1 /*
2  * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3  *
4  * Largely derived from at91_dataflash.c:
5  *  Copyright (C) 2003-2005 SAN People (Pty) Ltd
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/math64.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 
22 #include <linux/spi/spi.h>
23 #include <linux/spi/flash.h>
24 
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/partitions.h>
27 
28 /*
29  * DataFlash is a kind of SPI flash.  Most AT45 chips have two buffers in
30  * each chip, which may be used for double buffered I/O; but this driver
31  * doesn't (yet) use these for any kind of i/o overlap or prefetching.
32  *
33  * Sometimes DataFlash is packaged in MMC-format cards, although the
34  * MMC stack can't (yet?) distinguish between MMC and DataFlash
35  * protocols during enumeration.
36  */
37 
38 /* reads can bypass the buffers */
39 #define OP_READ_CONTINUOUS	0xE8
40 #define OP_READ_PAGE		0xD2
41 
42 /* group B requests can run even while status reports "busy" */
43 #define OP_READ_STATUS		0xD7	/* group B */
44 
45 /* move data between host and buffer */
46 #define OP_READ_BUFFER1		0xD4	/* group B */
47 #define OP_READ_BUFFER2		0xD6	/* group B */
48 #define OP_WRITE_BUFFER1	0x84	/* group B */
49 #define OP_WRITE_BUFFER2	0x87	/* group B */
50 
51 /* erasing flash */
52 #define OP_ERASE_PAGE		0x81
53 #define OP_ERASE_BLOCK		0x50
54 
55 /* move data between buffer and flash */
56 #define OP_TRANSFER_BUF1	0x53
57 #define OP_TRANSFER_BUF2	0x55
58 #define OP_MREAD_BUFFER1	0xD4
59 #define OP_MREAD_BUFFER2	0xD6
60 #define OP_MWERASE_BUFFER1	0x83
61 #define OP_MWERASE_BUFFER2	0x86
62 #define OP_MWRITE_BUFFER1	0x88	/* sector must be pre-erased */
63 #define OP_MWRITE_BUFFER2	0x89	/* sector must be pre-erased */
64 
65 /* write to buffer, then write-erase to flash */
66 #define OP_PROGRAM_VIA_BUF1	0x82
67 #define OP_PROGRAM_VIA_BUF2	0x85
68 
69 /* compare buffer to flash */
70 #define OP_COMPARE_BUF1		0x60
71 #define OP_COMPARE_BUF2		0x61
72 
73 /* read flash to buffer, then write-erase to flash */
74 #define OP_REWRITE_VIA_BUF1	0x58
75 #define OP_REWRITE_VIA_BUF2	0x59
76 
77 /* newer chips report JEDEC manufacturer and device IDs; chip
78  * serial number and OTP bits; and per-sector writeprotect.
79  */
80 #define OP_READ_ID		0x9F
81 #define OP_READ_SECURITY	0x77
82 #define OP_WRITE_SECURITY_REVC	0x9A
83 #define OP_WRITE_SECURITY	0x9B	/* revision D */
84 
85 
86 struct dataflash {
87 	uint8_t			command[4];
88 	char			name[24];
89 
90 	unsigned short		page_offset;	/* offset in flash address */
91 	unsigned int		page_size;	/* of bytes per page */
92 
93 	struct mutex		lock;
94 	struct spi_device	*spi;
95 
96 	struct mtd_info		mtd;
97 };
98 
99 #ifdef CONFIG_OF
100 static const struct of_device_id dataflash_dt_ids[] = {
101 	{ .compatible = "atmel,at45", },
102 	{ .compatible = "atmel,dataflash", },
103 	{ /* sentinel */ }
104 };
105 #endif
106 
107 /* ......................................................................... */
108 
109 /*
110  * Return the status of the DataFlash device.
111  */
112 static inline int dataflash_status(struct spi_device *spi)
113 {
114 	/* NOTE:  at45db321c over 25 MHz wants to write
115 	 * a dummy byte after the opcode...
116 	 */
117 	return spi_w8r8(spi, OP_READ_STATUS);
118 }
119 
120 /*
121  * Poll the DataFlash device until it is READY.
122  * This usually takes 5-20 msec or so; more for sector erase.
123  */
124 static int dataflash_waitready(struct spi_device *spi)
125 {
126 	int	status;
127 
128 	for (;;) {
129 		status = dataflash_status(spi);
130 		if (status < 0) {
131 			pr_debug("%s: status %d?\n",
132 					dev_name(&spi->dev), status);
133 			status = 0;
134 		}
135 
136 		if (status & (1 << 7))	/* RDY/nBSY */
137 			return status;
138 
139 		msleep(3);
140 	}
141 }
142 
143 /* ......................................................................... */
144 
145 /*
146  * Erase pages of flash.
147  */
148 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
149 {
150 	struct dataflash	*priv = mtd->priv;
151 	struct spi_device	*spi = priv->spi;
152 	struct spi_transfer	x = { .tx_dma = 0, };
153 	struct spi_message	msg;
154 	unsigned		blocksize = priv->page_size << 3;
155 	uint8_t			*command;
156 	uint32_t		rem;
157 
158 	pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
159 	      dev_name(&spi->dev), (long long)instr->addr,
160 	      (long long)instr->len);
161 
162 	div_u64_rem(instr->len, priv->page_size, &rem);
163 	if (rem)
164 		return -EINVAL;
165 	div_u64_rem(instr->addr, priv->page_size, &rem);
166 	if (rem)
167 		return -EINVAL;
168 
169 	spi_message_init(&msg);
170 
171 	x.tx_buf = command = priv->command;
172 	x.len = 4;
173 	spi_message_add_tail(&x, &msg);
174 
175 	mutex_lock(&priv->lock);
176 	while (instr->len > 0) {
177 		unsigned int	pageaddr;
178 		int		status;
179 		int		do_block;
180 
181 		/* Calculate flash page address; use block erase (for speed) if
182 		 * we're at a block boundary and need to erase the whole block.
183 		 */
184 		pageaddr = div_u64(instr->addr, priv->page_size);
185 		do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
186 		pageaddr = pageaddr << priv->page_offset;
187 
188 		command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
189 		command[1] = (uint8_t)(pageaddr >> 16);
190 		command[2] = (uint8_t)(pageaddr >> 8);
191 		command[3] = 0;
192 
193 		pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
194 			do_block ? "block" : "page",
195 			command[0], command[1], command[2], command[3],
196 			pageaddr);
197 
198 		status = spi_sync(spi, &msg);
199 		(void) dataflash_waitready(spi);
200 
201 		if (status < 0) {
202 			printk(KERN_ERR "%s: erase %x, err %d\n",
203 				dev_name(&spi->dev), pageaddr, status);
204 			/* REVISIT:  can retry instr->retries times; or
205 			 * giveup and instr->fail_addr = instr->addr;
206 			 */
207 			continue;
208 		}
209 
210 		if (do_block) {
211 			instr->addr += blocksize;
212 			instr->len -= blocksize;
213 		} else {
214 			instr->addr += priv->page_size;
215 			instr->len -= priv->page_size;
216 		}
217 	}
218 	mutex_unlock(&priv->lock);
219 
220 	/* Inform MTD subsystem that erase is complete */
221 	instr->state = MTD_ERASE_DONE;
222 	mtd_erase_callback(instr);
223 
224 	return 0;
225 }
226 
227 /*
228  * Read from the DataFlash device.
229  *   from   : Start offset in flash device
230  *   len    : Amount to read
231  *   retlen : About of data actually read
232  *   buf    : Buffer containing the data
233  */
234 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
235 			       size_t *retlen, u_char *buf)
236 {
237 	struct dataflash	*priv = mtd->priv;
238 	struct spi_transfer	x[2] = { { .tx_dma = 0, }, };
239 	struct spi_message	msg;
240 	unsigned int		addr;
241 	uint8_t			*command;
242 	int			status;
243 
244 	pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
245 			(unsigned)from, (unsigned)(from + len));
246 
247 	/* Calculate flash page/byte address */
248 	addr = (((unsigned)from / priv->page_size) << priv->page_offset)
249 		+ ((unsigned)from % priv->page_size);
250 
251 	command = priv->command;
252 
253 	pr_debug("READ: (%x) %x %x %x\n",
254 		command[0], command[1], command[2], command[3]);
255 
256 	spi_message_init(&msg);
257 
258 	x[0].tx_buf = command;
259 	x[0].len = 8;
260 	spi_message_add_tail(&x[0], &msg);
261 
262 	x[1].rx_buf = buf;
263 	x[1].len = len;
264 	spi_message_add_tail(&x[1], &msg);
265 
266 	mutex_lock(&priv->lock);
267 
268 	/* Continuous read, max clock = f(car) which may be less than
269 	 * the peak rate available.  Some chips support commands with
270 	 * fewer "don't care" bytes.  Both buffers stay unchanged.
271 	 */
272 	command[0] = OP_READ_CONTINUOUS;
273 	command[1] = (uint8_t)(addr >> 16);
274 	command[2] = (uint8_t)(addr >> 8);
275 	command[3] = (uint8_t)(addr >> 0);
276 	/* plus 4 "don't care" bytes */
277 
278 	status = spi_sync(priv->spi, &msg);
279 	mutex_unlock(&priv->lock);
280 
281 	if (status >= 0) {
282 		*retlen = msg.actual_length - 8;
283 		status = 0;
284 	} else
285 		pr_debug("%s: read %x..%x --> %d\n",
286 			dev_name(&priv->spi->dev),
287 			(unsigned)from, (unsigned)(from + len),
288 			status);
289 	return status;
290 }
291 
292 /*
293  * Write to the DataFlash device.
294  *   to     : Start offset in flash device
295  *   len    : Amount to write
296  *   retlen : Amount of data actually written
297  *   buf    : Buffer containing the data
298  */
299 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
300 				size_t * retlen, const u_char * buf)
301 {
302 	struct dataflash	*priv = mtd->priv;
303 	struct spi_device	*spi = priv->spi;
304 	struct spi_transfer	x[2] = { { .tx_dma = 0, }, };
305 	struct spi_message	msg;
306 	unsigned int		pageaddr, addr, offset, writelen;
307 	size_t			remaining = len;
308 	u_char			*writebuf = (u_char *) buf;
309 	int			status = -EINVAL;
310 	uint8_t			*command;
311 
312 	pr_debug("%s: write 0x%x..0x%x\n",
313 		dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
314 
315 	spi_message_init(&msg);
316 
317 	x[0].tx_buf = command = priv->command;
318 	x[0].len = 4;
319 	spi_message_add_tail(&x[0], &msg);
320 
321 	pageaddr = ((unsigned)to / priv->page_size);
322 	offset = ((unsigned)to % priv->page_size);
323 	if (offset + len > priv->page_size)
324 		writelen = priv->page_size - offset;
325 	else
326 		writelen = len;
327 
328 	mutex_lock(&priv->lock);
329 	while (remaining > 0) {
330 		pr_debug("write @ %i:%i len=%i\n",
331 			pageaddr, offset, writelen);
332 
333 		/* REVISIT:
334 		 * (a) each page in a sector must be rewritten at least
335 		 *     once every 10K sibling erase/program operations.
336 		 * (b) for pages that are already erased, we could
337 		 *     use WRITE+MWRITE not PROGRAM for ~30% speedup.
338 		 * (c) WRITE to buffer could be done while waiting for
339 		 *     a previous MWRITE/MWERASE to complete ...
340 		 * (d) error handling here seems to be mostly missing.
341 		 *
342 		 * Two persistent bits per page, plus a per-sector counter,
343 		 * could support (a) and (b) ... we might consider using
344 		 * the second half of sector zero, which is just one block,
345 		 * to track that state.  (On AT91, that sector should also
346 		 * support boot-from-DataFlash.)
347 		 */
348 
349 		addr = pageaddr << priv->page_offset;
350 
351 		/* (1) Maybe transfer partial page to Buffer1 */
352 		if (writelen != priv->page_size) {
353 			command[0] = OP_TRANSFER_BUF1;
354 			command[1] = (addr & 0x00FF0000) >> 16;
355 			command[2] = (addr & 0x0000FF00) >> 8;
356 			command[3] = 0;
357 
358 			pr_debug("TRANSFER: (%x) %x %x %x\n",
359 				command[0], command[1], command[2], command[3]);
360 
361 			status = spi_sync(spi, &msg);
362 			if (status < 0)
363 				pr_debug("%s: xfer %u -> %d\n",
364 					dev_name(&spi->dev), addr, status);
365 
366 			(void) dataflash_waitready(priv->spi);
367 		}
368 
369 		/* (2) Program full page via Buffer1 */
370 		addr += offset;
371 		command[0] = OP_PROGRAM_VIA_BUF1;
372 		command[1] = (addr & 0x00FF0000) >> 16;
373 		command[2] = (addr & 0x0000FF00) >> 8;
374 		command[3] = (addr & 0x000000FF);
375 
376 		pr_debug("PROGRAM: (%x) %x %x %x\n",
377 			command[0], command[1], command[2], command[3]);
378 
379 		x[1].tx_buf = writebuf;
380 		x[1].len = writelen;
381 		spi_message_add_tail(x + 1, &msg);
382 		status = spi_sync(spi, &msg);
383 		spi_transfer_del(x + 1);
384 		if (status < 0)
385 			pr_debug("%s: pgm %u/%u -> %d\n",
386 				dev_name(&spi->dev), addr, writelen, status);
387 
388 		(void) dataflash_waitready(priv->spi);
389 
390 
391 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
392 
393 		/* (3) Compare to Buffer1 */
394 		addr = pageaddr << priv->page_offset;
395 		command[0] = OP_COMPARE_BUF1;
396 		command[1] = (addr & 0x00FF0000) >> 16;
397 		command[2] = (addr & 0x0000FF00) >> 8;
398 		command[3] = 0;
399 
400 		pr_debug("COMPARE: (%x) %x %x %x\n",
401 			command[0], command[1], command[2], command[3]);
402 
403 		status = spi_sync(spi, &msg);
404 		if (status < 0)
405 			pr_debug("%s: compare %u -> %d\n",
406 				dev_name(&spi->dev), addr, status);
407 
408 		status = dataflash_waitready(priv->spi);
409 
410 		/* Check result of the compare operation */
411 		if (status & (1 << 6)) {
412 			printk(KERN_ERR "%s: compare page %u, err %d\n",
413 				dev_name(&spi->dev), pageaddr, status);
414 			remaining = 0;
415 			status = -EIO;
416 			break;
417 		} else
418 			status = 0;
419 
420 #endif	/* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
421 
422 		remaining = remaining - writelen;
423 		pageaddr++;
424 		offset = 0;
425 		writebuf += writelen;
426 		*retlen += writelen;
427 
428 		if (remaining > priv->page_size)
429 			writelen = priv->page_size;
430 		else
431 			writelen = remaining;
432 	}
433 	mutex_unlock(&priv->lock);
434 
435 	return status;
436 }
437 
438 /* ......................................................................... */
439 
440 #ifdef CONFIG_MTD_DATAFLASH_OTP
441 
442 static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len,
443 				  size_t *retlen, struct otp_info *info)
444 {
445 	/* Report both blocks as identical:  bytes 0..64, locked.
446 	 * Unless the user block changed from all-ones, we can't
447 	 * tell whether it's still writable; so we assume it isn't.
448 	 */
449 	info->start = 0;
450 	info->length = 64;
451 	info->locked = 1;
452 	*retlen = sizeof(*info);
453 	return 0;
454 }
455 
456 static ssize_t otp_read(struct spi_device *spi, unsigned base,
457 		uint8_t *buf, loff_t off, size_t len)
458 {
459 	struct spi_message	m;
460 	size_t			l;
461 	uint8_t			*scratch;
462 	struct spi_transfer	t;
463 	int			status;
464 
465 	if (off > 64)
466 		return -EINVAL;
467 
468 	if ((off + len) > 64)
469 		len = 64 - off;
470 
471 	spi_message_init(&m);
472 
473 	l = 4 + base + off + len;
474 	scratch = kzalloc(l, GFP_KERNEL);
475 	if (!scratch)
476 		return -ENOMEM;
477 
478 	/* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
479 	 * IN:  ignore 4 bytes, data bytes 0..N (max 127)
480 	 */
481 	scratch[0] = OP_READ_SECURITY;
482 
483 	memset(&t, 0, sizeof t);
484 	t.tx_buf = scratch;
485 	t.rx_buf = scratch;
486 	t.len = l;
487 	spi_message_add_tail(&t, &m);
488 
489 	dataflash_waitready(spi);
490 
491 	status = spi_sync(spi, &m);
492 	if (status >= 0) {
493 		memcpy(buf, scratch + 4 + base + off, len);
494 		status = len;
495 	}
496 
497 	kfree(scratch);
498 	return status;
499 }
500 
501 static int dataflash_read_fact_otp(struct mtd_info *mtd,
502 		loff_t from, size_t len, size_t *retlen, u_char *buf)
503 {
504 	struct dataflash	*priv = mtd->priv;
505 	int			status;
506 
507 	/* 64 bytes, from 0..63 ... start at 64 on-chip */
508 	mutex_lock(&priv->lock);
509 	status = otp_read(priv->spi, 64, buf, from, len);
510 	mutex_unlock(&priv->lock);
511 
512 	if (status < 0)
513 		return status;
514 	*retlen = status;
515 	return 0;
516 }
517 
518 static int dataflash_read_user_otp(struct mtd_info *mtd,
519 		loff_t from, size_t len, size_t *retlen, u_char *buf)
520 {
521 	struct dataflash	*priv = mtd->priv;
522 	int			status;
523 
524 	/* 64 bytes, from 0..63 ... start at 0 on-chip */
525 	mutex_lock(&priv->lock);
526 	status = otp_read(priv->spi, 0, buf, from, len);
527 	mutex_unlock(&priv->lock);
528 
529 	if (status < 0)
530 		return status;
531 	*retlen = status;
532 	return 0;
533 }
534 
535 static int dataflash_write_user_otp(struct mtd_info *mtd,
536 		loff_t from, size_t len, size_t *retlen, u_char *buf)
537 {
538 	struct spi_message	m;
539 	const size_t		l = 4 + 64;
540 	uint8_t			*scratch;
541 	struct spi_transfer	t;
542 	struct dataflash	*priv = mtd->priv;
543 	int			status;
544 
545 	if (from >= 64) {
546 		/*
547 		 * Attempting to write beyond the end of OTP memory,
548 		 * no data can be written.
549 		 */
550 		*retlen = 0;
551 		return 0;
552 	}
553 
554 	/* Truncate the write to fit into OTP memory. */
555 	if ((from + len) > 64)
556 		len = 64 - from;
557 
558 	/* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
559 	 * IN:  ignore all
560 	 */
561 	scratch = kzalloc(l, GFP_KERNEL);
562 	if (!scratch)
563 		return -ENOMEM;
564 	scratch[0] = OP_WRITE_SECURITY;
565 	memcpy(scratch + 4 + from, buf, len);
566 
567 	spi_message_init(&m);
568 
569 	memset(&t, 0, sizeof t);
570 	t.tx_buf = scratch;
571 	t.len = l;
572 	spi_message_add_tail(&t, &m);
573 
574 	/* Write the OTP bits, if they've not yet been written.
575 	 * This modifies SRAM buffer1.
576 	 */
577 	mutex_lock(&priv->lock);
578 	dataflash_waitready(priv->spi);
579 	status = spi_sync(priv->spi, &m);
580 	mutex_unlock(&priv->lock);
581 
582 	kfree(scratch);
583 
584 	if (status >= 0) {
585 		status = 0;
586 		*retlen = len;
587 	}
588 	return status;
589 }
590 
591 static char *otp_setup(struct mtd_info *device, char revision)
592 {
593 	device->_get_fact_prot_info = dataflash_get_otp_info;
594 	device->_read_fact_prot_reg = dataflash_read_fact_otp;
595 	device->_get_user_prot_info = dataflash_get_otp_info;
596 	device->_read_user_prot_reg = dataflash_read_user_otp;
597 
598 	/* rev c parts (at45db321c and at45db1281 only!) use a
599 	 * different write procedure; not (yet?) implemented.
600 	 */
601 	if (revision > 'c')
602 		device->_write_user_prot_reg = dataflash_write_user_otp;
603 
604 	return ", OTP";
605 }
606 
607 #else
608 
609 static char *otp_setup(struct mtd_info *device, char revision)
610 {
611 	return " (OTP)";
612 }
613 
614 #endif
615 
616 /* ......................................................................... */
617 
618 /*
619  * Register DataFlash device with MTD subsystem.
620  */
621 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
622 			     int pagesize, int pageoffset, char revision)
623 {
624 	struct dataflash		*priv;
625 	struct mtd_info			*device;
626 	struct mtd_part_parser_data	ppdata;
627 	struct flash_platform_data	*pdata = dev_get_platdata(&spi->dev);
628 	char				*otp_tag = "";
629 	int				err = 0;
630 
631 	priv = kzalloc(sizeof *priv, GFP_KERNEL);
632 	if (!priv)
633 		return -ENOMEM;
634 
635 	mutex_init(&priv->lock);
636 	priv->spi = spi;
637 	priv->page_size = pagesize;
638 	priv->page_offset = pageoffset;
639 
640 	/* name must be usable with cmdlinepart */
641 	sprintf(priv->name, "spi%d.%d-%s",
642 			spi->master->bus_num, spi->chip_select,
643 			name);
644 
645 	device = &priv->mtd;
646 	device->name = (pdata && pdata->name) ? pdata->name : priv->name;
647 	device->size = nr_pages * pagesize;
648 	device->erasesize = pagesize;
649 	device->writesize = pagesize;
650 	device->owner = THIS_MODULE;
651 	device->type = MTD_DATAFLASH;
652 	device->flags = MTD_WRITEABLE;
653 	device->_erase = dataflash_erase;
654 	device->_read = dataflash_read;
655 	device->_write = dataflash_write;
656 	device->priv = priv;
657 
658 	device->dev.parent = &spi->dev;
659 
660 	if (revision >= 'c')
661 		otp_tag = otp_setup(device, revision);
662 
663 	dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
664 			name, (long long)((device->size + 1023) >> 10),
665 			pagesize, otp_tag);
666 	spi_set_drvdata(spi, priv);
667 
668 	ppdata.of_node = spi->dev.of_node;
669 	err = mtd_device_parse_register(device, NULL, &ppdata,
670 			pdata ? pdata->parts : NULL,
671 			pdata ? pdata->nr_parts : 0);
672 
673 	if (!err)
674 		return 0;
675 
676 	kfree(priv);
677 	return err;
678 }
679 
680 static inline int add_dataflash(struct spi_device *spi, char *name,
681 				int nr_pages, int pagesize, int pageoffset)
682 {
683 	return add_dataflash_otp(spi, name, nr_pages, pagesize,
684 			pageoffset, 0);
685 }
686 
687 struct flash_info {
688 	char		*name;
689 
690 	/* JEDEC id has a high byte of zero plus three data bytes:
691 	 * the manufacturer id, then a two byte device id.
692 	 */
693 	uint32_t	jedec_id;
694 
695 	/* The size listed here is what works with OP_ERASE_PAGE. */
696 	unsigned	nr_pages;
697 	uint16_t	pagesize;
698 	uint16_t	pageoffset;
699 
700 	uint16_t	flags;
701 #define SUP_POW2PS	0x0002		/* supports 2^N byte pages */
702 #define IS_POW2PS	0x0001		/* uses 2^N byte pages */
703 };
704 
705 static struct flash_info dataflash_data[] = {
706 
707 	/*
708 	 * NOTE:  chips with SUP_POW2PS (rev D and up) need two entries,
709 	 * one with IS_POW2PS and the other without.  The entry with the
710 	 * non-2^N byte page size can't name exact chip revisions without
711 	 * losing backwards compatibility for cmdlinepart.
712 	 *
713 	 * These newer chips also support 128-byte security registers (with
714 	 * 64 bytes one-time-programmable) and software write-protection.
715 	 */
716 	{ "AT45DB011B",  0x1f2200, 512, 264, 9, SUP_POW2PS},
717 	{ "at45db011d",  0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
718 
719 	{ "AT45DB021B",  0x1f2300, 1024, 264, 9, SUP_POW2PS},
720 	{ "at45db021d",  0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
721 
722 	{ "AT45DB041x",  0x1f2400, 2048, 264, 9, SUP_POW2PS},
723 	{ "at45db041d",  0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
724 
725 	{ "AT45DB081B",  0x1f2500, 4096, 264, 9, SUP_POW2PS},
726 	{ "at45db081d",  0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
727 
728 	{ "AT45DB161x",  0x1f2600, 4096, 528, 10, SUP_POW2PS},
729 	{ "at45db161d",  0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
730 
731 	{ "AT45DB321x",  0x1f2700, 8192, 528, 10, 0},		/* rev C */
732 
733 	{ "AT45DB321x",  0x1f2701, 8192, 528, 10, SUP_POW2PS},
734 	{ "at45db321d",  0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
735 
736 	{ "AT45DB642x",  0x1f2800, 8192, 1056, 11, SUP_POW2PS},
737 	{ "at45db642d",  0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
738 };
739 
740 static struct flash_info *jedec_probe(struct spi_device *spi)
741 {
742 	int			tmp;
743 	uint8_t			code = OP_READ_ID;
744 	uint8_t			id[3];
745 	uint32_t		jedec;
746 	struct flash_info	*info;
747 	int status;
748 
749 	/* JEDEC also defines an optional "extended device information"
750 	 * string for after vendor-specific data, after the three bytes
751 	 * we use here.  Supporting some chips might require using it.
752 	 *
753 	 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
754 	 * That's not an error; only rev C and newer chips handle it, and
755 	 * only Atmel sells these chips.
756 	 */
757 	tmp = spi_write_then_read(spi, &code, 1, id, 3);
758 	if (tmp < 0) {
759 		pr_debug("%s: error %d reading JEDEC ID\n",
760 			dev_name(&spi->dev), tmp);
761 		return ERR_PTR(tmp);
762 	}
763 	if (id[0] != 0x1f)
764 		return NULL;
765 
766 	jedec = id[0];
767 	jedec = jedec << 8;
768 	jedec |= id[1];
769 	jedec = jedec << 8;
770 	jedec |= id[2];
771 
772 	for (tmp = 0, info = dataflash_data;
773 			tmp < ARRAY_SIZE(dataflash_data);
774 			tmp++, info++) {
775 		if (info->jedec_id == jedec) {
776 			pr_debug("%s: OTP, sector protect%s\n",
777 				dev_name(&spi->dev),
778 				(info->flags & SUP_POW2PS)
779 					? ", binary pagesize" : ""
780 				);
781 			if (info->flags & SUP_POW2PS) {
782 				status = dataflash_status(spi);
783 				if (status < 0) {
784 					pr_debug("%s: status error %d\n",
785 						dev_name(&spi->dev), status);
786 					return ERR_PTR(status);
787 				}
788 				if (status & 0x1) {
789 					if (info->flags & IS_POW2PS)
790 						return info;
791 				} else {
792 					if (!(info->flags & IS_POW2PS))
793 						return info;
794 				}
795 			} else
796 				return info;
797 		}
798 	}
799 
800 	/*
801 	 * Treat other chips as errors ... we won't know the right page
802 	 * size (it might be binary) even when we can tell which density
803 	 * class is involved (legacy chip id scheme).
804 	 */
805 	dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
806 	return ERR_PTR(-ENODEV);
807 }
808 
809 /*
810  * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
811  * or else the ID code embedded in the status bits:
812  *
813  *   Device      Density         ID code          #Pages PageSize  Offset
814  *   AT45DB011B  1Mbit   (128K)  xx0011xx (0x0c)    512    264      9
815  *   AT45DB021B  2Mbit   (256K)  xx0101xx (0x14)   1024    264      9
816  *   AT45DB041B  4Mbit   (512K)  xx0111xx (0x1c)   2048    264      9
817  *   AT45DB081B  8Mbit   (1M)    xx1001xx (0x24)   4096    264      9
818  *   AT45DB0161B 16Mbit  (2M)    xx1011xx (0x2c)   4096    528     10
819  *   AT45DB0321B 32Mbit  (4M)    xx1101xx (0x34)   8192    528     10
820  *   AT45DB0642  64Mbit  (8M)    xx111xxx (0x3c)   8192   1056     11
821  *   AT45DB1282  128Mbit (16M)   xx0100xx (0x10)  16384   1056     11
822  */
823 static int dataflash_probe(struct spi_device *spi)
824 {
825 	int status;
826 	struct flash_info	*info;
827 
828 	/*
829 	 * Try to detect dataflash by JEDEC ID.
830 	 * If it succeeds we know we have either a C or D part.
831 	 * D will support power of 2 pagesize option.
832 	 * Both support the security register, though with different
833 	 * write procedures.
834 	 */
835 	info = jedec_probe(spi);
836 	if (IS_ERR(info))
837 		return PTR_ERR(info);
838 	if (info != NULL)
839 		return add_dataflash_otp(spi, info->name, info->nr_pages,
840 				info->pagesize, info->pageoffset,
841 				(info->flags & SUP_POW2PS) ? 'd' : 'c');
842 
843 	/*
844 	 * Older chips support only legacy commands, identifing
845 	 * capacity using bits in the status byte.
846 	 */
847 	status = dataflash_status(spi);
848 	if (status <= 0 || status == 0xff) {
849 		pr_debug("%s: status error %d\n",
850 				dev_name(&spi->dev), status);
851 		if (status == 0 || status == 0xff)
852 			status = -ENODEV;
853 		return status;
854 	}
855 
856 	/* if there's a device there, assume it's dataflash.
857 	 * board setup should have set spi->max_speed_max to
858 	 * match f(car) for continuous reads, mode 0 or 3.
859 	 */
860 	switch (status & 0x3c) {
861 	case 0x0c:	/* 0 0 1 1 x x */
862 		status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
863 		break;
864 	case 0x14:	/* 0 1 0 1 x x */
865 		status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
866 		break;
867 	case 0x1c:	/* 0 1 1 1 x x */
868 		status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
869 		break;
870 	case 0x24:	/* 1 0 0 1 x x */
871 		status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
872 		break;
873 	case 0x2c:	/* 1 0 1 1 x x */
874 		status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
875 		break;
876 	case 0x34:	/* 1 1 0 1 x x */
877 		status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
878 		break;
879 	case 0x38:	/* 1 1 1 x x x */
880 	case 0x3c:
881 		status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
882 		break;
883 	/* obsolete AT45DB1282 not (yet?) supported */
884 	default:
885 		dev_info(&spi->dev, "unsupported device (%x)\n",
886 				status & 0x3c);
887 		status = -ENODEV;
888 	}
889 
890 	if (status < 0)
891 		pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
892 				status);
893 
894 	return status;
895 }
896 
897 static int dataflash_remove(struct spi_device *spi)
898 {
899 	struct dataflash	*flash = spi_get_drvdata(spi);
900 	int			status;
901 
902 	pr_debug("%s: remove\n", dev_name(&spi->dev));
903 
904 	status = mtd_device_unregister(&flash->mtd);
905 	if (status == 0)
906 		kfree(flash);
907 	return status;
908 }
909 
910 static struct spi_driver dataflash_driver = {
911 	.driver = {
912 		.name		= "mtd_dataflash",
913 		.owner		= THIS_MODULE,
914 		.of_match_table = of_match_ptr(dataflash_dt_ids),
915 	},
916 
917 	.probe		= dataflash_probe,
918 	.remove		= dataflash_remove,
919 
920 	/* FIXME:  investigate suspend and resume... */
921 };
922 
923 module_spi_driver(dataflash_driver);
924 
925 MODULE_LICENSE("GPL");
926 MODULE_AUTHOR("Andrew Victor, David Brownell");
927 MODULE_DESCRIPTION("MTD DataFlash driver");
928 MODULE_ALIAS("spi:mtd_dataflash");
929