1 /* 2 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework 3 * 4 * Largely derived from at91_dataflash.c: 5 * Copyright (C) 2003-2005 SAN People (Pty) Ltd 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/delay.h> 16 #include <linux/device.h> 17 #include <linux/mutex.h> 18 #include <linux/err.h> 19 #include <linux/math64.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 23 #include <linux/spi/spi.h> 24 #include <linux/spi/flash.h> 25 26 #include <linux/mtd/mtd.h> 27 #include <linux/mtd/partitions.h> 28 29 /* 30 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in 31 * each chip, which may be used for double buffered I/O; but this driver 32 * doesn't (yet) use these for any kind of i/o overlap or prefetching. 33 * 34 * Sometimes DataFlash is packaged in MMC-format cards, although the 35 * MMC stack can't (yet?) distinguish between MMC and DataFlash 36 * protocols during enumeration. 37 */ 38 39 /* reads can bypass the buffers */ 40 #define OP_READ_CONTINUOUS 0xE8 41 #define OP_READ_PAGE 0xD2 42 43 /* group B requests can run even while status reports "busy" */ 44 #define OP_READ_STATUS 0xD7 /* group B */ 45 46 /* move data between host and buffer */ 47 #define OP_READ_BUFFER1 0xD4 /* group B */ 48 #define OP_READ_BUFFER2 0xD6 /* group B */ 49 #define OP_WRITE_BUFFER1 0x84 /* group B */ 50 #define OP_WRITE_BUFFER2 0x87 /* group B */ 51 52 /* erasing flash */ 53 #define OP_ERASE_PAGE 0x81 54 #define OP_ERASE_BLOCK 0x50 55 56 /* move data between buffer and flash */ 57 #define OP_TRANSFER_BUF1 0x53 58 #define OP_TRANSFER_BUF2 0x55 59 #define OP_MREAD_BUFFER1 0xD4 60 #define OP_MREAD_BUFFER2 0xD6 61 #define OP_MWERASE_BUFFER1 0x83 62 #define OP_MWERASE_BUFFER2 0x86 63 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */ 64 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */ 65 66 /* write to buffer, then write-erase to flash */ 67 #define OP_PROGRAM_VIA_BUF1 0x82 68 #define OP_PROGRAM_VIA_BUF2 0x85 69 70 /* compare buffer to flash */ 71 #define OP_COMPARE_BUF1 0x60 72 #define OP_COMPARE_BUF2 0x61 73 74 /* read flash to buffer, then write-erase to flash */ 75 #define OP_REWRITE_VIA_BUF1 0x58 76 #define OP_REWRITE_VIA_BUF2 0x59 77 78 /* newer chips report JEDEC manufacturer and device IDs; chip 79 * serial number and OTP bits; and per-sector writeprotect. 80 */ 81 #define OP_READ_ID 0x9F 82 #define OP_READ_SECURITY 0x77 83 #define OP_WRITE_SECURITY_REVC 0x9A 84 #define OP_WRITE_SECURITY 0x9B /* revision D */ 85 86 87 struct dataflash { 88 uint8_t command[4]; 89 char name[24]; 90 91 unsigned partitioned:1; 92 93 unsigned short page_offset; /* offset in flash address */ 94 unsigned int page_size; /* of bytes per page */ 95 96 struct mutex lock; 97 struct spi_device *spi; 98 99 struct mtd_info mtd; 100 }; 101 102 #ifdef CONFIG_OF 103 static const struct of_device_id dataflash_dt_ids[] = { 104 { .compatible = "atmel,at45", }, 105 { .compatible = "atmel,dataflash", }, 106 { /* sentinel */ } 107 }; 108 #endif 109 110 /* ......................................................................... */ 111 112 /* 113 * Return the status of the DataFlash device. 114 */ 115 static inline int dataflash_status(struct spi_device *spi) 116 { 117 /* NOTE: at45db321c over 25 MHz wants to write 118 * a dummy byte after the opcode... 119 */ 120 return spi_w8r8(spi, OP_READ_STATUS); 121 } 122 123 /* 124 * Poll the DataFlash device until it is READY. 125 * This usually takes 5-20 msec or so; more for sector erase. 126 */ 127 static int dataflash_waitready(struct spi_device *spi) 128 { 129 int status; 130 131 for (;;) { 132 status = dataflash_status(spi); 133 if (status < 0) { 134 pr_debug("%s: status %d?\n", 135 dev_name(&spi->dev), status); 136 status = 0; 137 } 138 139 if (status & (1 << 7)) /* RDY/nBSY */ 140 return status; 141 142 msleep(3); 143 } 144 } 145 146 /* ......................................................................... */ 147 148 /* 149 * Erase pages of flash. 150 */ 151 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) 152 { 153 struct dataflash *priv = mtd->priv; 154 struct spi_device *spi = priv->spi; 155 struct spi_transfer x = { .tx_dma = 0, }; 156 struct spi_message msg; 157 unsigned blocksize = priv->page_size << 3; 158 uint8_t *command; 159 uint32_t rem; 160 161 pr_debug("%s: erase addr=0x%llx len 0x%llx\n", 162 dev_name(&spi->dev), (long long)instr->addr, 163 (long long)instr->len); 164 165 div_u64_rem(instr->len, priv->page_size, &rem); 166 if (rem) 167 return -EINVAL; 168 div_u64_rem(instr->addr, priv->page_size, &rem); 169 if (rem) 170 return -EINVAL; 171 172 spi_message_init(&msg); 173 174 x.tx_buf = command = priv->command; 175 x.len = 4; 176 spi_message_add_tail(&x, &msg); 177 178 mutex_lock(&priv->lock); 179 while (instr->len > 0) { 180 unsigned int pageaddr; 181 int status; 182 int do_block; 183 184 /* Calculate flash page address; use block erase (for speed) if 185 * we're at a block boundary and need to erase the whole block. 186 */ 187 pageaddr = div_u64(instr->addr, priv->page_size); 188 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize; 189 pageaddr = pageaddr << priv->page_offset; 190 191 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE; 192 command[1] = (uint8_t)(pageaddr >> 16); 193 command[2] = (uint8_t)(pageaddr >> 8); 194 command[3] = 0; 195 196 pr_debug("ERASE %s: (%x) %x %x %x [%i]\n", 197 do_block ? "block" : "page", 198 command[0], command[1], command[2], command[3], 199 pageaddr); 200 201 status = spi_sync(spi, &msg); 202 (void) dataflash_waitready(spi); 203 204 if (status < 0) { 205 printk(KERN_ERR "%s: erase %x, err %d\n", 206 dev_name(&spi->dev), pageaddr, status); 207 /* REVISIT: can retry instr->retries times; or 208 * giveup and instr->fail_addr = instr->addr; 209 */ 210 continue; 211 } 212 213 if (do_block) { 214 instr->addr += blocksize; 215 instr->len -= blocksize; 216 } else { 217 instr->addr += priv->page_size; 218 instr->len -= priv->page_size; 219 } 220 } 221 mutex_unlock(&priv->lock); 222 223 /* Inform MTD subsystem that erase is complete */ 224 instr->state = MTD_ERASE_DONE; 225 mtd_erase_callback(instr); 226 227 return 0; 228 } 229 230 /* 231 * Read from the DataFlash device. 232 * from : Start offset in flash device 233 * len : Amount to read 234 * retlen : About of data actually read 235 * buf : Buffer containing the data 236 */ 237 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, 238 size_t *retlen, u_char *buf) 239 { 240 struct dataflash *priv = mtd->priv; 241 struct spi_transfer x[2] = { { .tx_dma = 0, }, }; 242 struct spi_message msg; 243 unsigned int addr; 244 uint8_t *command; 245 int status; 246 247 pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev), 248 (unsigned)from, (unsigned)(from + len)); 249 250 /* Calculate flash page/byte address */ 251 addr = (((unsigned)from / priv->page_size) << priv->page_offset) 252 + ((unsigned)from % priv->page_size); 253 254 command = priv->command; 255 256 pr_debug("READ: (%x) %x %x %x\n", 257 command[0], command[1], command[2], command[3]); 258 259 spi_message_init(&msg); 260 261 x[0].tx_buf = command; 262 x[0].len = 8; 263 spi_message_add_tail(&x[0], &msg); 264 265 x[1].rx_buf = buf; 266 x[1].len = len; 267 spi_message_add_tail(&x[1], &msg); 268 269 mutex_lock(&priv->lock); 270 271 /* Continuous read, max clock = f(car) which may be less than 272 * the peak rate available. Some chips support commands with 273 * fewer "don't care" bytes. Both buffers stay unchanged. 274 */ 275 command[0] = OP_READ_CONTINUOUS; 276 command[1] = (uint8_t)(addr >> 16); 277 command[2] = (uint8_t)(addr >> 8); 278 command[3] = (uint8_t)(addr >> 0); 279 /* plus 4 "don't care" bytes */ 280 281 status = spi_sync(priv->spi, &msg); 282 mutex_unlock(&priv->lock); 283 284 if (status >= 0) { 285 *retlen = msg.actual_length - 8; 286 status = 0; 287 } else 288 pr_debug("%s: read %x..%x --> %d\n", 289 dev_name(&priv->spi->dev), 290 (unsigned)from, (unsigned)(from + len), 291 status); 292 return status; 293 } 294 295 /* 296 * Write to the DataFlash device. 297 * to : Start offset in flash device 298 * len : Amount to write 299 * retlen : Amount of data actually written 300 * buf : Buffer containing the data 301 */ 302 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, 303 size_t * retlen, const u_char * buf) 304 { 305 struct dataflash *priv = mtd->priv; 306 struct spi_device *spi = priv->spi; 307 struct spi_transfer x[2] = { { .tx_dma = 0, }, }; 308 struct spi_message msg; 309 unsigned int pageaddr, addr, offset, writelen; 310 size_t remaining = len; 311 u_char *writebuf = (u_char *) buf; 312 int status = -EINVAL; 313 uint8_t *command; 314 315 pr_debug("%s: write 0x%x..0x%x\n", 316 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len)); 317 318 spi_message_init(&msg); 319 320 x[0].tx_buf = command = priv->command; 321 x[0].len = 4; 322 spi_message_add_tail(&x[0], &msg); 323 324 pageaddr = ((unsigned)to / priv->page_size); 325 offset = ((unsigned)to % priv->page_size); 326 if (offset + len > priv->page_size) 327 writelen = priv->page_size - offset; 328 else 329 writelen = len; 330 331 mutex_lock(&priv->lock); 332 while (remaining > 0) { 333 pr_debug("write @ %i:%i len=%i\n", 334 pageaddr, offset, writelen); 335 336 /* REVISIT: 337 * (a) each page in a sector must be rewritten at least 338 * once every 10K sibling erase/program operations. 339 * (b) for pages that are already erased, we could 340 * use WRITE+MWRITE not PROGRAM for ~30% speedup. 341 * (c) WRITE to buffer could be done while waiting for 342 * a previous MWRITE/MWERASE to complete ... 343 * (d) error handling here seems to be mostly missing. 344 * 345 * Two persistent bits per page, plus a per-sector counter, 346 * could support (a) and (b) ... we might consider using 347 * the second half of sector zero, which is just one block, 348 * to track that state. (On AT91, that sector should also 349 * support boot-from-DataFlash.) 350 */ 351 352 addr = pageaddr << priv->page_offset; 353 354 /* (1) Maybe transfer partial page to Buffer1 */ 355 if (writelen != priv->page_size) { 356 command[0] = OP_TRANSFER_BUF1; 357 command[1] = (addr & 0x00FF0000) >> 16; 358 command[2] = (addr & 0x0000FF00) >> 8; 359 command[3] = 0; 360 361 pr_debug("TRANSFER: (%x) %x %x %x\n", 362 command[0], command[1], command[2], command[3]); 363 364 status = spi_sync(spi, &msg); 365 if (status < 0) 366 pr_debug("%s: xfer %u -> %d\n", 367 dev_name(&spi->dev), addr, status); 368 369 (void) dataflash_waitready(priv->spi); 370 } 371 372 /* (2) Program full page via Buffer1 */ 373 addr += offset; 374 command[0] = OP_PROGRAM_VIA_BUF1; 375 command[1] = (addr & 0x00FF0000) >> 16; 376 command[2] = (addr & 0x0000FF00) >> 8; 377 command[3] = (addr & 0x000000FF); 378 379 pr_debug("PROGRAM: (%x) %x %x %x\n", 380 command[0], command[1], command[2], command[3]); 381 382 x[1].tx_buf = writebuf; 383 x[1].len = writelen; 384 spi_message_add_tail(x + 1, &msg); 385 status = spi_sync(spi, &msg); 386 spi_transfer_del(x + 1); 387 if (status < 0) 388 pr_debug("%s: pgm %u/%u -> %d\n", 389 dev_name(&spi->dev), addr, writelen, status); 390 391 (void) dataflash_waitready(priv->spi); 392 393 394 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY 395 396 /* (3) Compare to Buffer1 */ 397 addr = pageaddr << priv->page_offset; 398 command[0] = OP_COMPARE_BUF1; 399 command[1] = (addr & 0x00FF0000) >> 16; 400 command[2] = (addr & 0x0000FF00) >> 8; 401 command[3] = 0; 402 403 pr_debug("COMPARE: (%x) %x %x %x\n", 404 command[0], command[1], command[2], command[3]); 405 406 status = spi_sync(spi, &msg); 407 if (status < 0) 408 pr_debug("%s: compare %u -> %d\n", 409 dev_name(&spi->dev), addr, status); 410 411 status = dataflash_waitready(priv->spi); 412 413 /* Check result of the compare operation */ 414 if (status & (1 << 6)) { 415 printk(KERN_ERR "%s: compare page %u, err %d\n", 416 dev_name(&spi->dev), pageaddr, status); 417 remaining = 0; 418 status = -EIO; 419 break; 420 } else 421 status = 0; 422 423 #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */ 424 425 remaining = remaining - writelen; 426 pageaddr++; 427 offset = 0; 428 writebuf += writelen; 429 *retlen += writelen; 430 431 if (remaining > priv->page_size) 432 writelen = priv->page_size; 433 else 434 writelen = remaining; 435 } 436 mutex_unlock(&priv->lock); 437 438 return status; 439 } 440 441 /* ......................................................................... */ 442 443 #ifdef CONFIG_MTD_DATAFLASH_OTP 444 445 static int dataflash_get_otp_info(struct mtd_info *mtd, 446 struct otp_info *info, size_t len) 447 { 448 /* Report both blocks as identical: bytes 0..64, locked. 449 * Unless the user block changed from all-ones, we can't 450 * tell whether it's still writable; so we assume it isn't. 451 */ 452 info->start = 0; 453 info->length = 64; 454 info->locked = 1; 455 return sizeof(*info); 456 } 457 458 static ssize_t otp_read(struct spi_device *spi, unsigned base, 459 uint8_t *buf, loff_t off, size_t len) 460 { 461 struct spi_message m; 462 size_t l; 463 uint8_t *scratch; 464 struct spi_transfer t; 465 int status; 466 467 if (off > 64) 468 return -EINVAL; 469 470 if ((off + len) > 64) 471 len = 64 - off; 472 473 spi_message_init(&m); 474 475 l = 4 + base + off + len; 476 scratch = kzalloc(l, GFP_KERNEL); 477 if (!scratch) 478 return -ENOMEM; 479 480 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes 481 * IN: ignore 4 bytes, data bytes 0..N (max 127) 482 */ 483 scratch[0] = OP_READ_SECURITY; 484 485 memset(&t, 0, sizeof t); 486 t.tx_buf = scratch; 487 t.rx_buf = scratch; 488 t.len = l; 489 spi_message_add_tail(&t, &m); 490 491 dataflash_waitready(spi); 492 493 status = spi_sync(spi, &m); 494 if (status >= 0) { 495 memcpy(buf, scratch + 4 + base + off, len); 496 status = len; 497 } 498 499 kfree(scratch); 500 return status; 501 } 502 503 static int dataflash_read_fact_otp(struct mtd_info *mtd, 504 loff_t from, size_t len, size_t *retlen, u_char *buf) 505 { 506 struct dataflash *priv = mtd->priv; 507 int status; 508 509 /* 64 bytes, from 0..63 ... start at 64 on-chip */ 510 mutex_lock(&priv->lock); 511 status = otp_read(priv->spi, 64, buf, from, len); 512 mutex_unlock(&priv->lock); 513 514 if (status < 0) 515 return status; 516 *retlen = status; 517 return 0; 518 } 519 520 static int dataflash_read_user_otp(struct mtd_info *mtd, 521 loff_t from, size_t len, size_t *retlen, u_char *buf) 522 { 523 struct dataflash *priv = mtd->priv; 524 int status; 525 526 /* 64 bytes, from 0..63 ... start at 0 on-chip */ 527 mutex_lock(&priv->lock); 528 status = otp_read(priv->spi, 0, buf, from, len); 529 mutex_unlock(&priv->lock); 530 531 if (status < 0) 532 return status; 533 *retlen = status; 534 return 0; 535 } 536 537 static int dataflash_write_user_otp(struct mtd_info *mtd, 538 loff_t from, size_t len, size_t *retlen, u_char *buf) 539 { 540 struct spi_message m; 541 const size_t l = 4 + 64; 542 uint8_t *scratch; 543 struct spi_transfer t; 544 struct dataflash *priv = mtd->priv; 545 int status; 546 547 if (len > 64) 548 return -EINVAL; 549 550 /* Strictly speaking, we *could* truncate the write ... but 551 * let's not do that for the only write that's ever possible. 552 */ 553 if ((from + len) > 64) 554 return -EINVAL; 555 556 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes 557 * IN: ignore all 558 */ 559 scratch = kzalloc(l, GFP_KERNEL); 560 if (!scratch) 561 return -ENOMEM; 562 scratch[0] = OP_WRITE_SECURITY; 563 memcpy(scratch + 4 + from, buf, len); 564 565 spi_message_init(&m); 566 567 memset(&t, 0, sizeof t); 568 t.tx_buf = scratch; 569 t.len = l; 570 spi_message_add_tail(&t, &m); 571 572 /* Write the OTP bits, if they've not yet been written. 573 * This modifies SRAM buffer1. 574 */ 575 mutex_lock(&priv->lock); 576 dataflash_waitready(priv->spi); 577 status = spi_sync(priv->spi, &m); 578 mutex_unlock(&priv->lock); 579 580 kfree(scratch); 581 582 if (status >= 0) { 583 status = 0; 584 *retlen = len; 585 } 586 return status; 587 } 588 589 static char *otp_setup(struct mtd_info *device, char revision) 590 { 591 device->_get_fact_prot_info = dataflash_get_otp_info; 592 device->_read_fact_prot_reg = dataflash_read_fact_otp; 593 device->_get_user_prot_info = dataflash_get_otp_info; 594 device->_read_user_prot_reg = dataflash_read_user_otp; 595 596 /* rev c parts (at45db321c and at45db1281 only!) use a 597 * different write procedure; not (yet?) implemented. 598 */ 599 if (revision > 'c') 600 device->_write_user_prot_reg = dataflash_write_user_otp; 601 602 return ", OTP"; 603 } 604 605 #else 606 607 static char *otp_setup(struct mtd_info *device, char revision) 608 { 609 return " (OTP)"; 610 } 611 612 #endif 613 614 /* ......................................................................... */ 615 616 /* 617 * Register DataFlash device with MTD subsystem. 618 */ 619 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages, 620 int pagesize, int pageoffset, char revision) 621 { 622 struct dataflash *priv; 623 struct mtd_info *device; 624 struct mtd_part_parser_data ppdata; 625 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev); 626 char *otp_tag = ""; 627 int err = 0; 628 629 priv = kzalloc(sizeof *priv, GFP_KERNEL); 630 if (!priv) 631 return -ENOMEM; 632 633 mutex_init(&priv->lock); 634 priv->spi = spi; 635 priv->page_size = pagesize; 636 priv->page_offset = pageoffset; 637 638 /* name must be usable with cmdlinepart */ 639 sprintf(priv->name, "spi%d.%d-%s", 640 spi->master->bus_num, spi->chip_select, 641 name); 642 643 device = &priv->mtd; 644 device->name = (pdata && pdata->name) ? pdata->name : priv->name; 645 device->size = nr_pages * pagesize; 646 device->erasesize = pagesize; 647 device->writesize = pagesize; 648 device->owner = THIS_MODULE; 649 device->type = MTD_DATAFLASH; 650 device->flags = MTD_WRITEABLE; 651 device->_erase = dataflash_erase; 652 device->_read = dataflash_read; 653 device->_write = dataflash_write; 654 device->priv = priv; 655 656 device->dev.parent = &spi->dev; 657 658 if (revision >= 'c') 659 otp_tag = otp_setup(device, revision); 660 661 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n", 662 name, (long long)((device->size + 1023) >> 10), 663 pagesize, otp_tag); 664 spi_set_drvdata(spi, priv); 665 666 ppdata.of_node = spi->dev.of_node; 667 err = mtd_device_parse_register(device, NULL, &ppdata, 668 pdata ? pdata->parts : NULL, 669 pdata ? pdata->nr_parts : 0); 670 671 if (!err) 672 return 0; 673 674 spi_set_drvdata(spi, NULL); 675 kfree(priv); 676 return err; 677 } 678 679 static inline int add_dataflash(struct spi_device *spi, char *name, 680 int nr_pages, int pagesize, int pageoffset) 681 { 682 return add_dataflash_otp(spi, name, nr_pages, pagesize, 683 pageoffset, 0); 684 } 685 686 struct flash_info { 687 char *name; 688 689 /* JEDEC id has a high byte of zero plus three data bytes: 690 * the manufacturer id, then a two byte device id. 691 */ 692 uint32_t jedec_id; 693 694 /* The size listed here is what works with OP_ERASE_PAGE. */ 695 unsigned nr_pages; 696 uint16_t pagesize; 697 uint16_t pageoffset; 698 699 uint16_t flags; 700 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */ 701 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */ 702 }; 703 704 static struct flash_info dataflash_data[] = { 705 706 /* 707 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, 708 * one with IS_POW2PS and the other without. The entry with the 709 * non-2^N byte page size can't name exact chip revisions without 710 * losing backwards compatibility for cmdlinepart. 711 * 712 * These newer chips also support 128-byte security registers (with 713 * 64 bytes one-time-programmable) and software write-protection. 714 */ 715 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS}, 716 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS}, 717 718 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS}, 719 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS}, 720 721 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS}, 722 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS}, 723 724 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS}, 725 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS}, 726 727 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS}, 728 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS}, 729 730 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */ 731 732 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS}, 733 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS}, 734 735 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS}, 736 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, 737 }; 738 739 static struct flash_info *jedec_probe(struct spi_device *spi) 740 { 741 int tmp; 742 uint8_t code = OP_READ_ID; 743 uint8_t id[3]; 744 uint32_t jedec; 745 struct flash_info *info; 746 int status; 747 748 /* JEDEC also defines an optional "extended device information" 749 * string for after vendor-specific data, after the three bytes 750 * we use here. Supporting some chips might require using it. 751 * 752 * If the vendor ID isn't Atmel's (0x1f), assume this call failed. 753 * That's not an error; only rev C and newer chips handle it, and 754 * only Atmel sells these chips. 755 */ 756 tmp = spi_write_then_read(spi, &code, 1, id, 3); 757 if (tmp < 0) { 758 pr_debug("%s: error %d reading JEDEC ID\n", 759 dev_name(&spi->dev), tmp); 760 return ERR_PTR(tmp); 761 } 762 if (id[0] != 0x1f) 763 return NULL; 764 765 jedec = id[0]; 766 jedec = jedec << 8; 767 jedec |= id[1]; 768 jedec = jedec << 8; 769 jedec |= id[2]; 770 771 for (tmp = 0, info = dataflash_data; 772 tmp < ARRAY_SIZE(dataflash_data); 773 tmp++, info++) { 774 if (info->jedec_id == jedec) { 775 pr_debug("%s: OTP, sector protect%s\n", 776 dev_name(&spi->dev), 777 (info->flags & SUP_POW2PS) 778 ? ", binary pagesize" : "" 779 ); 780 if (info->flags & SUP_POW2PS) { 781 status = dataflash_status(spi); 782 if (status < 0) { 783 pr_debug("%s: status error %d\n", 784 dev_name(&spi->dev), status); 785 return ERR_PTR(status); 786 } 787 if (status & 0x1) { 788 if (info->flags & IS_POW2PS) 789 return info; 790 } else { 791 if (!(info->flags & IS_POW2PS)) 792 return info; 793 } 794 } else 795 return info; 796 } 797 } 798 799 /* 800 * Treat other chips as errors ... we won't know the right page 801 * size (it might be binary) even when we can tell which density 802 * class is involved (legacy chip id scheme). 803 */ 804 dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec); 805 return ERR_PTR(-ENODEV); 806 } 807 808 /* 809 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips 810 * or else the ID code embedded in the status bits: 811 * 812 * Device Density ID code #Pages PageSize Offset 813 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9 814 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9 815 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9 816 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9 817 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10 818 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10 819 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 820 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 821 */ 822 static int dataflash_probe(struct spi_device *spi) 823 { 824 int status; 825 struct flash_info *info; 826 827 /* 828 * Try to detect dataflash by JEDEC ID. 829 * If it succeeds we know we have either a C or D part. 830 * D will support power of 2 pagesize option. 831 * Both support the security register, though with different 832 * write procedures. 833 */ 834 info = jedec_probe(spi); 835 if (IS_ERR(info)) 836 return PTR_ERR(info); 837 if (info != NULL) 838 return add_dataflash_otp(spi, info->name, info->nr_pages, 839 info->pagesize, info->pageoffset, 840 (info->flags & SUP_POW2PS) ? 'd' : 'c'); 841 842 /* 843 * Older chips support only legacy commands, identifing 844 * capacity using bits in the status byte. 845 */ 846 status = dataflash_status(spi); 847 if (status <= 0 || status == 0xff) { 848 pr_debug("%s: status error %d\n", 849 dev_name(&spi->dev), status); 850 if (status == 0 || status == 0xff) 851 status = -ENODEV; 852 return status; 853 } 854 855 /* if there's a device there, assume it's dataflash. 856 * board setup should have set spi->max_speed_max to 857 * match f(car) for continuous reads, mode 0 or 3. 858 */ 859 switch (status & 0x3c) { 860 case 0x0c: /* 0 0 1 1 x x */ 861 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9); 862 break; 863 case 0x14: /* 0 1 0 1 x x */ 864 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9); 865 break; 866 case 0x1c: /* 0 1 1 1 x x */ 867 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9); 868 break; 869 case 0x24: /* 1 0 0 1 x x */ 870 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9); 871 break; 872 case 0x2c: /* 1 0 1 1 x x */ 873 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10); 874 break; 875 case 0x34: /* 1 1 0 1 x x */ 876 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10); 877 break; 878 case 0x38: /* 1 1 1 x x x */ 879 case 0x3c: 880 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11); 881 break; 882 /* obsolete AT45DB1282 not (yet?) supported */ 883 default: 884 pr_debug("%s: unsupported device (%x)\n", dev_name(&spi->dev), 885 status & 0x3c); 886 status = -ENODEV; 887 } 888 889 if (status < 0) 890 pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev), 891 status); 892 893 return status; 894 } 895 896 static int dataflash_remove(struct spi_device *spi) 897 { 898 struct dataflash *flash = spi_get_drvdata(spi); 899 int status; 900 901 pr_debug("%s: remove\n", dev_name(&spi->dev)); 902 903 status = mtd_device_unregister(&flash->mtd); 904 if (status == 0) { 905 spi_set_drvdata(spi, NULL); 906 kfree(flash); 907 } 908 return status; 909 } 910 911 static struct spi_driver dataflash_driver = { 912 .driver = { 913 .name = "mtd_dataflash", 914 .owner = THIS_MODULE, 915 .of_match_table = of_match_ptr(dataflash_dt_ids), 916 }, 917 918 .probe = dataflash_probe, 919 .remove = dataflash_remove, 920 921 /* FIXME: investigate suspend and resume... */ 922 }; 923 924 module_spi_driver(dataflash_driver); 925 926 MODULE_LICENSE("GPL"); 927 MODULE_AUTHOR("Andrew Victor, David Brownell"); 928 MODULE_DESCRIPTION("MTD DataFlash driver"); 929 MODULE_ALIAS("spi:mtd_dataflash"); 930