1 /* 2 * inftlmount.c -- INFTL mount code with extensive checks. 3 * 4 * Author: Greg Ungerer (gerg@snapgear.com) 5 * Copyright © 2002-2003, Greg Ungerer (gerg@snapgear.com) 6 * 7 * Based heavily on the nftlmount.c code which is: 8 * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 9 * Copyright © 2000 Netgem S.A. 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 24 */ 25 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <asm/errno.h> 29 #include <asm/io.h> 30 #include <asm/uaccess.h> 31 #include <linux/delay.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/mtd/mtd.h> 35 #include <linux/mtd/nftl.h> 36 #include <linux/mtd/inftl.h> 37 38 /* 39 * find_boot_record: Find the INFTL Media Header and its Spare copy which 40 * contains the various device information of the INFTL partition and 41 * Bad Unit Table. Update the PUtable[] table according to the Bad 42 * Unit Table. PUtable[] is used for management of Erase Unit in 43 * other routines in inftlcore.c and inftlmount.c. 44 */ 45 static int find_boot_record(struct INFTLrecord *inftl) 46 { 47 struct inftl_unittail h1; 48 //struct inftl_oob oob; 49 unsigned int i, block; 50 u8 buf[SECTORSIZE]; 51 struct INFTLMediaHeader *mh = &inftl->MediaHdr; 52 struct mtd_info *mtd = inftl->mbd.mtd; 53 struct INFTLPartition *ip; 54 size_t retlen; 55 56 pr_debug("INFTL: find_boot_record(inftl=%p)\n", inftl); 57 58 /* 59 * Assume logical EraseSize == physical erasesize for starting the 60 * scan. We'll sort it out later if we find a MediaHeader which says 61 * otherwise. 62 */ 63 inftl->EraseSize = inftl->mbd.mtd->erasesize; 64 inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; 65 66 inftl->MediaUnit = BLOCK_NIL; 67 68 /* Search for a valid boot record */ 69 for (block = 0; block < inftl->nb_blocks; block++) { 70 int ret; 71 72 /* 73 * Check for BNAND header first. Then whinge if it's found 74 * but later checks fail. 75 */ 76 ret = mtd_read(mtd, block * inftl->EraseSize, SECTORSIZE, 77 &retlen, buf); 78 /* We ignore ret in case the ECC of the MediaHeader is invalid 79 (which is apparently acceptable) */ 80 if (retlen != SECTORSIZE) { 81 static int warncount = 5; 82 83 if (warncount) { 84 printk(KERN_WARNING "INFTL: block read at 0x%x " 85 "of mtd%d failed: %d\n", 86 block * inftl->EraseSize, 87 inftl->mbd.mtd->index, ret); 88 if (!--warncount) 89 printk(KERN_WARNING "INFTL: further " 90 "failures for this block will " 91 "not be printed\n"); 92 } 93 continue; 94 } 95 96 if (retlen < 6 || memcmp(buf, "BNAND", 6)) { 97 /* BNAND\0 not found. Continue */ 98 continue; 99 } 100 101 /* To be safer with BIOS, also use erase mark as discriminant */ 102 ret = inftl_read_oob(mtd, 103 block * inftl->EraseSize + SECTORSIZE + 8, 104 8, &retlen,(char *)&h1); 105 if (ret < 0) { 106 printk(KERN_WARNING "INFTL: ANAND header found at " 107 "0x%x in mtd%d, but OOB data read failed " 108 "(err %d)\n", block * inftl->EraseSize, 109 inftl->mbd.mtd->index, ret); 110 continue; 111 } 112 113 114 /* 115 * This is the first we've seen. 116 * Copy the media header structure into place. 117 */ 118 memcpy(mh, buf, sizeof(struct INFTLMediaHeader)); 119 120 /* Read the spare media header at offset 4096 */ 121 mtd_read(mtd, block * inftl->EraseSize + 4096, SECTORSIZE, 122 &retlen, buf); 123 if (retlen != SECTORSIZE) { 124 printk(KERN_WARNING "INFTL: Unable to read spare " 125 "Media Header\n"); 126 return -1; 127 } 128 /* Check if this one is the same as the first one we found. */ 129 if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) { 130 printk(KERN_WARNING "INFTL: Primary and spare Media " 131 "Headers disagree.\n"); 132 return -1; 133 } 134 135 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks); 136 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions); 137 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions); 138 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits); 139 mh->FormatFlags = le32_to_cpu(mh->FormatFlags); 140 mh->PercentUsed = le32_to_cpu(mh->PercentUsed); 141 142 pr_debug("INFTL: Media Header ->\n" 143 " bootRecordID = %s\n" 144 " NoOfBootImageBlocks = %d\n" 145 " NoOfBinaryPartitions = %d\n" 146 " NoOfBDTLPartitions = %d\n" 147 " BlockMultiplerBits = %d\n" 148 " FormatFlgs = %d\n" 149 " OsakVersion = 0x%x\n" 150 " PercentUsed = %d\n", 151 mh->bootRecordID, mh->NoOfBootImageBlocks, 152 mh->NoOfBinaryPartitions, 153 mh->NoOfBDTLPartitions, 154 mh->BlockMultiplierBits, mh->FormatFlags, 155 mh->OsakVersion, mh->PercentUsed); 156 157 if (mh->NoOfBDTLPartitions == 0) { 158 printk(KERN_WARNING "INFTL: Media Header sanity check " 159 "failed: NoOfBDTLPartitions (%d) == 0, " 160 "must be at least 1\n", mh->NoOfBDTLPartitions); 161 return -1; 162 } 163 164 if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) { 165 printk(KERN_WARNING "INFTL: Media Header sanity check " 166 "failed: Total Partitions (%d) > 4, " 167 "BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions + 168 mh->NoOfBinaryPartitions, 169 mh->NoOfBDTLPartitions, 170 mh->NoOfBinaryPartitions); 171 return -1; 172 } 173 174 if (mh->BlockMultiplierBits > 1) { 175 printk(KERN_WARNING "INFTL: sorry, we don't support " 176 "UnitSizeFactor 0x%02x\n", 177 mh->BlockMultiplierBits); 178 return -1; 179 } else if (mh->BlockMultiplierBits == 1) { 180 printk(KERN_WARNING "INFTL: support for INFTL with " 181 "UnitSizeFactor 0x%02x is experimental\n", 182 mh->BlockMultiplierBits); 183 inftl->EraseSize = inftl->mbd.mtd->erasesize << 184 mh->BlockMultiplierBits; 185 inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; 186 block >>= mh->BlockMultiplierBits; 187 } 188 189 /* Scan the partitions */ 190 for (i = 0; (i < 4); i++) { 191 ip = &mh->Partitions[i]; 192 ip->virtualUnits = le32_to_cpu(ip->virtualUnits); 193 ip->firstUnit = le32_to_cpu(ip->firstUnit); 194 ip->lastUnit = le32_to_cpu(ip->lastUnit); 195 ip->flags = le32_to_cpu(ip->flags); 196 ip->spareUnits = le32_to_cpu(ip->spareUnits); 197 ip->Reserved0 = le32_to_cpu(ip->Reserved0); 198 199 pr_debug(" PARTITION[%d] ->\n" 200 " virtualUnits = %d\n" 201 " firstUnit = %d\n" 202 " lastUnit = %d\n" 203 " flags = 0x%x\n" 204 " spareUnits = %d\n", 205 i, ip->virtualUnits, ip->firstUnit, 206 ip->lastUnit, ip->flags, 207 ip->spareUnits); 208 209 if (ip->Reserved0 != ip->firstUnit) { 210 struct erase_info *instr = &inftl->instr; 211 212 instr->mtd = inftl->mbd.mtd; 213 214 /* 215 * Most likely this is using the 216 * undocumented qiuck mount feature. 217 * We don't support that, we will need 218 * to erase the hidden block for full 219 * compatibility. 220 */ 221 instr->addr = ip->Reserved0 * inftl->EraseSize; 222 instr->len = inftl->EraseSize; 223 mtd_erase(mtd, instr); 224 } 225 if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) { 226 printk(KERN_WARNING "INFTL: Media Header " 227 "Partition %d sanity check failed\n" 228 " firstUnit %d : lastUnit %d > " 229 "virtualUnits %d\n", i, ip->lastUnit, 230 ip->firstUnit, ip->Reserved0); 231 return -1; 232 } 233 if (ip->Reserved1 != 0) { 234 printk(KERN_WARNING "INFTL: Media Header " 235 "Partition %d sanity check failed: " 236 "Reserved1 %d != 0\n", 237 i, ip->Reserved1); 238 return -1; 239 } 240 241 if (ip->flags & INFTL_BDTL) 242 break; 243 } 244 245 if (i >= 4) { 246 printk(KERN_WARNING "INFTL: Media Header Partition " 247 "sanity check failed:\n No partition " 248 "marked as Disk Partition\n"); 249 return -1; 250 } 251 252 inftl->nb_boot_blocks = ip->firstUnit; 253 inftl->numvunits = ip->virtualUnits; 254 if (inftl->numvunits > (inftl->nb_blocks - 255 inftl->nb_boot_blocks - 2)) { 256 printk(KERN_WARNING "INFTL: Media Header sanity check " 257 "failed:\n numvunits (%d) > nb_blocks " 258 "(%d) - nb_boot_blocks(%d) - 2\n", 259 inftl->numvunits, inftl->nb_blocks, 260 inftl->nb_boot_blocks); 261 return -1; 262 } 263 264 inftl->mbd.size = inftl->numvunits * 265 (inftl->EraseSize / SECTORSIZE); 266 267 /* 268 * Block count is set to last used EUN (we won't need to keep 269 * any meta-data past that point). 270 */ 271 inftl->firstEUN = ip->firstUnit; 272 inftl->lastEUN = ip->lastUnit; 273 inftl->nb_blocks = ip->lastUnit + 1; 274 275 /* Memory alloc */ 276 inftl->PUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL); 277 if (!inftl->PUtable) { 278 printk(KERN_WARNING "INFTL: allocation of PUtable " 279 "failed (%zd bytes)\n", 280 inftl->nb_blocks * sizeof(u16)); 281 return -ENOMEM; 282 } 283 284 inftl->VUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL); 285 if (!inftl->VUtable) { 286 kfree(inftl->PUtable); 287 printk(KERN_WARNING "INFTL: allocation of VUtable " 288 "failed (%zd bytes)\n", 289 inftl->nb_blocks * sizeof(u16)); 290 return -ENOMEM; 291 } 292 293 /* Mark the blocks before INFTL MediaHeader as reserved */ 294 for (i = 0; i < inftl->nb_boot_blocks; i++) 295 inftl->PUtable[i] = BLOCK_RESERVED; 296 /* Mark all remaining blocks as potentially containing data */ 297 for (; i < inftl->nb_blocks; i++) 298 inftl->PUtable[i] = BLOCK_NOTEXPLORED; 299 300 /* Mark this boot record (NFTL MediaHeader) block as reserved */ 301 inftl->PUtable[block] = BLOCK_RESERVED; 302 303 /* Read Bad Erase Unit Table and modify PUtable[] accordingly */ 304 for (i = 0; i < inftl->nb_blocks; i++) { 305 int physblock; 306 /* If any of the physical eraseblocks are bad, don't 307 use the unit. */ 308 for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) { 309 if (mtd_block_isbad(inftl->mbd.mtd, 310 i * inftl->EraseSize + physblock)) 311 inftl->PUtable[i] = BLOCK_RESERVED; 312 } 313 } 314 315 inftl->MediaUnit = block; 316 return 0; 317 } 318 319 /* Not found. */ 320 return -1; 321 } 322 323 static int memcmpb(void *a, int c, int n) 324 { 325 int i; 326 for (i = 0; i < n; i++) { 327 if (c != ((unsigned char *)a)[i]) 328 return 1; 329 } 330 return 0; 331 } 332 333 /* 334 * check_free_sector: check if a free sector is actually FREE, 335 * i.e. All 0xff in data and oob area. 336 */ 337 static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address, 338 int len, int check_oob) 339 { 340 u8 buf[SECTORSIZE + inftl->mbd.mtd->oobsize]; 341 struct mtd_info *mtd = inftl->mbd.mtd; 342 size_t retlen; 343 int i; 344 345 for (i = 0; i < len; i += SECTORSIZE) { 346 if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) 347 return -1; 348 if (memcmpb(buf, 0xff, SECTORSIZE) != 0) 349 return -1; 350 351 if (check_oob) { 352 if(inftl_read_oob(mtd, address, mtd->oobsize, 353 &retlen, &buf[SECTORSIZE]) < 0) 354 return -1; 355 if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) 356 return -1; 357 } 358 address += SECTORSIZE; 359 } 360 361 return 0; 362 } 363 364 /* 365 * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase 366 * Unit and Update INFTL metadata. Each erase operation is 367 * checked with check_free_sectors. 368 * 369 * Return: 0 when succeed, -1 on error. 370 * 371 * ToDo: 1. Is it necessary to check_free_sector after erasing ?? 372 */ 373 int INFTL_formatblock(struct INFTLrecord *inftl, int block) 374 { 375 size_t retlen; 376 struct inftl_unittail uci; 377 struct erase_info *instr = &inftl->instr; 378 struct mtd_info *mtd = inftl->mbd.mtd; 379 int physblock; 380 381 pr_debug("INFTL: INFTL_formatblock(inftl=%p,block=%d)\n", inftl, block); 382 383 memset(instr, 0, sizeof(struct erase_info)); 384 385 /* FIXME: Shouldn't we be setting the 'discarded' flag to zero 386 _first_? */ 387 388 /* Use async erase interface, test return code */ 389 instr->mtd = inftl->mbd.mtd; 390 instr->addr = block * inftl->EraseSize; 391 instr->len = inftl->mbd.mtd->erasesize; 392 /* Erase one physical eraseblock at a time, even though the NAND api 393 allows us to group them. This way we if we have a failure, we can 394 mark only the failed block in the bbt. */ 395 for (physblock = 0; physblock < inftl->EraseSize; 396 physblock += instr->len, instr->addr += instr->len) { 397 mtd_erase(inftl->mbd.mtd, instr); 398 399 if (instr->state == MTD_ERASE_FAILED) { 400 printk(KERN_WARNING "INFTL: error while formatting block %d\n", 401 block); 402 goto fail; 403 } 404 405 /* 406 * Check the "freeness" of Erase Unit before updating metadata. 407 * FixMe: is this check really necessary? Since we have check 408 * the return code after the erase operation. 409 */ 410 if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0) 411 goto fail; 412 } 413 414 uci.EraseMark = cpu_to_le16(ERASE_MARK); 415 uci.EraseMark1 = cpu_to_le16(ERASE_MARK); 416 uci.Reserved[0] = 0; 417 uci.Reserved[1] = 0; 418 uci.Reserved[2] = 0; 419 uci.Reserved[3] = 0; 420 instr->addr = block * inftl->EraseSize + SECTORSIZE * 2; 421 if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0) 422 goto fail; 423 return 0; 424 fail: 425 /* could not format, update the bad block table (caller is responsible 426 for setting the PUtable to BLOCK_RESERVED on failure) */ 427 mtd_block_markbad(inftl->mbd.mtd, instr->addr); 428 return -1; 429 } 430 431 /* 432 * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase 433 * Units in a Virtual Unit Chain, i.e. all the units are disconnected. 434 * 435 * Since the chain is invalid then we will have to erase it from its 436 * head (normally for INFTL we go from the oldest). But if it has a 437 * loop then there is no oldest... 438 */ 439 static void format_chain(struct INFTLrecord *inftl, unsigned int first_block) 440 { 441 unsigned int block = first_block, block1; 442 443 printk(KERN_WARNING "INFTL: formatting chain at block %d\n", 444 first_block); 445 446 for (;;) { 447 block1 = inftl->PUtable[block]; 448 449 printk(KERN_WARNING "INFTL: formatting block %d\n", block); 450 if (INFTL_formatblock(inftl, block) < 0) { 451 /* 452 * Cannot format !!!! Mark it as Bad Unit, 453 */ 454 inftl->PUtable[block] = BLOCK_RESERVED; 455 } else { 456 inftl->PUtable[block] = BLOCK_FREE; 457 } 458 459 /* Goto next block on the chain */ 460 block = block1; 461 462 if (block == BLOCK_NIL || block >= inftl->lastEUN) 463 break; 464 } 465 } 466 467 void INFTL_dumptables(struct INFTLrecord *s) 468 { 469 int i; 470 471 pr_debug("-------------------------------------------" 472 "----------------------------------\n"); 473 474 pr_debug("VUtable[%d] ->", s->nb_blocks); 475 for (i = 0; i < s->nb_blocks; i++) { 476 if ((i % 8) == 0) 477 pr_debug("\n%04x: ", i); 478 pr_debug("%04x ", s->VUtable[i]); 479 } 480 481 pr_debug("\n-------------------------------------------" 482 "----------------------------------\n"); 483 484 pr_debug("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks); 485 for (i = 0; i <= s->lastEUN; i++) { 486 if ((i % 8) == 0) 487 pr_debug("\n%04x: ", i); 488 pr_debug("%04x ", s->PUtable[i]); 489 } 490 491 pr_debug("\n-------------------------------------------" 492 "----------------------------------\n"); 493 494 pr_debug("INFTL ->\n" 495 " EraseSize = %d\n" 496 " h/s/c = %d/%d/%d\n" 497 " numvunits = %d\n" 498 " firstEUN = %d\n" 499 " lastEUN = %d\n" 500 " numfreeEUNs = %d\n" 501 " LastFreeEUN = %d\n" 502 " nb_blocks = %d\n" 503 " nb_boot_blocks = %d", 504 s->EraseSize, s->heads, s->sectors, s->cylinders, 505 s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs, 506 s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks); 507 508 pr_debug("\n-------------------------------------------" 509 "----------------------------------\n"); 510 } 511 512 void INFTL_dumpVUchains(struct INFTLrecord *s) 513 { 514 int logical, block, i; 515 516 pr_debug("-------------------------------------------" 517 "----------------------------------\n"); 518 519 pr_debug("INFTL Virtual Unit Chains:\n"); 520 for (logical = 0; logical < s->nb_blocks; logical++) { 521 block = s->VUtable[logical]; 522 if (block > s->nb_blocks) 523 continue; 524 pr_debug(" LOGICAL %d --> %d ", logical, block); 525 for (i = 0; i < s->nb_blocks; i++) { 526 if (s->PUtable[block] == BLOCK_NIL) 527 break; 528 block = s->PUtable[block]; 529 pr_debug("%d ", block); 530 } 531 pr_debug("\n"); 532 } 533 534 pr_debug("-------------------------------------------" 535 "----------------------------------\n"); 536 } 537 538 int INFTL_mount(struct INFTLrecord *s) 539 { 540 struct mtd_info *mtd = s->mbd.mtd; 541 unsigned int block, first_block, prev_block, last_block; 542 unsigned int first_logical_block, logical_block, erase_mark; 543 int chain_length, do_format_chain; 544 struct inftl_unithead1 h0; 545 struct inftl_unittail h1; 546 size_t retlen; 547 int i; 548 u8 *ANACtable, ANAC; 549 550 pr_debug("INFTL: INFTL_mount(inftl=%p)\n", s); 551 552 /* Search for INFTL MediaHeader and Spare INFTL Media Header */ 553 if (find_boot_record(s) < 0) { 554 printk(KERN_WARNING "INFTL: could not find valid boot record?\n"); 555 return -ENXIO; 556 } 557 558 /* Init the logical to physical table */ 559 for (i = 0; i < s->nb_blocks; i++) 560 s->VUtable[i] = BLOCK_NIL; 561 562 logical_block = block = BLOCK_NIL; 563 564 /* Temporary buffer to store ANAC numbers. */ 565 ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL); 566 if (!ANACtable) { 567 printk(KERN_WARNING "INFTL: allocation of ANACtable " 568 "failed (%zd bytes)\n", 569 s->nb_blocks * sizeof(u8)); 570 return -ENOMEM; 571 } 572 573 /* 574 * First pass is to explore each physical unit, and construct the 575 * virtual chains that exist (newest physical unit goes into VUtable). 576 * Any block that is in any way invalid will be left in the 577 * NOTEXPLORED state. Then at the end we will try to format it and 578 * mark it as free. 579 */ 580 pr_debug("INFTL: pass 1, explore each unit\n"); 581 for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) { 582 if (s->PUtable[first_block] != BLOCK_NOTEXPLORED) 583 continue; 584 585 do_format_chain = 0; 586 first_logical_block = BLOCK_NIL; 587 last_block = BLOCK_NIL; 588 block = first_block; 589 590 for (chain_length = 0; ; chain_length++) { 591 592 if ((chain_length == 0) && 593 (s->PUtable[block] != BLOCK_NOTEXPLORED)) { 594 /* Nothing to do here, onto next block */ 595 break; 596 } 597 598 if (inftl_read_oob(mtd, block * s->EraseSize + 8, 599 8, &retlen, (char *)&h0) < 0 || 600 inftl_read_oob(mtd, block * s->EraseSize + 601 2 * SECTORSIZE + 8, 8, &retlen, 602 (char *)&h1) < 0) { 603 /* Should never happen? */ 604 do_format_chain++; 605 break; 606 } 607 608 logical_block = le16_to_cpu(h0.virtualUnitNo); 609 prev_block = le16_to_cpu(h0.prevUnitNo); 610 erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1)); 611 ANACtable[block] = h0.ANAC; 612 613 /* Previous block is relative to start of Partition */ 614 if (prev_block < s->nb_blocks) 615 prev_block += s->firstEUN; 616 617 /* Already explored partial chain? */ 618 if (s->PUtable[block] != BLOCK_NOTEXPLORED) { 619 /* Check if chain for this logical */ 620 if (logical_block == first_logical_block) { 621 if (last_block != BLOCK_NIL) 622 s->PUtable[last_block] = block; 623 } 624 break; 625 } 626 627 /* Check for invalid block */ 628 if (erase_mark != ERASE_MARK) { 629 printk(KERN_WARNING "INFTL: corrupt block %d " 630 "in chain %d, chain length %d, erase " 631 "mark 0x%x?\n", block, first_block, 632 chain_length, erase_mark); 633 /* 634 * Assume end of chain, probably incomplete 635 * fold/erase... 636 */ 637 if (chain_length == 0) 638 do_format_chain++; 639 break; 640 } 641 642 /* Check for it being free already then... */ 643 if ((logical_block == BLOCK_FREE) || 644 (logical_block == BLOCK_NIL)) { 645 s->PUtable[block] = BLOCK_FREE; 646 break; 647 } 648 649 /* Sanity checks on block numbers */ 650 if ((logical_block >= s->nb_blocks) || 651 ((prev_block >= s->nb_blocks) && 652 (prev_block != BLOCK_NIL))) { 653 if (chain_length > 0) { 654 printk(KERN_WARNING "INFTL: corrupt " 655 "block %d in chain %d?\n", 656 block, first_block); 657 do_format_chain++; 658 } 659 break; 660 } 661 662 if (first_logical_block == BLOCK_NIL) { 663 first_logical_block = logical_block; 664 } else { 665 if (first_logical_block != logical_block) { 666 /* Normal for folded chain... */ 667 break; 668 } 669 } 670 671 /* 672 * Current block is valid, so if we followed a virtual 673 * chain to get here then we can set the previous 674 * block pointer in our PUtable now. Then move onto 675 * the previous block in the chain. 676 */ 677 s->PUtable[block] = BLOCK_NIL; 678 if (last_block != BLOCK_NIL) 679 s->PUtable[last_block] = block; 680 last_block = block; 681 block = prev_block; 682 683 /* Check for end of chain */ 684 if (block == BLOCK_NIL) 685 break; 686 687 /* Validate next block before following it... */ 688 if (block > s->lastEUN) { 689 printk(KERN_WARNING "INFTL: invalid previous " 690 "block %d in chain %d?\n", block, 691 first_block); 692 do_format_chain++; 693 break; 694 } 695 } 696 697 if (do_format_chain) { 698 format_chain(s, first_block); 699 continue; 700 } 701 702 /* 703 * Looks like a valid chain then. It may not really be the 704 * newest block in the chain, but it is the newest we have 705 * found so far. We might update it in later iterations of 706 * this loop if we find something newer. 707 */ 708 s->VUtable[first_logical_block] = first_block; 709 logical_block = BLOCK_NIL; 710 } 711 712 INFTL_dumptables(s); 713 714 /* 715 * Second pass, check for infinite loops in chains. These are 716 * possible because we don't update the previous pointers when 717 * we fold chains. No big deal, just fix them up in PUtable. 718 */ 719 pr_debug("INFTL: pass 2, validate virtual chains\n"); 720 for (logical_block = 0; logical_block < s->numvunits; logical_block++) { 721 block = s->VUtable[logical_block]; 722 last_block = BLOCK_NIL; 723 724 /* Check for free/reserved/nil */ 725 if (block >= BLOCK_RESERVED) 726 continue; 727 728 ANAC = ANACtable[block]; 729 for (i = 0; i < s->numvunits; i++) { 730 if (s->PUtable[block] == BLOCK_NIL) 731 break; 732 if (s->PUtable[block] > s->lastEUN) { 733 printk(KERN_WARNING "INFTL: invalid prev %d, " 734 "in virtual chain %d\n", 735 s->PUtable[block], logical_block); 736 s->PUtable[block] = BLOCK_NIL; 737 738 } 739 if (ANACtable[block] != ANAC) { 740 /* 741 * Chain must point back to itself. This is ok, 742 * but we will need adjust the tables with this 743 * newest block and oldest block. 744 */ 745 s->VUtable[logical_block] = block; 746 s->PUtable[last_block] = BLOCK_NIL; 747 break; 748 } 749 750 ANAC--; 751 last_block = block; 752 block = s->PUtable[block]; 753 } 754 755 if (i >= s->nb_blocks) { 756 /* 757 * Uhoo, infinite chain with valid ANACS! 758 * Format whole chain... 759 */ 760 format_chain(s, first_block); 761 } 762 } 763 764 INFTL_dumptables(s); 765 INFTL_dumpVUchains(s); 766 767 /* 768 * Third pass, format unreferenced blocks and init free block count. 769 */ 770 s->numfreeEUNs = 0; 771 s->LastFreeEUN = BLOCK_NIL; 772 773 pr_debug("INFTL: pass 3, format unused blocks\n"); 774 for (block = s->firstEUN; block <= s->lastEUN; block++) { 775 if (s->PUtable[block] == BLOCK_NOTEXPLORED) { 776 printk("INFTL: unreferenced block %d, formatting it\n", 777 block); 778 if (INFTL_formatblock(s, block) < 0) 779 s->PUtable[block] = BLOCK_RESERVED; 780 else 781 s->PUtable[block] = BLOCK_FREE; 782 } 783 if (s->PUtable[block] == BLOCK_FREE) { 784 s->numfreeEUNs++; 785 if (s->LastFreeEUN == BLOCK_NIL) 786 s->LastFreeEUN = block; 787 } 788 } 789 790 kfree(ANACtable); 791 return 0; 792 } 793