1 /* 2 * Handles the M-Systems DiskOnChip G3 chip 3 * 4 * Copyright (C) 2011 Robert Jarzmik 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/of.h> 26 #include <linux/platform_device.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/io.h> 30 #include <linux/delay.h> 31 #include <linux/mtd/mtd.h> 32 #include <linux/mtd/partitions.h> 33 #include <linux/bitmap.h> 34 #include <linux/bitrev.h> 35 #include <linux/bch.h> 36 37 #include <linux/debugfs.h> 38 #include <linux/seq_file.h> 39 40 #define CREATE_TRACE_POINTS 41 #include "docg3.h" 42 43 /* 44 * This driver handles the DiskOnChip G3 flash memory. 45 * 46 * As no specification is available from M-Systems/Sandisk, this drivers lacks 47 * several functions available on the chip, as : 48 * - IPL write 49 * 50 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and 51 * the driver assumes a 16bits data bus. 52 * 53 * DocG3 relies on 2 ECC algorithms, which are handled in hardware : 54 * - a 1 byte Hamming code stored in the OOB for each page 55 * - a 7 bytes BCH code stored in the OOB for each page 56 * The BCH ECC is : 57 * - BCH is in GF(2^14) 58 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes 59 * + 1 hamming byte) 60 * - BCH can correct up to 4 bits (t = 4) 61 * - BCH syndroms are calculated in hardware, and checked in hardware as well 62 * 63 */ 64 65 static unsigned int reliable_mode; 66 module_param(reliable_mode, uint, 0); 67 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, " 68 "2=reliable) : MLC normal operations are in normal mode"); 69 70 /** 71 * struct docg3_oobinfo - DiskOnChip G3 OOB layout 72 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC) 73 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC) 74 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15 75 * @oobavail: 8 available bytes remaining after ECC toll 76 */ 77 static struct nand_ecclayout docg3_oobinfo = { 78 .eccbytes = 8, 79 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14}, 80 .oobfree = {{0, 7}, {15, 1} }, 81 .oobavail = 8, 82 }; 83 84 static inline u8 doc_readb(struct docg3 *docg3, u16 reg) 85 { 86 u8 val = readb(docg3->cascade->base + reg); 87 88 trace_docg3_io(0, 8, reg, (int)val); 89 return val; 90 } 91 92 static inline u16 doc_readw(struct docg3 *docg3, u16 reg) 93 { 94 u16 val = readw(docg3->cascade->base + reg); 95 96 trace_docg3_io(0, 16, reg, (int)val); 97 return val; 98 } 99 100 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) 101 { 102 writeb(val, docg3->cascade->base + reg); 103 trace_docg3_io(1, 8, reg, val); 104 } 105 106 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) 107 { 108 writew(val, docg3->cascade->base + reg); 109 trace_docg3_io(1, 16, reg, val); 110 } 111 112 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd) 113 { 114 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND); 115 } 116 117 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq) 118 { 119 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE); 120 } 121 122 static inline void doc_flash_address(struct docg3 *docg3, u8 addr) 123 { 124 doc_writeb(docg3, addr, DOC_FLASHADDRESS); 125 } 126 127 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL }; 128 129 static int doc_register_readb(struct docg3 *docg3, int reg) 130 { 131 u8 val; 132 133 doc_writew(docg3, reg, DOC_READADDRESS); 134 val = doc_readb(docg3, reg); 135 doc_vdbg("Read register %04x : %02x\n", reg, val); 136 return val; 137 } 138 139 static int doc_register_readw(struct docg3 *docg3, int reg) 140 { 141 u16 val; 142 143 doc_writew(docg3, reg, DOC_READADDRESS); 144 val = doc_readw(docg3, reg); 145 doc_vdbg("Read register %04x : %04x\n", reg, val); 146 return val; 147 } 148 149 /** 150 * doc_delay - delay docg3 operations 151 * @docg3: the device 152 * @nbNOPs: the number of NOPs to issue 153 * 154 * As no specification is available, the right timings between chip commands are 155 * unknown. The only available piece of information are the observed nops on a 156 * working docg3 chip. 157 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler 158 * friendlier msleep() functions or blocking mdelay(). 159 */ 160 static void doc_delay(struct docg3 *docg3, int nbNOPs) 161 { 162 int i; 163 164 doc_vdbg("NOP x %d\n", nbNOPs); 165 for (i = 0; i < nbNOPs; i++) 166 doc_writeb(docg3, 0, DOC_NOP); 167 } 168 169 static int is_prot_seq_error(struct docg3 *docg3) 170 { 171 int ctrl; 172 173 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 174 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR); 175 } 176 177 static int doc_is_ready(struct docg3 *docg3) 178 { 179 int ctrl; 180 181 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 182 return ctrl & DOC_CTRL_FLASHREADY; 183 } 184 185 static int doc_wait_ready(struct docg3 *docg3) 186 { 187 int maxWaitCycles = 100; 188 189 do { 190 doc_delay(docg3, 4); 191 cpu_relax(); 192 } while (!doc_is_ready(docg3) && maxWaitCycles--); 193 doc_delay(docg3, 2); 194 if (maxWaitCycles > 0) 195 return 0; 196 else 197 return -EIO; 198 } 199 200 static int doc_reset_seq(struct docg3 *docg3) 201 { 202 int ret; 203 204 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL); 205 doc_flash_sequence(docg3, DOC_SEQ_RESET); 206 doc_flash_command(docg3, DOC_CMD_RESET); 207 doc_delay(docg3, 2); 208 ret = doc_wait_ready(docg3); 209 210 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true"); 211 return ret; 212 } 213 214 /** 215 * doc_read_data_area - Read data from data area 216 * @docg3: the device 217 * @buf: the buffer to fill in (might be NULL is dummy reads) 218 * @len: the length to read 219 * @first: first time read, DOC_READADDRESS should be set 220 * 221 * Reads bytes from flash data. Handles the single byte / even bytes reads. 222 */ 223 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len, 224 int first) 225 { 226 int i, cdr, len4; 227 u16 data16, *dst16; 228 u8 data8, *dst8; 229 230 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len); 231 cdr = len & 0x1; 232 len4 = len - cdr; 233 234 if (first) 235 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 236 dst16 = buf; 237 for (i = 0; i < len4; i += 2) { 238 data16 = doc_readw(docg3, DOC_IOSPACE_DATA); 239 if (dst16) { 240 *dst16 = data16; 241 dst16++; 242 } 243 } 244 245 if (cdr) { 246 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 247 DOC_READADDRESS); 248 doc_delay(docg3, 1); 249 dst8 = (u8 *)dst16; 250 for (i = 0; i < cdr; i++) { 251 data8 = doc_readb(docg3, DOC_IOSPACE_DATA); 252 if (dst8) { 253 *dst8 = data8; 254 dst8++; 255 } 256 } 257 } 258 } 259 260 /** 261 * doc_write_data_area - Write data into data area 262 * @docg3: the device 263 * @buf: the buffer to get input bytes from 264 * @len: the length to write 265 * 266 * Writes bytes into flash data. Handles the single byte / even bytes writes. 267 */ 268 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len) 269 { 270 int i, cdr, len4; 271 u16 *src16; 272 u8 *src8; 273 274 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len); 275 cdr = len & 0x3; 276 len4 = len - cdr; 277 278 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 279 src16 = (u16 *)buf; 280 for (i = 0; i < len4; i += 2) { 281 doc_writew(docg3, *src16, DOC_IOSPACE_DATA); 282 src16++; 283 } 284 285 src8 = (u8 *)src16; 286 for (i = 0; i < cdr; i++) { 287 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 288 DOC_READADDRESS); 289 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA); 290 src8++; 291 } 292 } 293 294 /** 295 * doc_set_data_mode - Sets the flash to normal or reliable data mode 296 * @docg3: the device 297 * 298 * The reliable data mode is a bit slower than the fast mode, but less errors 299 * occur. Entering the reliable mode cannot be done without entering the fast 300 * mode first. 301 * 302 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks 303 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading 304 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same 305 * result, which is a logical and between bytes from page 0 and page 1 (which is 306 * consistent with the fact that writing to a page is _clearing_ bits of that 307 * page). 308 */ 309 static void doc_set_reliable_mode(struct docg3 *docg3) 310 { 311 static char *strmode[] = { "normal", "fast", "reliable", "invalid" }; 312 313 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]); 314 switch (docg3->reliable) { 315 case 0: 316 break; 317 case 1: 318 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE); 319 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 320 break; 321 case 2: 322 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE); 323 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 324 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE); 325 break; 326 default: 327 doc_err("doc_set_reliable_mode(): invalid mode\n"); 328 break; 329 } 330 doc_delay(docg3, 2); 331 } 332 333 /** 334 * doc_set_asic_mode - Set the ASIC mode 335 * @docg3: the device 336 * @mode: the mode 337 * 338 * The ASIC can work in 3 modes : 339 * - RESET: all registers are zeroed 340 * - NORMAL: receives and handles commands 341 * - POWERDOWN: minimal poweruse, flash parts shut off 342 */ 343 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode) 344 { 345 int i; 346 347 for (i = 0; i < 12; i++) 348 doc_readb(docg3, DOC_IOSPACE_IPL); 349 350 mode |= DOC_ASICMODE_MDWREN; 351 doc_dbg("doc_set_asic_mode(%02x)\n", mode); 352 doc_writeb(docg3, mode, DOC_ASICMODE); 353 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM); 354 doc_delay(docg3, 1); 355 } 356 357 /** 358 * doc_set_device_id - Sets the devices id for cascaded G3 chips 359 * @docg3: the device 360 * @id: the chip to select (amongst 0, 1, 2, 3) 361 * 362 * There can be 4 cascaded G3 chips. This function selects the one which will 363 * should be the active one. 364 */ 365 static void doc_set_device_id(struct docg3 *docg3, int id) 366 { 367 u8 ctrl; 368 369 doc_dbg("doc_set_device_id(%d)\n", id); 370 doc_writeb(docg3, id, DOC_DEVICESELECT); 371 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 372 373 ctrl &= ~DOC_CTRL_VIOLATION; 374 ctrl |= DOC_CTRL_CE; 375 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 376 } 377 378 /** 379 * doc_set_extra_page_mode - Change flash page layout 380 * @docg3: the device 381 * 382 * Normally, the flash page is split into the data (512 bytes) and the out of 383 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear 384 * leveling counters are stored. To access this last area of 4 bytes, a special 385 * mode must be input to the flash ASIC. 386 * 387 * Returns 0 if no error occurred, -EIO else. 388 */ 389 static int doc_set_extra_page_mode(struct docg3 *docg3) 390 { 391 int fctrl; 392 393 doc_dbg("doc_set_extra_page_mode()\n"); 394 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532); 395 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532); 396 doc_delay(docg3, 2); 397 398 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 399 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR)) 400 return -EIO; 401 else 402 return 0; 403 } 404 405 /** 406 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane 407 * @docg3: the device 408 * @sector: the sector 409 */ 410 static void doc_setup_addr_sector(struct docg3 *docg3, int sector) 411 { 412 doc_delay(docg3, 1); 413 doc_flash_address(docg3, sector & 0xff); 414 doc_flash_address(docg3, (sector >> 8) & 0xff); 415 doc_flash_address(docg3, (sector >> 16) & 0xff); 416 doc_delay(docg3, 1); 417 } 418 419 /** 420 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane 421 * @docg3: the device 422 * @sector: the sector 423 * @ofs: the offset in the page, between 0 and (512 + 16 + 512) 424 */ 425 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs) 426 { 427 ofs = ofs >> 2; 428 doc_delay(docg3, 1); 429 doc_flash_address(docg3, ofs & 0xff); 430 doc_flash_address(docg3, sector & 0xff); 431 doc_flash_address(docg3, (sector >> 8) & 0xff); 432 doc_flash_address(docg3, (sector >> 16) & 0xff); 433 doc_delay(docg3, 1); 434 } 435 436 /** 437 * doc_seek - Set both flash planes to the specified block, page for reading 438 * @docg3: the device 439 * @block0: the first plane block index 440 * @block1: the second plane block index 441 * @page: the page index within the block 442 * @wear: if true, read will occur on the 4 extra bytes of the wear area 443 * @ofs: offset in page to read 444 * 445 * Programs the flash even and odd planes to the specific block and page. 446 * Alternatively, programs the flash to the wear area of the specified page. 447 */ 448 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page, 449 int wear, int ofs) 450 { 451 int sector, ret = 0; 452 453 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", 454 block0, block1, page, ofs, wear); 455 456 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) { 457 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 458 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 459 doc_delay(docg3, 2); 460 } else { 461 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 462 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 463 doc_delay(docg3, 2); 464 } 465 466 doc_set_reliable_mode(docg3); 467 if (wear) 468 ret = doc_set_extra_page_mode(docg3); 469 if (ret) 470 goto out; 471 472 doc_flash_sequence(docg3, DOC_SEQ_READ); 473 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 474 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 475 doc_setup_addr_sector(docg3, sector); 476 477 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 478 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 479 doc_setup_addr_sector(docg3, sector); 480 doc_delay(docg3, 1); 481 482 out: 483 return ret; 484 } 485 486 /** 487 * doc_write_seek - Set both flash planes to the specified block, page for writing 488 * @docg3: the device 489 * @block0: the first plane block index 490 * @block1: the second plane block index 491 * @page: the page index within the block 492 * @ofs: offset in page to write 493 * 494 * Programs the flash even and odd planes to the specific block and page. 495 * Alternatively, programs the flash to the wear area of the specified page. 496 */ 497 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page, 498 int ofs) 499 { 500 int ret = 0, sector; 501 502 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n", 503 block0, block1, page, ofs); 504 505 doc_set_reliable_mode(docg3); 506 507 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) { 508 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 509 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 510 doc_delay(docg3, 2); 511 } else { 512 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 513 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 514 doc_delay(docg3, 2); 515 } 516 517 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP); 518 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); 519 520 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 521 doc_setup_writeaddr_sector(docg3, sector, ofs); 522 523 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3); 524 doc_delay(docg3, 2); 525 ret = doc_wait_ready(docg3); 526 if (ret) 527 goto out; 528 529 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); 530 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 531 doc_setup_writeaddr_sector(docg3, sector, ofs); 532 doc_delay(docg3, 1); 533 534 out: 535 return ret; 536 } 537 538 539 /** 540 * doc_read_page_ecc_init - Initialize hardware ECC engine 541 * @docg3: the device 542 * @len: the number of bytes covered by the ECC (BCH covered) 543 * 544 * The function does initialize the hardware ECC engine to compute the Hamming 545 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). 546 * 547 * Return 0 if succeeded, -EIO on error 548 */ 549 static int doc_read_page_ecc_init(struct docg3 *docg3, int len) 550 { 551 doc_writew(docg3, DOC_ECCCONF0_READ_MODE 552 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 553 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 554 DOC_ECCCONF0); 555 doc_delay(docg3, 4); 556 doc_register_readb(docg3, DOC_FLASHCONTROL); 557 return doc_wait_ready(docg3); 558 } 559 560 /** 561 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine 562 * @docg3: the device 563 * @len: the number of bytes covered by the ECC (BCH covered) 564 * 565 * The function does initialize the hardware ECC engine to compute the Hamming 566 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). 567 * 568 * Return 0 if succeeded, -EIO on error 569 */ 570 static int doc_write_page_ecc_init(struct docg3 *docg3, int len) 571 { 572 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE 573 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 574 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 575 DOC_ECCCONF0); 576 doc_delay(docg3, 4); 577 doc_register_readb(docg3, DOC_FLASHCONTROL); 578 return doc_wait_ready(docg3); 579 } 580 581 /** 582 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator 583 * @docg3: the device 584 * 585 * Disables the hardware ECC generator and checker, for unchecked reads (as when 586 * reading OOB only or write status byte). 587 */ 588 static void doc_ecc_disable(struct docg3 *docg3) 589 { 590 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0); 591 doc_delay(docg3, 4); 592 } 593 594 /** 595 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine 596 * @docg3: the device 597 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered) 598 * 599 * This function programs the ECC hardware to compute the hamming code on the 600 * last provided N bytes to the hardware generator. 601 */ 602 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes) 603 { 604 u8 ecc_conf1; 605 606 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1); 607 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK; 608 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK); 609 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1); 610 } 611 612 /** 613 * doc_ecc_bch_fix_data - Fix if need be read data from flash 614 * @docg3: the device 615 * @buf: the buffer of read data (512 + 7 + 1 bytes) 616 * @hwecc: the hardware calculated ECC. 617 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB 618 * area data, and calc_ecc the ECC calculated by the hardware generator. 619 * 620 * Checks if the received data matches the ECC, and if an error is detected, 621 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3 622 * understands the (data, ecc, syndroms) in an inverted order in comparison to 623 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0, 624 * bit6 and bit 1, ...) for all ECC data. 625 * 626 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch 627 * algorithm is used to decode this. However the hw operates on page 628 * data in a bit order that is the reverse of that of the bch alg, 629 * requiring that the bits be reversed on the result. Thanks to Ivan 630 * Djelic for his analysis. 631 * 632 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit 633 * errors were detected and cannot be fixed. 634 */ 635 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc) 636 { 637 u8 ecc[DOC_ECC_BCH_SIZE]; 638 int errorpos[DOC_ECC_BCH_T], i, numerrs; 639 640 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 641 ecc[i] = bitrev8(hwecc[i]); 642 numerrs = decode_bch(docg3->cascade->bch, NULL, 643 DOC_ECC_BCH_COVERED_BYTES, 644 NULL, ecc, NULL, errorpos); 645 BUG_ON(numerrs == -EINVAL); 646 if (numerrs < 0) 647 goto out; 648 649 for (i = 0; i < numerrs; i++) 650 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7)); 651 for (i = 0; i < numerrs; i++) 652 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8) 653 /* error is located in data, correct it */ 654 change_bit(errorpos[i], buf); 655 out: 656 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs); 657 return numerrs; 658 } 659 660 661 /** 662 * doc_read_page_prepare - Prepares reading data from a flash page 663 * @docg3: the device 664 * @block0: the first plane block index on flash memory 665 * @block1: the second plane block index on flash memory 666 * @page: the page index in the block 667 * @offset: the offset in the page (must be a multiple of 4) 668 * 669 * Prepares the page to be read in the flash memory : 670 * - tell ASIC to map the flash pages 671 * - tell ASIC to be in read mode 672 * 673 * After a call to this method, a call to doc_read_page_finish is mandatory, 674 * to end the read cycle of the flash. 675 * 676 * Read data from a flash page. The length to be read must be between 0 and 677 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because 678 * the extra bytes reading is not implemented). 679 * 680 * As pages are grouped by 2 (in 2 planes), reading from a page must be done 681 * in two steps: 682 * - one read of 512 bytes at offset 0 683 * - one read of 512 bytes at offset 512 + 16 684 * 685 * Returns 0 if successful, -EIO if a read error occurred. 686 */ 687 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1, 688 int page, int offset) 689 { 690 int wear_area = 0, ret = 0; 691 692 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", 693 block0, block1, page, offset); 694 if (offset >= DOC_LAYOUT_WEAR_OFFSET) 695 wear_area = 1; 696 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2)) 697 return -EINVAL; 698 699 doc_set_device_id(docg3, docg3->device_id); 700 ret = doc_reset_seq(docg3); 701 if (ret) 702 goto err; 703 704 /* Program the flash address block and page */ 705 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); 706 if (ret) 707 goto err; 708 709 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES); 710 doc_delay(docg3, 2); 711 doc_wait_ready(docg3); 712 713 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ); 714 doc_delay(docg3, 1); 715 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2) 716 offset -= 2 * DOC_LAYOUT_PAGE_SIZE; 717 doc_flash_address(docg3, offset >> 2); 718 doc_delay(docg3, 1); 719 doc_wait_ready(docg3); 720 721 doc_flash_command(docg3, DOC_CMD_READ_FLASH); 722 723 return 0; 724 err: 725 doc_writeb(docg3, 0, DOC_DATAEND); 726 doc_delay(docg3, 2); 727 return -EIO; 728 } 729 730 /** 731 * doc_read_page_getbytes - Reads bytes from a prepared page 732 * @docg3: the device 733 * @len: the number of bytes to be read (must be a multiple of 4) 734 * @buf: the buffer to be filled in (or NULL is forget bytes) 735 * @first: 1 if first time read, DOC_READADDRESS should be set 736 * @last_odd: 1 if last read ended up on an odd byte 737 * 738 * Reads bytes from a prepared page. There is a trickery here : if the last read 739 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2 740 * planes, the first byte must be read apart. If a word (16bit) read was used, 741 * the read would return the byte of plane 2 as low *and* high endian, which 742 * will mess the read. 743 * 744 */ 745 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf, 746 int first, int last_odd) 747 { 748 if (last_odd && len > 0) { 749 doc_read_data_area(docg3, buf, 1, first); 750 doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0); 751 } else { 752 doc_read_data_area(docg3, buf, len, first); 753 } 754 doc_delay(docg3, 2); 755 return len; 756 } 757 758 /** 759 * doc_write_page_putbytes - Writes bytes into a prepared page 760 * @docg3: the device 761 * @len: the number of bytes to be written 762 * @buf: the buffer of input bytes 763 * 764 */ 765 static void doc_write_page_putbytes(struct docg3 *docg3, int len, 766 const u_char *buf) 767 { 768 doc_write_data_area(docg3, buf, len); 769 doc_delay(docg3, 2); 770 } 771 772 /** 773 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC 774 * @docg3: the device 775 * @hwecc: the array of 7 integers where the hardware ecc will be stored 776 */ 777 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc) 778 { 779 int i; 780 781 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 782 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i)); 783 } 784 785 /** 786 * doc_page_finish - Ends reading/writing of a flash page 787 * @docg3: the device 788 */ 789 static void doc_page_finish(struct docg3 *docg3) 790 { 791 doc_writeb(docg3, 0, DOC_DATAEND); 792 doc_delay(docg3, 2); 793 } 794 795 /** 796 * doc_read_page_finish - Ends reading of a flash page 797 * @docg3: the device 798 * 799 * As a side effect, resets the chip selector to 0. This ensures that after each 800 * read operation, the floor 0 is selected. Therefore, if the systems halts, the 801 * reboot will boot on floor 0, where the IPL is. 802 */ 803 static void doc_read_page_finish(struct docg3 *docg3) 804 { 805 doc_page_finish(docg3); 806 doc_set_device_id(docg3, 0); 807 } 808 809 /** 810 * calc_block_sector - Calculate blocks, pages and ofs. 811 812 * @from: offset in flash 813 * @block0: first plane block index calculated 814 * @block1: second plane block index calculated 815 * @page: page calculated 816 * @ofs: offset in page 817 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in 818 * reliable mode. 819 * 820 * The calculation is based on the reliable/normal mode. In normal mode, the 64 821 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are 822 * clones, only 32 pages per block are available. 823 */ 824 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page, 825 int *ofs, int reliable) 826 { 827 uint sector, pages_biblock; 828 829 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES; 830 if (reliable == 1 || reliable == 2) 831 pages_biblock /= 2; 832 833 sector = from / DOC_LAYOUT_PAGE_SIZE; 834 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES; 835 *block1 = *block0 + 1; 836 *page = sector % pages_biblock; 837 *page /= DOC_LAYOUT_NBPLANES; 838 if (reliable == 1 || reliable == 2) 839 *page *= 2; 840 if (sector % 2) 841 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE; 842 else 843 *ofs = 0; 844 } 845 846 /** 847 * doc_read_oob - Read out of band bytes from flash 848 * @mtd: the device 849 * @from: the offset from first block and first page, in bytes, aligned on page 850 * size 851 * @ops: the mtd oob structure 852 * 853 * Reads flash memory OOB area of pages. 854 * 855 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred 856 */ 857 static int doc_read_oob(struct mtd_info *mtd, loff_t from, 858 struct mtd_oob_ops *ops) 859 { 860 struct docg3 *docg3 = mtd->priv; 861 int block0, block1, page, ret, skip, ofs = 0; 862 u8 *oobbuf = ops->oobbuf; 863 u8 *buf = ops->datbuf; 864 size_t len, ooblen, nbdata, nboob; 865 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1; 866 int max_bitflips = 0; 867 868 if (buf) 869 len = ops->len; 870 else 871 len = 0; 872 if (oobbuf) 873 ooblen = ops->ooblen; 874 else 875 ooblen = 0; 876 877 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) 878 oobbuf += ops->ooboffs; 879 880 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 881 from, ops->mode, buf, len, oobbuf, ooblen); 882 if (ooblen % DOC_LAYOUT_OOB_SIZE) 883 return -EINVAL; 884 885 if (from + len > mtd->size) 886 return -EINVAL; 887 888 ops->oobretlen = 0; 889 ops->retlen = 0; 890 ret = 0; 891 skip = from % DOC_LAYOUT_PAGE_SIZE; 892 mutex_lock(&docg3->cascade->lock); 893 while (ret >= 0 && (len > 0 || ooblen > 0)) { 894 calc_block_sector(from - skip, &block0, &block1, &page, &ofs, 895 docg3->reliable); 896 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip); 897 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE); 898 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); 899 if (ret < 0) 900 goto out; 901 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 902 if (ret < 0) 903 goto err_in_read; 904 ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0); 905 if (ret < skip) 906 goto err_in_read; 907 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2); 908 if (ret < nbdata) 909 goto err_in_read; 910 doc_read_page_getbytes(docg3, 911 DOC_LAYOUT_PAGE_SIZE - nbdata - skip, 912 NULL, 0, (skip + nbdata) % 2); 913 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0); 914 if (ret < nboob) 915 goto err_in_read; 916 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob, 917 NULL, 0, nboob % 2); 918 919 doc_get_bch_hw_ecc(docg3, hwecc); 920 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); 921 922 if (nboob >= DOC_LAYOUT_OOB_SIZE) { 923 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf); 924 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); 925 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8); 926 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); 927 } 928 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); 929 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc); 930 931 ret = -EIO; 932 if (is_prot_seq_error(docg3)) 933 goto err_in_read; 934 ret = 0; 935 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) && 936 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) && 937 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) && 938 (ops->mode != MTD_OPS_RAW) && 939 (nbdata == DOC_LAYOUT_PAGE_SIZE)) { 940 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc); 941 if (ret < 0) { 942 mtd->ecc_stats.failed++; 943 ret = -EBADMSG; 944 } 945 if (ret > 0) { 946 mtd->ecc_stats.corrected += ret; 947 max_bitflips = max(max_bitflips, ret); 948 ret = max_bitflips; 949 } 950 } 951 952 doc_read_page_finish(docg3); 953 ops->retlen += nbdata; 954 ops->oobretlen += nboob; 955 buf += nbdata; 956 oobbuf += nboob; 957 len -= nbdata; 958 ooblen -= nboob; 959 from += DOC_LAYOUT_PAGE_SIZE; 960 skip = 0; 961 } 962 963 out: 964 mutex_unlock(&docg3->cascade->lock); 965 return ret; 966 err_in_read: 967 doc_read_page_finish(docg3); 968 goto out; 969 } 970 971 /** 972 * doc_read - Read bytes from flash 973 * @mtd: the device 974 * @from: the offset from first block and first page, in bytes, aligned on page 975 * size 976 * @len: the number of bytes to read (must be a multiple of 4) 977 * @retlen: the number of bytes actually read 978 * @buf: the filled in buffer 979 * 980 * Reads flash memory pages. This function does not read the OOB chunk, but only 981 * the page data. 982 * 983 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred 984 */ 985 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, 986 size_t *retlen, u_char *buf) 987 { 988 struct mtd_oob_ops ops; 989 size_t ret; 990 991 memset(&ops, 0, sizeof(ops)); 992 ops.datbuf = buf; 993 ops.len = len; 994 ops.mode = MTD_OPS_AUTO_OOB; 995 996 ret = doc_read_oob(mtd, from, &ops); 997 *retlen = ops.retlen; 998 return ret; 999 } 1000 1001 static int doc_reload_bbt(struct docg3 *docg3) 1002 { 1003 int block = DOC_LAYOUT_BLOCK_BBT; 1004 int ret = 0, nbpages, page; 1005 u_char *buf = docg3->bbt; 1006 1007 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); 1008 for (page = 0; !ret && (page < nbpages); page++) { 1009 ret = doc_read_page_prepare(docg3, block, block + 1, 1010 page + DOC_LAYOUT_PAGE_BBT, 0); 1011 if (!ret) 1012 ret = doc_read_page_ecc_init(docg3, 1013 DOC_LAYOUT_PAGE_SIZE); 1014 if (!ret) 1015 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE, 1016 buf, 1, 0); 1017 buf += DOC_LAYOUT_PAGE_SIZE; 1018 } 1019 doc_read_page_finish(docg3); 1020 return ret; 1021 } 1022 1023 /** 1024 * doc_block_isbad - Checks whether a block is good or not 1025 * @mtd: the device 1026 * @from: the offset to find the correct block 1027 * 1028 * Returns 1 if block is bad, 0 if block is good 1029 */ 1030 static int doc_block_isbad(struct mtd_info *mtd, loff_t from) 1031 { 1032 struct docg3 *docg3 = mtd->priv; 1033 int block0, block1, page, ofs, is_good; 1034 1035 calc_block_sector(from, &block0, &block1, &page, &ofs, 1036 docg3->reliable); 1037 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", 1038 from, block0, block1, page, ofs); 1039 1040 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA) 1041 return 0; 1042 if (block1 > docg3->max_block) 1043 return -EINVAL; 1044 1045 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7)); 1046 return !is_good; 1047 } 1048 1049 #if 0 1050 /** 1051 * doc_get_erase_count - Get block erase count 1052 * @docg3: the device 1053 * @from: the offset in which the block is. 1054 * 1055 * Get the number of times a block was erased. The number is the maximum of 1056 * erase times between first and second plane (which should be equal normally). 1057 * 1058 * Returns The number of erases, or -EINVAL or -EIO on error. 1059 */ 1060 static int doc_get_erase_count(struct docg3 *docg3, loff_t from) 1061 { 1062 u8 buf[DOC_LAYOUT_WEAR_SIZE]; 1063 int ret, plane1_erase_count, plane2_erase_count; 1064 int block0, block1, page, ofs; 1065 1066 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf); 1067 if (from % DOC_LAYOUT_PAGE_SIZE) 1068 return -EINVAL; 1069 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable); 1070 if (block1 > docg3->max_block) 1071 return -EINVAL; 1072 1073 ret = doc_reset_seq(docg3); 1074 if (!ret) 1075 ret = doc_read_page_prepare(docg3, block0, block1, page, 1076 ofs + DOC_LAYOUT_WEAR_OFFSET, 0); 1077 if (!ret) 1078 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE, 1079 buf, 1, 0); 1080 doc_read_page_finish(docg3); 1081 1082 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK)) 1083 return -EIO; 1084 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8) 1085 | ((u8)(~buf[5]) << 16); 1086 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8) 1087 | ((u8)(~buf[7]) << 16); 1088 1089 return max(plane1_erase_count, plane2_erase_count); 1090 } 1091 #endif 1092 1093 /** 1094 * doc_get_op_status - get erase/write operation status 1095 * @docg3: the device 1096 * 1097 * Queries the status from the chip, and returns it 1098 * 1099 * Returns the status (bits DOC_PLANES_STATUS_*) 1100 */ 1101 static int doc_get_op_status(struct docg3 *docg3) 1102 { 1103 u8 status; 1104 1105 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS); 1106 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS); 1107 doc_delay(docg3, 5); 1108 1109 doc_ecc_disable(docg3); 1110 doc_read_data_area(docg3, &status, 1, 1); 1111 return status; 1112 } 1113 1114 /** 1115 * doc_write_erase_wait_status - wait for write or erase completion 1116 * @docg3: the device 1117 * 1118 * Wait for the chip to be ready again after erase or write operation, and check 1119 * erase/write status. 1120 * 1121 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if 1122 * timeout 1123 */ 1124 static int doc_write_erase_wait_status(struct docg3 *docg3) 1125 { 1126 int i, status, ret = 0; 1127 1128 for (i = 0; !doc_is_ready(docg3) && i < 5; i++) 1129 msleep(20); 1130 if (!doc_is_ready(docg3)) { 1131 doc_dbg("Timeout reached and the chip is still not ready\n"); 1132 ret = -EAGAIN; 1133 goto out; 1134 } 1135 1136 status = doc_get_op_status(docg3); 1137 if (status & DOC_PLANES_STATUS_FAIL) { 1138 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n", 1139 status); 1140 ret = -EIO; 1141 } 1142 1143 out: 1144 doc_page_finish(docg3); 1145 return ret; 1146 } 1147 1148 /** 1149 * doc_erase_block - Erase a couple of blocks 1150 * @docg3: the device 1151 * @block0: the first block to erase (leftmost plane) 1152 * @block1: the second block to erase (rightmost plane) 1153 * 1154 * Erase both blocks, and return operation status 1155 * 1156 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not 1157 * ready for too long 1158 */ 1159 static int doc_erase_block(struct docg3 *docg3, int block0, int block1) 1160 { 1161 int ret, sector; 1162 1163 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1); 1164 ret = doc_reset_seq(docg3); 1165 if (ret) 1166 return -EIO; 1167 1168 doc_set_reliable_mode(docg3); 1169 doc_flash_sequence(docg3, DOC_SEQ_ERASE); 1170 1171 sector = block0 << DOC_ADDR_BLOCK_SHIFT; 1172 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 1173 doc_setup_addr_sector(docg3, sector); 1174 sector = block1 << DOC_ADDR_BLOCK_SHIFT; 1175 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 1176 doc_setup_addr_sector(docg3, sector); 1177 doc_delay(docg3, 1); 1178 1179 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2); 1180 doc_delay(docg3, 2); 1181 1182 if (is_prot_seq_error(docg3)) { 1183 doc_err("Erase blocks %d,%d error\n", block0, block1); 1184 return -EIO; 1185 } 1186 1187 return doc_write_erase_wait_status(docg3); 1188 } 1189 1190 /** 1191 * doc_erase - Erase a portion of the chip 1192 * @mtd: the device 1193 * @info: the erase info 1194 * 1195 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is 1196 * split into 2 pages of 512 bytes on 2 contiguous blocks. 1197 * 1198 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase 1199 * issue 1200 */ 1201 static int doc_erase(struct mtd_info *mtd, struct erase_info *info) 1202 { 1203 struct docg3 *docg3 = mtd->priv; 1204 uint64_t len; 1205 int block0, block1, page, ret, ofs = 0; 1206 1207 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); 1208 1209 info->state = MTD_ERASE_PENDING; 1210 calc_block_sector(info->addr + info->len, &block0, &block1, &page, 1211 &ofs, docg3->reliable); 1212 ret = -EINVAL; 1213 if (info->addr + info->len > mtd->size || page || ofs) 1214 goto reset_err; 1215 1216 ret = 0; 1217 calc_block_sector(info->addr, &block0, &block1, &page, &ofs, 1218 docg3->reliable); 1219 mutex_lock(&docg3->cascade->lock); 1220 doc_set_device_id(docg3, docg3->device_id); 1221 doc_set_reliable_mode(docg3); 1222 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { 1223 info->state = MTD_ERASING; 1224 ret = doc_erase_block(docg3, block0, block1); 1225 block0 += 2; 1226 block1 += 2; 1227 } 1228 mutex_unlock(&docg3->cascade->lock); 1229 1230 if (ret) 1231 goto reset_err; 1232 1233 info->state = MTD_ERASE_DONE; 1234 return 0; 1235 1236 reset_err: 1237 info->state = MTD_ERASE_FAILED; 1238 return ret; 1239 } 1240 1241 /** 1242 * doc_write_page - Write a single page to the chip 1243 * @docg3: the device 1244 * @to: the offset from first block and first page, in bytes, aligned on page 1245 * size 1246 * @buf: buffer to get bytes from 1247 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be 1248 * written) 1249 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or 1250 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken, 1251 * remaining ones are filled with hardware Hamming and BCH 1252 * computations. Its value is not meaningfull is oob == NULL. 1253 * 1254 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the 1255 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and 1256 * BCH generator if autoecc is not null. 1257 * 1258 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout 1259 */ 1260 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf, 1261 const u_char *oob, int autoecc) 1262 { 1263 int block0, block1, page, ret, ofs = 0; 1264 u8 hwecc[DOC_ECC_BCH_SIZE], hamming; 1265 1266 doc_dbg("doc_write_page(to=%lld)\n", to); 1267 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable); 1268 1269 doc_set_device_id(docg3, docg3->device_id); 1270 ret = doc_reset_seq(docg3); 1271 if (ret) 1272 goto err; 1273 1274 /* Program the flash address block and page */ 1275 ret = doc_write_seek(docg3, block0, block1, page, ofs); 1276 if (ret) 1277 goto err; 1278 1279 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 1280 doc_delay(docg3, 2); 1281 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf); 1282 1283 if (oob && autoecc) { 1284 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob); 1285 doc_delay(docg3, 2); 1286 oob += DOC_LAYOUT_OOB_UNUSED_OFS; 1287 1288 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY); 1289 doc_delay(docg3, 2); 1290 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ, 1291 &hamming); 1292 doc_delay(docg3, 2); 1293 1294 doc_get_bch_hw_ecc(docg3, hwecc); 1295 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc); 1296 doc_delay(docg3, 2); 1297 1298 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob); 1299 } 1300 if (oob && !autoecc) 1301 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob); 1302 1303 doc_delay(docg3, 2); 1304 doc_page_finish(docg3); 1305 doc_delay(docg3, 2); 1306 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2); 1307 doc_delay(docg3, 2); 1308 1309 /* 1310 * The wait status will perform another doc_page_finish() call, but that 1311 * seems to please the docg3, so leave it. 1312 */ 1313 ret = doc_write_erase_wait_status(docg3); 1314 return ret; 1315 err: 1316 doc_read_page_finish(docg3); 1317 return ret; 1318 } 1319 1320 /** 1321 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops 1322 * @ops: the oob operations 1323 * 1324 * Returns 0 or 1 if success, -EINVAL if invalid oob mode 1325 */ 1326 static int doc_guess_autoecc(struct mtd_oob_ops *ops) 1327 { 1328 int autoecc; 1329 1330 switch (ops->mode) { 1331 case MTD_OPS_PLACE_OOB: 1332 case MTD_OPS_AUTO_OOB: 1333 autoecc = 1; 1334 break; 1335 case MTD_OPS_RAW: 1336 autoecc = 0; 1337 break; 1338 default: 1339 autoecc = -EINVAL; 1340 } 1341 return autoecc; 1342 } 1343 1344 /** 1345 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes 1346 * @dst: the target 16 bytes OOB buffer 1347 * @oobsrc: the source 8 bytes non-ECC OOB buffer 1348 * 1349 */ 1350 static void doc_fill_autooob(u8 *dst, u8 *oobsrc) 1351 { 1352 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ); 1353 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ]; 1354 } 1355 1356 /** 1357 * doc_backup_oob - Backup OOB into docg3 structure 1358 * @docg3: the device 1359 * @to: the page offset in the chip 1360 * @ops: the OOB size and buffer 1361 * 1362 * As the docg3 should write a page with its OOB in one pass, and some userland 1363 * applications do write_oob() to setup the OOB and then write(), store the OOB 1364 * into a temporary storage. This is very dangerous, as 2 concurrent 1365 * applications could store an OOB, and then write their pages (which will 1366 * result into one having its OOB corrupted). 1367 * 1368 * The only reliable way would be for userland to call doc_write_oob() with both 1369 * the page data _and_ the OOB area. 1370 * 1371 * Returns 0 if success, -EINVAL if ops content invalid 1372 */ 1373 static int doc_backup_oob(struct docg3 *docg3, loff_t to, 1374 struct mtd_oob_ops *ops) 1375 { 1376 int ooblen = ops->ooblen, autoecc; 1377 1378 if (ooblen != DOC_LAYOUT_OOB_SIZE) 1379 return -EINVAL; 1380 autoecc = doc_guess_autoecc(ops); 1381 if (autoecc < 0) 1382 return autoecc; 1383 1384 docg3->oob_write_ofs = to; 1385 docg3->oob_autoecc = autoecc; 1386 if (ops->mode == MTD_OPS_AUTO_OOB) { 1387 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf); 1388 ops->oobretlen = 8; 1389 } else { 1390 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE); 1391 ops->oobretlen = DOC_LAYOUT_OOB_SIZE; 1392 } 1393 return 0; 1394 } 1395 1396 /** 1397 * doc_write_oob - Write out of band bytes to flash 1398 * @mtd: the device 1399 * @ofs: the offset from first block and first page, in bytes, aligned on page 1400 * size 1401 * @ops: the mtd oob structure 1402 * 1403 * Either write OOB data into a temporary buffer, for the subsequent write 1404 * page. The provided OOB should be 16 bytes long. If a data buffer is provided 1405 * as well, issue the page write. 1406 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will 1407 * still be filled in if asked for). 1408 * 1409 * Returns 0 is successful, EINVAL if length is not 14 bytes 1410 */ 1411 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, 1412 struct mtd_oob_ops *ops) 1413 { 1414 struct docg3 *docg3 = mtd->priv; 1415 int ret, autoecc, oobdelta; 1416 u8 *oobbuf = ops->oobbuf; 1417 u8 *buf = ops->datbuf; 1418 size_t len, ooblen; 1419 u8 oob[DOC_LAYOUT_OOB_SIZE]; 1420 1421 if (buf) 1422 len = ops->len; 1423 else 1424 len = 0; 1425 if (oobbuf) 1426 ooblen = ops->ooblen; 1427 else 1428 ooblen = 0; 1429 1430 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) 1431 oobbuf += ops->ooboffs; 1432 1433 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 1434 ofs, ops->mode, buf, len, oobbuf, ooblen); 1435 switch (ops->mode) { 1436 case MTD_OPS_PLACE_OOB: 1437 case MTD_OPS_RAW: 1438 oobdelta = mtd->oobsize; 1439 break; 1440 case MTD_OPS_AUTO_OOB: 1441 oobdelta = mtd->ecclayout->oobavail; 1442 break; 1443 default: 1444 return -EINVAL; 1445 } 1446 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) || 1447 (ofs % DOC_LAYOUT_PAGE_SIZE)) 1448 return -EINVAL; 1449 if (len && ooblen && 1450 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta)) 1451 return -EINVAL; 1452 if (ofs + len > mtd->size) 1453 return -EINVAL; 1454 1455 ops->oobretlen = 0; 1456 ops->retlen = 0; 1457 ret = 0; 1458 if (len == 0 && ooblen == 0) 1459 return -EINVAL; 1460 if (len == 0 && ooblen > 0) 1461 return doc_backup_oob(docg3, ofs, ops); 1462 1463 autoecc = doc_guess_autoecc(ops); 1464 if (autoecc < 0) 1465 return autoecc; 1466 1467 mutex_lock(&docg3->cascade->lock); 1468 while (!ret && len > 0) { 1469 memset(oob, 0, sizeof(oob)); 1470 if (ofs == docg3->oob_write_ofs) 1471 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE); 1472 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB) 1473 doc_fill_autooob(oob, oobbuf); 1474 else if (ooblen > 0) 1475 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE); 1476 ret = doc_write_page(docg3, ofs, buf, oob, autoecc); 1477 1478 ofs += DOC_LAYOUT_PAGE_SIZE; 1479 len -= DOC_LAYOUT_PAGE_SIZE; 1480 buf += DOC_LAYOUT_PAGE_SIZE; 1481 if (ooblen) { 1482 oobbuf += oobdelta; 1483 ooblen -= oobdelta; 1484 ops->oobretlen += oobdelta; 1485 } 1486 ops->retlen += DOC_LAYOUT_PAGE_SIZE; 1487 } 1488 1489 doc_set_device_id(docg3, 0); 1490 mutex_unlock(&docg3->cascade->lock); 1491 return ret; 1492 } 1493 1494 /** 1495 * doc_write - Write a buffer to the chip 1496 * @mtd: the device 1497 * @to: the offset from first block and first page, in bytes, aligned on page 1498 * size 1499 * @len: the number of bytes to write (must be a full page size, ie. 512) 1500 * @retlen: the number of bytes actually written (0 or 512) 1501 * @buf: the buffer to get bytes from 1502 * 1503 * Writes data to the chip. 1504 * 1505 * Returns 0 if write successful, -EIO if write error 1506 */ 1507 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, 1508 size_t *retlen, const u_char *buf) 1509 { 1510 struct docg3 *docg3 = mtd->priv; 1511 int ret; 1512 struct mtd_oob_ops ops; 1513 1514 doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len); 1515 ops.datbuf = (char *)buf; 1516 ops.len = len; 1517 ops.mode = MTD_OPS_PLACE_OOB; 1518 ops.oobbuf = NULL; 1519 ops.ooblen = 0; 1520 ops.ooboffs = 0; 1521 1522 ret = doc_write_oob(mtd, to, &ops); 1523 *retlen = ops.retlen; 1524 return ret; 1525 } 1526 1527 static struct docg3 *sysfs_dev2docg3(struct device *dev, 1528 struct device_attribute *attr) 1529 { 1530 int floor; 1531 struct platform_device *pdev = to_platform_device(dev); 1532 struct mtd_info **docg3_floors = platform_get_drvdata(pdev); 1533 1534 floor = attr->attr.name[1] - '0'; 1535 if (floor < 0 || floor >= DOC_MAX_NBFLOORS) 1536 return NULL; 1537 else 1538 return docg3_floors[floor]->priv; 1539 } 1540 1541 static ssize_t dps0_is_key_locked(struct device *dev, 1542 struct device_attribute *attr, char *buf) 1543 { 1544 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1545 int dps0; 1546 1547 mutex_lock(&docg3->cascade->lock); 1548 doc_set_device_id(docg3, docg3->device_id); 1549 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1550 doc_set_device_id(docg3, 0); 1551 mutex_unlock(&docg3->cascade->lock); 1552 1553 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK)); 1554 } 1555 1556 static ssize_t dps1_is_key_locked(struct device *dev, 1557 struct device_attribute *attr, char *buf) 1558 { 1559 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1560 int dps1; 1561 1562 mutex_lock(&docg3->cascade->lock); 1563 doc_set_device_id(docg3, docg3->device_id); 1564 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1565 doc_set_device_id(docg3, 0); 1566 mutex_unlock(&docg3->cascade->lock); 1567 1568 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK)); 1569 } 1570 1571 static ssize_t dps0_insert_key(struct device *dev, 1572 struct device_attribute *attr, 1573 const char *buf, size_t count) 1574 { 1575 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1576 int i; 1577 1578 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1579 return -EINVAL; 1580 1581 mutex_lock(&docg3->cascade->lock); 1582 doc_set_device_id(docg3, docg3->device_id); 1583 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1584 doc_writeb(docg3, buf[i], DOC_DPS0_KEY); 1585 doc_set_device_id(docg3, 0); 1586 mutex_unlock(&docg3->cascade->lock); 1587 return count; 1588 } 1589 1590 static ssize_t dps1_insert_key(struct device *dev, 1591 struct device_attribute *attr, 1592 const char *buf, size_t count) 1593 { 1594 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1595 int i; 1596 1597 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1598 return -EINVAL; 1599 1600 mutex_lock(&docg3->cascade->lock); 1601 doc_set_device_id(docg3, docg3->device_id); 1602 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1603 doc_writeb(docg3, buf[i], DOC_DPS1_KEY); 1604 doc_set_device_id(docg3, 0); 1605 mutex_unlock(&docg3->cascade->lock); 1606 return count; 1607 } 1608 1609 #define FLOOR_SYSFS(id) { \ 1610 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \ 1611 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \ 1612 __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \ 1613 __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \ 1614 } 1615 1616 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = { 1617 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3) 1618 }; 1619 1620 static int doc_register_sysfs(struct platform_device *pdev, 1621 struct docg3_cascade *cascade) 1622 { 1623 int ret = 0, floor, i = 0; 1624 struct device *dev = &pdev->dev; 1625 1626 for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS && 1627 cascade->floors[floor]; floor++) 1628 for (i = 0; !ret && i < 4; i++) 1629 ret = device_create_file(dev, &doc_sys_attrs[floor][i]); 1630 if (!ret) 1631 return 0; 1632 do { 1633 while (--i >= 0) 1634 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1635 i = 4; 1636 } while (--floor >= 0); 1637 return ret; 1638 } 1639 1640 static void doc_unregister_sysfs(struct platform_device *pdev, 1641 struct docg3_cascade *cascade) 1642 { 1643 struct device *dev = &pdev->dev; 1644 int floor, i; 1645 1646 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; 1647 floor++) 1648 for (i = 0; i < 4; i++) 1649 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1650 } 1651 1652 /* 1653 * Debug sysfs entries 1654 */ 1655 static int dbg_flashctrl_show(struct seq_file *s, void *p) 1656 { 1657 struct docg3 *docg3 = (struct docg3 *)s->private; 1658 1659 u8 fctrl; 1660 1661 mutex_lock(&docg3->cascade->lock); 1662 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 1663 mutex_unlock(&docg3->cascade->lock); 1664 1665 seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", 1666 fctrl, 1667 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-", 1668 fctrl & DOC_CTRL_CE ? "active" : "inactive", 1669 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-", 1670 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-", 1671 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready"); 1672 1673 return 0; 1674 } 1675 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show); 1676 1677 static int dbg_asicmode_show(struct seq_file *s, void *p) 1678 { 1679 struct docg3 *docg3 = (struct docg3 *)s->private; 1680 1681 int pctrl, mode; 1682 1683 mutex_lock(&docg3->cascade->lock); 1684 pctrl = doc_register_readb(docg3, DOC_ASICMODE); 1685 mode = pctrl & 0x03; 1686 mutex_unlock(&docg3->cascade->lock); 1687 1688 seq_printf(s, 1689 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", 1690 pctrl, 1691 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0, 1692 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0, 1693 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0, 1694 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0, 1695 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0, 1696 mode >> 1, mode & 0x1); 1697 1698 switch (mode) { 1699 case DOC_ASICMODE_RESET: 1700 seq_puts(s, "reset"); 1701 break; 1702 case DOC_ASICMODE_NORMAL: 1703 seq_puts(s, "normal"); 1704 break; 1705 case DOC_ASICMODE_POWERDOWN: 1706 seq_puts(s, "powerdown"); 1707 break; 1708 } 1709 seq_puts(s, ")\n"); 1710 return 0; 1711 } 1712 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show); 1713 1714 static int dbg_device_id_show(struct seq_file *s, void *p) 1715 { 1716 struct docg3 *docg3 = (struct docg3 *)s->private; 1717 int id; 1718 1719 mutex_lock(&docg3->cascade->lock); 1720 id = doc_register_readb(docg3, DOC_DEVICESELECT); 1721 mutex_unlock(&docg3->cascade->lock); 1722 1723 seq_printf(s, "DeviceId = %d\n", id); 1724 return 0; 1725 } 1726 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show); 1727 1728 static int dbg_protection_show(struct seq_file *s, void *p) 1729 { 1730 struct docg3 *docg3 = (struct docg3 *)s->private; 1731 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high; 1732 1733 mutex_lock(&docg3->cascade->lock); 1734 protect = doc_register_readb(docg3, DOC_PROTECTION); 1735 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1736 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW); 1737 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH); 1738 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1739 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW); 1740 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH); 1741 mutex_unlock(&docg3->cascade->lock); 1742 1743 seq_printf(s, "Protection = 0x%02x (", protect); 1744 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK) 1745 seq_puts(s, "FOUNDRY_OTP_LOCK,"); 1746 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK) 1747 seq_puts(s, "CUSTOMER_OTP_LOCK,"); 1748 if (protect & DOC_PROTECT_LOCK_INPUT) 1749 seq_puts(s, "LOCK_INPUT,"); 1750 if (protect & DOC_PROTECT_STICKY_LOCK) 1751 seq_puts(s, "STICKY_LOCK,"); 1752 if (protect & DOC_PROTECT_PROTECTION_ENABLED) 1753 seq_puts(s, "PROTECTION ON,"); 1754 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK) 1755 seq_puts(s, "IPL_DOWNLOAD_LOCK,"); 1756 if (protect & DOC_PROTECT_PROTECTION_ERROR) 1757 seq_puts(s, "PROTECT_ERR,"); 1758 else 1759 seq_puts(s, "NO_PROTECT_ERR"); 1760 seq_puts(s, ")\n"); 1761 1762 seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 1763 dps0, dps0_low, dps0_high, 1764 !!(dps0 & DOC_DPS_OTP_PROTECTED), 1765 !!(dps0 & DOC_DPS_READ_PROTECTED), 1766 !!(dps0 & DOC_DPS_WRITE_PROTECTED), 1767 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED), 1768 !!(dps0 & DOC_DPS_KEY_OK)); 1769 seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 1770 dps1, dps1_low, dps1_high, 1771 !!(dps1 & DOC_DPS_OTP_PROTECTED), 1772 !!(dps1 & DOC_DPS_READ_PROTECTED), 1773 !!(dps1 & DOC_DPS_WRITE_PROTECTED), 1774 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED), 1775 !!(dps1 & DOC_DPS_KEY_OK)); 1776 return 0; 1777 } 1778 DEBUGFS_RO_ATTR(protection, dbg_protection_show); 1779 1780 static int __init doc_dbg_register(struct docg3 *docg3) 1781 { 1782 struct dentry *root, *entry; 1783 1784 root = debugfs_create_dir("docg3", NULL); 1785 if (!root) 1786 return -ENOMEM; 1787 1788 entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3, 1789 &flashcontrol_fops); 1790 if (entry) 1791 entry = debugfs_create_file("asic_mode", S_IRUSR, root, 1792 docg3, &asic_mode_fops); 1793 if (entry) 1794 entry = debugfs_create_file("device_id", S_IRUSR, root, 1795 docg3, &device_id_fops); 1796 if (entry) 1797 entry = debugfs_create_file("protection", S_IRUSR, root, 1798 docg3, &protection_fops); 1799 if (entry) { 1800 docg3->debugfs_root = root; 1801 return 0; 1802 } else { 1803 debugfs_remove_recursive(root); 1804 return -ENOMEM; 1805 } 1806 } 1807 1808 static void doc_dbg_unregister(struct docg3 *docg3) 1809 { 1810 debugfs_remove_recursive(docg3->debugfs_root); 1811 } 1812 1813 /** 1814 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure 1815 * @chip_id: The chip ID of the supported chip 1816 * @mtd: The structure to fill 1817 */ 1818 static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd) 1819 { 1820 struct docg3 *docg3 = mtd->priv; 1821 int cfg; 1822 1823 cfg = doc_register_readb(docg3, DOC_CONFIGURATION); 1824 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0); 1825 docg3->reliable = reliable_mode; 1826 1827 switch (chip_id) { 1828 case DOC_CHIPID_G3: 1829 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d", 1830 docg3->device_id); 1831 if (!mtd->name) 1832 return -ENOMEM; 1833 docg3->max_block = 2047; 1834 break; 1835 } 1836 mtd->type = MTD_NANDFLASH; 1837 mtd->flags = MTD_CAP_NANDFLASH; 1838 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE; 1839 if (docg3->reliable == 2) 1840 mtd->size /= 2; 1841 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; 1842 if (docg3->reliable == 2) 1843 mtd->erasesize /= 2; 1844 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE; 1845 mtd->oobsize = DOC_LAYOUT_OOB_SIZE; 1846 mtd->owner = THIS_MODULE; 1847 mtd->_erase = doc_erase; 1848 mtd->_read = doc_read; 1849 mtd->_write = doc_write; 1850 mtd->_read_oob = doc_read_oob; 1851 mtd->_write_oob = doc_write_oob; 1852 mtd->_block_isbad = doc_block_isbad; 1853 mtd->ecclayout = &docg3_oobinfo; 1854 mtd->ecc_strength = DOC_ECC_BCH_T; 1855 1856 return 0; 1857 } 1858 1859 /** 1860 * doc_probe_device - Check if a device is available 1861 * @base: the io space where the device is probed 1862 * @floor: the floor of the probed device 1863 * @dev: the device 1864 * @cascade: the cascade of chips this devices will belong to 1865 * 1866 * Checks whether a device at the specified IO range, and floor is available. 1867 * 1868 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM 1869 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is 1870 * launched. 1871 */ 1872 static struct mtd_info * __init 1873 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev) 1874 { 1875 int ret, bbt_nbpages; 1876 u16 chip_id, chip_id_inv; 1877 struct docg3 *docg3; 1878 struct mtd_info *mtd; 1879 1880 ret = -ENOMEM; 1881 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL); 1882 if (!docg3) 1883 goto nomem1; 1884 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); 1885 if (!mtd) 1886 goto nomem2; 1887 mtd->priv = docg3; 1888 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1, 1889 8 * DOC_LAYOUT_PAGE_SIZE); 1890 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL); 1891 if (!docg3->bbt) 1892 goto nomem3; 1893 1894 docg3->dev = dev; 1895 docg3->device_id = floor; 1896 docg3->cascade = cascade; 1897 doc_set_device_id(docg3, docg3->device_id); 1898 if (!floor) 1899 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); 1900 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL); 1901 1902 chip_id = doc_register_readw(docg3, DOC_CHIPID); 1903 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV); 1904 1905 ret = 0; 1906 if (chip_id != (u16)(~chip_id_inv)) { 1907 goto nomem4; 1908 } 1909 1910 switch (chip_id) { 1911 case DOC_CHIPID_G3: 1912 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n", 1913 docg3->cascade->base, floor); 1914 break; 1915 default: 1916 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); 1917 goto nomem4; 1918 } 1919 1920 ret = doc_set_driver_info(chip_id, mtd); 1921 if (ret) 1922 goto nomem4; 1923 1924 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ); 1925 doc_reload_bbt(docg3); 1926 return mtd; 1927 1928 nomem4: 1929 kfree(docg3->bbt); 1930 nomem3: 1931 kfree(mtd); 1932 nomem2: 1933 kfree(docg3); 1934 nomem1: 1935 return ERR_PTR(ret); 1936 } 1937 1938 /** 1939 * doc_release_device - Release a docg3 floor 1940 * @mtd: the device 1941 */ 1942 static void doc_release_device(struct mtd_info *mtd) 1943 { 1944 struct docg3 *docg3 = mtd->priv; 1945 1946 mtd_device_unregister(mtd); 1947 kfree(docg3->bbt); 1948 kfree(docg3); 1949 kfree(mtd->name); 1950 kfree(mtd); 1951 } 1952 1953 /** 1954 * docg3_resume - Awakens docg3 floor 1955 * @pdev: platfrom device 1956 * 1957 * Returns 0 (always successful) 1958 */ 1959 static int docg3_resume(struct platform_device *pdev) 1960 { 1961 int i; 1962 struct docg3_cascade *cascade; 1963 struct mtd_info **docg3_floors, *mtd; 1964 struct docg3 *docg3; 1965 1966 cascade = platform_get_drvdata(pdev); 1967 docg3_floors = cascade->floors; 1968 mtd = docg3_floors[0]; 1969 docg3 = mtd->priv; 1970 1971 doc_dbg("docg3_resume()\n"); 1972 for (i = 0; i < 12; i++) 1973 doc_readb(docg3, DOC_IOSPACE_IPL); 1974 return 0; 1975 } 1976 1977 /** 1978 * docg3_suspend - Put in low power mode the docg3 floor 1979 * @pdev: platform device 1980 * @state: power state 1981 * 1982 * Shuts off most of docg3 circuitery to lower power consumption. 1983 * 1984 * Returns 0 if suspend succeeded, -EIO if chip refused suspend 1985 */ 1986 static int docg3_suspend(struct platform_device *pdev, pm_message_t state) 1987 { 1988 int floor, i; 1989 struct docg3_cascade *cascade; 1990 struct mtd_info **docg3_floors, *mtd; 1991 struct docg3 *docg3; 1992 u8 ctrl, pwr_down; 1993 1994 cascade = platform_get_drvdata(pdev); 1995 docg3_floors = cascade->floors; 1996 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 1997 mtd = docg3_floors[floor]; 1998 if (!mtd) 1999 continue; 2000 docg3 = mtd->priv; 2001 2002 doc_writeb(docg3, floor, DOC_DEVICESELECT); 2003 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 2004 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE; 2005 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 2006 2007 for (i = 0; i < 10; i++) { 2008 usleep_range(3000, 4000); 2009 pwr_down = doc_register_readb(docg3, DOC_POWERMODE); 2010 if (pwr_down & DOC_POWERDOWN_READY) 2011 break; 2012 } 2013 if (pwr_down & DOC_POWERDOWN_READY) { 2014 doc_dbg("docg3_suspend(): floor %d powerdown ok\n", 2015 floor); 2016 } else { 2017 doc_err("docg3_suspend(): floor %d powerdown failed\n", 2018 floor); 2019 return -EIO; 2020 } 2021 } 2022 2023 mtd = docg3_floors[0]; 2024 docg3 = mtd->priv; 2025 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN); 2026 return 0; 2027 } 2028 2029 /** 2030 * doc_probe - Probe the IO space for a DiskOnChip G3 chip 2031 * @pdev: platform device 2032 * 2033 * Probes for a G3 chip at the specified IO space in the platform data 2034 * ressources. The floor 0 must be available. 2035 * 2036 * Returns 0 on success, -ENOMEM, -ENXIO on error 2037 */ 2038 static int __init docg3_probe(struct platform_device *pdev) 2039 { 2040 struct device *dev = &pdev->dev; 2041 struct mtd_info *mtd; 2042 struct resource *ress; 2043 void __iomem *base; 2044 int ret, floor; 2045 struct docg3_cascade *cascade; 2046 2047 ret = -ENXIO; 2048 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2049 if (!ress) { 2050 dev_err(dev, "No I/O memory resource defined\n"); 2051 return ret; 2052 } 2053 base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE); 2054 2055 ret = -ENOMEM; 2056 cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS, 2057 GFP_KERNEL); 2058 if (!cascade) 2059 return ret; 2060 cascade->base = base; 2061 mutex_init(&cascade->lock); 2062 cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T, 2063 DOC_ECC_BCH_PRIMPOLY); 2064 if (!cascade->bch) 2065 return ret; 2066 2067 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 2068 mtd = doc_probe_device(cascade, floor, dev); 2069 if (IS_ERR(mtd)) { 2070 ret = PTR_ERR(mtd); 2071 goto err_probe; 2072 } 2073 if (!mtd) { 2074 if (floor == 0) 2075 goto notfound; 2076 else 2077 continue; 2078 } 2079 cascade->floors[floor] = mtd; 2080 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 2081 0); 2082 if (ret) 2083 goto err_probe; 2084 } 2085 2086 ret = doc_register_sysfs(pdev, cascade); 2087 if (ret) 2088 goto err_probe; 2089 2090 platform_set_drvdata(pdev, cascade); 2091 doc_dbg_register(cascade->floors[0]->priv); 2092 return 0; 2093 2094 notfound: 2095 ret = -ENODEV; 2096 dev_info(dev, "No supported DiskOnChip found\n"); 2097 err_probe: 2098 free_bch(cascade->bch); 2099 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2100 if (cascade->floors[floor]) 2101 doc_release_device(cascade->floors[floor]); 2102 return ret; 2103 } 2104 2105 /** 2106 * docg3_release - Release the driver 2107 * @pdev: the platform device 2108 * 2109 * Returns 0 2110 */ 2111 static int docg3_release(struct platform_device *pdev) 2112 { 2113 struct docg3_cascade *cascade = platform_get_drvdata(pdev); 2114 struct docg3 *docg3 = cascade->floors[0]->priv; 2115 int floor; 2116 2117 doc_unregister_sysfs(pdev, cascade); 2118 doc_dbg_unregister(docg3); 2119 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2120 if (cascade->floors[floor]) 2121 doc_release_device(cascade->floors[floor]); 2122 2123 free_bch(docg3->cascade->bch); 2124 return 0; 2125 } 2126 2127 #ifdef CONFIG_OF 2128 static const struct of_device_id docg3_dt_ids[] = { 2129 { .compatible = "m-systems,diskonchip-g3" }, 2130 {} 2131 }; 2132 MODULE_DEVICE_TABLE(of, docg3_dt_ids); 2133 #endif 2134 2135 static struct platform_driver g3_driver = { 2136 .driver = { 2137 .name = "docg3", 2138 .of_match_table = of_match_ptr(docg3_dt_ids), 2139 }, 2140 .suspend = docg3_suspend, 2141 .resume = docg3_resume, 2142 .remove = docg3_release, 2143 }; 2144 2145 module_platform_driver_probe(g3_driver, docg3_probe); 2146 2147 MODULE_LICENSE("GPL"); 2148 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); 2149 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3"); 2150