret == -EAGAIN)
275 		goto retry;
276 
277 	return ret;
278 }
279 
280 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
281 {
282 	struct lpddr_private *lpddr = map->fldrv_priv;
283 	int ret = 0;
284 	DECLARE_WAITQUEUE(wait, current);
285 
286 	/* Prevent setting state FL_SYNCING for chip in suspended state. */
287 	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
288 		goto sleep;
289 
290 	switch (chip->state) {
291 	case FL_READY:
292 	case FL_JEDEC_QUERY:
293 		return 0;
294 
295 	case FL_ERASING:
296 		if (!lpddr->qinfo->SuspEraseSupp ||
297 			!(mode == FL_READY || mode == FL_POINT))
298 			goto sleep;
299 
300 		map_write(map, CMD(LPDDR_SUSPEND),
301 			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
302 		chip->oldstate = FL_ERASING;
303 		chip->state = FL_ERASE_SUSPENDING;
304 		ret = wait_for_ready(map, chip, 0);
305 		if (ret) {
306 			/* Oops. something got wrong. */
307 			/* Resume and pretend we weren't here.  */
308 			put_chip(map, chip);
309 			printk(KERN_ERR "%s: suspend operation failed."
310 					"State may be wrong \n", map->name);
311 			return -EIO;
312 		}
313 		chip->erase_suspended = 1;
314 		chip->state = FL_READY;
315 		return 0;
316 		/* Erase suspend */
317 	case FL_POINT:
318 		/* Only if there's no operation suspended... */
319 		if (mode == FL_READY && chip->oldstate == FL_READY)
320 			return 0;
321 		/* fall through */
322 
323 	default:
324 sleep:
325 		set_current_state(TASK_UNINTERRUPTIBLE);
326 		add_wait_queue(&chip->wq, &wait);
327 		mutex_unlock(&chip->mutex);
328 		schedule();
329 		remove_wait_queue(&chip->wq, &wait);
330 		mutex_lock(&chip->mutex);
331 		return -EAGAIN;
332 	}
333 }
334 
335 static void put_chip(struct map_info *map, struct flchip *chip)
336 {
337 	if (chip->priv) {
338 		struct flchip_shared *shared = chip->priv;
339 		mutex_lock(&shared->lock);
340 		if (shared->writing == chip && chip->oldstate == FL_READY) {
341 			/* We own the ability to write, but we're done */
342 			shared->writing = shared->erasing;
343 			if (shared->writing && shared->writing != chip) {
344 				/* give back the ownership */
345 				struct flchip *loaner = shared->writing;
346 				mutex_lock(&loaner->mutex);
347 				mutex_unlock(&shared->lock);
348 				mutex_unlock(&chip->mutex);
349 				put_chip(map, loaner);
350 				mutex_lock(&chip->mutex);
351 				mutex_unlock(&loaner->mutex);
352 				wake_up(&chip->wq);
353 				return;
354 			}
355 			shared->erasing = NULL;
356 			shared->writing = NULL;
357 		} else if (shared->erasing == chip && shared->writing != chip) {
358 			/*
359 			 * We own the ability to erase without the ability
360 			 * to write, which means the erase was suspended
361 			 * and some other partition is currently writing.
362 			 * Don't let the switch below mess things up since
363 			 * we don't have ownership to resume anything.
364 			 */
365 			mutex_unlock(&shared->lock);
366 			wake_up(&chip->wq);
367 			return;
368 		}
369 		mutex_unlock(&shared->lock);
370 	}
371 
372 	switch (chip->oldstate) {
373 	case FL_ERASING:
374 		map_write(map, CMD(LPDDR_RESUME),
375 				map->pfow_base + PFOW_COMMAND_CODE);
376 		map_write(map, CMD(LPDDR_START_EXECUTION),
377 				map->pfow_base + PFOW_COMMAND_EXECUTE);
378 		chip->oldstate = FL_READY;
379 		chip->state = FL_ERASING;
380 		break;
381 	case FL_READY:
382 		break;
383 	default:
384 		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
385 				map->name, chip->oldstate);
386 	}
387 	wake_up(&chip->wq);
388 }
389 
390 static int do_write_buffer(struct map_info *map, struct flchip *chip,
391 			unsigned long adr, const struct kvec **pvec,
392 			unsigned long *pvec_seek, int len)
393 {
394 	struct lpddr_private *lpddr = map->fldrv_priv;
395 	map_word datum;
396 	int ret, wbufsize, word_gap, words;
397 	const struct kvec *vec;
398 	unsigned long vec_seek;
399 	unsigned long prog_buf_ofs;
400 
401 	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
402 
403 	mutex_lock(&chip->mutex);
404 	ret = get_chip(map, chip, FL_WRITING);
405 	if (ret) {
406 		mutex_unlock(&chip->mutex);
407 		return ret;
408 	}
409 	/* Figure out the number of words to write */
410 	word_gap = (-adr & (map_bankwidth(map)-1));
411 	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
412 	if (!word_gap) {
413 		words--;
414 	} else {
415 		word_gap = map_bankwidth(map) - word_gap;
416 		adr -= word_gap;
417 		datum = map_word_ff(map);
418 	}
419 	/* Write data */
420 	/* Get the program buffer offset from PFOW register data first*/
421 	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
422 				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
423 	vec = *pvec;
424 	vec_seek = *pvec_seek;
425 	do {
426 		int n = map_bankwidth(map) - word_gap;
427 
428 		if (n > vec->iov_len - vec_seek)
429 			n = vec->iov_len - vec_seek;
430 		if (n > len)
431 			n = len;
432 
433 		if (!word_gap && (len < map_bankwidth(map)))
434 			datum = map_word_ff(map);
435 
436 		datum = map_word_load_partial(map, datum,
437 				vec->iov_base + vec_seek, word_gap, n);
438 
439 		len -= n;
440 		word_gap += n;
441 		if (!len || word_gap == map_bankwidth(map)) {
442 			map_write(map, datum, prog_buf_ofs);
443 			prog_buf_ofs += map_bankwidth(map);
444 			word_gap = 0;
445 		}
446 
447 		vec_seek += n;
448 		if (vec_seek == vec->iov_len) {
449 			vec++;
450 			vec_seek = 0;
451 		}
452 	} while (len);
453 	*pvec = vec;
454 	*pvec_seek = vec_seek;
455 
456 	/* GO GO GO */
457 	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
458 	chip->state = FL_WRITING;
459 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
460 	if (ret)	{
461 		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
462 			map->name, ret, adr);
463 		goto out;
464 	}
465 
466  out:	put_chip(map, chip);
467 	mutex_unlock(&chip->mutex);
468 	return ret;
469 }
470 
471 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
472 {
473 	struct map_info *map = mtd->priv;
474 	struct lpddr_private *lpddr = map->fldrv_priv;
475 	int chipnum = adr >> lpddr->chipshift;
476 	struct flchip *chip = &lpddr->chips[chipnum];
477 	int ret;
478 
479 	mutex_lock(&chip->mutex);
480 	ret = get_chip(map, chip, FL_ERASING);
481 	if (ret) {
482 		mutex_unlock(&chip->mutex);
483 		return ret;
484 	}
485 	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
486 	chip->state = FL_ERASING;
487 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
488 	if (ret) {
489 		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
490 			map->name, ret, adr);
491 		goto out;
492 	}
493  out:	put_chip(map, chip);
494 	mutex_unlock(&chip->mutex);
495 	return ret;
496 }
497 
498 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
499 			size_t *retlen, u_char *buf)
500 {
501 	struct map_info *map = mtd->priv;
502 	struct lpddr_private *lpddr = map->fldrv_priv;
503 	int chipnum = adr >> lpddr->chipshift;
504 	struct flchip *chip = &lpddr->chips[chipnum];
505 	int ret = 0;
506 
507 	mutex_lock(&chip->mutex);
508 	ret = get_chip(map, chip, FL_READY);
509 	if (ret) {
510 		mutex_unlock(&chip->mutex);
511 		return ret;
512 	}
513 
514 	map_copy_from(map, buf, adr, len);
515 	*retlen = len;
516 
517 	put_chip(map, chip);
518 	mutex_unlock(&chip->mutex);
519 	return ret;
520 }
521 
522 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
523 			size_t *retlen, void **mtdbuf, resource_size_t *phys)
524 {
525 	struct map_info *map = mtd->priv;
526 	struct lpddr_private *lpddr = map->fldrv_priv;
527 	int chipnum = adr >> lpddr->chipshift;
528 	unsigned long ofs, last_end = 0;
529 	struct flchip *chip = &lpddr->chips[chipnum];
530 	int ret = 0;
531 
532 	if (!map->virt)
533 		return -EINVAL;
534 
535 	/* ofs: offset within the first chip that the first read should start */
536 	ofs = adr - (chipnum << lpddr->chipshift);
537 	*mtdbuf = (void *)map->virt + chip->start + ofs;
538 
539 	while (len) {
540 		unsigned long thislen;
541 
542 		if (chipnum >= lpddr->numchips)
543 			break;
544 
545 		/* We cannot point across chips that are virtually disjoint */
546 		if (!last_end)
547 			last_end = chip->start;
548 		else if (chip->start != last_end)
549 			break;
550 
551 		if ((len + ofs - 1) >> lpddr->chipshift)
552 			thislen = (1<<lpddr->chipshift) - ofs;
553 		else
554 			thislen = len;
555 		/* get the chip */
556 		mutex_lock(&chip->mutex);
557 		ret = get_chip(map, chip, FL_POINT);
558 		mutex_unlock(&chip->mutex);
559 		if (ret)
560 			break;
561 
562 		chip->state = FL_POINT;
563 		chip->ref_point_counter++;
564 		*retlen += thislen;
565 		len -= thislen;
566 
567 		ofs = 0;
568 		last_end += 1 << lpddr->chipshift;
569 		chipnum++;
570 		chip = &lpddr->chips[chipnum];
571 	}
572 	return 0;
573 }
574 
575 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
576 {
577 	struct map_info *map = mtd->priv;
578 	struct lpddr_private *lpddr = map->fldrv_priv;
579 	int chipnum = adr >> lpddr->chipshift, err = 0;
580 	unsigned long ofs;
581 
582 	/* ofs: offset within the first chip that the first read should start */
583 	ofs = adr - (chipnum << lpddr->chipshift);
584 
585 	while (len) {
586 		unsigned long thislen;
587 		struct flchip *chip;
588 
589 		chip = &lpddr->chips[chipnum];
590 		if (chipnum >= lpddr->numchips)
591 			break;
592 
593 		if ((len + ofs - 1) >> lpddr->chipshift)
594 			thislen = (1<<lpddr->chipshift) - ofs;
595 		else
596 			thislen = len;
597 
598 		mutex_lock(&chip->mutex);
599 		if (chip->state == FL_POINT) {
600 			chip->ref_point_counter--;
601 			if (chip->ref_point_counter == 0)
602 				chip->state = FL_READY;
603 		} else {
604 			printk(KERN_WARNING "%s: Warning: unpoint called on non"
605 					"pointed region\n", map->name);
606 			err = -EINVAL;
607 		}
608 
609 		put_chip(map, chip);
610 		mutex_unlock(&chip->mutex);
611 
612 		len -= thislen;
613 		ofs = 0;
614 		chipnum++;
615 	}
616 
617 	return err;
618 }
619 
620 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
621 				size_t *retlen, const u_char *buf)
622 {
623 	struct kvec vec;
624 
625 	vec.iov_base = (void *) buf;
626 	vec.iov_len = len;
627 
628 	return lpddr_writev(mtd, &vec, 1, to, retlen);
629 }
630 
631 
632 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
633 				unsigned long count, loff_t to, size_t *retlen)
634 {
635 	struct map_info *map = mtd->priv;
636 	struct lpddr_private *lpddr = map->fldrv_priv;
637 	int ret = 0;
638 	int chipnum;
639 	unsigned long ofs, vec_seek, i;
640 	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
641 	size_t len = 0;
642 
643 	for (i = 0; i < count; i++)
644 		len += vecs[i].iov_len;
645 
646 	if (!len)
647 		return 0;
648 
649 	chipnum = to >> lpddr->chipshift;
650 
651 	ofs = to;
652 	vec_seek = 0;
653 
654 	do {
655 		/* We must not cross write block boundaries */
656 		int size = wbufsize - (ofs & (wbufsize-1));
657 
658 		if (size > len)
659 			size = len;
660 
661 		ret = do_write_buffer(map, &lpddr->chips[chipnum],
662 					  ofs, &vecs, &vec_seek, size);
663 		if (ret)
664 			return ret;
665 
666 		ofs += size;
667 		(*retlen) += size;
668 		len -= size;
669 
670 		/* Be nice and reschedule with the chip in a usable
671 		 * state for other processes */
672 		cond_resched();
673 
674 	} while (len);
675 
676 	return 0;
677 }
678 
679 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
680 {
681 	unsigned long ofs, len;
682 	int ret;
683 	struct map_info *map = mtd->priv;
684 	struct lpddr_private *lpddr = map->fldrv_priv;
685 	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
686 
687 	ofs = instr->addr;
688 	len = instr->len;
689 
690 	while (len > 0) {
691 		ret = do_erase_oneblock(mtd, ofs);
692 		if (ret)
693 			return ret;
694 		ofs += size;
695 		len -= size;
696 	}
697 
698 	return 0;
699 }
700 
701 #define DO_XXLOCK_LOCK		1
702 #define DO_XXLOCK_UNLOCK	2
703 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
704 {
705 	int ret = 0;
706 	struct map_info *map = mtd->priv;
707 	struct lpddr_private *lpddr = map->fldrv_priv;
708 	int chipnum = adr >> lpddr->chipshift;
709 	struct flchip *chip = &lpddr->chips[chipnum];
710 
711 	mutex_lock(&chip->mutex);
712 	ret = get_chip(map, chip, FL_LOCKING);
713 	if (ret) {
714 		mutex_unlock(&chip->mutex);
715 		return ret;
716 	}
717 
718 	if (thunk == DO_XXLOCK_LOCK) {
719 		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
720 		chip->state = FL_LOCKING;
721 	} else if (thunk == DO_XXLOCK_UNLOCK) {
722 		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
723 		chip->state = FL_UNLOCKING;
724 	} else
725 		BUG();
726 
727 	ret = wait_for_ready(map, chip, 1);
728 	if (ret)	{
729 		printk(KERN_ERR "%s: block unlock error status %d \n",
730 				map->name, ret);
731 		goto out;
732 	}
733 out:	put_chip(map, chip);
734 	mutex_unlock(&chip->mutex);
735 	return ret;
736 }
737 
738 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
739 {
740 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
741 }
742 
743 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
744 {
745 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
746 }
747 
748 MODULE_LICENSE("GPL");
749 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
750 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
751