1 /*
2  * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3  *
4  * Largely derived from at91_dataflash.c:
5  *  Copyright (C) 2003-2005 SAN People (Pty) Ltd
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 
20 #include <linux/spi/spi.h>
21 #include <linux/spi/flash.h>
22 
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/partitions.h>
25 
26 
27 /*
28  * DataFlash is a kind of SPI flash.  Most AT45 chips have two buffers in
29  * each chip, which may be used for double buffered I/O; but this driver
30  * doesn't (yet) use these for any kind of i/o overlap or prefetching.
31  *
32  * Sometimes DataFlash is packaged in MMC-format cards, although the
33  * MMC stack can't use SPI (yet), or distinguish between MMC and DataFlash
34  * protocols during enumeration.
35  */
36 
37 #define CONFIG_DATAFLASH_WRITE_VERIFY
38 
39 /* reads can bypass the buffers */
40 #define OP_READ_CONTINUOUS	0xE8
41 #define OP_READ_PAGE		0xD2
42 
43 /* group B requests can run even while status reports "busy" */
44 #define OP_READ_STATUS		0xD7	/* group B */
45 
46 /* move data between host and buffer */
47 #define OP_READ_BUFFER1		0xD4	/* group B */
48 #define OP_READ_BUFFER2		0xD6	/* group B */
49 #define OP_WRITE_BUFFER1	0x84	/* group B */
50 #define OP_WRITE_BUFFER2	0x87	/* group B */
51 
52 /* erasing flash */
53 #define OP_ERASE_PAGE		0x81
54 #define OP_ERASE_BLOCK		0x50
55 
56 /* move data between buffer and flash */
57 #define OP_TRANSFER_BUF1	0x53
58 #define OP_TRANSFER_BUF2	0x55
59 #define OP_MREAD_BUFFER1	0xD4
60 #define OP_MREAD_BUFFER2	0xD6
61 #define OP_MWERASE_BUFFER1	0x83
62 #define OP_MWERASE_BUFFER2	0x86
63 #define OP_MWRITE_BUFFER1	0x88	/* sector must be pre-erased */
64 #define OP_MWRITE_BUFFER2	0x89	/* sector must be pre-erased */
65 
66 /* write to buffer, then write-erase to flash */
67 #define OP_PROGRAM_VIA_BUF1	0x82
68 #define OP_PROGRAM_VIA_BUF2	0x85
69 
70 /* compare buffer to flash */
71 #define OP_COMPARE_BUF1		0x60
72 #define OP_COMPARE_BUF2		0x61
73 
74 /* read flash to buffer, then write-erase to flash */
75 #define OP_REWRITE_VIA_BUF1	0x58
76 #define OP_REWRITE_VIA_BUF2	0x59
77 
78 /* newer chips report JEDEC manufacturer and device IDs; chip
79  * serial number and OTP bits; and per-sector writeprotect.
80  */
81 #define OP_READ_ID		0x9F
82 #define OP_READ_SECURITY	0x77
83 #define OP_WRITE_SECURITY	0x9A	/* OTP bits */
84 
85 
86 struct dataflash {
87 	uint8_t			command[4];
88 	char			name[24];
89 
90 	unsigned		partitioned:1;
91 
92 	unsigned short		page_offset;	/* offset in flash address */
93 	unsigned int		page_size;	/* of bytes per page */
94 
95 	struct mutex		lock;
96 	struct spi_device	*spi;
97 
98 	struct mtd_info		mtd;
99 };
100 
101 #ifdef CONFIG_MTD_PARTITIONS
102 #define	mtd_has_partitions()	(1)
103 #else
104 #define	mtd_has_partitions()	(0)
105 #endif
106 
107 /* ......................................................................... */
108 
109 /*
110  * Return the status of the DataFlash device.
111  */
112 static inline int dataflash_status(struct spi_device *spi)
113 {
114 	/* NOTE:  at45db321c over 25 MHz wants to write
115 	 * a dummy byte after the opcode...
116 	 */
117 	return spi_w8r8(spi, OP_READ_STATUS);
118 }
119 
120 /*
121  * Poll the DataFlash device until it is READY.
122  * This usually takes 5-20 msec or so; more for sector erase.
123  */
124 static int dataflash_waitready(struct spi_device *spi)
125 {
126 	int	status;
127 
128 	for (;;) {
129 		status = dataflash_status(spi);
130 		if (status < 0) {
131 			DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n",
132 					spi->dev.bus_id, status);
133 			status = 0;
134 		}
135 
136 		if (status & (1 << 7))	/* RDY/nBSY */
137 			return status;
138 
139 		msleep(3);
140 	}
141 }
142 
143 /* ......................................................................... */
144 
145 /*
146  * Erase pages of flash.
147  */
148 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
149 {
150 	struct dataflash	*priv = (struct dataflash *)mtd->priv;
151 	struct spi_device	*spi = priv->spi;
152 	struct spi_transfer	x = { .tx_dma = 0, };
153 	struct spi_message	msg;
154 	unsigned		blocksize = priv->page_size << 3;
155 	uint8_t			*command;
156 
157 	DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%x len 0x%x\n",
158 			spi->dev.bus_id,
159 			instr->addr, instr->len);
160 
161 	/* Sanity checks */
162 	if ((instr->addr + instr->len) > mtd->size
163 			|| (instr->len % priv->page_size) != 0
164 			|| (instr->addr % priv->page_size) != 0)
165 		return -EINVAL;
166 
167 	spi_message_init(&msg);
168 
169 	x.tx_buf = command = priv->command;
170 	x.len = 4;
171 	spi_message_add_tail(&x, &msg);
172 
173 	mutex_lock(&priv->lock);
174 	while (instr->len > 0) {
175 		unsigned int	pageaddr;
176 		int		status;
177 		int		do_block;
178 
179 		/* Calculate flash page address; use block erase (for speed) if
180 		 * we're at a block boundary and need to erase the whole block.
181 		 */
182 		pageaddr = instr->addr / priv->page_size;
183 		do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
184 		pageaddr = pageaddr << priv->page_offset;
185 
186 		command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
187 		command[1] = (uint8_t)(pageaddr >> 16);
188 		command[2] = (uint8_t)(pageaddr >> 8);
189 		command[3] = 0;
190 
191 		DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n",
192 			do_block ? "block" : "page",
193 			command[0], command[1], command[2], command[3],
194 			pageaddr);
195 
196 		status = spi_sync(spi, &msg);
197 		(void) dataflash_waitready(spi);
198 
199 		if (status < 0) {
200 			printk(KERN_ERR "%s: erase %x, err %d\n",
201 				spi->dev.bus_id, pageaddr, status);
202 			/* REVISIT:  can retry instr->retries times; or
203 			 * giveup and instr->fail_addr = instr->addr;
204 			 */
205 			continue;
206 		}
207 
208 		if (do_block) {
209 			instr->addr += blocksize;
210 			instr->len -= blocksize;
211 		} else {
212 			instr->addr += priv->page_size;
213 			instr->len -= priv->page_size;
214 		}
215 	}
216 	mutex_unlock(&priv->lock);
217 
218 	/* Inform MTD subsystem that erase is complete */
219 	instr->state = MTD_ERASE_DONE;
220 	mtd_erase_callback(instr);
221 
222 	return 0;
223 }
224 
225 /*
226  * Read from the DataFlash device.
227  *   from   : Start offset in flash device
228  *   len    : Amount to read
229  *   retlen : About of data actually read
230  *   buf    : Buffer containing the data
231  */
232 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
233 			       size_t *retlen, u_char *buf)
234 {
235 	struct dataflash	*priv = (struct dataflash *)mtd->priv;
236 	struct spi_transfer	x[2] = { { .tx_dma = 0, }, };
237 	struct spi_message	msg;
238 	unsigned int		addr;
239 	uint8_t			*command;
240 	int			status;
241 
242 	DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n",
243 		priv->spi->dev.bus_id, (unsigned)from, (unsigned)(from + len));
244 
245 	*retlen = 0;
246 
247 	/* Sanity checks */
248 	if (!len)
249 		return 0;
250 	if (from + len > mtd->size)
251 		return -EINVAL;
252 
253 	/* Calculate flash page/byte address */
254 	addr = (((unsigned)from / priv->page_size) << priv->page_offset)
255 		+ ((unsigned)from % priv->page_size);
256 
257 	command = priv->command;
258 
259 	DEBUG(MTD_DEBUG_LEVEL3, "READ: (%x) %x %x %x\n",
260 		command[0], command[1], command[2], command[3]);
261 
262 	spi_message_init(&msg);
263 
264 	x[0].tx_buf = command;
265 	x[0].len = 8;
266 	spi_message_add_tail(&x[0], &msg);
267 
268 	x[1].rx_buf = buf;
269 	x[1].len = len;
270 	spi_message_add_tail(&x[1], &msg);
271 
272 	mutex_lock(&priv->lock);
273 
274 	/* Continuous read, max clock = f(car) which may be less than
275 	 * the peak rate available.  Some chips support commands with
276 	 * fewer "don't care" bytes.  Both buffers stay unchanged.
277 	 */
278 	command[0] = OP_READ_CONTINUOUS;
279 	command[1] = (uint8_t)(addr >> 16);
280 	command[2] = (uint8_t)(addr >> 8);
281 	command[3] = (uint8_t)(addr >> 0);
282 	/* plus 4 "don't care" bytes */
283 
284 	status = spi_sync(priv->spi, &msg);
285 	mutex_unlock(&priv->lock);
286 
287 	if (status >= 0) {
288 		*retlen = msg.actual_length - 8;
289 		status = 0;
290 	} else
291 		DEBUG(MTD_DEBUG_LEVEL1, "%s: read %x..%x --> %d\n",
292 			priv->spi->dev.bus_id,
293 			(unsigned)from, (unsigned)(from + len),
294 			status);
295 	return status;
296 }
297 
298 /*
299  * Write to the DataFlash device.
300  *   to     : Start offset in flash device
301  *   len    : Amount to write
302  *   retlen : Amount of data actually written
303  *   buf    : Buffer containing the data
304  */
305 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
306 				size_t * retlen, const u_char * buf)
307 {
308 	struct dataflash	*priv = (struct dataflash *)mtd->priv;
309 	struct spi_device	*spi = priv->spi;
310 	struct spi_transfer	x[2] = { { .tx_dma = 0, }, };
311 	struct spi_message	msg;
312 	unsigned int		pageaddr, addr, offset, writelen;
313 	size_t			remaining = len;
314 	u_char			*writebuf = (u_char *) buf;
315 	int			status = -EINVAL;
316 	uint8_t			*command;
317 
318 	DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n",
319 		spi->dev.bus_id, (unsigned)to, (unsigned)(to + len));
320 
321 	*retlen = 0;
322 
323 	/* Sanity checks */
324 	if (!len)
325 		return 0;
326 	if ((to + len) > mtd->size)
327 		return -EINVAL;
328 
329 	spi_message_init(&msg);
330 
331 	x[0].tx_buf = command = priv->command;
332 	x[0].len = 4;
333 	spi_message_add_tail(&x[0], &msg);
334 
335 	pageaddr = ((unsigned)to / priv->page_size);
336 	offset = ((unsigned)to % priv->page_size);
337 	if (offset + len > priv->page_size)
338 		writelen = priv->page_size - offset;
339 	else
340 		writelen = len;
341 
342 	mutex_lock(&priv->lock);
343 	while (remaining > 0) {
344 		DEBUG(MTD_DEBUG_LEVEL3, "write @ %i:%i len=%i\n",
345 			pageaddr, offset, writelen);
346 
347 		/* REVISIT:
348 		 * (a) each page in a sector must be rewritten at least
349 		 *     once every 10K sibling erase/program operations.
350 		 * (b) for pages that are already erased, we could
351 		 *     use WRITE+MWRITE not PROGRAM for ~30% speedup.
352 		 * (c) WRITE to buffer could be done while waiting for
353 		 *     a previous MWRITE/MWERASE to complete ...
354 		 * (d) error handling here seems to be mostly missing.
355 		 *
356 		 * Two persistent bits per page, plus a per-sector counter,
357 		 * could support (a) and (b) ... we might consider using
358 		 * the second half of sector zero, which is just one block,
359 		 * to track that state.  (On AT91, that sector should also
360 		 * support boot-from-DataFlash.)
361 		 */
362 
363 		addr = pageaddr << priv->page_offset;
364 
365 		/* (1) Maybe transfer partial page to Buffer1 */
366 		if (writelen != priv->page_size) {
367 			command[0] = OP_TRANSFER_BUF1;
368 			command[1] = (addr & 0x00FF0000) >> 16;
369 			command[2] = (addr & 0x0000FF00) >> 8;
370 			command[3] = 0;
371 
372 			DEBUG(MTD_DEBUG_LEVEL3, "TRANSFER: (%x) %x %x %x\n",
373 				command[0], command[1], command[2], command[3]);
374 
375 			status = spi_sync(spi, &msg);
376 			if (status < 0)
377 				DEBUG(MTD_DEBUG_LEVEL1, "%s: xfer %u -> %d \n",
378 					spi->dev.bus_id, addr, status);
379 
380 			(void) dataflash_waitready(priv->spi);
381 		}
382 
383 		/* (2) Program full page via Buffer1 */
384 		addr += offset;
385 		command[0] = OP_PROGRAM_VIA_BUF1;
386 		command[1] = (addr & 0x00FF0000) >> 16;
387 		command[2] = (addr & 0x0000FF00) >> 8;
388 		command[3] = (addr & 0x000000FF);
389 
390 		DEBUG(MTD_DEBUG_LEVEL3, "PROGRAM: (%x) %x %x %x\n",
391 			command[0], command[1], command[2], command[3]);
392 
393 		x[1].tx_buf = writebuf;
394 		x[1].len = writelen;
395 		spi_message_add_tail(x + 1, &msg);
396 		status = spi_sync(spi, &msg);
397 		spi_transfer_del(x + 1);
398 		if (status < 0)
399 			DEBUG(MTD_DEBUG_LEVEL1, "%s: pgm %u/%u -> %d \n",
400 				spi->dev.bus_id, addr, writelen, status);
401 
402 		(void) dataflash_waitready(priv->spi);
403 
404 
405 #ifdef	CONFIG_DATAFLASH_WRITE_VERIFY
406 
407 		/* (3) Compare to Buffer1 */
408 		addr = pageaddr << priv->page_offset;
409 		command[0] = OP_COMPARE_BUF1;
410 		command[1] = (addr & 0x00FF0000) >> 16;
411 		command[2] = (addr & 0x0000FF00) >> 8;
412 		command[3] = 0;
413 
414 		DEBUG(MTD_DEBUG_LEVEL3, "COMPARE: (%x) %x %x %x\n",
415 			command[0], command[1], command[2], command[3]);
416 
417 		status = spi_sync(spi, &msg);
418 		if (status < 0)
419 			DEBUG(MTD_DEBUG_LEVEL1, "%s: compare %u -> %d \n",
420 				spi->dev.bus_id, addr, status);
421 
422 		status = dataflash_waitready(priv->spi);
423 
424 		/* Check result of the compare operation */
425 		if (status & (1 << 6)) {
426 			printk(KERN_ERR "%s: compare page %u, err %d\n",
427 				spi->dev.bus_id, pageaddr, status);
428 			remaining = 0;
429 			status = -EIO;
430 			break;
431 		} else
432 			status = 0;
433 
434 #endif	/* CONFIG_DATAFLASH_WRITE_VERIFY */
435 
436 		remaining = remaining - writelen;
437 		pageaddr++;
438 		offset = 0;
439 		writebuf += writelen;
440 		*retlen += writelen;
441 
442 		if (remaining > priv->page_size)
443 			writelen = priv->page_size;
444 		else
445 			writelen = remaining;
446 	}
447 	mutex_unlock(&priv->lock);
448 
449 	return status;
450 }
451 
452 /* ......................................................................... */
453 
454 /*
455  * Register DataFlash device with MTD subsystem.
456  */
457 static int __devinit
458 add_dataflash(struct spi_device *spi, char *name,
459 		int nr_pages, int pagesize, int pageoffset)
460 {
461 	struct dataflash		*priv;
462 	struct mtd_info			*device;
463 	struct flash_platform_data	*pdata = spi->dev.platform_data;
464 
465 	priv = kzalloc(sizeof *priv, GFP_KERNEL);
466 	if (!priv)
467 		return -ENOMEM;
468 
469 	mutex_init(&priv->lock);
470 	priv->spi = spi;
471 	priv->page_size = pagesize;
472 	priv->page_offset = pageoffset;
473 
474 	/* name must be usable with cmdlinepart */
475 	sprintf(priv->name, "spi%d.%d-%s",
476 			spi->master->bus_num, spi->chip_select,
477 			name);
478 
479 	device = &priv->mtd;
480 	device->name = (pdata && pdata->name) ? pdata->name : priv->name;
481 	device->size = nr_pages * pagesize;
482 	device->erasesize = pagesize;
483 	device->writesize = pagesize;
484 	device->owner = THIS_MODULE;
485 	device->type = MTD_DATAFLASH;
486 	device->flags = MTD_WRITEABLE;
487 	device->erase = dataflash_erase;
488 	device->read = dataflash_read;
489 	device->write = dataflash_write;
490 	device->priv = priv;
491 
492 	dev_info(&spi->dev, "%s (%d KBytes) pagesize %d bytes\n",
493 			name, DIV_ROUND_UP(device->size, 1024), pagesize);
494 	dev_set_drvdata(&spi->dev, priv);
495 
496 	if (mtd_has_partitions()) {
497 		struct mtd_partition	*parts;
498 		int			nr_parts = 0;
499 
500 #ifdef CONFIG_MTD_CMDLINE_PARTS
501 		static const char *part_probes[] = { "cmdlinepart", NULL, };
502 
503 		nr_parts = parse_mtd_partitions(device, part_probes, &parts, 0);
504 #endif
505 
506 		if (nr_parts <= 0 && pdata && pdata->parts) {
507 			parts = pdata->parts;
508 			nr_parts = pdata->nr_parts;
509 		}
510 
511 		if (nr_parts > 0) {
512 			priv->partitioned = 1;
513 			return add_mtd_partitions(device, parts, nr_parts);
514 		}
515 	} else if (pdata && pdata->nr_parts)
516 		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
517 				pdata->nr_parts, device->name);
518 
519 	return add_mtd_device(device) == 1 ? -ENODEV : 0;
520 }
521 
522 struct flash_info {
523 	char		*name;
524 
525 	/* JEDEC id has a high byte of zero plus three data bytes:
526 	 * the manufacturer id, then a two byte device id.
527 	 */
528 	uint32_t	jedec_id;
529 
530 	/* The size listed here is what works with OP_ERASE_PAGE. */
531 	unsigned	nr_pages;
532 	uint16_t	pagesize;
533 	uint16_t	pageoffset;
534 
535 	uint16_t	flags;
536 #define SUP_POW2PS	0x0002		/* supports 2^N byte pages */
537 #define IS_POW2PS	0x0001		/* uses 2^N byte pages */
538 };
539 
540 static struct flash_info __devinitdata dataflash_data [] = {
541 
542 	/*
543 	 * NOTE:  chips with SUP_POW2PS (rev D and up) need two entries,
544 	 * one with IS_POW2PS and the other without.  The entry with the
545 	 * non-2^N byte page size can't name exact chip revisions without
546 	 * losing backwards compatibility for cmdlinepart.
547 	 *
548 	 * These newer chips also support 128-byte security registers (with
549 	 * 64 bytes one-time-programmable) and software write-protection.
550 	 */
551 	{ "AT45DB011B",  0x1f2200, 512, 264, 9, SUP_POW2PS},
552 	{ "at45db011d",  0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
553 
554 	{ "AT45DB021B",  0x1f2300, 1024, 264, 9, SUP_POW2PS},
555 	{ "at45db021d",  0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
556 
557 	{ "AT45DB041x",  0x1f2400, 2048, 264, 9, SUP_POW2PS},
558 	{ "at45db041d",  0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
559 
560 	{ "AT45DB081B",  0x1f2500, 4096, 264, 9, SUP_POW2PS},
561 	{ "at45db081d",  0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
562 
563 	{ "AT45DB161x",  0x1f2600, 4096, 528, 10, SUP_POW2PS},
564 	{ "at45db161d",  0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
565 
566 	{ "AT45DB321x",  0x1f2700, 8192, 528, 10, 0},		/* rev C */
567 
568 	{ "AT45DB321x",  0x1f2701, 8192, 528, 10, SUP_POW2PS},
569 	{ "at45db321d",  0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
570 
571 	{ "AT45DB642x",  0x1f2800, 8192, 1056, 11, SUP_POW2PS},
572 	{ "at45db642d",  0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
573 };
574 
575 static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
576 {
577 	int			tmp;
578 	uint8_t			code = OP_READ_ID;
579 	uint8_t			id[3];
580 	uint32_t		jedec;
581 	struct flash_info	*info;
582 	int status;
583 
584 	/* JEDEC also defines an optional "extended device information"
585 	 * string for after vendor-specific data, after the three bytes
586 	 * we use here.  Supporting some chips might require using it.
587 	 *
588 	 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
589 	 * That's not an error; only rev C and newer chips handle it, and
590 	 * only Atmel sells these chips.
591 	 */
592 	tmp = spi_write_then_read(spi, &code, 1, id, 3);
593 	if (tmp < 0) {
594 		DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
595 			spi->dev.bus_id, tmp);
596 		return ERR_PTR(tmp);
597 	}
598 	if (id[0] != 0x1f)
599 		return NULL;
600 
601 	jedec = id[0];
602 	jedec = jedec << 8;
603 	jedec |= id[1];
604 	jedec = jedec << 8;
605 	jedec |= id[2];
606 
607 	for (tmp = 0, info = dataflash_data;
608 			tmp < ARRAY_SIZE(dataflash_data);
609 			tmp++, info++) {
610 		if (info->jedec_id == jedec) {
611 			DEBUG(MTD_DEBUG_LEVEL1, "%s: OTP, sector protect%s\n",
612 				dev_name(&spi->dev),
613 				(info->flags & SUP_POW2PS)
614 					? ", binary pagesize" : ""
615 				);
616 			if (info->flags & SUP_POW2PS) {
617 				status = dataflash_status(spi);
618 				if (status < 0) {
619 					DEBUG(MTD_DEBUG_LEVEL1,
620 						"%s: status error %d\n",
621 						dev_name(&spi->dev), status);
622 					return ERR_PTR(status);
623 				}
624 				if (status & 0x1) {
625 					if (info->flags & IS_POW2PS)
626 						return info;
627 				} else {
628 					if (!(info->flags & IS_POW2PS))
629 						return info;
630 				}
631 			}
632 		}
633 	}
634 
635 	/*
636 	 * Treat other chips as errors ... we won't know the right page
637 	 * size (it might be binary) even when we can tell which density
638 	 * class is involved (legacy chip id scheme).
639 	 */
640 	dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
641 	return ERR_PTR(-ENODEV);
642 }
643 
644 /*
645  * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
646  * or else the ID code embedded in the status bits:
647  *
648  *   Device      Density         ID code          #Pages PageSize  Offset
649  *   AT45DB011B  1Mbit   (128K)  xx0011xx (0x0c)    512    264      9
650  *   AT45DB021B  2Mbit   (256K)  xx0101xx (0x14)   1024    264      9
651  *   AT45DB041B  4Mbit   (512K)  xx0111xx (0x1c)   2048    264      9
652  *   AT45DB081B  8Mbit   (1M)    xx1001xx (0x24)   4096    264      9
653  *   AT45DB0161B 16Mbit  (2M)    xx1011xx (0x2c)   4096    528     10
654  *   AT45DB0321B 32Mbit  (4M)    xx1101xx (0x34)   8192    528     10
655  *   AT45DB0642  64Mbit  (8M)    xx111xxx (0x3c)   8192   1056     11
656  *   AT45DB1282  128Mbit (16M)   xx0100xx (0x10)  16384   1056     11
657  */
658 static int __devinit dataflash_probe(struct spi_device *spi)
659 {
660 	int status;
661 	struct flash_info	*info;
662 
663 	/*
664 	 * Try to detect dataflash by JEDEC ID.
665 	 * If it succeeds we know we have either a C or D part.
666 	 * D will support power of 2 pagesize option.
667 	 */
668 	info = jedec_probe(spi);
669 	if (IS_ERR(info))
670 		return PTR_ERR(info);
671 	if (info != NULL)
672 		return add_dataflash(spi, info->name, info->nr_pages,
673 				 info->pagesize, info->pageoffset);
674 
675 	/*
676 	 * Older chips support only legacy commands, identifing
677 	 * capacity using bits in the status byte.
678 	 */
679 	status = dataflash_status(spi);
680 	if (status <= 0 || status == 0xff) {
681 		DEBUG(MTD_DEBUG_LEVEL1, "%s: status error %d\n",
682 				spi->dev.bus_id, status);
683 		if (status == 0 || status == 0xff)
684 			status = -ENODEV;
685 		return status;
686 	}
687 
688 	/* if there's a device there, assume it's dataflash.
689 	 * board setup should have set spi->max_speed_max to
690 	 * match f(car) for continuous reads, mode 0 or 3.
691 	 */
692 	switch (status & 0x3c) {
693 	case 0x0c:	/* 0 0 1 1 x x */
694 		status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
695 		break;
696 	case 0x14:	/* 0 1 0 1 x x */
697 		status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
698 		break;
699 	case 0x1c:	/* 0 1 1 1 x x */
700 		status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
701 		break;
702 	case 0x24:	/* 1 0 0 1 x x */
703 		status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
704 		break;
705 	case 0x2c:	/* 1 0 1 1 x x */
706 		status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
707 		break;
708 	case 0x34:	/* 1 1 0 1 x x */
709 		status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
710 		break;
711 	case 0x38:	/* 1 1 1 x x x */
712 	case 0x3c:
713 		status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
714 		break;
715 	/* obsolete AT45DB1282 not (yet?) supported */
716 	default:
717 		DEBUG(MTD_DEBUG_LEVEL1, "%s: unsupported device (%x)\n",
718 				spi->dev.bus_id, status & 0x3c);
719 		status = -ENODEV;
720 	}
721 
722 	if (status < 0)
723 		DEBUG(MTD_DEBUG_LEVEL1, "%s: add_dataflash --> %d\n",
724 				spi->dev.bus_id, status);
725 
726 	return status;
727 }
728 
729 static int __devexit dataflash_remove(struct spi_device *spi)
730 {
731 	struct dataflash	*flash = dev_get_drvdata(&spi->dev);
732 	int			status;
733 
734 	DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", spi->dev.bus_id);
735 
736 	if (mtd_has_partitions() && flash->partitioned)
737 		status = del_mtd_partitions(&flash->mtd);
738 	else
739 		status = del_mtd_device(&flash->mtd);
740 	if (status == 0)
741 		kfree(flash);
742 	return status;
743 }
744 
745 static struct spi_driver dataflash_driver = {
746 	.driver = {
747 		.name		= "mtd_dataflash",
748 		.bus		= &spi_bus_type,
749 		.owner		= THIS_MODULE,
750 	},
751 
752 	.probe		= dataflash_probe,
753 	.remove		= __devexit_p(dataflash_remove),
754 
755 	/* FIXME:  investigate suspend and resume... */
756 };
757 
758 static int __init dataflash_init(void)
759 {
760 	return spi_register_driver(&dataflash_driver);
761 }
762 module_init(dataflash_init);
763 
764 static void __exit dataflash_exit(void)
765 {
766 	spi_unregister_driver(&dataflash_driver);
767 }
768 module_exit(dataflash_exit);
769 
770 
771 MODULE_LICENSE("GPL");
772 MODULE_AUTHOR("Andrew Victor, David Brownell");
773 MODULE_DESCRIPTION("MTD DataFlash driver");
774