1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
4  *
5  * Largely derived from at91_dataflash.c:
6  *  Copyright (C) 2003-2005 SAN People (Pty) Ltd
7 */
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/math64.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 
18 #include <linux/spi/spi.h>
19 #include <linux/spi/flash.h>
20 
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 
24 /*
25  * DataFlash is a kind of SPI flash.  Most AT45 chips have two buffers in
26  * each chip, which may be used for double buffered I/O; but this driver
27  * doesn't (yet) use these for any kind of i/o overlap or prefetching.
28  *
29  * Sometimes DataFlash is packaged in MMC-format cards, although the
30  * MMC stack can't (yet?) distinguish between MMC and DataFlash
31  * protocols during enumeration.
32  */
33 
34 /* reads can bypass the buffers */
35 #define OP_READ_CONTINUOUS	0xE8
36 #define OP_READ_PAGE		0xD2
37 
38 /* group B requests can run even while status reports "busy" */
39 #define OP_READ_STATUS		0xD7	/* group B */
40 
41 /* move data between host and buffer */
42 #define OP_READ_BUFFER1		0xD4	/* group B */
43 #define OP_READ_BUFFER2		0xD6	/* group B */
44 #define OP_WRITE_BUFFER1	0x84	/* group B */
45 #define OP_WRITE_BUFFER2	0x87	/* group B */
46 
47 /* erasing flash */
48 #define OP_ERASE_PAGE		0x81
49 #define OP_ERASE_BLOCK		0x50
50 
51 /* move data between buffer and flash */
52 #define OP_TRANSFER_BUF1	0x53
53 #define OP_TRANSFER_BUF2	0x55
54 #define OP_MREAD_BUFFER1	0xD4
55 #define OP_MREAD_BUFFER2	0xD6
56 #define OP_MWERASE_BUFFER1	0x83
57 #define OP_MWERASE_BUFFER2	0x86
58 #define OP_MWRITE_BUFFER1	0x88	/* sector must be pre-erased */
59 #define OP_MWRITE_BUFFER2	0x89	/* sector must be pre-erased */
60 
61 /* write to buffer, then write-erase to flash */
62 #define OP_PROGRAM_VIA_BUF1	0x82
63 #define OP_PROGRAM_VIA_BUF2	0x85
64 
65 /* compare buffer to flash */
66 #define OP_COMPARE_BUF1		0x60
67 #define OP_COMPARE_BUF2		0x61
68 
69 /* read flash to buffer, then write-erase to flash */
70 #define OP_REWRITE_VIA_BUF1	0x58
71 #define OP_REWRITE_VIA_BUF2	0x59
72 
73 /* newer chips report JEDEC manufacturer and device IDs; chip
74  * serial number and OTP bits; and per-sector writeprotect.
75  */
76 #define OP_READ_ID		0x9F
77 #define OP_READ_SECURITY	0x77
78 #define OP_WRITE_SECURITY_REVC	0x9A
79 #define OP_WRITE_SECURITY	0x9B	/* revision D */
80 
81 #define CFI_MFR_ATMEL		0x1F
82 
83 #define DATAFLASH_SHIFT_EXTID	24
84 #define DATAFLASH_SHIFT_ID	40
85 
86 struct dataflash {
87 	u8			command[4];
88 	char			name[24];
89 
90 	unsigned short		page_offset;	/* offset in flash address */
91 	unsigned int		page_size;	/* of bytes per page */
92 
93 	struct mutex		lock;
94 	struct spi_device	*spi;
95 
96 	struct mtd_info		mtd;
97 };
98 
99 static const struct spi_device_id dataflash_dev_ids[] = {
100 	{ "at45" },
101 	{ "dataflash" },
102 	{ },
103 };
104 MODULE_DEVICE_TABLE(spi, dataflash_dev_ids);
105 
106 #ifdef CONFIG_OF
107 static const struct of_device_id dataflash_dt_ids[] = {
108 	{ .compatible = "atmel,at45", },
109 	{ .compatible = "atmel,dataflash", },
110 	{ /* sentinel */ }
111 };
112 MODULE_DEVICE_TABLE(of, dataflash_dt_ids);
113 #endif
114 
115 /* ......................................................................... */
116 
117 /*
118  * Return the status of the DataFlash device.
119  */
120 static inline int dataflash_status(struct spi_device *spi)
121 {
122 	/* NOTE:  at45db321c over 25 MHz wants to write
123 	 * a dummy byte after the opcode...
124 	 */
125 	return spi_w8r8(spi, OP_READ_STATUS);
126 }
127 
128 /*
129  * Poll the DataFlash device until it is READY.
130  * This usually takes 5-20 msec or so; more for sector erase.
131  */
132 static int dataflash_waitready(struct spi_device *spi)
133 {
134 	int	status;
135 
136 	for (;;) {
137 		status = dataflash_status(spi);
138 		if (status < 0) {
139 			dev_dbg(&spi->dev, "status %d?\n", status);
140 			status = 0;
141 		}
142 
143 		if (status & (1 << 7))	/* RDY/nBSY */
144 			return status;
145 
146 		usleep_range(3000, 4000);
147 	}
148 }
149 
150 /* ......................................................................... */
151 
152 /*
153  * Erase pages of flash.
154  */
155 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
156 {
157 	struct dataflash	*priv = mtd->priv;
158 	struct spi_device	*spi = priv->spi;
159 	struct spi_transfer	x = { };
160 	struct spi_message	msg;
161 	unsigned		blocksize = priv->page_size << 3;
162 	u8			*command;
163 	u32			rem;
164 
165 	dev_dbg(&spi->dev, "erase addr=0x%llx len 0x%llx\n",
166 		(long long)instr->addr, (long long)instr->len);
167 
168 	div_u64_rem(instr->len, priv->page_size, &rem);
169 	if (rem)
170 		return -EINVAL;
171 	div_u64_rem(instr->addr, priv->page_size, &rem);
172 	if (rem)
173 		return -EINVAL;
174 
175 	spi_message_init(&msg);
176 
177 	x.tx_buf = command = priv->command;
178 	x.len = 4;
179 	spi_message_add_tail(&x, &msg);
180 
181 	mutex_lock(&priv->lock);
182 	while (instr->len > 0) {
183 		unsigned int	pageaddr;
184 		int		status;
185 		int		do_block;
186 
187 		/* Calculate flash page address; use block erase (for speed) if
188 		 * we're at a block boundary and need to erase the whole block.
189 		 */
190 		pageaddr = div_u64(instr->addr, priv->page_size);
191 		do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
192 		pageaddr = pageaddr << priv->page_offset;
193 
194 		command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
195 		command[1] = (u8)(pageaddr >> 16);
196 		command[2] = (u8)(pageaddr >> 8);
197 		command[3] = 0;
198 
199 		dev_dbg(&spi->dev, "ERASE %s: (%x) %x %x %x [%i]\n",
200 			do_block ? "block" : "page",
201 			command[0], command[1], command[2], command[3],
202 			pageaddr);
203 
204 		status = spi_sync(spi, &msg);
205 		(void) dataflash_waitready(spi);
206 
207 		if (status < 0) {
208 			dev_err(&spi->dev, "erase %x, err %d\n",
209 				pageaddr, status);
210 			/* REVISIT:  can retry instr->retries times; or
211 			 * giveup and instr->fail_addr = instr->addr;
212 			 */
213 			continue;
214 		}
215 
216 		if (do_block) {
217 			instr->addr += blocksize;
218 			instr->len -= blocksize;
219 		} else {
220 			instr->addr += priv->page_size;
221 			instr->len -= priv->page_size;
222 		}
223 	}
224 	mutex_unlock(&priv->lock);
225 
226 	return 0;
227 }
228 
229 /*
230  * Read from the DataFlash device.
231  *   from   : Start offset in flash device
232  *   len    : Amount to read
233  *   retlen : About of data actually read
234  *   buf    : Buffer containing the data
235  */
236 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
237 			       size_t *retlen, u_char *buf)
238 {
239 	struct dataflash	*priv = mtd->priv;
240 	struct spi_transfer	x[2] = { };
241 	struct spi_message	msg;
242 	unsigned int		addr;
243 	u8			*command;
244 	int			status;
245 
246 	dev_dbg(&priv->spi->dev, "read 0x%x..0x%x\n",
247 		  (unsigned int)from, (unsigned int)(from + len));
248 
249 	/* Calculate flash page/byte address */
250 	addr = (((unsigned)from / priv->page_size) << priv->page_offset)
251 		+ ((unsigned)from % priv->page_size);
252 
253 	command = priv->command;
254 
255 	dev_dbg(&priv->spi->dev, "READ: (%x) %x %x %x\n",
256 		command[0], command[1], command[2], command[3]);
257 
258 	spi_message_init(&msg);
259 
260 	x[0].tx_buf = command;
261 	x[0].len = 8;
262 	spi_message_add_tail(&x[0], &msg);
263 
264 	x[1].rx_buf = buf;
265 	x[1].len = len;
266 	spi_message_add_tail(&x[1], &msg);
267 
268 	mutex_lock(&priv->lock);
269 
270 	/* Continuous read, max clock = f(car) which may be less than
271 	 * the peak rate available.  Some chips support commands with
272 	 * fewer "don't care" bytes.  Both buffers stay unchanged.
273 	 */
274 	command[0] = OP_READ_CONTINUOUS;
275 	command[1] = (u8)(addr >> 16);
276 	command[2] = (u8)(addr >> 8);
277 	command[3] = (u8)(addr >> 0);
278 	/* plus 4 "don't care" bytes */
279 
280 	status = spi_sync(priv->spi, &msg);
281 	mutex_unlock(&priv->lock);
282 
283 	if (status >= 0) {
284 		*retlen = msg.actual_length - 8;
285 		status = 0;
286 	} else
287 		dev_dbg(&priv->spi->dev, "read %x..%x --> %d\n",
288 			(unsigned)from, (unsigned)(from + len),
289 			status);
290 	return status;
291 }
292 
293 /*
294  * Write to the DataFlash device.
295  *   to     : Start offset in flash device
296  *   len    : Amount to write
297  *   retlen : Amount of data actually written
298  *   buf    : Buffer containing the data
299  */
300 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
301 				size_t * retlen, const u_char * buf)
302 {
303 	struct dataflash	*priv = mtd->priv;
304 	struct spi_device	*spi = priv->spi;
305 	struct spi_transfer	x[2] = { };
306 	struct spi_message	msg;
307 	unsigned int		pageaddr, addr, offset, writelen;
308 	size_t			remaining = len;
309 	u_char			*writebuf = (u_char *) buf;
310 	int			status = -EINVAL;
311 	u8			*command;
312 
313 	dev_dbg(&spi->dev, "write 0x%x..0x%x\n",
314 		(unsigned int)to, (unsigned int)(to + len));
315 
316 	spi_message_init(&msg);
317 
318 	x[0].tx_buf = command = priv->command;
319 	x[0].len = 4;
320 	spi_message_add_tail(&x[0], &msg);
321 
322 	pageaddr = ((unsigned)to / priv->page_size);
323 	offset = ((unsigned)to % priv->page_size);
324 	if (offset + len > priv->page_size)
325 		writelen = priv->page_size - offset;
326 	else
327 		writelen = len;
328 
329 	mutex_lock(&priv->lock);
330 	while (remaining > 0) {
331 		dev_dbg(&spi->dev, "write @ %i:%i len=%i\n",
332 			pageaddr, offset, writelen);
333 
334 		/* REVISIT:
335 		 * (a) each page in a sector must be rewritten at least
336 		 *     once every 10K sibling erase/program operations.
337 		 * (b) for pages that are already erased, we could
338 		 *     use WRITE+MWRITE not PROGRAM for ~30% speedup.
339 		 * (c) WRITE to buffer could be done while waiting for
340 		 *     a previous MWRITE/MWERASE to complete ...
341 		 * (d) error handling here seems to be mostly missing.
342 		 *
343 		 * Two persistent bits per page, plus a per-sector counter,
344 		 * could support (a) and (b) ... we might consider using
345 		 * the second half of sector zero, which is just one block,
346 		 * to track that state.  (On AT91, that sector should also
347 		 * support boot-from-DataFlash.)
348 		 */
349 
350 		addr = pageaddr << priv->page_offset;
351 
352 		/* (1) Maybe transfer partial page to Buffer1 */
353 		if (writelen != priv->page_size) {
354 			command[0] = OP_TRANSFER_BUF1;
355 			command[1] = (addr & 0x00FF0000) >> 16;
356 			command[2] = (addr & 0x0000FF00) >> 8;
357 			command[3] = 0;
358 
359 			dev_dbg(&spi->dev, "TRANSFER: (%x) %x %x %x\n",
360 				command[0], command[1], command[2], command[3]);
361 
362 			status = spi_sync(spi, &msg);
363 			if (status < 0)
364 				dev_dbg(&spi->dev, "xfer %u -> %d\n",
365 					addr, status);
366 
367 			(void) dataflash_waitready(priv->spi);
368 		}
369 
370 		/* (2) Program full page via Buffer1 */
371 		addr += offset;
372 		command[0] = OP_PROGRAM_VIA_BUF1;
373 		command[1] = (addr & 0x00FF0000) >> 16;
374 		command[2] = (addr & 0x0000FF00) >> 8;
375 		command[3] = (addr & 0x000000FF);
376 
377 		dev_dbg(&spi->dev, "PROGRAM: (%x) %x %x %x\n",
378 			command[0], command[1], command[2], command[3]);
379 
380 		x[1].tx_buf = writebuf;
381 		x[1].len = writelen;
382 		spi_message_add_tail(x + 1, &msg);
383 		status = spi_sync(spi, &msg);
384 		spi_transfer_del(x + 1);
385 		if (status < 0)
386 			dev_dbg(&spi->dev, "pgm %u/%u -> %d\n",
387 				addr, writelen, status);
388 
389 		(void) dataflash_waitready(priv->spi);
390 
391 
392 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
393 
394 		/* (3) Compare to Buffer1 */
395 		addr = pageaddr << priv->page_offset;
396 		command[0] = OP_COMPARE_BUF1;
397 		command[1] = (addr & 0x00FF0000) >> 16;
398 		command[2] = (addr & 0x0000FF00) >> 8;
399 		command[3] = 0;
400 
401 		dev_dbg(&spi->dev, "COMPARE: (%x) %x %x %x\n",
402 			command[0], command[1], command[2], command[3]);
403 
404 		status = spi_sync(spi, &msg);
405 		if (status < 0)
406 			dev_dbg(&spi->dev, "compare %u -> %d\n",
407 				addr, status);
408 
409 		status = dataflash_waitready(priv->spi);
410 
411 		/* Check result of the compare operation */
412 		if (status & (1 << 6)) {
413 			dev_err(&spi->dev, "compare page %u, err %d\n",
414 				pageaddr, status);
415 			remaining = 0;
416 			status = -EIO;
417 			break;
418 		} else
419 			status = 0;
420 
421 #endif	/* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
422 
423 		remaining = remaining - writelen;
424 		pageaddr++;
425 		offset = 0;
426 		writebuf += writelen;
427 		*retlen += writelen;
428 
429 		if (remaining > priv->page_size)
430 			writelen = priv->page_size;
431 		else
432 			writelen = remaining;
433 	}
434 	mutex_unlock(&priv->lock);
435 
436 	return status;
437 }
438 
439 /* ......................................................................... */
440 
441 #ifdef CONFIG_MTD_DATAFLASH_OTP
442 
443 static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len,
444 				  size_t *retlen, struct otp_info *info)
445 {
446 	/* Report both blocks as identical:  bytes 0..64, locked.
447 	 * Unless the user block changed from all-ones, we can't
448 	 * tell whether it's still writable; so we assume it isn't.
449 	 */
450 	info->start = 0;
451 	info->length = 64;
452 	info->locked = 1;
453 	*retlen = sizeof(*info);
454 	return 0;
455 }
456 
457 static ssize_t otp_read(struct spi_device *spi, unsigned base,
458 		u8 *buf, loff_t off, size_t len)
459 {
460 	struct spi_message	m;
461 	size_t			l;
462 	u8			*scratch;
463 	struct spi_transfer	t;
464 	int			status;
465 
466 	if (off > 64)
467 		return -EINVAL;
468 
469 	if ((off + len) > 64)
470 		len = 64 - off;
471 
472 	spi_message_init(&m);
473 
474 	l = 4 + base + off + len;
475 	scratch = kzalloc(l, GFP_KERNEL);
476 	if (!scratch)
477 		return -ENOMEM;
478 
479 	/* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
480 	 * IN:  ignore 4 bytes, data bytes 0..N (max 127)
481 	 */
482 	scratch[0] = OP_READ_SECURITY;
483 
484 	memset(&t, 0, sizeof t);
485 	t.tx_buf = scratch;
486 	t.rx_buf = scratch;
487 	t.len = l;
488 	spi_message_add_tail(&t, &m);
489 
490 	dataflash_waitready(spi);
491 
492 	status = spi_sync(spi, &m);
493 	if (status >= 0) {
494 		memcpy(buf, scratch + 4 + base + off, len);
495 		status = len;
496 	}
497 
498 	kfree(scratch);
499 	return status;
500 }
501 
502 static int dataflash_read_fact_otp(struct mtd_info *mtd,
503 		loff_t from, size_t len, size_t *retlen, u_char *buf)
504 {
505 	struct dataflash	*priv = mtd->priv;
506 	int			status;
507 
508 	/* 64 bytes, from 0..63 ... start at 64 on-chip */
509 	mutex_lock(&priv->lock);
510 	status = otp_read(priv->spi, 64, buf, from, len);
511 	mutex_unlock(&priv->lock);
512 
513 	if (status < 0)
514 		return status;
515 	*retlen = status;
516 	return 0;
517 }
518 
519 static int dataflash_read_user_otp(struct mtd_info *mtd,
520 		loff_t from, size_t len, size_t *retlen, u_char *buf)
521 {
522 	struct dataflash	*priv = mtd->priv;
523 	int			status;
524 
525 	/* 64 bytes, from 0..63 ... start at 0 on-chip */
526 	mutex_lock(&priv->lock);
527 	status = otp_read(priv->spi, 0, buf, from, len);
528 	mutex_unlock(&priv->lock);
529 
530 	if (status < 0)
531 		return status;
532 	*retlen = status;
533 	return 0;
534 }
535 
536 static int dataflash_write_user_otp(struct mtd_info *mtd,
537 		loff_t from, size_t len, size_t *retlen, const u_char *buf)
538 {
539 	struct spi_message	m;
540 	const size_t		l = 4 + 64;
541 	u8			*scratch;
542 	struct spi_transfer	t;
543 	struct dataflash	*priv = mtd->priv;
544 	int			status;
545 
546 	if (from >= 64) {
547 		/*
548 		 * Attempting to write beyond the end of OTP memory,
549 		 * no data can be written.
550 		 */
551 		*retlen = 0;
552 		return 0;
553 	}
554 
555 	/* Truncate the write to fit into OTP memory. */
556 	if ((from + len) > 64)
557 		len = 64 - from;
558 
559 	/* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
560 	 * IN:  ignore all
561 	 */
562 	scratch = kzalloc(l, GFP_KERNEL);
563 	if (!scratch)
564 		return -ENOMEM;
565 	scratch[0] = OP_WRITE_SECURITY;
566 	memcpy(scratch + 4 + from, buf, len);
567 
568 	spi_message_init(&m);
569 
570 	memset(&t, 0, sizeof t);
571 	t.tx_buf = scratch;
572 	t.len = l;
573 	spi_message_add_tail(&t, &m);
574 
575 	/* Write the OTP bits, if they've not yet been written.
576 	 * This modifies SRAM buffer1.
577 	 */
578 	mutex_lock(&priv->lock);
579 	dataflash_waitready(priv->spi);
580 	status = spi_sync(priv->spi, &m);
581 	mutex_unlock(&priv->lock);
582 
583 	kfree(scratch);
584 
585 	if (status >= 0) {
586 		status = 0;
587 		*retlen = len;
588 	}
589 	return status;
590 }
591 
592 static char *otp_setup(struct mtd_info *device, char revision)
593 {
594 	device->_get_fact_prot_info = dataflash_get_otp_info;
595 	device->_read_fact_prot_reg = dataflash_read_fact_otp;
596 	device->_get_user_prot_info = dataflash_get_otp_info;
597 	device->_read_user_prot_reg = dataflash_read_user_otp;
598 
599 	/* rev c parts (at45db321c and at45db1281 only!) use a
600 	 * different write procedure; not (yet?) implemented.
601 	 */
602 	if (revision > 'c')
603 		device->_write_user_prot_reg = dataflash_write_user_otp;
604 
605 	return ", OTP";
606 }
607 
608 #else
609 
610 static char *otp_setup(struct mtd_info *device, char revision)
611 {
612 	return " (OTP)";
613 }
614 
615 #endif
616 
617 /* ......................................................................... */
618 
619 /*
620  * Register DataFlash device with MTD subsystem.
621  */
622 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
623 			     int pagesize, int pageoffset, char revision)
624 {
625 	struct dataflash		*priv;
626 	struct mtd_info			*device;
627 	struct flash_platform_data	*pdata = dev_get_platdata(&spi->dev);
628 	char				*otp_tag = "";
629 	int				err = 0;
630 
631 	priv = kzalloc(sizeof *priv, GFP_KERNEL);
632 	if (!priv)
633 		return -ENOMEM;
634 
635 	mutex_init(&priv->lock);
636 	priv->spi = spi;
637 	priv->page_size = pagesize;
638 	priv->page_offset = pageoffset;
639 
640 	/* name must be usable with cmdlinepart */
641 	sprintf(priv->name, "spi%d.%d-%s",
642 			spi->master->bus_num, spi->chip_select,
643 			name);
644 
645 	device = &priv->mtd;
646 	device->name = (pdata && pdata->name) ? pdata->name : priv->name;
647 	device->size = nr_pages * pagesize;
648 	device->erasesize = pagesize;
649 	device->writesize = pagesize;
650 	device->type = MTD_DATAFLASH;
651 	device->flags = MTD_WRITEABLE;
652 	device->_erase = dataflash_erase;
653 	device->_read = dataflash_read;
654 	device->_write = dataflash_write;
655 	device->priv = priv;
656 
657 	device->dev.parent = &spi->dev;
658 	mtd_set_of_node(device, spi->dev.of_node);
659 
660 	if (revision >= 'c')
661 		otp_tag = otp_setup(device, revision);
662 
663 	dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
664 			name, (long long)((device->size + 1023) >> 10),
665 			pagesize, otp_tag);
666 	spi_set_drvdata(spi, priv);
667 
668 	err = mtd_device_register(device,
669 			pdata ? pdata->parts : NULL,
670 			pdata ? pdata->nr_parts : 0);
671 
672 	if (!err)
673 		return 0;
674 
675 	kfree(priv);
676 	return err;
677 }
678 
679 static inline int add_dataflash(struct spi_device *spi, char *name,
680 				int nr_pages, int pagesize, int pageoffset)
681 {
682 	return add_dataflash_otp(spi, name, nr_pages, pagesize,
683 			pageoffset, 0);
684 }
685 
686 struct flash_info {
687 	char		*name;
688 
689 	/* JEDEC id has a high byte of zero plus three data bytes:
690 	 * the manufacturer id, then a two byte device id.
691 	 */
692 	u64		jedec_id;
693 
694 	/* The size listed here is what works with OP_ERASE_PAGE. */
695 	unsigned	nr_pages;
696 	u16		pagesize;
697 	u16		pageoffset;
698 
699 	u16		flags;
700 #define SUP_EXTID	0x0004		/* supports extended ID data */
701 #define SUP_POW2PS	0x0002		/* supports 2^N byte pages */
702 #define IS_POW2PS	0x0001		/* uses 2^N byte pages */
703 };
704 
705 static struct flash_info dataflash_data[] = {
706 
707 	/*
708 	 * NOTE:  chips with SUP_POW2PS (rev D and up) need two entries,
709 	 * one with IS_POW2PS and the other without.  The entry with the
710 	 * non-2^N byte page size can't name exact chip revisions without
711 	 * losing backwards compatibility for cmdlinepart.
712 	 *
713 	 * These newer chips also support 128-byte security registers (with
714 	 * 64 bytes one-time-programmable) and software write-protection.
715 	 */
716 	{ "AT45DB011B",  0x1f2200, 512, 264, 9, SUP_POW2PS},
717 	{ "at45db011d",  0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
718 
719 	{ "AT45DB021B",  0x1f2300, 1024, 264, 9, SUP_POW2PS},
720 	{ "at45db021d",  0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
721 
722 	{ "AT45DB041x",  0x1f2400, 2048, 264, 9, SUP_POW2PS},
723 	{ "at45db041d",  0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
724 
725 	{ "AT45DB081B",  0x1f2500, 4096, 264, 9, SUP_POW2PS},
726 	{ "at45db081d",  0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
727 
728 	{ "AT45DB161x",  0x1f2600, 4096, 528, 10, SUP_POW2PS},
729 	{ "at45db161d",  0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
730 
731 	{ "AT45DB321x",  0x1f2700, 8192, 528, 10, 0},		/* rev C */
732 
733 	{ "AT45DB321x",  0x1f2701, 8192, 528, 10, SUP_POW2PS},
734 	{ "at45db321d",  0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
735 
736 	{ "AT45DB642x",  0x1f2800, 8192, 1056, 11, SUP_POW2PS},
737 	{ "at45db642d",  0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
738 
739 	{ "AT45DB641E",  0x1f28000100ULL, 32768, 264, 9, SUP_EXTID | SUP_POW2PS},
740 	{ "at45db641e",  0x1f28000100ULL, 32768, 256, 8, SUP_EXTID | SUP_POW2PS | IS_POW2PS},
741 };
742 
743 static struct flash_info *jedec_lookup(struct spi_device *spi,
744 				       u64 jedec, bool use_extid)
745 {
746 	struct flash_info *info;
747 	int status;
748 
749 	for (info = dataflash_data;
750 	     info < dataflash_data + ARRAY_SIZE(dataflash_data);
751 	     info++) {
752 		if (use_extid && !(info->flags & SUP_EXTID))
753 			continue;
754 
755 		if (info->jedec_id == jedec) {
756 			dev_dbg(&spi->dev, "OTP, sector protect%s\n",
757 				(info->flags & SUP_POW2PS) ?
758 				", binary pagesize" : "");
759 			if (info->flags & SUP_POW2PS) {
760 				status = dataflash_status(spi);
761 				if (status < 0) {
762 					dev_dbg(&spi->dev, "status error %d\n",
763 						status);
764 					return ERR_PTR(status);
765 				}
766 				if (status & 0x1) {
767 					if (info->flags & IS_POW2PS)
768 						return info;
769 				} else {
770 					if (!(info->flags & IS_POW2PS))
771 						return info;
772 				}
773 			} else
774 				return info;
775 		}
776 	}
777 
778 	return ERR_PTR(-ENODEV);
779 }
780 
781 static struct flash_info *jedec_probe(struct spi_device *spi)
782 {
783 	int ret;
784 	u8 code = OP_READ_ID;
785 	u64 jedec;
786 	u8 id[sizeof(jedec)] = {0};
787 	const unsigned int id_size = 5;
788 	struct flash_info *info;
789 
790 	/*
791 	 * JEDEC also defines an optional "extended device information"
792 	 * string for after vendor-specific data, after the three bytes
793 	 * we use here.  Supporting some chips might require using it.
794 	 *
795 	 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
796 	 * That's not an error; only rev C and newer chips handle it, and
797 	 * only Atmel sells these chips.
798 	 */
799 	ret = spi_write_then_read(spi, &code, 1, id, id_size);
800 	if (ret < 0) {
801 		dev_dbg(&spi->dev, "error %d reading JEDEC ID\n", ret);
802 		return ERR_PTR(ret);
803 	}
804 
805 	if (id[0] != CFI_MFR_ATMEL)
806 		return NULL;
807 
808 	jedec = be64_to_cpup((__be64 *)id);
809 
810 	/*
811 	 * First, try to match device using extended device
812 	 * information
813 	 */
814 	info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_EXTID, true);
815 	if (!IS_ERR(info))
816 		return info;
817 	/*
818 	 * If that fails, make another pass using regular ID
819 	 * information
820 	 */
821 	info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_ID, false);
822 	if (!IS_ERR(info))
823 		return info;
824 	/*
825 	 * Treat other chips as errors ... we won't know the right page
826 	 * size (it might be binary) even when we can tell which density
827 	 * class is involved (legacy chip id scheme).
828 	 */
829 	dev_warn(&spi->dev, "JEDEC id %016llx not handled\n", jedec);
830 	return ERR_PTR(-ENODEV);
831 }
832 
833 /*
834  * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
835  * or else the ID code embedded in the status bits:
836  *
837  *   Device      Density         ID code          #Pages PageSize  Offset
838  *   AT45DB011B  1Mbit   (128K)  xx0011xx (0x0c)    512    264      9
839  *   AT45DB021B  2Mbit   (256K)  xx0101xx (0x14)   1024    264      9
840  *   AT45DB041B  4Mbit   (512K)  xx0111xx (0x1c)   2048    264      9
841  *   AT45DB081B  8Mbit   (1M)    xx1001xx (0x24)   4096    264      9
842  *   AT45DB0161B 16Mbit  (2M)    xx1011xx (0x2c)   4096    528     10
843  *   AT45DB0321B 32Mbit  (4M)    xx1101xx (0x34)   8192    528     10
844  *   AT45DB0642  64Mbit  (8M)    xx111xxx (0x3c)   8192   1056     11
845  *   AT45DB1282  128Mbit (16M)   xx0100xx (0x10)  16384   1056     11
846  */
847 static int dataflash_probe(struct spi_device *spi)
848 {
849 	int status;
850 	struct flash_info	*info;
851 
852 	/*
853 	 * Try to detect dataflash by JEDEC ID.
854 	 * If it succeeds we know we have either a C or D part.
855 	 * D will support power of 2 pagesize option.
856 	 * Both support the security register, though with different
857 	 * write procedures.
858 	 */
859 	info = jedec_probe(spi);
860 	if (IS_ERR(info))
861 		return PTR_ERR(info);
862 	if (info != NULL)
863 		return add_dataflash_otp(spi, info->name, info->nr_pages,
864 				info->pagesize, info->pageoffset,
865 				(info->flags & SUP_POW2PS) ? 'd' : 'c');
866 
867 	/*
868 	 * Older chips support only legacy commands, identifing
869 	 * capacity using bits in the status byte.
870 	 */
871 	status = dataflash_status(spi);
872 	if (status <= 0 || status == 0xff) {
873 		dev_dbg(&spi->dev, "status error %d\n", status);
874 		if (status == 0 || status == 0xff)
875 			status = -ENODEV;
876 		return status;
877 	}
878 
879 	/* if there's a device there, assume it's dataflash.
880 	 * board setup should have set spi->max_speed_max to
881 	 * match f(car) for continuous reads, mode 0 or 3.
882 	 */
883 	switch (status & 0x3c) {
884 	case 0x0c:	/* 0 0 1 1 x x */
885 		status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
886 		break;
887 	case 0x14:	/* 0 1 0 1 x x */
888 		status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
889 		break;
890 	case 0x1c:	/* 0 1 1 1 x x */
891 		status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
892 		break;
893 	case 0x24:	/* 1 0 0 1 x x */
894 		status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
895 		break;
896 	case 0x2c:	/* 1 0 1 1 x x */
897 		status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
898 		break;
899 	case 0x34:	/* 1 1 0 1 x x */
900 		status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
901 		break;
902 	case 0x38:	/* 1 1 1 x x x */
903 	case 0x3c:
904 		status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
905 		break;
906 	/* obsolete AT45DB1282 not (yet?) supported */
907 	default:
908 		dev_info(&spi->dev, "unsupported device (%x)\n",
909 				status & 0x3c);
910 		status = -ENODEV;
911 	}
912 
913 	if (status < 0)
914 		dev_dbg(&spi->dev, "add_dataflash --> %d\n", status);
915 
916 	return status;
917 }
918 
919 static void dataflash_remove(struct spi_device *spi)
920 {
921 	struct dataflash	*flash = spi_get_drvdata(spi);
922 
923 	dev_dbg(&spi->dev, "remove\n");
924 
925 	WARN_ON(mtd_device_unregister(&flash->mtd));
926 
927 	kfree(flash);
928 }
929 
930 static struct spi_driver dataflash_driver = {
931 	.driver = {
932 		.name		= "mtd_dataflash",
933 		.of_match_table = of_match_ptr(dataflash_dt_ids),
934 	},
935 	.id_table = dataflash_dev_ids,
936 
937 	.probe		= dataflash_probe,
938 	.remove		= dataflash_remove,
939 
940 	/* FIXME:  investigate suspend and resume... */
941 };
942 
943 module_spi_driver(dataflash_driver);
944 
945 MODULE_LICENSE("GPL");
946 MODULE_AUTHOR("Andrew Victor, David Brownell");
947 MODULE_DESCRIPTION("MTD DataFlash driver");
948 MODULE_ALIAS("spi:mtd_dataflash");
949