1 /* 2 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework 3 * 4 * Largely derived from at91_dataflash.c: 5 * Copyright (C) 2003-2005 SAN People (Pty) Ltd 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/delay.h> 16 #include <linux/device.h> 17 #include <linux/mutex.h> 18 #include <linux/err.h> 19 #include <linux/math64.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 23 #include <linux/spi/spi.h> 24 #include <linux/spi/flash.h> 25 26 #include <linux/mtd/mtd.h> 27 #include <linux/mtd/partitions.h> 28 29 /* 30 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in 31 * each chip, which may be used for double buffered I/O; but this driver 32 * doesn't (yet) use these for any kind of i/o overlap or prefetching. 33 * 34 * Sometimes DataFlash is packaged in MMC-format cards, although the 35 * MMC stack can't (yet?) distinguish between MMC and DataFlash 36 * protocols during enumeration. 37 */ 38 39 /* reads can bypass the buffers */ 40 #define OP_READ_CONTINUOUS 0xE8 41 #define OP_READ_PAGE 0xD2 42 43 /* group B requests can run even while status reports "busy" */ 44 #define OP_READ_STATUS 0xD7 /* group B */ 45 46 /* move data between host and buffer */ 47 #define OP_READ_BUFFER1 0xD4 /* group B */ 48 #define OP_READ_BUFFER2 0xD6 /* group B */ 49 #define OP_WRITE_BUFFER1 0x84 /* group B */ 50 #define OP_WRITE_BUFFER2 0x87 /* group B */ 51 52 /* erasing flash */ 53 #define OP_ERASE_PAGE 0x81 54 #define OP_ERASE_BLOCK 0x50 55 56 /* move data between buffer and flash */ 57 #define OP_TRANSFER_BUF1 0x53 58 #define OP_TRANSFER_BUF2 0x55 59 #define OP_MREAD_BUFFER1 0xD4 60 #define OP_MREAD_BUFFER2 0xD6 61 #define OP_MWERASE_BUFFER1 0x83 62 #define OP_MWERASE_BUFFER2 0x86 63 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */ 64 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */ 65 66 /* write to buffer, then write-erase to flash */ 67 #define OP_PROGRAM_VIA_BUF1 0x82 68 #define OP_PROGRAM_VIA_BUF2 0x85 69 70 /* compare buffer to flash */ 71 #define OP_COMPARE_BUF1 0x60 72 #define OP_COMPARE_BUF2 0x61 73 74 /* read flash to buffer, then write-erase to flash */ 75 #define OP_REWRITE_VIA_BUF1 0x58 76 #define OP_REWRITE_VIA_BUF2 0x59 77 78 /* newer chips report JEDEC manufacturer and device IDs; chip 79 * serial number and OTP bits; and per-sector writeprotect. 80 */ 81 #define OP_READ_ID 0x9F 82 #define OP_READ_SECURITY 0x77 83 #define OP_WRITE_SECURITY_REVC 0x9A 84 #define OP_WRITE_SECURITY 0x9B /* revision D */ 85 86 87 struct dataflash { 88 uint8_t command[4]; 89 char name[24]; 90 91 unsigned short page_offset; /* offset in flash address */ 92 unsigned int page_size; /* of bytes per page */ 93 94 struct mutex lock; 95 struct spi_device *spi; 96 97 struct mtd_info mtd; 98 }; 99 100 #ifdef CONFIG_OF 101 static const struct of_device_id dataflash_dt_ids[] = { 102 { .compatible = "atmel,at45", }, 103 { .compatible = "atmel,dataflash", }, 104 { /* sentinel */ } 105 }; 106 #endif 107 108 /* ......................................................................... */ 109 110 /* 111 * Return the status of the DataFlash device. 112 */ 113 static inline int dataflash_status(struct spi_device *spi) 114 { 115 /* NOTE: at45db321c over 25 MHz wants to write 116 * a dummy byte after the opcode... 117 */ 118 return spi_w8r8(spi, OP_READ_STATUS); 119 } 120 121 /* 122 * Poll the DataFlash device until it is READY. 123 * This usually takes 5-20 msec or so; more for sector erase. 124 */ 125 static int dataflash_waitready(struct spi_device *spi) 126 { 127 int status; 128 129 for (;;) { 130 status = dataflash_status(spi); 131 if (status < 0) { 132 pr_debug("%s: status %d?\n", 133 dev_name(&spi->dev), status); 134 status = 0; 135 } 136 137 if (status & (1 << 7)) /* RDY/nBSY */ 138 return status; 139 140 msleep(3); 141 } 142 } 143 144 /* ......................................................................... */ 145 146 /* 147 * Erase pages of flash. 148 */ 149 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) 150 { 151 struct dataflash *priv = mtd->priv; 152 struct spi_device *spi = priv->spi; 153 struct spi_transfer x = { .tx_dma = 0, }; 154 struct spi_message msg; 155 unsigned blocksize = priv->page_size << 3; 156 uint8_t *command; 157 uint32_t rem; 158 159 pr_debug("%s: erase addr=0x%llx len 0x%llx\n", 160 dev_name(&spi->dev), (long long)instr->addr, 161 (long long)instr->len); 162 163 div_u64_rem(instr->len, priv->page_size, &rem); 164 if (rem) 165 return -EINVAL; 166 div_u64_rem(instr->addr, priv->page_size, &rem); 167 if (rem) 168 return -EINVAL; 169 170 spi_message_init(&msg); 171 172 x.tx_buf = command = priv->command; 173 x.len = 4; 174 spi_message_add_tail(&x, &msg); 175 176 mutex_lock(&priv->lock); 177 while (instr->len > 0) { 178 unsigned int pageaddr; 179 int status; 180 int do_block; 181 182 /* Calculate flash page address; use block erase (for speed) if 183 * we're at a block boundary and need to erase the whole block. 184 */ 185 pageaddr = div_u64(instr->addr, priv->page_size); 186 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize; 187 pageaddr = pageaddr << priv->page_offset; 188 189 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE; 190 command[1] = (uint8_t)(pageaddr >> 16); 191 command[2] = (uint8_t)(pageaddr >> 8); 192 command[3] = 0; 193 194 pr_debug("ERASE %s: (%x) %x %x %x [%i]\n", 195 do_block ? "block" : "page", 196 command[0], command[1], command[2], command[3], 197 pageaddr); 198 199 status = spi_sync(spi, &msg); 200 (void) dataflash_waitready(spi); 201 202 if (status < 0) { 203 printk(KERN_ERR "%s: erase %x, err %d\n", 204 dev_name(&spi->dev), pageaddr, status); 205 /* REVISIT: can retry instr->retries times; or 206 * giveup and instr->fail_addr = instr->addr; 207 */ 208 continue; 209 } 210 211 if (do_block) { 212 instr->addr += blocksize; 213 instr->len -= blocksize; 214 } else { 215 instr->addr += priv->page_size; 216 instr->len -= priv->page_size; 217 } 218 } 219 mutex_unlock(&priv->lock); 220 221 /* Inform MTD subsystem that erase is complete */ 222 instr->state = MTD_ERASE_DONE; 223 mtd_erase_callback(instr); 224 225 return 0; 226 } 227 228 /* 229 * Read from the DataFlash device. 230 * from : Start offset in flash device 231 * len : Amount to read 232 * retlen : About of data actually read 233 * buf : Buffer containing the data 234 */ 235 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, 236 size_t *retlen, u_char *buf) 237 { 238 struct dataflash *priv = mtd->priv; 239 struct spi_transfer x[2] = { { .tx_dma = 0, }, }; 240 struct spi_message msg; 241 unsigned int addr; 242 uint8_t *command; 243 int status; 244 245 pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev), 246 (unsigned)from, (unsigned)(from + len)); 247 248 /* Calculate flash page/byte address */ 249 addr = (((unsigned)from / priv->page_size) << priv->page_offset) 250 + ((unsigned)from % priv->page_size); 251 252 command = priv->command; 253 254 pr_debug("READ: (%x) %x %x %x\n", 255 command[0], command[1], command[2], command[3]); 256 257 spi_message_init(&msg); 258 259 x[0].tx_buf = command; 260 x[0].len = 8; 261 spi_message_add_tail(&x[0], &msg); 262 263 x[1].rx_buf = buf; 264 x[1].len = len; 265 spi_message_add_tail(&x[1], &msg); 266 267 mutex_lock(&priv->lock); 268 269 /* Continuous read, max clock = f(car) which may be less than 270 * the peak rate available. Some chips support commands with 271 * fewer "don't care" bytes. Both buffers stay unchanged. 272 */ 273 command[0] = OP_READ_CONTINUOUS; 274 command[1] = (uint8_t)(addr >> 16); 275 command[2] = (uint8_t)(addr >> 8); 276 command[3] = (uint8_t)(addr >> 0); 277 /* plus 4 "don't care" bytes */ 278 279 status = spi_sync(priv->spi, &msg); 280 mutex_unlock(&priv->lock); 281 282 if (status >= 0) { 283 *retlen = msg.actual_length - 8; 284 status = 0; 285 } else 286 pr_debug("%s: read %x..%x --> %d\n", 287 dev_name(&priv->spi->dev), 288 (unsigned)from, (unsigned)(from + len), 289 status); 290 return status; 291 } 292 293 /* 294 * Write to the DataFlash device. 295 * to : Start offset in flash device 296 * len : Amount to write 297 * retlen : Amount of data actually written 298 * buf : Buffer containing the data 299 */ 300 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, 301 size_t * retlen, const u_char * buf) 302 { 303 struct dataflash *priv = mtd->priv; 304 struct spi_device *spi = priv->spi; 305 struct spi_transfer x[2] = { { .tx_dma = 0, }, }; 306 struct spi_message msg; 307 unsigned int pageaddr, addr, offset, writelen; 308 size_t remaining = len; 309 u_char *writebuf = (u_char *) buf; 310 int status = -EINVAL; 311 uint8_t *command; 312 313 pr_debug("%s: write 0x%x..0x%x\n", 314 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len)); 315 316 spi_message_init(&msg); 317 318 x[0].tx_buf = command = priv->command; 319 x[0].len = 4; 320 spi_message_add_tail(&x[0], &msg); 321 322 pageaddr = ((unsigned)to / priv->page_size); 323 offset = ((unsigned)to % priv->page_size); 324 if (offset + len > priv->page_size) 325 writelen = priv->page_size - offset; 326 else 327 writelen = len; 328 329 mutex_lock(&priv->lock); 330 while (remaining > 0) { 331 pr_debug("write @ %i:%i len=%i\n", 332 pageaddr, offset, writelen); 333 334 /* REVISIT: 335 * (a) each page in a sector must be rewritten at least 336 * once every 10K sibling erase/program operations. 337 * (b) for pages that are already erased, we could 338 * use WRITE+MWRITE not PROGRAM for ~30% speedup. 339 * (c) WRITE to buffer could be done while waiting for 340 * a previous MWRITE/MWERASE to complete ... 341 * (d) error handling here seems to be mostly missing. 342 * 343 * Two persistent bits per page, plus a per-sector counter, 344 * could support (a) and (b) ... we might consider using 345 * the second half of sector zero, which is just one block, 346 * to track that state. (On AT91, that sector should also 347 * support boot-from-DataFlash.) 348 */ 349 350 addr = pageaddr << priv->page_offset; 351 352 /* (1) Maybe transfer partial page to Buffer1 */ 353 if (writelen != priv->page_size) { 354 command[0] = OP_TRANSFER_BUF1; 355 command[1] = (addr & 0x00FF0000) >> 16; 356 command[2] = (addr & 0x0000FF00) >> 8; 357 command[3] = 0; 358 359 pr_debug("TRANSFER: (%x) %x %x %x\n", 360 command[0], command[1], command[2], command[3]); 361 362 status = spi_sync(spi, &msg); 363 if (status < 0) 364 pr_debug("%s: xfer %u -> %d\n", 365 dev_name(&spi->dev), addr, status); 366 367 (void) dataflash_waitready(priv->spi); 368 } 369 370 /* (2) Program full page via Buffer1 */ 371 addr += offset; 372 command[0] = OP_PROGRAM_VIA_BUF1; 373 command[1] = (addr & 0x00FF0000) >> 16; 374 command[2] = (addr & 0x0000FF00) >> 8; 375 command[3] = (addr & 0x000000FF); 376 377 pr_debug("PROGRAM: (%x) %x %x %x\n", 378 command[0], command[1], command[2], command[3]); 379 380 x[1].tx_buf = writebuf; 381 x[1].len = writelen; 382 spi_message_add_tail(x + 1, &msg); 383 status = spi_sync(spi, &msg); 384 spi_transfer_del(x + 1); 385 if (status < 0) 386 pr_debug("%s: pgm %u/%u -> %d\n", 387 dev_name(&spi->dev), addr, writelen, status); 388 389 (void) dataflash_waitready(priv->spi); 390 391 392 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY 393 394 /* (3) Compare to Buffer1 */ 395 addr = pageaddr << priv->page_offset; 396 command[0] = OP_COMPARE_BUF1; 397 command[1] = (addr & 0x00FF0000) >> 16; 398 command[2] = (addr & 0x0000FF00) >> 8; 399 command[3] = 0; 400 401 pr_debug("COMPARE: (%x) %x %x %x\n", 402 command[0], command[1], command[2], command[3]); 403 404 status = spi_sync(spi, &msg); 405 if (status < 0) 406 pr_debug("%s: compare %u -> %d\n", 407 dev_name(&spi->dev), addr, status); 408 409 status = dataflash_waitready(priv->spi); 410 411 /* Check result of the compare operation */ 412 if (status & (1 << 6)) { 413 printk(KERN_ERR "%s: compare page %u, err %d\n", 414 dev_name(&spi->dev), pageaddr, status); 415 remaining = 0; 416 status = -EIO; 417 break; 418 } else 419 status = 0; 420 421 #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */ 422 423 remaining = remaining - writelen; 424 pageaddr++; 425 offset = 0; 426 writebuf += writelen; 427 *retlen += writelen; 428 429 if (remaining > priv->page_size) 430 writelen = priv->page_size; 431 else 432 writelen = remaining; 433 } 434 mutex_unlock(&priv->lock); 435 436 return status; 437 } 438 439 /* ......................................................................... */ 440 441 #ifdef CONFIG_MTD_DATAFLASH_OTP 442 443 static int dataflash_get_otp_info(struct mtd_info *mtd, 444 struct otp_info *info, size_t len) 445 { 446 /* Report both blocks as identical: bytes 0..64, locked. 447 * Unless the user block changed from all-ones, we can't 448 * tell whether it's still writable; so we assume it isn't. 449 */ 450 info->start = 0; 451 info->length = 64; 452 info->locked = 1; 453 return sizeof(*info); 454 } 455 456 static ssize_t otp_read(struct spi_device *spi, unsigned base, 457 uint8_t *buf, loff_t off, size_t len) 458 { 459 struct spi_message m; 460 size_t l; 461 uint8_t *scratch; 462 struct spi_transfer t; 463 int status; 464 465 if (off > 64) 466 return -EINVAL; 467 468 if ((off + len) > 64) 469 len = 64 - off; 470 471 spi_message_init(&m); 472 473 l = 4 + base + off + len; 474 scratch = kzalloc(l, GFP_KERNEL); 475 if (!scratch) 476 return -ENOMEM; 477 478 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes 479 * IN: ignore 4 bytes, data bytes 0..N (max 127) 480 */ 481 scratch[0] = OP_READ_SECURITY; 482 483 memset(&t, 0, sizeof t); 484 t.tx_buf = scratch; 485 t.rx_buf = scratch; 486 t.len = l; 487 spi_message_add_tail(&t, &m); 488 489 dataflash_waitready(spi); 490 491 status = spi_sync(spi, &m); 492 if (status >= 0) { 493 memcpy(buf, scratch + 4 + base + off, len); 494 status = len; 495 } 496 497 kfree(scratch); 498 return status; 499 } 500 501 static int dataflash_read_fact_otp(struct mtd_info *mtd, 502 loff_t from, size_t len, size_t *retlen, u_char *buf) 503 { 504 struct dataflash *priv = mtd->priv; 505 int status; 506 507 /* 64 bytes, from 0..63 ... start at 64 on-chip */ 508 mutex_lock(&priv->lock); 509 status = otp_read(priv->spi, 64, buf, from, len); 510 mutex_unlock(&priv->lock); 511 512 if (status < 0) 513 return status; 514 *retlen = status; 515 return 0; 516 } 517 518 static int dataflash_read_user_otp(struct mtd_info *mtd, 519 loff_t from, size_t len, size_t *retlen, u_char *buf) 520 { 521 struct dataflash *priv = mtd->priv; 522 int status; 523 524 /* 64 bytes, from 0..63 ... start at 0 on-chip */ 525 mutex_lock(&priv->lock); 526 status = otp_read(priv->spi, 0, buf, from, len); 527 mutex_unlock(&priv->lock); 528 529 if (status < 0) 530 return status; 531 *retlen = status; 532 return 0; 533 } 534 535 static int dataflash_write_user_otp(struct mtd_info *mtd, 536 loff_t from, size_t len, size_t *retlen, u_char *buf) 537 { 538 struct spi_message m; 539 const size_t l = 4 + 64; 540 uint8_t *scratch; 541 struct spi_transfer t; 542 struct dataflash *priv = mtd->priv; 543 int status; 544 545 if (len > 64) 546 return -EINVAL; 547 548 /* Strictly speaking, we *could* truncate the write ... but 549 * let's not do that for the only write that's ever possible. 550 */ 551 if ((from + len) > 64) 552 return -EINVAL; 553 554 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes 555 * IN: ignore all 556 */ 557 scratch = kzalloc(l, GFP_KERNEL); 558 if (!scratch) 559 return -ENOMEM; 560 scratch[0] = OP_WRITE_SECURITY; 561 memcpy(scratch + 4 + from, buf, len); 562 563 spi_message_init(&m); 564 565 memset(&t, 0, sizeof t); 566 t.tx_buf = scratch; 567 t.len = l; 568 spi_message_add_tail(&t, &m); 569 570 /* Write the OTP bits, if they've not yet been written. 571 * This modifies SRAM buffer1. 572 */ 573 mutex_lock(&priv->lock); 574 dataflash_waitready(priv->spi); 575 status = spi_sync(priv->spi, &m); 576 mutex_unlock(&priv->lock); 577 578 kfree(scratch); 579 580 if (status >= 0) { 581 status = 0; 582 *retlen = len; 583 } 584 return status; 585 } 586 587 static char *otp_setup(struct mtd_info *device, char revision) 588 { 589 device->_get_fact_prot_info = dataflash_get_otp_info; 590 device->_read_fact_prot_reg = dataflash_read_fact_otp; 591 device->_get_user_prot_info = dataflash_get_otp_info; 592 device->_read_user_prot_reg = dataflash_read_user_otp; 593 594 /* rev c parts (at45db321c and at45db1281 only!) use a 595 * different write procedure; not (yet?) implemented. 596 */ 597 if (revision > 'c') 598 device->_write_user_prot_reg = dataflash_write_user_otp; 599 600 return ", OTP"; 601 } 602 603 #else 604 605 static char *otp_setup(struct mtd_info *device, char revision) 606 { 607 return " (OTP)"; 608 } 609 610 #endif 611 612 /* ......................................................................... */ 613 614 /* 615 * Register DataFlash device with MTD subsystem. 616 */ 617 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages, 618 int pagesize, int pageoffset, char revision) 619 { 620 struct dataflash *priv; 621 struct mtd_info *device; 622 struct mtd_part_parser_data ppdata; 623 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev); 624 char *otp_tag = ""; 625 int err = 0; 626 627 priv = kzalloc(sizeof *priv, GFP_KERNEL); 628 if (!priv) 629 return -ENOMEM; 630 631 mutex_init(&priv->lock); 632 priv->spi = spi; 633 priv->page_size = pagesize; 634 priv->page_offset = pageoffset; 635 636 /* name must be usable with cmdlinepart */ 637 sprintf(priv->name, "spi%d.%d-%s", 638 spi->master->bus_num, spi->chip_select, 639 name); 640 641 device = &priv->mtd; 642 device->name = (pdata && pdata->name) ? pdata->name : priv->name; 643 device->size = nr_pages * pagesize; 644 device->erasesize = pagesize; 645 device->writesize = pagesize; 646 device->owner = THIS_MODULE; 647 device->type = MTD_DATAFLASH; 648 device->flags = MTD_WRITEABLE; 649 device->_erase = dataflash_erase; 650 device->_read = dataflash_read; 651 device->_write = dataflash_write; 652 device->priv = priv; 653 654 device->dev.parent = &spi->dev; 655 656 if (revision >= 'c') 657 otp_tag = otp_setup(device, revision); 658 659 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n", 660 name, (long long)((device->size + 1023) >> 10), 661 pagesize, otp_tag); 662 spi_set_drvdata(spi, priv); 663 664 ppdata.of_node = spi->dev.of_node; 665 err = mtd_device_parse_register(device, NULL, &ppdata, 666 pdata ? pdata->parts : NULL, 667 pdata ? pdata->nr_parts : 0); 668 669 if (!err) 670 return 0; 671 672 kfree(priv); 673 return err; 674 } 675 676 static inline int add_dataflash(struct spi_device *spi, char *name, 677 int nr_pages, int pagesize, int pageoffset) 678 { 679 return add_dataflash_otp(spi, name, nr_pages, pagesize, 680 pageoffset, 0); 681 } 682 683 struct flash_info { 684 char *name; 685 686 /* JEDEC id has a high byte of zero plus three data bytes: 687 * the manufacturer id, then a two byte device id. 688 */ 689 uint32_t jedec_id; 690 691 /* The size listed here is what works with OP_ERASE_PAGE. */ 692 unsigned nr_pages; 693 uint16_t pagesize; 694 uint16_t pageoffset; 695 696 uint16_t flags; 697 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */ 698 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */ 699 }; 700 701 static struct flash_info dataflash_data[] = { 702 703 /* 704 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, 705 * one with IS_POW2PS and the other without. The entry with the 706 * non-2^N byte page size can't name exact chip revisions without 707 * losing backwards compatibility for cmdlinepart. 708 * 709 * These newer chips also support 128-byte security registers (with 710 * 64 bytes one-time-programmable) and software write-protection. 711 */ 712 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS}, 713 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS}, 714 715 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS}, 716 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS}, 717 718 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS}, 719 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS}, 720 721 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS}, 722 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS}, 723 724 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS}, 725 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS}, 726 727 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */ 728 729 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS}, 730 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS}, 731 732 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS}, 733 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, 734 }; 735 736 static struct flash_info *jedec_probe(struct spi_device *spi) 737 { 738 int tmp; 739 uint8_t code = OP_READ_ID; 740 uint8_t id[3]; 741 uint32_t jedec; 742 struct flash_info *info; 743 int status; 744 745 /* JEDEC also defines an optional "extended device information" 746 * string for after vendor-specific data, after the three bytes 747 * we use here. Supporting some chips might require using it. 748 * 749 * If the vendor ID isn't Atmel's (0x1f), assume this call failed. 750 * That's not an error; only rev C and newer chips handle it, and 751 * only Atmel sells these chips. 752 */ 753 tmp = spi_write_then_read(spi, &code, 1, id, 3); 754 if (tmp < 0) { 755 pr_debug("%s: error %d reading JEDEC ID\n", 756 dev_name(&spi->dev), tmp); 757 return ERR_PTR(tmp); 758 } 759 if (id[0] != 0x1f) 760 return NULL; 761 762 jedec = id[0]; 763 jedec = jedec << 8; 764 jedec |= id[1]; 765 jedec = jedec << 8; 766 jedec |= id[2]; 767 768 for (tmp = 0, info = dataflash_data; 769 tmp < ARRAY_SIZE(dataflash_data); 770 tmp++, info++) { 771 if (info->jedec_id == jedec) { 772 pr_debug("%s: OTP, sector protect%s\n", 773 dev_name(&spi->dev), 774 (info->flags & SUP_POW2PS) 775 ? ", binary pagesize" : "" 776 ); 777 if (info->flags & SUP_POW2PS) { 778 status = dataflash_status(spi); 779 if (status < 0) { 780 pr_debug("%s: status error %d\n", 781 dev_name(&spi->dev), status); 782 return ERR_PTR(status); 783 } 784 if (status & 0x1) { 785 if (info->flags & IS_POW2PS) 786 return info; 787 } else { 788 if (!(info->flags & IS_POW2PS)) 789 return info; 790 } 791 } else 792 return info; 793 } 794 } 795 796 /* 797 * Treat other chips as errors ... we won't know the right page 798 * size (it might be binary) even when we can tell which density 799 * class is involved (legacy chip id scheme). 800 */ 801 dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec); 802 return ERR_PTR(-ENODEV); 803 } 804 805 /* 806 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips 807 * or else the ID code embedded in the status bits: 808 * 809 * Device Density ID code #Pages PageSize Offset 810 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9 811 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9 812 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9 813 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9 814 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10 815 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10 816 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 817 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 818 */ 819 static int dataflash_probe(struct spi_device *spi) 820 { 821 int status; 822 struct flash_info *info; 823 824 /* 825 * Try to detect dataflash by JEDEC ID. 826 * If it succeeds we know we have either a C or D part. 827 * D will support power of 2 pagesize option. 828 * Both support the security register, though with different 829 * write procedures. 830 */ 831 info = jedec_probe(spi); 832 if (IS_ERR(info)) 833 return PTR_ERR(info); 834 if (info != NULL) 835 return add_dataflash_otp(spi, info->name, info->nr_pages, 836 info->pagesize, info->pageoffset, 837 (info->flags & SUP_POW2PS) ? 'd' : 'c'); 838 839 /* 840 * Older chips support only legacy commands, identifing 841 * capacity using bits in the status byte. 842 */ 843 status = dataflash_status(spi); 844 if (status <= 0 || status == 0xff) { 845 pr_debug("%s: status error %d\n", 846 dev_name(&spi->dev), status); 847 if (status == 0 || status == 0xff) 848 status = -ENODEV; 849 return status; 850 } 851 852 /* if there's a device there, assume it's dataflash. 853 * board setup should have set spi->max_speed_max to 854 * match f(car) for continuous reads, mode 0 or 3. 855 */ 856 switch (status & 0x3c) { 857 case 0x0c: /* 0 0 1 1 x x */ 858 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9); 859 break; 860 case 0x14: /* 0 1 0 1 x x */ 861 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9); 862 break; 863 case 0x1c: /* 0 1 1 1 x x */ 864 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9); 865 break; 866 case 0x24: /* 1 0 0 1 x x */ 867 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9); 868 break; 869 case 0x2c: /* 1 0 1 1 x x */ 870 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10); 871 break; 872 case 0x34: /* 1 1 0 1 x x */ 873 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10); 874 break; 875 case 0x38: /* 1 1 1 x x x */ 876 case 0x3c: 877 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11); 878 break; 879 /* obsolete AT45DB1282 not (yet?) supported */ 880 default: 881 dev_info(&spi->dev, "unsupported device (%x)\n", 882 status & 0x3c); 883 status = -ENODEV; 884 } 885 886 if (status < 0) 887 pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev), 888 status); 889 890 return status; 891 } 892 893 static int dataflash_remove(struct spi_device *spi) 894 { 895 struct dataflash *flash = spi_get_drvdata(spi); 896 int status; 897 898 pr_debug("%s: remove\n", dev_name(&spi->dev)); 899 900 status = mtd_device_unregister(&flash->mtd); 901 if (status == 0) 902 kfree(flash); 903 return status; 904 } 905 906 static struct spi_driver dataflash_driver = { 907 .driver = { 908 .name = "mtd_dataflash", 909 .owner = THIS_MODULE, 910 .of_match_table = of_match_ptr(dataflash_dt_ids), 911 }, 912 913 .probe = dataflash_probe, 914 .remove = dataflash_remove, 915 916 /* FIXME: investigate suspend and resume... */ 917 }; 918 919 module_spi_driver(dataflash_driver); 920 921 MODULE_LICENSE("GPL"); 922 MODULE_AUTHOR("Andrew Victor, David Brownell"); 923 MODULE_DESCRIPTION("MTD DataFlash driver"); 924 MODULE_ALIAS("spi:mtd_dataflash"); 925