1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework 4 * 5 * Largely derived from at91_dataflash.c: 6 * Copyright (C) 2003-2005 SAN People (Pty) Ltd 7 */ 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/mutex.h> 13 #include <linux/err.h> 14 #include <linux/math64.h> 15 #include <linux/of.h> 16 17 #include <linux/spi/spi.h> 18 #include <linux/spi/flash.h> 19 20 #include <linux/mtd/mtd.h> 21 #include <linux/mtd/partitions.h> 22 23 /* 24 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in 25 * each chip, which may be used for double buffered I/O; but this driver 26 * doesn't (yet) use these for any kind of i/o overlap or prefetching. 27 * 28 * Sometimes DataFlash is packaged in MMC-format cards, although the 29 * MMC stack can't (yet?) distinguish between MMC and DataFlash 30 * protocols during enumeration. 31 */ 32 33 /* reads can bypass the buffers */ 34 #define OP_READ_CONTINUOUS 0xE8 35 #define OP_READ_PAGE 0xD2 36 37 /* group B requests can run even while status reports "busy" */ 38 #define OP_READ_STATUS 0xD7 /* group B */ 39 40 /* move data between host and buffer */ 41 #define OP_READ_BUFFER1 0xD4 /* group B */ 42 #define OP_READ_BUFFER2 0xD6 /* group B */ 43 #define OP_WRITE_BUFFER1 0x84 /* group B */ 44 #define OP_WRITE_BUFFER2 0x87 /* group B */ 45 46 /* erasing flash */ 47 #define OP_ERASE_PAGE 0x81 48 #define OP_ERASE_BLOCK 0x50 49 50 /* move data between buffer and flash */ 51 #define OP_TRANSFER_BUF1 0x53 52 #define OP_TRANSFER_BUF2 0x55 53 #define OP_MREAD_BUFFER1 0xD4 54 #define OP_MREAD_BUFFER2 0xD6 55 #define OP_MWERASE_BUFFER1 0x83 56 #define OP_MWERASE_BUFFER2 0x86 57 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */ 58 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */ 59 60 /* write to buffer, then write-erase to flash */ 61 #define OP_PROGRAM_VIA_BUF1 0x82 62 #define OP_PROGRAM_VIA_BUF2 0x85 63 64 /* compare buffer to flash */ 65 #define OP_COMPARE_BUF1 0x60 66 #define OP_COMPARE_BUF2 0x61 67 68 /* read flash to buffer, then write-erase to flash */ 69 #define OP_REWRITE_VIA_BUF1 0x58 70 #define OP_REWRITE_VIA_BUF2 0x59 71 72 /* newer chips report JEDEC manufacturer and device IDs; chip 73 * serial number and OTP bits; and per-sector writeprotect. 74 */ 75 #define OP_READ_ID 0x9F 76 #define OP_READ_SECURITY 0x77 77 #define OP_WRITE_SECURITY_REVC 0x9A 78 #define OP_WRITE_SECURITY 0x9B /* revision D */ 79 80 #define CFI_MFR_ATMEL 0x1F 81 82 #define DATAFLASH_SHIFT_EXTID 24 83 #define DATAFLASH_SHIFT_ID 40 84 85 struct dataflash { 86 u8 command[4]; 87 char name[24]; 88 89 unsigned short page_offset; /* offset in flash address */ 90 unsigned int page_size; /* of bytes per page */ 91 92 struct mutex lock; 93 struct spi_device *spi; 94 95 struct mtd_info mtd; 96 }; 97 98 #ifdef CONFIG_OF 99 static const struct of_device_id dataflash_dt_ids[] = { 100 { .compatible = "atmel,at45", }, 101 { .compatible = "atmel,dataflash", }, 102 { /* sentinel */ } 103 }; 104 MODULE_DEVICE_TABLE(of, dataflash_dt_ids); 105 #endif 106 107 static const struct spi_device_id dataflash_spi_ids[] = { 108 { .name = "at45", }, 109 { .name = "dataflash", }, 110 { /* sentinel */ } 111 }; 112 MODULE_DEVICE_TABLE(spi, dataflash_spi_ids); 113 114 /* ......................................................................... */ 115 116 /* 117 * Return the status of the DataFlash device. 118 */ 119 static inline int dataflash_status(struct spi_device *spi) 120 { 121 /* NOTE: at45db321c over 25 MHz wants to write 122 * a dummy byte after the opcode... 123 */ 124 return spi_w8r8(spi, OP_READ_STATUS); 125 } 126 127 /* 128 * Poll the DataFlash device until it is READY. 129 * This usually takes 5-20 msec or so; more for sector erase. 130 */ 131 static int dataflash_waitready(struct spi_device *spi) 132 { 133 int status; 134 135 for (;;) { 136 status = dataflash_status(spi); 137 if (status < 0) { 138 dev_dbg(&spi->dev, "status %d?\n", status); 139 status = 0; 140 } 141 142 if (status & (1 << 7)) /* RDY/nBSY */ 143 return status; 144 145 usleep_range(3000, 4000); 146 } 147 } 148 149 /* ......................................................................... */ 150 151 /* 152 * Erase pages of flash. 153 */ 154 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) 155 { 156 struct dataflash *priv = mtd->priv; 157 struct spi_device *spi = priv->spi; 158 struct spi_transfer x = { }; 159 struct spi_message msg; 160 unsigned blocksize = priv->page_size << 3; 161 u8 *command; 162 u32 rem; 163 164 dev_dbg(&spi->dev, "erase addr=0x%llx len 0x%llx\n", 165 (long long)instr->addr, (long long)instr->len); 166 167 div_u64_rem(instr->len, priv->page_size, &rem); 168 if (rem) 169 return -EINVAL; 170 div_u64_rem(instr->addr, priv->page_size, &rem); 171 if (rem) 172 return -EINVAL; 173 174 spi_message_init(&msg); 175 176 x.tx_buf = command = priv->command; 177 x.len = 4; 178 spi_message_add_tail(&x, &msg); 179 180 mutex_lock(&priv->lock); 181 while (instr->len > 0) { 182 unsigned int pageaddr; 183 int status; 184 int do_block; 185 186 /* Calculate flash page address; use block erase (for speed) if 187 * we're at a block boundary and need to erase the whole block. 188 */ 189 pageaddr = div_u64(instr->addr, priv->page_size); 190 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize; 191 pageaddr = pageaddr << priv->page_offset; 192 193 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE; 194 command[1] = (u8)(pageaddr >> 16); 195 command[2] = (u8)(pageaddr >> 8); 196 command[3] = 0; 197 198 dev_dbg(&spi->dev, "ERASE %s: (%x) %x %x %x [%i]\n", 199 do_block ? "block" : "page", 200 command[0], command[1], command[2], command[3], 201 pageaddr); 202 203 status = spi_sync(spi, &msg); 204 (void) dataflash_waitready(spi); 205 206 if (status < 0) { 207 dev_err(&spi->dev, "erase %x, err %d\n", 208 pageaddr, status); 209 /* REVISIT: can retry instr->retries times; or 210 * giveup and instr->fail_addr = instr->addr; 211 */ 212 continue; 213 } 214 215 if (do_block) { 216 instr->addr += blocksize; 217 instr->len -= blocksize; 218 } else { 219 instr->addr += priv->page_size; 220 instr->len -= priv->page_size; 221 } 222 } 223 mutex_unlock(&priv->lock); 224 225 return 0; 226 } 227 228 /* 229 * Read from the DataFlash device. 230 * from : Start offset in flash device 231 * len : Amount to read 232 * retlen : About of data actually read 233 * buf : Buffer containing the data 234 */ 235 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, 236 size_t *retlen, u_char *buf) 237 { 238 struct dataflash *priv = mtd->priv; 239 struct spi_transfer x[2] = { }; 240 struct spi_message msg; 241 unsigned int addr; 242 u8 *command; 243 int status; 244 245 dev_dbg(&priv->spi->dev, "read 0x%x..0x%x\n", 246 (unsigned int)from, (unsigned int)(from + len)); 247 248 /* Calculate flash page/byte address */ 249 addr = (((unsigned)from / priv->page_size) << priv->page_offset) 250 + ((unsigned)from % priv->page_size); 251 252 command = priv->command; 253 254 dev_dbg(&priv->spi->dev, "READ: (%x) %x %x %x\n", 255 command[0], command[1], command[2], command[3]); 256 257 spi_message_init(&msg); 258 259 x[0].tx_buf = command; 260 x[0].len = 8; 261 spi_message_add_tail(&x[0], &msg); 262 263 x[1].rx_buf = buf; 264 x[1].len = len; 265 spi_message_add_tail(&x[1], &msg); 266 267 mutex_lock(&priv->lock); 268 269 /* Continuous read, max clock = f(car) which may be less than 270 * the peak rate available. Some chips support commands with 271 * fewer "don't care" bytes. Both buffers stay unchanged. 272 */ 273 command[0] = OP_READ_CONTINUOUS; 274 command[1] = (u8)(addr >> 16); 275 command[2] = (u8)(addr >> 8); 276 command[3] = (u8)(addr >> 0); 277 /* plus 4 "don't care" bytes */ 278 279 status = spi_sync(priv->spi, &msg); 280 mutex_unlock(&priv->lock); 281 282 if (status >= 0) { 283 *retlen = msg.actual_length - 8; 284 status = 0; 285 } else 286 dev_dbg(&priv->spi->dev, "read %x..%x --> %d\n", 287 (unsigned)from, (unsigned)(from + len), 288 status); 289 return status; 290 } 291 292 /* 293 * Write to the DataFlash device. 294 * to : Start offset in flash device 295 * len : Amount to write 296 * retlen : Amount of data actually written 297 * buf : Buffer containing the data 298 */ 299 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, 300 size_t * retlen, const u_char * buf) 301 { 302 struct dataflash *priv = mtd->priv; 303 struct spi_device *spi = priv->spi; 304 struct spi_transfer x[2] = { }; 305 struct spi_message msg; 306 unsigned int pageaddr, addr, offset, writelen; 307 size_t remaining = len; 308 u_char *writebuf = (u_char *) buf; 309 int status = -EINVAL; 310 u8 *command; 311 312 dev_dbg(&spi->dev, "write 0x%x..0x%x\n", 313 (unsigned int)to, (unsigned int)(to + len)); 314 315 spi_message_init(&msg); 316 317 x[0].tx_buf = command = priv->command; 318 x[0].len = 4; 319 spi_message_add_tail(&x[0], &msg); 320 321 pageaddr = ((unsigned)to / priv->page_size); 322 offset = ((unsigned)to % priv->page_size); 323 if (offset + len > priv->page_size) 324 writelen = priv->page_size - offset; 325 else 326 writelen = len; 327 328 mutex_lock(&priv->lock); 329 while (remaining > 0) { 330 dev_dbg(&spi->dev, "write @ %i:%i len=%i\n", 331 pageaddr, offset, writelen); 332 333 /* REVISIT: 334 * (a) each page in a sector must be rewritten at least 335 * once every 10K sibling erase/program operations. 336 * (b) for pages that are already erased, we could 337 * use WRITE+MWRITE not PROGRAM for ~30% speedup. 338 * (c) WRITE to buffer could be done while waiting for 339 * a previous MWRITE/MWERASE to complete ... 340 * (d) error handling here seems to be mostly missing. 341 * 342 * Two persistent bits per page, plus a per-sector counter, 343 * could support (a) and (b) ... we might consider using 344 * the second half of sector zero, which is just one block, 345 * to track that state. (On AT91, that sector should also 346 * support boot-from-DataFlash.) 347 */ 348 349 addr = pageaddr << priv->page_offset; 350 351 /* (1) Maybe transfer partial page to Buffer1 */ 352 if (writelen != priv->page_size) { 353 command[0] = OP_TRANSFER_BUF1; 354 command[1] = (addr & 0x00FF0000) >> 16; 355 command[2] = (addr & 0x0000FF00) >> 8; 356 command[3] = 0; 357 358 dev_dbg(&spi->dev, "TRANSFER: (%x) %x %x %x\n", 359 command[0], command[1], command[2], command[3]); 360 361 status = spi_sync(spi, &msg); 362 if (status < 0) 363 dev_dbg(&spi->dev, "xfer %u -> %d\n", 364 addr, status); 365 366 (void) dataflash_waitready(priv->spi); 367 } 368 369 /* (2) Program full page via Buffer1 */ 370 addr += offset; 371 command[0] = OP_PROGRAM_VIA_BUF1; 372 command[1] = (addr & 0x00FF0000) >> 16; 373 command[2] = (addr & 0x0000FF00) >> 8; 374 command[3] = (addr & 0x000000FF); 375 376 dev_dbg(&spi->dev, "PROGRAM: (%x) %x %x %x\n", 377 command[0], command[1], command[2], command[3]); 378 379 x[1].tx_buf = writebuf; 380 x[1].len = writelen; 381 spi_message_add_tail(x + 1, &msg); 382 status = spi_sync(spi, &msg); 383 spi_transfer_del(x + 1); 384 if (status < 0) 385 dev_dbg(&spi->dev, "pgm %u/%u -> %d\n", 386 addr, writelen, status); 387 388 (void) dataflash_waitready(priv->spi); 389 390 391 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY 392 393 /* (3) Compare to Buffer1 */ 394 addr = pageaddr << priv->page_offset; 395 command[0] = OP_COMPARE_BUF1; 396 command[1] = (addr & 0x00FF0000) >> 16; 397 command[2] = (addr & 0x0000FF00) >> 8; 398 command[3] = 0; 399 400 dev_dbg(&spi->dev, "COMPARE: (%x) %x %x %x\n", 401 command[0], command[1], command[2], command[3]); 402 403 status = spi_sync(spi, &msg); 404 if (status < 0) 405 dev_dbg(&spi->dev, "compare %u -> %d\n", 406 addr, status); 407 408 status = dataflash_waitready(priv->spi); 409 410 /* Check result of the compare operation */ 411 if (status & (1 << 6)) { 412 dev_err(&spi->dev, "compare page %u, err %d\n", 413 pageaddr, status); 414 remaining = 0; 415 status = -EIO; 416 break; 417 } else 418 status = 0; 419 420 #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */ 421 422 remaining = remaining - writelen; 423 pageaddr++; 424 offset = 0; 425 writebuf += writelen; 426 *retlen += writelen; 427 428 if (remaining > priv->page_size) 429 writelen = priv->page_size; 430 else 431 writelen = remaining; 432 } 433 mutex_unlock(&priv->lock); 434 435 return status; 436 } 437 438 /* ......................................................................... */ 439 440 #ifdef CONFIG_MTD_DATAFLASH_OTP 441 442 static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len, 443 size_t *retlen, struct otp_info *info) 444 { 445 /* Report both blocks as identical: bytes 0..64, locked. 446 * Unless the user block changed from all-ones, we can't 447 * tell whether it's still writable; so we assume it isn't. 448 */ 449 info->start = 0; 450 info->length = 64; 451 info->locked = 1; 452 *retlen = sizeof(*info); 453 return 0; 454 } 455 456 static ssize_t otp_read(struct spi_device *spi, unsigned base, 457 u8 *buf, loff_t off, size_t len) 458 { 459 struct spi_message m; 460 size_t l; 461 u8 *scratch; 462 struct spi_transfer t; 463 int status; 464 465 if (off > 64) 466 return -EINVAL; 467 468 if ((off + len) > 64) 469 len = 64 - off; 470 471 spi_message_init(&m); 472 473 l = 4 + base + off + len; 474 scratch = kzalloc(l, GFP_KERNEL); 475 if (!scratch) 476 return -ENOMEM; 477 478 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes 479 * IN: ignore 4 bytes, data bytes 0..N (max 127) 480 */ 481 scratch[0] = OP_READ_SECURITY; 482 483 memset(&t, 0, sizeof t); 484 t.tx_buf = scratch; 485 t.rx_buf = scratch; 486 t.len = l; 487 spi_message_add_tail(&t, &m); 488 489 dataflash_waitready(spi); 490 491 status = spi_sync(spi, &m); 492 if (status >= 0) { 493 memcpy(buf, scratch + 4 + base + off, len); 494 status = len; 495 } 496 497 kfree(scratch); 498 return status; 499 } 500 501 static int dataflash_read_fact_otp(struct mtd_info *mtd, 502 loff_t from, size_t len, size_t *retlen, u_char *buf) 503 { 504 struct dataflash *priv = mtd->priv; 505 int status; 506 507 /* 64 bytes, from 0..63 ... start at 64 on-chip */ 508 mutex_lock(&priv->lock); 509 status = otp_read(priv->spi, 64, buf, from, len); 510 mutex_unlock(&priv->lock); 511 512 if (status < 0) 513 return status; 514 *retlen = status; 515 return 0; 516 } 517 518 static int dataflash_read_user_otp(struct mtd_info *mtd, 519 loff_t from, size_t len, size_t *retlen, u_char *buf) 520 { 521 struct dataflash *priv = mtd->priv; 522 int status; 523 524 /* 64 bytes, from 0..63 ... start at 0 on-chip */ 525 mutex_lock(&priv->lock); 526 status = otp_read(priv->spi, 0, buf, from, len); 527 mutex_unlock(&priv->lock); 528 529 if (status < 0) 530 return status; 531 *retlen = status; 532 return 0; 533 } 534 535 static int dataflash_write_user_otp(struct mtd_info *mtd, 536 loff_t from, size_t len, size_t *retlen, const u_char *buf) 537 { 538 struct spi_message m; 539 const size_t l = 4 + 64; 540 u8 *scratch; 541 struct spi_transfer t; 542 struct dataflash *priv = mtd->priv; 543 int status; 544 545 if (from >= 64) { 546 /* 547 * Attempting to write beyond the end of OTP memory, 548 * no data can be written. 549 */ 550 *retlen = 0; 551 return 0; 552 } 553 554 /* Truncate the write to fit into OTP memory. */ 555 if ((from + len) > 64) 556 len = 64 - from; 557 558 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes 559 * IN: ignore all 560 */ 561 scratch = kzalloc(l, GFP_KERNEL); 562 if (!scratch) 563 return -ENOMEM; 564 scratch[0] = OP_WRITE_SECURITY; 565 memcpy(scratch + 4 + from, buf, len); 566 567 spi_message_init(&m); 568 569 memset(&t, 0, sizeof t); 570 t.tx_buf = scratch; 571 t.len = l; 572 spi_message_add_tail(&t, &m); 573 574 /* Write the OTP bits, if they've not yet been written. 575 * This modifies SRAM buffer1. 576 */ 577 mutex_lock(&priv->lock); 578 dataflash_waitready(priv->spi); 579 status = spi_sync(priv->spi, &m); 580 mutex_unlock(&priv->lock); 581 582 kfree(scratch); 583 584 if (status >= 0) { 585 status = 0; 586 *retlen = len; 587 } 588 return status; 589 } 590 591 static char *otp_setup(struct mtd_info *device, char revision) 592 { 593 device->_get_fact_prot_info = dataflash_get_otp_info; 594 device->_read_fact_prot_reg = dataflash_read_fact_otp; 595 device->_get_user_prot_info = dataflash_get_otp_info; 596 device->_read_user_prot_reg = dataflash_read_user_otp; 597 598 /* rev c parts (at45db321c and at45db1281 only!) use a 599 * different write procedure; not (yet?) implemented. 600 */ 601 if (revision > 'c') 602 device->_write_user_prot_reg = dataflash_write_user_otp; 603 604 return ", OTP"; 605 } 606 607 #else 608 609 static char *otp_setup(struct mtd_info *device, char revision) 610 { 611 return " (OTP)"; 612 } 613 614 #endif 615 616 /* ......................................................................... */ 617 618 /* 619 * Register DataFlash device with MTD subsystem. 620 */ 621 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages, 622 int pagesize, int pageoffset, char revision) 623 { 624 struct dataflash *priv; 625 struct mtd_info *device; 626 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev); 627 char *otp_tag = ""; 628 int err = 0; 629 630 priv = kzalloc(sizeof *priv, GFP_KERNEL); 631 if (!priv) 632 return -ENOMEM; 633 634 mutex_init(&priv->lock); 635 priv->spi = spi; 636 priv->page_size = pagesize; 637 priv->page_offset = pageoffset; 638 639 /* name must be usable with cmdlinepart */ 640 sprintf(priv->name, "spi%d.%d-%s", 641 spi->master->bus_num, spi_get_chipselect(spi, 0), 642 name); 643 644 device = &priv->mtd; 645 device->name = (pdata && pdata->name) ? pdata->name : priv->name; 646 device->size = nr_pages * pagesize; 647 device->erasesize = pagesize; 648 device->writesize = pagesize; 649 device->type = MTD_DATAFLASH; 650 device->flags = MTD_WRITEABLE; 651 device->_erase = dataflash_erase; 652 device->_read = dataflash_read; 653 device->_write = dataflash_write; 654 device->priv = priv; 655 656 device->dev.parent = &spi->dev; 657 mtd_set_of_node(device, spi->dev.of_node); 658 659 if (revision >= 'c') 660 otp_tag = otp_setup(device, revision); 661 662 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n", 663 name, (long long)((device->size + 1023) >> 10), 664 pagesize, otp_tag); 665 spi_set_drvdata(spi, priv); 666 667 err = mtd_device_register(device, 668 pdata ? pdata->parts : NULL, 669 pdata ? pdata->nr_parts : 0); 670 671 if (!err) 672 return 0; 673 674 kfree(priv); 675 return err; 676 } 677 678 static inline int add_dataflash(struct spi_device *spi, char *name, 679 int nr_pages, int pagesize, int pageoffset) 680 { 681 return add_dataflash_otp(spi, name, nr_pages, pagesize, 682 pageoffset, 0); 683 } 684 685 struct flash_info { 686 char *name; 687 688 /* JEDEC id has a high byte of zero plus three data bytes: 689 * the manufacturer id, then a two byte device id. 690 */ 691 u64 jedec_id; 692 693 /* The size listed here is what works with OP_ERASE_PAGE. */ 694 unsigned nr_pages; 695 u16 pagesize; 696 u16 pageoffset; 697 698 u16 flags; 699 #define SUP_EXTID 0x0004 /* supports extended ID data */ 700 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */ 701 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */ 702 }; 703 704 static struct flash_info dataflash_data[] = { 705 706 /* 707 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, 708 * one with IS_POW2PS and the other without. The entry with the 709 * non-2^N byte page size can't name exact chip revisions without 710 * losing backwards compatibility for cmdlinepart. 711 * 712 * These newer chips also support 128-byte security registers (with 713 * 64 bytes one-time-programmable) and software write-protection. 714 */ 715 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS}, 716 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS}, 717 718 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS}, 719 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS}, 720 721 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS}, 722 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS}, 723 724 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS}, 725 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS}, 726 727 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS}, 728 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS}, 729 730 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */ 731 732 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS}, 733 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS}, 734 735 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS}, 736 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, 737 738 { "AT45DB641E", 0x1f28000100ULL, 32768, 264, 9, SUP_EXTID | SUP_POW2PS}, 739 { "at45db641e", 0x1f28000100ULL, 32768, 256, 8, SUP_EXTID | SUP_POW2PS | IS_POW2PS}, 740 }; 741 742 static struct flash_info *jedec_lookup(struct spi_device *spi, 743 u64 jedec, bool use_extid) 744 { 745 struct flash_info *info; 746 int status; 747 748 for (info = dataflash_data; 749 info < dataflash_data + ARRAY_SIZE(dataflash_data); 750 info++) { 751 if (use_extid && !(info->flags & SUP_EXTID)) 752 continue; 753 754 if (info->jedec_id == jedec) { 755 dev_dbg(&spi->dev, "OTP, sector protect%s\n", 756 (info->flags & SUP_POW2PS) ? 757 ", binary pagesize" : ""); 758 if (info->flags & SUP_POW2PS) { 759 status = dataflash_status(spi); 760 if (status < 0) { 761 dev_dbg(&spi->dev, "status error %d\n", 762 status); 763 return ERR_PTR(status); 764 } 765 if (status & 0x1) { 766 if (info->flags & IS_POW2PS) 767 return info; 768 } else { 769 if (!(info->flags & IS_POW2PS)) 770 return info; 771 } 772 } else 773 return info; 774 } 775 } 776 777 return ERR_PTR(-ENODEV); 778 } 779 780 static struct flash_info *jedec_probe(struct spi_device *spi) 781 { 782 int ret; 783 u8 code = OP_READ_ID; 784 u64 jedec; 785 u8 id[sizeof(jedec)] = {0}; 786 const unsigned int id_size = 5; 787 struct flash_info *info; 788 789 /* 790 * JEDEC also defines an optional "extended device information" 791 * string for after vendor-specific data, after the three bytes 792 * we use here. Supporting some chips might require using it. 793 * 794 * If the vendor ID isn't Atmel's (0x1f), assume this call failed. 795 * That's not an error; only rev C and newer chips handle it, and 796 * only Atmel sells these chips. 797 */ 798 ret = spi_write_then_read(spi, &code, 1, id, id_size); 799 if (ret < 0) { 800 dev_dbg(&spi->dev, "error %d reading JEDEC ID\n", ret); 801 return ERR_PTR(ret); 802 } 803 804 if (id[0] != CFI_MFR_ATMEL) 805 return NULL; 806 807 jedec = be64_to_cpup((__be64 *)id); 808 809 /* 810 * First, try to match device using extended device 811 * information 812 */ 813 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_EXTID, true); 814 if (!IS_ERR(info)) 815 return info; 816 /* 817 * If that fails, make another pass using regular ID 818 * information 819 */ 820 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_ID, false); 821 if (!IS_ERR(info)) 822 return info; 823 /* 824 * Treat other chips as errors ... we won't know the right page 825 * size (it might be binary) even when we can tell which density 826 * class is involved (legacy chip id scheme). 827 */ 828 dev_warn(&spi->dev, "JEDEC id %016llx not handled\n", jedec); 829 return ERR_PTR(-ENODEV); 830 } 831 832 /* 833 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips 834 * or else the ID code embedded in the status bits: 835 * 836 * Device Density ID code #Pages PageSize Offset 837 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9 838 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9 839 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9 840 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9 841 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10 842 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10 843 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 844 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 845 */ 846 static int dataflash_probe(struct spi_device *spi) 847 { 848 int status; 849 struct flash_info *info; 850 851 /* 852 * Try to detect dataflash by JEDEC ID. 853 * If it succeeds we know we have either a C or D part. 854 * D will support power of 2 pagesize option. 855 * Both support the security register, though with different 856 * write procedures. 857 */ 858 info = jedec_probe(spi); 859 if (IS_ERR(info)) 860 return PTR_ERR(info); 861 if (info != NULL) 862 return add_dataflash_otp(spi, info->name, info->nr_pages, 863 info->pagesize, info->pageoffset, 864 (info->flags & SUP_POW2PS) ? 'd' : 'c'); 865 866 /* 867 * Older chips support only legacy commands, identifing 868 * capacity using bits in the status byte. 869 */ 870 status = dataflash_status(spi); 871 if (status <= 0 || status == 0xff) { 872 dev_dbg(&spi->dev, "status error %d\n", status); 873 if (status == 0 || status == 0xff) 874 status = -ENODEV; 875 return status; 876 } 877 878 /* if there's a device there, assume it's dataflash. 879 * board setup should have set spi->max_speed_max to 880 * match f(car) for continuous reads, mode 0 or 3. 881 */ 882 switch (status & 0x3c) { 883 case 0x0c: /* 0 0 1 1 x x */ 884 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9); 885 break; 886 case 0x14: /* 0 1 0 1 x x */ 887 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9); 888 break; 889 case 0x1c: /* 0 1 1 1 x x */ 890 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9); 891 break; 892 case 0x24: /* 1 0 0 1 x x */ 893 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9); 894 break; 895 case 0x2c: /* 1 0 1 1 x x */ 896 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10); 897 break; 898 case 0x34: /* 1 1 0 1 x x */ 899 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10); 900 break; 901 case 0x38: /* 1 1 1 x x x */ 902 case 0x3c: 903 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11); 904 break; 905 /* obsolete AT45DB1282 not (yet?) supported */ 906 default: 907 dev_info(&spi->dev, "unsupported device (%x)\n", 908 status & 0x3c); 909 status = -ENODEV; 910 } 911 912 if (status < 0) 913 dev_dbg(&spi->dev, "add_dataflash --> %d\n", status); 914 915 return status; 916 } 917 918 static void dataflash_remove(struct spi_device *spi) 919 { 920 struct dataflash *flash = spi_get_drvdata(spi); 921 922 dev_dbg(&spi->dev, "remove\n"); 923 924 WARN_ON(mtd_device_unregister(&flash->mtd)); 925 926 kfree(flash); 927 } 928 929 static struct spi_driver dataflash_driver = { 930 .driver = { 931 .name = "mtd_dataflash", 932 .of_match_table = of_match_ptr(dataflash_dt_ids), 933 }, 934 .probe = dataflash_probe, 935 .remove = dataflash_remove, 936 .id_table = dataflash_spi_ids, 937 938 /* FIXME: investigate suspend and resume... */ 939 }; 940 941 module_spi_driver(dataflash_driver); 942 943 MODULE_LICENSE("GPL"); 944 MODULE_AUTHOR("Andrew Victor, David Brownell"); 945 MODULE_DESCRIPTION("MTD DataFlash driver"); 946 MODULE_ALIAS("spi:mtd_dataflash"); 947