1 /* 2 * inftlmount.c -- INFTL mount code with extensive checks. 3 * 4 * Author: Greg Ungerer (gerg@snapgear.com) 5 * (C) Copyright 2002-2003, Greg Ungerer (gerg@snapgear.com) 6 * 7 * Based heavily on the nftlmount.c code which is: 8 * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 9 * Copyright (C) 2000 Netgem S.A. 10 * 11 * $Id: inftlmount.c,v 1.18 2005/11/07 11:14:20 gleixner Exp $ 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <asm/errno.h> 31 #include <asm/io.h> 32 #include <asm/uaccess.h> 33 #include <linux/miscdevice.h> 34 #include <linux/delay.h> 35 #include <linux/slab.h> 36 #include <linux/init.h> 37 #include <linux/mtd/mtd.h> 38 #include <linux/mtd/nftl.h> 39 #include <linux/mtd/inftl.h> 40 #include <linux/mtd/compatmac.h> 41 42 char inftlmountrev[]="$Revision: 1.18 $"; 43 44 extern int inftl_read_oob(struct mtd_info *mtd, loff_t offs, size_t len, 45 size_t *retlen, uint8_t *buf); 46 extern int inftl_write_oob(struct mtd_info *mtd, loff_t offs, size_t len, 47 size_t *retlen, uint8_t *buf); 48 49 /* 50 * find_boot_record: Find the INFTL Media Header and its Spare copy which 51 * contains the various device information of the INFTL partition and 52 * Bad Unit Table. Update the PUtable[] table according to the Bad 53 * Unit Table. PUtable[] is used for management of Erase Unit in 54 * other routines in inftlcore.c and inftlmount.c. 55 */ 56 static int find_boot_record(struct INFTLrecord *inftl) 57 { 58 struct inftl_unittail h1; 59 //struct inftl_oob oob; 60 unsigned int i, block; 61 u8 buf[SECTORSIZE]; 62 struct INFTLMediaHeader *mh = &inftl->MediaHdr; 63 struct mtd_info *mtd = inftl->mbd.mtd; 64 struct INFTLPartition *ip; 65 size_t retlen; 66 67 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: find_boot_record(inftl=%p)\n", inftl); 68 69 /* 70 * Assume logical EraseSize == physical erasesize for starting the 71 * scan. We'll sort it out later if we find a MediaHeader which says 72 * otherwise. 73 */ 74 inftl->EraseSize = inftl->mbd.mtd->erasesize; 75 inftl->nb_blocks = inftl->mbd.mtd->size / inftl->EraseSize; 76 77 inftl->MediaUnit = BLOCK_NIL; 78 79 /* Search for a valid boot record */ 80 for (block = 0; block < inftl->nb_blocks; block++) { 81 int ret; 82 83 /* 84 * Check for BNAND header first. Then whinge if it's found 85 * but later checks fail. 86 */ 87 ret = mtd->read(mtd, block * inftl->EraseSize, 88 SECTORSIZE, &retlen, buf); 89 /* We ignore ret in case the ECC of the MediaHeader is invalid 90 (which is apparently acceptable) */ 91 if (retlen != SECTORSIZE) { 92 static int warncount = 5; 93 94 if (warncount) { 95 printk(KERN_WARNING "INFTL: block read at 0x%x " 96 "of mtd%d failed: %d\n", 97 block * inftl->EraseSize, 98 inftl->mbd.mtd->index, ret); 99 if (!--warncount) 100 printk(KERN_WARNING "INFTL: further " 101 "failures for this block will " 102 "not be printed\n"); 103 } 104 continue; 105 } 106 107 if (retlen < 6 || memcmp(buf, "BNAND", 6)) { 108 /* BNAND\0 not found. Continue */ 109 continue; 110 } 111 112 /* To be safer with BIOS, also use erase mark as discriminant */ 113 if ((ret = inftl_read_oob(mtd, block * inftl->EraseSize + 114 SECTORSIZE + 8, 8, &retlen, 115 (char *)&h1) < 0)) { 116 printk(KERN_WARNING "INFTL: ANAND header found at " 117 "0x%x in mtd%d, but OOB data read failed " 118 "(err %d)\n", block * inftl->EraseSize, 119 inftl->mbd.mtd->index, ret); 120 continue; 121 } 122 123 124 /* 125 * This is the first we've seen. 126 * Copy the media header structure into place. 127 */ 128 memcpy(mh, buf, sizeof(struct INFTLMediaHeader)); 129 130 /* Read the spare media header at offset 4096 */ 131 mtd->read(mtd, block * inftl->EraseSize + 4096, 132 SECTORSIZE, &retlen, buf); 133 if (retlen != SECTORSIZE) { 134 printk(KERN_WARNING "INFTL: Unable to read spare " 135 "Media Header\n"); 136 return -1; 137 } 138 /* Check if this one is the same as the first one we found. */ 139 if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) { 140 printk(KERN_WARNING "INFTL: Primary and spare Media " 141 "Headers disagree.\n"); 142 return -1; 143 } 144 145 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks); 146 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions); 147 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions); 148 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits); 149 mh->FormatFlags = le32_to_cpu(mh->FormatFlags); 150 mh->PercentUsed = le32_to_cpu(mh->PercentUsed); 151 152 #ifdef CONFIG_MTD_DEBUG_VERBOSE 153 if (CONFIG_MTD_DEBUG_VERBOSE >= 2) { 154 printk("INFTL: Media Header ->\n" 155 " bootRecordID = %s\n" 156 " NoOfBootImageBlocks = %d\n" 157 " NoOfBinaryPartitions = %d\n" 158 " NoOfBDTLPartitions = %d\n" 159 " BlockMultiplerBits = %d\n" 160 " FormatFlgs = %d\n" 161 " OsakVersion = 0x%x\n" 162 " PercentUsed = %d\n", 163 mh->bootRecordID, mh->NoOfBootImageBlocks, 164 mh->NoOfBinaryPartitions, 165 mh->NoOfBDTLPartitions, 166 mh->BlockMultiplierBits, mh->FormatFlags, 167 mh->OsakVersion, mh->PercentUsed); 168 } 169 #endif 170 171 if (mh->NoOfBDTLPartitions == 0) { 172 printk(KERN_WARNING "INFTL: Media Header sanity check " 173 "failed: NoOfBDTLPartitions (%d) == 0, " 174 "must be at least 1\n", mh->NoOfBDTLPartitions); 175 return -1; 176 } 177 178 if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) { 179 printk(KERN_WARNING "INFTL: Media Header sanity check " 180 "failed: Total Partitions (%d) > 4, " 181 "BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions + 182 mh->NoOfBinaryPartitions, 183 mh->NoOfBDTLPartitions, 184 mh->NoOfBinaryPartitions); 185 return -1; 186 } 187 188 if (mh->BlockMultiplierBits > 1) { 189 printk(KERN_WARNING "INFTL: sorry, we don't support " 190 "UnitSizeFactor 0x%02x\n", 191 mh->BlockMultiplierBits); 192 return -1; 193 } else if (mh->BlockMultiplierBits == 1) { 194 printk(KERN_WARNING "INFTL: support for INFTL with " 195 "UnitSizeFactor 0x%02x is experimental\n", 196 mh->BlockMultiplierBits); 197 inftl->EraseSize = inftl->mbd.mtd->erasesize << 198 mh->BlockMultiplierBits; 199 inftl->nb_blocks = inftl->mbd.mtd->size / inftl->EraseSize; 200 block >>= mh->BlockMultiplierBits; 201 } 202 203 /* Scan the partitions */ 204 for (i = 0; (i < 4); i++) { 205 ip = &mh->Partitions[i]; 206 ip->virtualUnits = le32_to_cpu(ip->virtualUnits); 207 ip->firstUnit = le32_to_cpu(ip->firstUnit); 208 ip->lastUnit = le32_to_cpu(ip->lastUnit); 209 ip->flags = le32_to_cpu(ip->flags); 210 ip->spareUnits = le32_to_cpu(ip->spareUnits); 211 ip->Reserved0 = le32_to_cpu(ip->Reserved0); 212 213 #ifdef CONFIG_MTD_DEBUG_VERBOSE 214 if (CONFIG_MTD_DEBUG_VERBOSE >= 2) { 215 printk(" PARTITION[%d] ->\n" 216 " virtualUnits = %d\n" 217 " firstUnit = %d\n" 218 " lastUnit = %d\n" 219 " flags = 0x%x\n" 220 " spareUnits = %d\n", 221 i, ip->virtualUnits, ip->firstUnit, 222 ip->lastUnit, ip->flags, 223 ip->spareUnits); 224 } 225 #endif 226 227 if (ip->Reserved0 != ip->firstUnit) { 228 struct erase_info *instr = &inftl->instr; 229 230 instr->mtd = inftl->mbd.mtd; 231 232 /* 233 * Most likely this is using the 234 * undocumented qiuck mount feature. 235 * We don't support that, we will need 236 * to erase the hidden block for full 237 * compatibility. 238 */ 239 instr->addr = ip->Reserved0 * inftl->EraseSize; 240 instr->len = inftl->EraseSize; 241 mtd->erase(mtd, instr); 242 } 243 if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) { 244 printk(KERN_WARNING "INFTL: Media Header " 245 "Partition %d sanity check failed\n" 246 " firstUnit %d : lastUnit %d > " 247 "virtualUnits %d\n", i, ip->lastUnit, 248 ip->firstUnit, ip->Reserved0); 249 return -1; 250 } 251 if (ip->Reserved1 != 0) { 252 printk(KERN_WARNING "INFTL: Media Header " 253 "Partition %d sanity check failed: " 254 "Reserved1 %d != 0\n", 255 i, ip->Reserved1); 256 return -1; 257 } 258 259 if (ip->flags & INFTL_BDTL) 260 break; 261 } 262 263 if (i >= 4) { 264 printk(KERN_WARNING "INFTL: Media Header Partition " 265 "sanity check failed:\n No partition " 266 "marked as Disk Partition\n"); 267 return -1; 268 } 269 270 inftl->nb_boot_blocks = ip->firstUnit; 271 inftl->numvunits = ip->virtualUnits; 272 if (inftl->numvunits > (inftl->nb_blocks - 273 inftl->nb_boot_blocks - 2)) { 274 printk(KERN_WARNING "INFTL: Media Header sanity check " 275 "failed:\n numvunits (%d) > nb_blocks " 276 "(%d) - nb_boot_blocks(%d) - 2\n", 277 inftl->numvunits, inftl->nb_blocks, 278 inftl->nb_boot_blocks); 279 return -1; 280 } 281 282 inftl->mbd.size = inftl->numvunits * 283 (inftl->EraseSize / SECTORSIZE); 284 285 /* 286 * Block count is set to last used EUN (we won't need to keep 287 * any meta-data past that point). 288 */ 289 inftl->firstEUN = ip->firstUnit; 290 inftl->lastEUN = ip->lastUnit; 291 inftl->nb_blocks = ip->lastUnit + 1; 292 293 /* Memory alloc */ 294 inftl->PUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL); 295 if (!inftl->PUtable) { 296 printk(KERN_WARNING "INFTL: allocation of PUtable " 297 "failed (%zd bytes)\n", 298 inftl->nb_blocks * sizeof(u16)); 299 return -ENOMEM; 300 } 301 302 inftl->VUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL); 303 if (!inftl->VUtable) { 304 kfree(inftl->PUtable); 305 printk(KERN_WARNING "INFTL: allocation of VUtable " 306 "failed (%zd bytes)\n", 307 inftl->nb_blocks * sizeof(u16)); 308 return -ENOMEM; 309 } 310 311 /* Mark the blocks before INFTL MediaHeader as reserved */ 312 for (i = 0; i < inftl->nb_boot_blocks; i++) 313 inftl->PUtable[i] = BLOCK_RESERVED; 314 /* Mark all remaining blocks as potentially containing data */ 315 for (; i < inftl->nb_blocks; i++) 316 inftl->PUtable[i] = BLOCK_NOTEXPLORED; 317 318 /* Mark this boot record (NFTL MediaHeader) block as reserved */ 319 inftl->PUtable[block] = BLOCK_RESERVED; 320 321 /* Read Bad Erase Unit Table and modify PUtable[] accordingly */ 322 for (i = 0; i < inftl->nb_blocks; i++) { 323 int physblock; 324 /* If any of the physical eraseblocks are bad, don't 325 use the unit. */ 326 for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) { 327 if (inftl->mbd.mtd->block_isbad(inftl->mbd.mtd, i * inftl->EraseSize + physblock)) 328 inftl->PUtable[i] = BLOCK_RESERVED; 329 } 330 } 331 332 inftl->MediaUnit = block; 333 return 0; 334 } 335 336 /* Not found. */ 337 return -1; 338 } 339 340 static int memcmpb(void *a, int c, int n) 341 { 342 int i; 343 for (i = 0; i < n; i++) { 344 if (c != ((unsigned char *)a)[i]) 345 return 1; 346 } 347 return 0; 348 } 349 350 /* 351 * check_free_sector: check if a free sector is actually FREE, 352 * i.e. All 0xff in data and oob area. 353 */ 354 static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address, 355 int len, int check_oob) 356 { 357 u8 buf[SECTORSIZE + inftl->mbd.mtd->oobsize]; 358 struct mtd_info *mtd = inftl->mbd.mtd; 359 size_t retlen; 360 int i; 361 362 for (i = 0; i < len; i += SECTORSIZE) { 363 if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf)) 364 return -1; 365 if (memcmpb(buf, 0xff, SECTORSIZE) != 0) 366 return -1; 367 368 if (check_oob) { 369 if(inftl_read_oob(mtd, address, mtd->oobsize, 370 &retlen, &buf[SECTORSIZE]) < 0) 371 return -1; 372 if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) 373 return -1; 374 } 375 address += SECTORSIZE; 376 } 377 378 return 0; 379 } 380 381 /* 382 * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase 383 * Unit and Update INFTL metadata. Each erase operation is 384 * checked with check_free_sectors. 385 * 386 * Return: 0 when succeed, -1 on error. 387 * 388 * ToDo: 1. Is it neceressary to check_free_sector after erasing ?? 389 */ 390 int INFTL_formatblock(struct INFTLrecord *inftl, int block) 391 { 392 size_t retlen; 393 struct inftl_unittail uci; 394 struct erase_info *instr = &inftl->instr; 395 struct mtd_info *mtd = inftl->mbd.mtd; 396 int physblock; 397 398 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_formatblock(inftl=%p," 399 "block=%d)\n", inftl, block); 400 401 memset(instr, 0, sizeof(struct erase_info)); 402 403 /* FIXME: Shouldn't we be setting the 'discarded' flag to zero 404 _first_? */ 405 406 /* Use async erase interface, test return code */ 407 instr->mtd = inftl->mbd.mtd; 408 instr->addr = block * inftl->EraseSize; 409 instr->len = inftl->mbd.mtd->erasesize; 410 /* Erase one physical eraseblock at a time, even though the NAND api 411 allows us to group them. This way we if we have a failure, we can 412 mark only the failed block in the bbt. */ 413 for (physblock = 0; physblock < inftl->EraseSize; 414 physblock += instr->len, instr->addr += instr->len) { 415 mtd->erase(inftl->mbd.mtd, instr); 416 417 if (instr->state == MTD_ERASE_FAILED) { 418 printk(KERN_WARNING "INFTL: error while formatting block %d\n", 419 block); 420 goto fail; 421 } 422 423 /* 424 * Check the "freeness" of Erase Unit before updating metadata. 425 * FixMe: is this check really necessary? Since we have check 426 * the return code after the erase operation. 427 */ 428 if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0) 429 goto fail; 430 } 431 432 uci.EraseMark = cpu_to_le16(ERASE_MARK); 433 uci.EraseMark1 = cpu_to_le16(ERASE_MARK); 434 uci.Reserved[0] = 0; 435 uci.Reserved[1] = 0; 436 uci.Reserved[2] = 0; 437 uci.Reserved[3] = 0; 438 instr->addr = block * inftl->EraseSize + SECTORSIZE * 2; 439 if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0) 440 goto fail; 441 return 0; 442 fail: 443 /* could not format, update the bad block table (caller is responsible 444 for setting the PUtable to BLOCK_RESERVED on failure) */ 445 inftl->mbd.mtd->block_markbad(inftl->mbd.mtd, instr->addr); 446 return -1; 447 } 448 449 /* 450 * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase 451 * Units in a Virtual Unit Chain, i.e. all the units are disconnected. 452 * 453 * Since the chain is invalid then we will have to erase it from its 454 * head (normally for INFTL we go from the oldest). But if it has a 455 * loop then there is no oldest... 456 */ 457 static void format_chain(struct INFTLrecord *inftl, unsigned int first_block) 458 { 459 unsigned int block = first_block, block1; 460 461 printk(KERN_WARNING "INFTL: formatting chain at block %d\n", 462 first_block); 463 464 for (;;) { 465 block1 = inftl->PUtable[block]; 466 467 printk(KERN_WARNING "INFTL: formatting block %d\n", block); 468 if (INFTL_formatblock(inftl, block) < 0) { 469 /* 470 * Cannot format !!!! Mark it as Bad Unit, 471 */ 472 inftl->PUtable[block] = BLOCK_RESERVED; 473 } else { 474 inftl->PUtable[block] = BLOCK_FREE; 475 } 476 477 /* Goto next block on the chain */ 478 block = block1; 479 480 if (block == BLOCK_NIL || block >= inftl->lastEUN) 481 break; 482 } 483 } 484 485 void INFTL_dumptables(struct INFTLrecord *s) 486 { 487 int i; 488 489 printk("-------------------------------------------" 490 "----------------------------------\n"); 491 492 printk("VUtable[%d] ->", s->nb_blocks); 493 for (i = 0; i < s->nb_blocks; i++) { 494 if ((i % 8) == 0) 495 printk("\n%04x: ", i); 496 printk("%04x ", s->VUtable[i]); 497 } 498 499 printk("\n-------------------------------------------" 500 "----------------------------------\n"); 501 502 printk("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks); 503 for (i = 0; i <= s->lastEUN; i++) { 504 if ((i % 8) == 0) 505 printk("\n%04x: ", i); 506 printk("%04x ", s->PUtable[i]); 507 } 508 509 printk("\n-------------------------------------------" 510 "----------------------------------\n"); 511 512 printk("INFTL ->\n" 513 " EraseSize = %d\n" 514 " h/s/c = %d/%d/%d\n" 515 " numvunits = %d\n" 516 " firstEUN = %d\n" 517 " lastEUN = %d\n" 518 " numfreeEUNs = %d\n" 519 " LastFreeEUN = %d\n" 520 " nb_blocks = %d\n" 521 " nb_boot_blocks = %d", 522 s->EraseSize, s->heads, s->sectors, s->cylinders, 523 s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs, 524 s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks); 525 526 printk("\n-------------------------------------------" 527 "----------------------------------\n"); 528 } 529 530 void INFTL_dumpVUchains(struct INFTLrecord *s) 531 { 532 int logical, block, i; 533 534 printk("-------------------------------------------" 535 "----------------------------------\n"); 536 537 printk("INFTL Virtual Unit Chains:\n"); 538 for (logical = 0; logical < s->nb_blocks; logical++) { 539 block = s->VUtable[logical]; 540 if (block > s->nb_blocks) 541 continue; 542 printk(" LOGICAL %d --> %d ", logical, block); 543 for (i = 0; i < s->nb_blocks; i++) { 544 if (s->PUtable[block] == BLOCK_NIL) 545 break; 546 block = s->PUtable[block]; 547 printk("%d ", block); 548 } 549 printk("\n"); 550 } 551 552 printk("-------------------------------------------" 553 "----------------------------------\n"); 554 } 555 556 int INFTL_mount(struct INFTLrecord *s) 557 { 558 struct mtd_info *mtd = s->mbd.mtd; 559 unsigned int block, first_block, prev_block, last_block; 560 unsigned int first_logical_block, logical_block, erase_mark; 561 int chain_length, do_format_chain; 562 struct inftl_unithead1 h0; 563 struct inftl_unittail h1; 564 size_t retlen; 565 int i; 566 u8 *ANACtable, ANAC; 567 568 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_mount(inftl=%p)\n", s); 569 570 /* Search for INFTL MediaHeader and Spare INFTL Media Header */ 571 if (find_boot_record(s) < 0) { 572 printk(KERN_WARNING "INFTL: could not find valid boot record?\n"); 573 return -ENXIO; 574 } 575 576 /* Init the logical to physical table */ 577 for (i = 0; i < s->nb_blocks; i++) 578 s->VUtable[i] = BLOCK_NIL; 579 580 logical_block = block = BLOCK_NIL; 581 582 /* Temporary buffer to store ANAC numbers. */ 583 ANACtable = kmalloc(s->nb_blocks * sizeof(u8), GFP_KERNEL); 584 if (!ANACtable) { 585 printk(KERN_WARNING "INFTL: allocation of ANACtable " 586 "failed (%zd bytes)\n", 587 s->nb_blocks * sizeof(u8)); 588 return -ENOMEM; 589 } 590 memset(ANACtable, 0, s->nb_blocks); 591 592 /* 593 * First pass is to explore each physical unit, and construct the 594 * virtual chains that exist (newest physical unit goes into VUtable). 595 * Any block that is in any way invalid will be left in the 596 * NOTEXPLORED state. Then at the end we will try to format it and 597 * mark it as free. 598 */ 599 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 1, explore each unit\n"); 600 for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) { 601 if (s->PUtable[first_block] != BLOCK_NOTEXPLORED) 602 continue; 603 604 do_format_chain = 0; 605 first_logical_block = BLOCK_NIL; 606 last_block = BLOCK_NIL; 607 block = first_block; 608 609 for (chain_length = 0; ; chain_length++) { 610 611 if ((chain_length == 0) && 612 (s->PUtable[block] != BLOCK_NOTEXPLORED)) { 613 /* Nothing to do here, onto next block */ 614 break; 615 } 616 617 if (inftl_read_oob(mtd, block * s->EraseSize + 8, 618 8, &retlen, (char *)&h0) < 0 || 619 inftl_read_oob(mtd, block * s->EraseSize + 620 2 * SECTORSIZE + 8, 8, &retlen, 621 (char *)&h1) < 0) { 622 /* Should never happen? */ 623 do_format_chain++; 624 break; 625 } 626 627 logical_block = le16_to_cpu(h0.virtualUnitNo); 628 prev_block = le16_to_cpu(h0.prevUnitNo); 629 erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1)); 630 ANACtable[block] = h0.ANAC; 631 632 /* Previous block is relative to start of Partition */ 633 if (prev_block < s->nb_blocks) 634 prev_block += s->firstEUN; 635 636 /* Already explored partial chain? */ 637 if (s->PUtable[block] != BLOCK_NOTEXPLORED) { 638 /* Check if chain for this logical */ 639 if (logical_block == first_logical_block) { 640 if (last_block != BLOCK_NIL) 641 s->PUtable[last_block] = block; 642 } 643 break; 644 } 645 646 /* Check for invalid block */ 647 if (erase_mark != ERASE_MARK) { 648 printk(KERN_WARNING "INFTL: corrupt block %d " 649 "in chain %d, chain length %d, erase " 650 "mark 0x%x?\n", block, first_block, 651 chain_length, erase_mark); 652 /* 653 * Assume end of chain, probably incomplete 654 * fold/erase... 655 */ 656 if (chain_length == 0) 657 do_format_chain++; 658 break; 659 } 660 661 /* Check for it being free already then... */ 662 if ((logical_block == BLOCK_FREE) || 663 (logical_block == BLOCK_NIL)) { 664 s->PUtable[block] = BLOCK_FREE; 665 break; 666 } 667 668 /* Sanity checks on block numbers */ 669 if ((logical_block >= s->nb_blocks) || 670 ((prev_block >= s->nb_blocks) && 671 (prev_block != BLOCK_NIL))) { 672 if (chain_length > 0) { 673 printk(KERN_WARNING "INFTL: corrupt " 674 "block %d in chain %d?\n", 675 block, first_block); 676 do_format_chain++; 677 } 678 break; 679 } 680 681 if (first_logical_block == BLOCK_NIL) { 682 first_logical_block = logical_block; 683 } else { 684 if (first_logical_block != logical_block) { 685 /* Normal for folded chain... */ 686 break; 687 } 688 } 689 690 /* 691 * Current block is valid, so if we followed a virtual 692 * chain to get here then we can set the previous 693 * block pointer in our PUtable now. Then move onto 694 * the previous block in the chain. 695 */ 696 s->PUtable[block] = BLOCK_NIL; 697 if (last_block != BLOCK_NIL) 698 s->PUtable[last_block] = block; 699 last_block = block; 700 block = prev_block; 701 702 /* Check for end of chain */ 703 if (block == BLOCK_NIL) 704 break; 705 706 /* Validate next block before following it... */ 707 if (block > s->lastEUN) { 708 printk(KERN_WARNING "INFTL: invalid previous " 709 "block %d in chain %d?\n", block, 710 first_block); 711 do_format_chain++; 712 break; 713 } 714 } 715 716 if (do_format_chain) { 717 format_chain(s, first_block); 718 continue; 719 } 720 721 /* 722 * Looks like a valid chain then. It may not really be the 723 * newest block in the chain, but it is the newest we have 724 * found so far. We might update it in later iterations of 725 * this loop if we find something newer. 726 */ 727 s->VUtable[first_logical_block] = first_block; 728 logical_block = BLOCK_NIL; 729 } 730 731 #ifdef CONFIG_MTD_DEBUG_VERBOSE 732 if (CONFIG_MTD_DEBUG_VERBOSE >= 2) 733 INFTL_dumptables(s); 734 #endif 735 736 /* 737 * Second pass, check for infinite loops in chains. These are 738 * possible because we don't update the previous pointers when 739 * we fold chains. No big deal, just fix them up in PUtable. 740 */ 741 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 2, validate virtual chains\n"); 742 for (logical_block = 0; logical_block < s->numvunits; logical_block++) { 743 block = s->VUtable[logical_block]; 744 last_block = BLOCK_NIL; 745 746 /* Check for free/reserved/nil */ 747 if (block >= BLOCK_RESERVED) 748 continue; 749 750 ANAC = ANACtable[block]; 751 for (i = 0; i < s->numvunits; i++) { 752 if (s->PUtable[block] == BLOCK_NIL) 753 break; 754 if (s->PUtable[block] > s->lastEUN) { 755 printk(KERN_WARNING "INFTL: invalid prev %d, " 756 "in virtual chain %d\n", 757 s->PUtable[block], logical_block); 758 s->PUtable[block] = BLOCK_NIL; 759 760 } 761 if (ANACtable[block] != ANAC) { 762 /* 763 * Chain must point back to itself. This is ok, 764 * but we will need adjust the tables with this 765 * newest block and oldest block. 766 */ 767 s->VUtable[logical_block] = block; 768 s->PUtable[last_block] = BLOCK_NIL; 769 break; 770 } 771 772 ANAC--; 773 last_block = block; 774 block = s->PUtable[block]; 775 } 776 777 if (i >= s->nb_blocks) { 778 /* 779 * Uhoo, infinite chain with valid ANACS! 780 * Format whole chain... 781 */ 782 format_chain(s, first_block); 783 } 784 } 785 786 #ifdef CONFIG_MTD_DEBUG_VERBOSE 787 if (CONFIG_MTD_DEBUG_VERBOSE >= 2) 788 INFTL_dumptables(s); 789 if (CONFIG_MTD_DEBUG_VERBOSE >= 2) 790 INFTL_dumpVUchains(s); 791 #endif 792 793 /* 794 * Third pass, format unreferenced blocks and init free block count. 795 */ 796 s->numfreeEUNs = 0; 797 s->LastFreeEUN = BLOCK_NIL; 798 799 DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 3, format unused blocks\n"); 800 for (block = s->firstEUN; block <= s->lastEUN; block++) { 801 if (s->PUtable[block] == BLOCK_NOTEXPLORED) { 802 printk("INFTL: unreferenced block %d, formatting it\n", 803 block); 804 if (INFTL_formatblock(s, block) < 0) 805 s->PUtable[block] = BLOCK_RESERVED; 806 else 807 s->PUtable[block] = BLOCK_FREE; 808 } 809 if (s->PUtable[block] == BLOCK_FREE) { 810 s->numfreeEUNs++; 811 if (s->LastFreeEUN == BLOCK_NIL) 812 s->LastFreeEUN = block; 813 } 814 } 815 816 kfree(ANACtable); 817 return 0; 818 } 819