1 /* 2 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework 3 * 4 * Largely derived from at91_dataflash.c: 5 * Copyright (C) 2003-2005 SAN People (Pty) Ltd 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/delay.h> 16 #include <linux/device.h> 17 #include <linux/mutex.h> 18 #include <linux/err.h> 19 #include <linux/math64.h> 20 21 #include <linux/spi/spi.h> 22 #include <linux/spi/flash.h> 23 24 #include <linux/mtd/mtd.h> 25 #include <linux/mtd/partitions.h> 26 27 28 /* 29 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in 30 * each chip, which may be used for double buffered I/O; but this driver 31 * doesn't (yet) use these for any kind of i/o overlap or prefetching. 32 * 33 * Sometimes DataFlash is packaged in MMC-format cards, although the 34 * MMC stack can't (yet?) distinguish between MMC and DataFlash 35 * protocols during enumeration. 36 */ 37 38 /* reads can bypass the buffers */ 39 #define OP_READ_CONTINUOUS 0xE8 40 #define OP_READ_PAGE 0xD2 41 42 /* group B requests can run even while status reports "busy" */ 43 #define OP_READ_STATUS 0xD7 /* group B */ 44 45 /* move data between host and buffer */ 46 #define OP_READ_BUFFER1 0xD4 /* group B */ 47 #define OP_READ_BUFFER2 0xD6 /* group B */ 48 #define OP_WRITE_BUFFER1 0x84 /* group B */ 49 #define OP_WRITE_BUFFER2 0x87 /* group B */ 50 51 /* erasing flash */ 52 #define OP_ERASE_PAGE 0x81 53 #define OP_ERASE_BLOCK 0x50 54 55 /* move data between buffer and flash */ 56 #define OP_TRANSFER_BUF1 0x53 57 #define OP_TRANSFER_BUF2 0x55 58 #define OP_MREAD_BUFFER1 0xD4 59 #define OP_MREAD_BUFFER2 0xD6 60 #define OP_MWERASE_BUFFER1 0x83 61 #define OP_MWERASE_BUFFER2 0x86 62 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */ 63 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */ 64 65 /* write to buffer, then write-erase to flash */ 66 #define OP_PROGRAM_VIA_BUF1 0x82 67 #define OP_PROGRAM_VIA_BUF2 0x85 68 69 /* compare buffer to flash */ 70 #define OP_COMPARE_BUF1 0x60 71 #define OP_COMPARE_BUF2 0x61 72 73 /* read flash to buffer, then write-erase to flash */ 74 #define OP_REWRITE_VIA_BUF1 0x58 75 #define OP_REWRITE_VIA_BUF2 0x59 76 77 /* newer chips report JEDEC manufacturer and device IDs; chip 78 * serial number and OTP bits; and per-sector writeprotect. 79 */ 80 #define OP_READ_ID 0x9F 81 #define OP_READ_SECURITY 0x77 82 #define OP_WRITE_SECURITY_REVC 0x9A 83 #define OP_WRITE_SECURITY 0x9B /* revision D */ 84 85 86 struct dataflash { 87 uint8_t command[4]; 88 char name[24]; 89 90 unsigned partitioned:1; 91 92 unsigned short page_offset; /* offset in flash address */ 93 unsigned int page_size; /* of bytes per page */ 94 95 struct mutex lock; 96 struct spi_device *spi; 97 98 struct mtd_info mtd; 99 }; 100 101 /* ......................................................................... */ 102 103 /* 104 * Return the status of the DataFlash device. 105 */ 106 static inline int dataflash_status(struct spi_device *spi) 107 { 108 /* NOTE: at45db321c over 25 MHz wants to write 109 * a dummy byte after the opcode... 110 */ 111 return spi_w8r8(spi, OP_READ_STATUS); 112 } 113 114 /* 115 * Poll the DataFlash device until it is READY. 116 * This usually takes 5-20 msec or so; more for sector erase. 117 */ 118 static int dataflash_waitready(struct spi_device *spi) 119 { 120 int status; 121 122 for (;;) { 123 status = dataflash_status(spi); 124 if (status < 0) { 125 DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n", 126 dev_name(&spi->dev), status); 127 status = 0; 128 } 129 130 if (status & (1 << 7)) /* RDY/nBSY */ 131 return status; 132 133 msleep(3); 134 } 135 } 136 137 /* ......................................................................... */ 138 139 /* 140 * Erase pages of flash. 141 */ 142 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) 143 { 144 struct dataflash *priv = (struct dataflash *)mtd->priv; 145 struct spi_device *spi = priv->spi; 146 struct spi_transfer x = { .tx_dma = 0, }; 147 struct spi_message msg; 148 unsigned blocksize = priv->page_size << 3; 149 uint8_t *command; 150 uint32_t rem; 151 152 DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%llx len 0x%llx\n", 153 dev_name(&spi->dev), (long long)instr->addr, 154 (long long)instr->len); 155 156 /* Sanity checks */ 157 if (instr->addr + instr->len > mtd->size) 158 return -EINVAL; 159 div_u64_rem(instr->len, priv->page_size, &rem); 160 if (rem) 161 return -EINVAL; 162 div_u64_rem(instr->addr, priv->page_size, &rem); 163 if (rem) 164 return -EINVAL; 165 166 spi_message_init(&msg); 167 168 x.tx_buf = command = priv->command; 169 x.len = 4; 170 spi_message_add_tail(&x, &msg); 171 172 mutex_lock(&priv->lock); 173 while (instr->len > 0) { 174 unsigned int pageaddr; 175 int status; 176 int do_block; 177 178 /* Calculate flash page address; use block erase (for speed) if 179 * we're at a block boundary and need to erase the whole block. 180 */ 181 pageaddr = div_u64(instr->addr, priv->page_size); 182 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize; 183 pageaddr = pageaddr << priv->page_offset; 184 185 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE; 186 command[1] = (uint8_t)(pageaddr >> 16); 187 command[2] = (uint8_t)(pageaddr >> 8); 188 command[3] = 0; 189 190 DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n", 191 do_block ? "block" : "page", 192 command[0], command[1], command[2], command[3], 193 pageaddr); 194 195 status = spi_sync(spi, &msg); 196 (void) dataflash_waitready(spi); 197 198 if (status < 0) { 199 printk(KERN_ERR "%s: erase %x, err %d\n", 200 dev_name(&spi->dev), pageaddr, status); 201 /* REVISIT: can retry instr->retries times; or 202 * giveup and instr->fail_addr = instr->addr; 203 */ 204 continue; 205 } 206 207 if (do_block) { 208 instr->addr += blocksize; 209 instr->len -= blocksize; 210 } else { 211 instr->addr += priv->page_size; 212 instr->len -= priv->page_size; 213 } 214 } 215 mutex_unlock(&priv->lock); 216 217 /* Inform MTD subsystem that erase is complete */ 218 instr->state = MTD_ERASE_DONE; 219 mtd_erase_callback(instr); 220 221 return 0; 222 } 223 224 /* 225 * Read from the DataFlash device. 226 * from : Start offset in flash device 227 * len : Amount to read 228 * retlen : About of data actually read 229 * buf : Buffer containing the data 230 */ 231 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, 232 size_t *retlen, u_char *buf) 233 { 234 struct dataflash *priv = (struct dataflash *)mtd->priv; 235 struct spi_transfer x[2] = { { .tx_dma = 0, }, }; 236 struct spi_message msg; 237 unsigned int addr; 238 uint8_t *command; 239 int status; 240 241 DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n", 242 dev_name(&priv->spi->dev), (unsigned)from, (unsigned)(from + len)); 243 244 *retlen = 0; 245 246 /* Sanity checks */ 247 if (!len) 248 return 0; 249 if (from + len > mtd->size) 250 return -EINVAL; 251 252 /* Calculate flash page/byte address */ 253 addr = (((unsigned)from / priv->page_size) << priv->page_offset) 254 + ((unsigned)from % priv->page_size); 255 256 command = priv->command; 257 258 DEBUG(MTD_DEBUG_LEVEL3, "READ: (%x) %x %x %x\n", 259 command[0], command[1], command[2], command[3]); 260 261 spi_message_init(&msg); 262 263 x[0].tx_buf = command; 264 x[0].len = 8; 265 spi_message_add_tail(&x[0], &msg); 266 267 x[1].rx_buf = buf; 268 x[1].len = len; 269 spi_message_add_tail(&x[1], &msg); 270 271 mutex_lock(&priv->lock); 272 273 /* Continuous read, max clock = f(car) which may be less than 274 * the peak rate available. Some chips support commands with 275 * fewer "don't care" bytes. Both buffers stay unchanged. 276 */ 277 command[0] = OP_READ_CONTINUOUS; 278 command[1] = (uint8_t)(addr >> 16); 279 command[2] = (uint8_t)(addr >> 8); 280 command[3] = (uint8_t)(addr >> 0); 281 /* plus 4 "don't care" bytes */ 282 283 status = spi_sync(priv->spi, &msg); 284 mutex_unlock(&priv->lock); 285 286 if (status >= 0) { 287 *retlen = msg.actual_length - 8; 288 status = 0; 289 } else 290 DEBUG(MTD_DEBUG_LEVEL1, "%s: read %x..%x --> %d\n", 291 dev_name(&priv->spi->dev), 292 (unsigned)from, (unsigned)(from + len), 293 status); 294 return status; 295 } 296 297 /* 298 * Write to the DataFlash device. 299 * to : Start offset in flash device 300 * len : Amount to write 301 * retlen : Amount of data actually written 302 * buf : Buffer containing the data 303 */ 304 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, 305 size_t * retlen, const u_char * buf) 306 { 307 struct dataflash *priv = (struct dataflash *)mtd->priv; 308 struct spi_device *spi = priv->spi; 309 struct spi_transfer x[2] = { { .tx_dma = 0, }, }; 310 struct spi_message msg; 311 unsigned int pageaddr, addr, offset, writelen; 312 size_t remaining = len; 313 u_char *writebuf = (u_char *) buf; 314 int status = -EINVAL; 315 uint8_t *command; 316 317 DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n", 318 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len)); 319 320 *retlen = 0; 321 322 /* Sanity checks */ 323 if (!len) 324 return 0; 325 if ((to + len) > mtd->size) 326 return -EINVAL; 327 328 spi_message_init(&msg); 329 330 x[0].tx_buf = command = priv->command; 331 x[0].len = 4; 332 spi_message_add_tail(&x[0], &msg); 333 334 pageaddr = ((unsigned)to / priv->page_size); 335 offset = ((unsigned)to % priv->page_size); 336 if (offset + len > priv->page_size) 337 writelen = priv->page_size - offset; 338 else 339 writelen = len; 340 341 mutex_lock(&priv->lock); 342 while (remaining > 0) { 343 DEBUG(MTD_DEBUG_LEVEL3, "write @ %i:%i len=%i\n", 344 pageaddr, offset, writelen); 345 346 /* REVISIT: 347 * (a) each page in a sector must be rewritten at least 348 * once every 10K sibling erase/program operations. 349 * (b) for pages that are already erased, we could 350 * use WRITE+MWRITE not PROGRAM for ~30% speedup. 351 * (c) WRITE to buffer could be done while waiting for 352 * a previous MWRITE/MWERASE to complete ... 353 * (d) error handling here seems to be mostly missing. 354 * 355 * Two persistent bits per page, plus a per-sector counter, 356 * could support (a) and (b) ... we might consider using 357 * the second half of sector zero, which is just one block, 358 * to track that state. (On AT91, that sector should also 359 * support boot-from-DataFlash.) 360 */ 361 362 addr = pageaddr << priv->page_offset; 363 364 /* (1) Maybe transfer partial page to Buffer1 */ 365 if (writelen != priv->page_size) { 366 command[0] = OP_TRANSFER_BUF1; 367 command[1] = (addr & 0x00FF0000) >> 16; 368 command[2] = (addr & 0x0000FF00) >> 8; 369 command[3] = 0; 370 371 DEBUG(MTD_DEBUG_LEVEL3, "TRANSFER: (%x) %x %x %x\n", 372 command[0], command[1], command[2], command[3]); 373 374 status = spi_sync(spi, &msg); 375 if (status < 0) 376 DEBUG(MTD_DEBUG_LEVEL1, "%s: xfer %u -> %d \n", 377 dev_name(&spi->dev), addr, status); 378 379 (void) dataflash_waitready(priv->spi); 380 } 381 382 /* (2) Program full page via Buffer1 */ 383 addr += offset; 384 command[0] = OP_PROGRAM_VIA_BUF1; 385 command[1] = (addr & 0x00FF0000) >> 16; 386 command[2] = (addr & 0x0000FF00) >> 8; 387 command[3] = (addr & 0x000000FF); 388 389 DEBUG(MTD_DEBUG_LEVEL3, "PROGRAM: (%x) %x %x %x\n", 390 command[0], command[1], command[2], command[3]); 391 392 x[1].tx_buf = writebuf; 393 x[1].len = writelen; 394 spi_message_add_tail(x + 1, &msg); 395 status = spi_sync(spi, &msg); 396 spi_transfer_del(x + 1); 397 if (status < 0) 398 DEBUG(MTD_DEBUG_LEVEL1, "%s: pgm %u/%u -> %d \n", 399 dev_name(&spi->dev), addr, writelen, status); 400 401 (void) dataflash_waitready(priv->spi); 402 403 404 #ifdef CONFIG_MTD_DATAFLASH_VERIFY_WRITE 405 406 /* (3) Compare to Buffer1 */ 407 addr = pageaddr << priv->page_offset; 408 command[0] = OP_COMPARE_BUF1; 409 command[1] = (addr & 0x00FF0000) >> 16; 410 command[2] = (addr & 0x0000FF00) >> 8; 411 command[3] = 0; 412 413 DEBUG(MTD_DEBUG_LEVEL3, "COMPARE: (%x) %x %x %x\n", 414 command[0], command[1], command[2], command[3]); 415 416 status = spi_sync(spi, &msg); 417 if (status < 0) 418 DEBUG(MTD_DEBUG_LEVEL1, "%s: compare %u -> %d \n", 419 dev_name(&spi->dev), addr, status); 420 421 status = dataflash_waitready(priv->spi); 422 423 /* Check result of the compare operation */ 424 if (status & (1 << 6)) { 425 printk(KERN_ERR "%s: compare page %u, err %d\n", 426 dev_name(&spi->dev), pageaddr, status); 427 remaining = 0; 428 status = -EIO; 429 break; 430 } else 431 status = 0; 432 433 #endif /* CONFIG_MTD_DATAFLASH_VERIFY_WRITE */ 434 435 remaining = remaining - writelen; 436 pageaddr++; 437 offset = 0; 438 writebuf += writelen; 439 *retlen += writelen; 440 441 if (remaining > priv->page_size) 442 writelen = priv->page_size; 443 else 444 writelen = remaining; 445 } 446 mutex_unlock(&priv->lock); 447 448 return status; 449 } 450 451 /* ......................................................................... */ 452 453 #ifdef CONFIG_MTD_DATAFLASH_OTP 454 455 static int dataflash_get_otp_info(struct mtd_info *mtd, 456 struct otp_info *info, size_t len) 457 { 458 /* Report both blocks as identical: bytes 0..64, locked. 459 * Unless the user block changed from all-ones, we can't 460 * tell whether it's still writable; so we assume it isn't. 461 */ 462 info->start = 0; 463 info->length = 64; 464 info->locked = 1; 465 return sizeof(*info); 466 } 467 468 static ssize_t otp_read(struct spi_device *spi, unsigned base, 469 uint8_t *buf, loff_t off, size_t len) 470 { 471 struct spi_message m; 472 size_t l; 473 uint8_t *scratch; 474 struct spi_transfer t; 475 int status; 476 477 if (off > 64) 478 return -EINVAL; 479 480 if ((off + len) > 64) 481 len = 64 - off; 482 if (len == 0) 483 return len; 484 485 spi_message_init(&m); 486 487 l = 4 + base + off + len; 488 scratch = kzalloc(l, GFP_KERNEL); 489 if (!scratch) 490 return -ENOMEM; 491 492 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes 493 * IN: ignore 4 bytes, data bytes 0..N (max 127) 494 */ 495 scratch[0] = OP_READ_SECURITY; 496 497 memset(&t, 0, sizeof t); 498 t.tx_buf = scratch; 499 t.rx_buf = scratch; 500 t.len = l; 501 spi_message_add_tail(&t, &m); 502 503 dataflash_waitready(spi); 504 505 status = spi_sync(spi, &m); 506 if (status >= 0) { 507 memcpy(buf, scratch + 4 + base + off, len); 508 status = len; 509 } 510 511 kfree(scratch); 512 return status; 513 } 514 515 static int dataflash_read_fact_otp(struct mtd_info *mtd, 516 loff_t from, size_t len, size_t *retlen, u_char *buf) 517 { 518 struct dataflash *priv = (struct dataflash *)mtd->priv; 519 int status; 520 521 /* 64 bytes, from 0..63 ... start at 64 on-chip */ 522 mutex_lock(&priv->lock); 523 status = otp_read(priv->spi, 64, buf, from, len); 524 mutex_unlock(&priv->lock); 525 526 if (status < 0) 527 return status; 528 *retlen = status; 529 return 0; 530 } 531 532 static int dataflash_read_user_otp(struct mtd_info *mtd, 533 loff_t from, size_t len, size_t *retlen, u_char *buf) 534 { 535 struct dataflash *priv = (struct dataflash *)mtd->priv; 536 int status; 537 538 /* 64 bytes, from 0..63 ... start at 0 on-chip */ 539 mutex_lock(&priv->lock); 540 status = otp_read(priv->spi, 0, buf, from, len); 541 mutex_unlock(&priv->lock); 542 543 if (status < 0) 544 return status; 545 *retlen = status; 546 return 0; 547 } 548 549 static int dataflash_write_user_otp(struct mtd_info *mtd, 550 loff_t from, size_t len, size_t *retlen, u_char *buf) 551 { 552 struct spi_message m; 553 const size_t l = 4 + 64; 554 uint8_t *scratch; 555 struct spi_transfer t; 556 struct dataflash *priv = (struct dataflash *)mtd->priv; 557 int status; 558 559 if (len > 64) 560 return -EINVAL; 561 562 /* Strictly speaking, we *could* truncate the write ... but 563 * let's not do that for the only write that's ever possible. 564 */ 565 if ((from + len) > 64) 566 return -EINVAL; 567 568 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes 569 * IN: ignore all 570 */ 571 scratch = kzalloc(l, GFP_KERNEL); 572 if (!scratch) 573 return -ENOMEM; 574 scratch[0] = OP_WRITE_SECURITY; 575 memcpy(scratch + 4 + from, buf, len); 576 577 spi_message_init(&m); 578 579 memset(&t, 0, sizeof t); 580 t.tx_buf = scratch; 581 t.len = l; 582 spi_message_add_tail(&t, &m); 583 584 /* Write the OTP bits, if they've not yet been written. 585 * This modifies SRAM buffer1. 586 */ 587 mutex_lock(&priv->lock); 588 dataflash_waitready(priv->spi); 589 status = spi_sync(priv->spi, &m); 590 mutex_unlock(&priv->lock); 591 592 kfree(scratch); 593 594 if (status >= 0) { 595 status = 0; 596 *retlen = len; 597 } 598 return status; 599 } 600 601 static char *otp_setup(struct mtd_info *device, char revision) 602 { 603 device->get_fact_prot_info = dataflash_get_otp_info; 604 device->read_fact_prot_reg = dataflash_read_fact_otp; 605 device->get_user_prot_info = dataflash_get_otp_info; 606 device->read_user_prot_reg = dataflash_read_user_otp; 607 608 /* rev c parts (at45db321c and at45db1281 only!) use a 609 * different write procedure; not (yet?) implemented. 610 */ 611 if (revision > 'c') 612 device->write_user_prot_reg = dataflash_write_user_otp; 613 614 return ", OTP"; 615 } 616 617 #else 618 619 static char *otp_setup(struct mtd_info *device, char revision) 620 { 621 return " (OTP)"; 622 } 623 624 #endif 625 626 /* ......................................................................... */ 627 628 /* 629 * Register DataFlash device with MTD subsystem. 630 */ 631 static int __devinit 632 add_dataflash_otp(struct spi_device *spi, char *name, 633 int nr_pages, int pagesize, int pageoffset, char revision) 634 { 635 struct dataflash *priv; 636 struct mtd_info *device; 637 struct flash_platform_data *pdata = spi->dev.platform_data; 638 char *otp_tag = ""; 639 640 priv = kzalloc(sizeof *priv, GFP_KERNEL); 641 if (!priv) 642 return -ENOMEM; 643 644 mutex_init(&priv->lock); 645 priv->spi = spi; 646 priv->page_size = pagesize; 647 priv->page_offset = pageoffset; 648 649 /* name must be usable with cmdlinepart */ 650 sprintf(priv->name, "spi%d.%d-%s", 651 spi->master->bus_num, spi->chip_select, 652 name); 653 654 device = &priv->mtd; 655 device->name = (pdata && pdata->name) ? pdata->name : priv->name; 656 device->size = nr_pages * pagesize; 657 device->erasesize = pagesize; 658 device->writesize = pagesize; 659 device->owner = THIS_MODULE; 660 device->type = MTD_DATAFLASH; 661 device->flags = MTD_WRITEABLE; 662 device->erase = dataflash_erase; 663 device->read = dataflash_read; 664 device->write = dataflash_write; 665 device->priv = priv; 666 667 device->dev.parent = &spi->dev; 668 669 if (revision >= 'c') 670 otp_tag = otp_setup(device, revision); 671 672 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n", 673 name, (long long)((device->size + 1023) >> 10), 674 pagesize, otp_tag); 675 dev_set_drvdata(&spi->dev, priv); 676 677 if (mtd_has_partitions()) { 678 struct mtd_partition *parts; 679 int nr_parts = 0; 680 681 if (mtd_has_cmdlinepart()) { 682 static const char *part_probes[] 683 = { "cmdlinepart", NULL, }; 684 685 nr_parts = parse_mtd_partitions(device, 686 part_probes, &parts, 0); 687 } 688 689 if (nr_parts <= 0 && pdata && pdata->parts) { 690 parts = pdata->parts; 691 nr_parts = pdata->nr_parts; 692 } 693 694 if (nr_parts > 0) { 695 priv->partitioned = 1; 696 return add_mtd_partitions(device, parts, nr_parts); 697 } 698 } else if (pdata && pdata->nr_parts) 699 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n", 700 pdata->nr_parts, device->name); 701 702 return add_mtd_device(device) == 1 ? -ENODEV : 0; 703 } 704 705 static inline int __devinit 706 add_dataflash(struct spi_device *spi, char *name, 707 int nr_pages, int pagesize, int pageoffset) 708 { 709 return add_dataflash_otp(spi, name, nr_pages, pagesize, 710 pageoffset, 0); 711 } 712 713 struct flash_info { 714 char *name; 715 716 /* JEDEC id has a high byte of zero plus three data bytes: 717 * the manufacturer id, then a two byte device id. 718 */ 719 uint32_t jedec_id; 720 721 /* The size listed here is what works with OP_ERASE_PAGE. */ 722 unsigned nr_pages; 723 uint16_t pagesize; 724 uint16_t pageoffset; 725 726 uint16_t flags; 727 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */ 728 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */ 729 }; 730 731 static struct flash_info __devinitdata dataflash_data [] = { 732 733 /* 734 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, 735 * one with IS_POW2PS and the other without. The entry with the 736 * non-2^N byte page size can't name exact chip revisions without 737 * losing backwards compatibility for cmdlinepart. 738 * 739 * These newer chips also support 128-byte security registers (with 740 * 64 bytes one-time-programmable) and software write-protection. 741 */ 742 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS}, 743 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS}, 744 745 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS}, 746 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS}, 747 748 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS}, 749 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS}, 750 751 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS}, 752 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS}, 753 754 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS}, 755 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS}, 756 757 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */ 758 759 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS}, 760 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS}, 761 762 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS}, 763 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, 764 }; 765 766 static struct flash_info *__devinit jedec_probe(struct spi_device *spi) 767 { 768 int tmp; 769 uint8_t code = OP_READ_ID; 770 uint8_t id[3]; 771 uint32_t jedec; 772 struct flash_info *info; 773 int status; 774 775 /* JEDEC also defines an optional "extended device information" 776 * string for after vendor-specific data, after the three bytes 777 * we use here. Supporting some chips might require using it. 778 * 779 * If the vendor ID isn't Atmel's (0x1f), assume this call failed. 780 * That's not an error; only rev C and newer chips handle it, and 781 * only Atmel sells these chips. 782 */ 783 tmp = spi_write_then_read(spi, &code, 1, id, 3); 784 if (tmp < 0) { 785 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n", 786 dev_name(&spi->dev), tmp); 787 return ERR_PTR(tmp); 788 } 789 if (id[0] != 0x1f) 790 return NULL; 791 792 jedec = id[0]; 793 jedec = jedec << 8; 794 jedec |= id[1]; 795 jedec = jedec << 8; 796 jedec |= id[2]; 797 798 for (tmp = 0, info = dataflash_data; 799 tmp < ARRAY_SIZE(dataflash_data); 800 tmp++, info++) { 801 if (info->jedec_id == jedec) { 802 DEBUG(MTD_DEBUG_LEVEL1, "%s: OTP, sector protect%s\n", 803 dev_name(&spi->dev), 804 (info->flags & SUP_POW2PS) 805 ? ", binary pagesize" : "" 806 ); 807 if (info->flags & SUP_POW2PS) { 808 status = dataflash_status(spi); 809 if (status < 0) { 810 DEBUG(MTD_DEBUG_LEVEL1, 811 "%s: status error %d\n", 812 dev_name(&spi->dev), status); 813 return ERR_PTR(status); 814 } 815 if (status & 0x1) { 816 if (info->flags & IS_POW2PS) 817 return info; 818 } else { 819 if (!(info->flags & IS_POW2PS)) 820 return info; 821 } 822 } else 823 return info; 824 } 825 } 826 827 /* 828 * Treat other chips as errors ... we won't know the right page 829 * size (it might be binary) even when we can tell which density 830 * class is involved (legacy chip id scheme). 831 */ 832 dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec); 833 return ERR_PTR(-ENODEV); 834 } 835 836 /* 837 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips 838 * or else the ID code embedded in the status bits: 839 * 840 * Device Density ID code #Pages PageSize Offset 841 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9 842 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9 843 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9 844 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9 845 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10 846 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10 847 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 848 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 849 */ 850 static int __devinit dataflash_probe(struct spi_device *spi) 851 { 852 int status; 853 struct flash_info *info; 854 855 /* 856 * Try to detect dataflash by JEDEC ID. 857 * If it succeeds we know we have either a C or D part. 858 * D will support power of 2 pagesize option. 859 * Both support the security register, though with different 860 * write procedures. 861 */ 862 info = jedec_probe(spi); 863 if (IS_ERR(info)) 864 return PTR_ERR(info); 865 if (info != NULL) 866 return add_dataflash_otp(spi, info->name, info->nr_pages, 867 info->pagesize, info->pageoffset, 868 (info->flags & SUP_POW2PS) ? 'd' : 'c'); 869 870 /* 871 * Older chips support only legacy commands, identifing 872 * capacity using bits in the status byte. 873 */ 874 status = dataflash_status(spi); 875 if (status <= 0 || status == 0xff) { 876 DEBUG(MTD_DEBUG_LEVEL1, "%s: status error %d\n", 877 dev_name(&spi->dev), status); 878 if (status == 0 || status == 0xff) 879 status = -ENODEV; 880 return status; 881 } 882 883 /* if there's a device there, assume it's dataflash. 884 * board setup should have set spi->max_speed_max to 885 * match f(car) for continuous reads, mode 0 or 3. 886 */ 887 switch (status & 0x3c) { 888 case 0x0c: /* 0 0 1 1 x x */ 889 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9); 890 break; 891 case 0x14: /* 0 1 0 1 x x */ 892 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9); 893 break; 894 case 0x1c: /* 0 1 1 1 x x */ 895 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9); 896 break; 897 case 0x24: /* 1 0 0 1 x x */ 898 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9); 899 break; 900 case 0x2c: /* 1 0 1 1 x x */ 901 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10); 902 break; 903 case 0x34: /* 1 1 0 1 x x */ 904 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10); 905 break; 906 case 0x38: /* 1 1 1 x x x */ 907 case 0x3c: 908 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11); 909 break; 910 /* obsolete AT45DB1282 not (yet?) supported */ 911 default: 912 DEBUG(MTD_DEBUG_LEVEL1, "%s: unsupported device (%x)\n", 913 dev_name(&spi->dev), status & 0x3c); 914 status = -ENODEV; 915 } 916 917 if (status < 0) 918 DEBUG(MTD_DEBUG_LEVEL1, "%s: add_dataflash --> %d\n", 919 dev_name(&spi->dev), status); 920 921 return status; 922 } 923 924 static int __devexit dataflash_remove(struct spi_device *spi) 925 { 926 struct dataflash *flash = dev_get_drvdata(&spi->dev); 927 int status; 928 929 DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", dev_name(&spi->dev)); 930 931 if (mtd_has_partitions() && flash->partitioned) 932 status = del_mtd_partitions(&flash->mtd); 933 else 934 status = del_mtd_device(&flash->mtd); 935 if (status == 0) 936 kfree(flash); 937 return status; 938 } 939 940 static struct spi_driver dataflash_driver = { 941 .driver = { 942 .name = "mtd_dataflash", 943 .bus = &spi_bus_type, 944 .owner = THIS_MODULE, 945 }, 946 947 .probe = dataflash_probe, 948 .remove = __devexit_p(dataflash_remove), 949 950 /* FIXME: investigate suspend and resume... */ 951 }; 952 953 static int __init dataflash_init(void) 954 { 955 return spi_register_driver(&dataflash_driver); 956 } 957 module_init(dataflash_init); 958 959 static void __exit dataflash_exit(void) 960 { 961 spi_unregister_driver(&dataflash_driver); 962 } 963 module_exit(dataflash_exit); 964 965 966 MODULE_LICENSE("GPL"); 967 MODULE_AUTHOR("Andrew Victor, David Brownell"); 968 MODULE_DESCRIPTION("MTD DataFlash driver"); 969