1 /* 2 * Handles the M-Systems DiskOnChip G3 chip 3 * 4 * Copyright (C) 2011 Robert Jarzmik 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/of.h> 26 #include <linux/platform_device.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/io.h> 30 #include <linux/delay.h> 31 #include <linux/mtd/mtd.h> 32 #include <linux/mtd/partitions.h> 33 #include <linux/bitmap.h> 34 #include <linux/bitrev.h> 35 #include <linux/bch.h> 36 37 #include <linux/debugfs.h> 38 #include <linux/seq_file.h> 39 40 #define CREATE_TRACE_POINTS 41 #include "docg3.h" 42 43 /* 44 * This driver handles the DiskOnChip G3 flash memory. 45 * 46 * As no specification is available from M-Systems/Sandisk, this drivers lacks 47 * several functions available on the chip, as : 48 * - IPL write 49 * 50 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and 51 * the driver assumes a 16bits data bus. 52 * 53 * DocG3 relies on 2 ECC algorithms, which are handled in hardware : 54 * - a 1 byte Hamming code stored in the OOB for each page 55 * - a 7 bytes BCH code stored in the OOB for each page 56 * The BCH ECC is : 57 * - BCH is in GF(2^14) 58 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes 59 * + 1 hamming byte) 60 * - BCH can correct up to 4 bits (t = 4) 61 * - BCH syndroms are calculated in hardware, and checked in hardware as well 62 * 63 */ 64 65 static unsigned int reliable_mode; 66 module_param(reliable_mode, uint, 0); 67 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, " 68 "2=reliable) : MLC normal operations are in normal mode"); 69 70 static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section, 71 struct mtd_oob_region *oobregion) 72 { 73 if (section) 74 return -ERANGE; 75 76 /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */ 77 oobregion->offset = 7; 78 oobregion->length = 8; 79 80 return 0; 81 } 82 83 static int docg3_ooblayout_free(struct mtd_info *mtd, int section, 84 struct mtd_oob_region *oobregion) 85 { 86 if (section > 1) 87 return -ERANGE; 88 89 /* free bytes: byte 0 until byte 6, byte 15 */ 90 if (!section) { 91 oobregion->offset = 0; 92 oobregion->length = 7; 93 } else { 94 oobregion->offset = 15; 95 oobregion->length = 1; 96 } 97 98 return 0; 99 } 100 101 static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = { 102 .ecc = docg3_ooblayout_ecc, 103 .free = docg3_ooblayout_free, 104 }; 105 106 static inline u8 doc_readb(struct docg3 *docg3, u16 reg) 107 { 108 u8 val = readb(docg3->cascade->base + reg); 109 110 trace_docg3_io(0, 8, reg, (int)val); 111 return val; 112 } 113 114 static inline u16 doc_readw(struct docg3 *docg3, u16 reg) 115 { 116 u16 val = readw(docg3->cascade->base + reg); 117 118 trace_docg3_io(0, 16, reg, (int)val); 119 return val; 120 } 121 122 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) 123 { 124 writeb(val, docg3->cascade->base + reg); 125 trace_docg3_io(1, 8, reg, val); 126 } 127 128 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) 129 { 130 writew(val, docg3->cascade->base + reg); 131 trace_docg3_io(1, 16, reg, val); 132 } 133 134 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd) 135 { 136 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND); 137 } 138 139 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq) 140 { 141 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE); 142 } 143 144 static inline void doc_flash_address(struct docg3 *docg3, u8 addr) 145 { 146 doc_writeb(docg3, addr, DOC_FLASHADDRESS); 147 } 148 149 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL }; 150 151 static int doc_register_readb(struct docg3 *docg3, int reg) 152 { 153 u8 val; 154 155 doc_writew(docg3, reg, DOC_READADDRESS); 156 val = doc_readb(docg3, reg); 157 doc_vdbg("Read register %04x : %02x\n", reg, val); 158 return val; 159 } 160 161 static int doc_register_readw(struct docg3 *docg3, int reg) 162 { 163 u16 val; 164 165 doc_writew(docg3, reg, DOC_READADDRESS); 166 val = doc_readw(docg3, reg); 167 doc_vdbg("Read register %04x : %04x\n", reg, val); 168 return val; 169 } 170 171 /** 172 * doc_delay - delay docg3 operations 173 * @docg3: the device 174 * @nbNOPs: the number of NOPs to issue 175 * 176 * As no specification is available, the right timings between chip commands are 177 * unknown. The only available piece of information are the observed nops on a 178 * working docg3 chip. 179 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler 180 * friendlier msleep() functions or blocking mdelay(). 181 */ 182 static void doc_delay(struct docg3 *docg3, int nbNOPs) 183 { 184 int i; 185 186 doc_vdbg("NOP x %d\n", nbNOPs); 187 for (i = 0; i < nbNOPs; i++) 188 doc_writeb(docg3, 0, DOC_NOP); 189 } 190 191 static int is_prot_seq_error(struct docg3 *docg3) 192 { 193 int ctrl; 194 195 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 196 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR); 197 } 198 199 static int doc_is_ready(struct docg3 *docg3) 200 { 201 int ctrl; 202 203 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 204 return ctrl & DOC_CTRL_FLASHREADY; 205 } 206 207 static int doc_wait_ready(struct docg3 *docg3) 208 { 209 int maxWaitCycles = 100; 210 211 do { 212 doc_delay(docg3, 4); 213 cpu_relax(); 214 } while (!doc_is_ready(docg3) && maxWaitCycles--); 215 doc_delay(docg3, 2); 216 if (maxWaitCycles > 0) 217 return 0; 218 else 219 return -EIO; 220 } 221 222 static int doc_reset_seq(struct docg3 *docg3) 223 { 224 int ret; 225 226 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL); 227 doc_flash_sequence(docg3, DOC_SEQ_RESET); 228 doc_flash_command(docg3, DOC_CMD_RESET); 229 doc_delay(docg3, 2); 230 ret = doc_wait_ready(docg3); 231 232 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true"); 233 return ret; 234 } 235 236 /** 237 * doc_read_data_area - Read data from data area 238 * @docg3: the device 239 * @buf: the buffer to fill in (might be NULL is dummy reads) 240 * @len: the length to read 241 * @first: first time read, DOC_READADDRESS should be set 242 * 243 * Reads bytes from flash data. Handles the single byte / even bytes reads. 244 */ 245 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len, 246 int first) 247 { 248 int i, cdr, len4; 249 u16 data16, *dst16; 250 u8 data8, *dst8; 251 252 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len); 253 cdr = len & 0x1; 254 len4 = len - cdr; 255 256 if (first) 257 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 258 dst16 = buf; 259 for (i = 0; i < len4; i += 2) { 260 data16 = doc_readw(docg3, DOC_IOSPACE_DATA); 261 if (dst16) { 262 *dst16 = data16; 263 dst16++; 264 } 265 } 266 267 if (cdr) { 268 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 269 DOC_READADDRESS); 270 doc_delay(docg3, 1); 271 dst8 = (u8 *)dst16; 272 for (i = 0; i < cdr; i++) { 273 data8 = doc_readb(docg3, DOC_IOSPACE_DATA); 274 if (dst8) { 275 *dst8 = data8; 276 dst8++; 277 } 278 } 279 } 280 } 281 282 /** 283 * doc_write_data_area - Write data into data area 284 * @docg3: the device 285 * @buf: the buffer to get input bytes from 286 * @len: the length to write 287 * 288 * Writes bytes into flash data. Handles the single byte / even bytes writes. 289 */ 290 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len) 291 { 292 int i, cdr, len4; 293 u16 *src16; 294 u8 *src8; 295 296 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len); 297 cdr = len & 0x3; 298 len4 = len - cdr; 299 300 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 301 src16 = (u16 *)buf; 302 for (i = 0; i < len4; i += 2) { 303 doc_writew(docg3, *src16, DOC_IOSPACE_DATA); 304 src16++; 305 } 306 307 src8 = (u8 *)src16; 308 for (i = 0; i < cdr; i++) { 309 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 310 DOC_READADDRESS); 311 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA); 312 src8++; 313 } 314 } 315 316 /** 317 * doc_set_data_mode - Sets the flash to normal or reliable data mode 318 * @docg3: the device 319 * 320 * The reliable data mode is a bit slower than the fast mode, but less errors 321 * occur. Entering the reliable mode cannot be done without entering the fast 322 * mode first. 323 * 324 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks 325 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading 326 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same 327 * result, which is a logical and between bytes from page 0 and page 1 (which is 328 * consistent with the fact that writing to a page is _clearing_ bits of that 329 * page). 330 */ 331 static void doc_set_reliable_mode(struct docg3 *docg3) 332 { 333 static char *strmode[] = { "normal", "fast", "reliable", "invalid" }; 334 335 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]); 336 switch (docg3->reliable) { 337 case 0: 338 break; 339 case 1: 340 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE); 341 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 342 break; 343 case 2: 344 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE); 345 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 346 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE); 347 break; 348 default: 349 doc_err("doc_set_reliable_mode(): invalid mode\n"); 350 break; 351 } 352 doc_delay(docg3, 2); 353 } 354 355 /** 356 * doc_set_asic_mode - Set the ASIC mode 357 * @docg3: the device 358 * @mode: the mode 359 * 360 * The ASIC can work in 3 modes : 361 * - RESET: all registers are zeroed 362 * - NORMAL: receives and handles commands 363 * - POWERDOWN: minimal poweruse, flash parts shut off 364 */ 365 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode) 366 { 367 int i; 368 369 for (i = 0; i < 12; i++) 370 doc_readb(docg3, DOC_IOSPACE_IPL); 371 372 mode |= DOC_ASICMODE_MDWREN; 373 doc_dbg("doc_set_asic_mode(%02x)\n", mode); 374 doc_writeb(docg3, mode, DOC_ASICMODE); 375 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM); 376 doc_delay(docg3, 1); 377 } 378 379 /** 380 * doc_set_device_id - Sets the devices id for cascaded G3 chips 381 * @docg3: the device 382 * @id: the chip to select (amongst 0, 1, 2, 3) 383 * 384 * There can be 4 cascaded G3 chips. This function selects the one which will 385 * should be the active one. 386 */ 387 static void doc_set_device_id(struct docg3 *docg3, int id) 388 { 389 u8 ctrl; 390 391 doc_dbg("doc_set_device_id(%d)\n", id); 392 doc_writeb(docg3, id, DOC_DEVICESELECT); 393 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 394 395 ctrl &= ~DOC_CTRL_VIOLATION; 396 ctrl |= DOC_CTRL_CE; 397 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 398 } 399 400 /** 401 * doc_set_extra_page_mode - Change flash page layout 402 * @docg3: the device 403 * 404 * Normally, the flash page is split into the data (512 bytes) and the out of 405 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear 406 * leveling counters are stored. To access this last area of 4 bytes, a special 407 * mode must be input to the flash ASIC. 408 * 409 * Returns 0 if no error occurred, -EIO else. 410 */ 411 static int doc_set_extra_page_mode(struct docg3 *docg3) 412 { 413 int fctrl; 414 415 doc_dbg("doc_set_extra_page_mode()\n"); 416 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532); 417 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532); 418 doc_delay(docg3, 2); 419 420 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 421 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR)) 422 return -EIO; 423 else 424 return 0; 425 } 426 427 /** 428 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane 429 * @docg3: the device 430 * @sector: the sector 431 */ 432 static void doc_setup_addr_sector(struct docg3 *docg3, int sector) 433 { 434 doc_delay(docg3, 1); 435 doc_flash_address(docg3, sector & 0xff); 436 doc_flash_address(docg3, (sector >> 8) & 0xff); 437 doc_flash_address(docg3, (sector >> 16) & 0xff); 438 doc_delay(docg3, 1); 439 } 440 441 /** 442 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane 443 * @docg3: the device 444 * @sector: the sector 445 * @ofs: the offset in the page, between 0 and (512 + 16 + 512) 446 */ 447 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs) 448 { 449 ofs = ofs >> 2; 450 doc_delay(docg3, 1); 451 doc_flash_address(docg3, ofs & 0xff); 452 doc_flash_address(docg3, sector & 0xff); 453 doc_flash_address(docg3, (sector >> 8) & 0xff); 454 doc_flash_address(docg3, (sector >> 16) & 0xff); 455 doc_delay(docg3, 1); 456 } 457 458 /** 459 * doc_seek - Set both flash planes to the specified block, page for reading 460 * @docg3: the device 461 * @block0: the first plane block index 462 * @block1: the second plane block index 463 * @page: the page index within the block 464 * @wear: if true, read will occur on the 4 extra bytes of the wear area 465 * @ofs: offset in page to read 466 * 467 * Programs the flash even and odd planes to the specific block and page. 468 * Alternatively, programs the flash to the wear area of the specified page. 469 */ 470 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page, 471 int wear, int ofs) 472 { 473 int sector, ret = 0; 474 475 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", 476 block0, block1, page, ofs, wear); 477 478 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) { 479 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 480 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 481 doc_delay(docg3, 2); 482 } else { 483 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 484 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 485 doc_delay(docg3, 2); 486 } 487 488 doc_set_reliable_mode(docg3); 489 if (wear) 490 ret = doc_set_extra_page_mode(docg3); 491 if (ret) 492 goto out; 493 494 doc_flash_sequence(docg3, DOC_SEQ_READ); 495 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 496 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 497 doc_setup_addr_sector(docg3, sector); 498 499 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 500 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 501 doc_setup_addr_sector(docg3, sector); 502 doc_delay(docg3, 1); 503 504 out: 505 return ret; 506 } 507 508 /** 509 * doc_write_seek - Set both flash planes to the specified block, page for writing 510 * @docg3: the device 511 * @block0: the first plane block index 512 * @block1: the second plane block index 513 * @page: the page index within the block 514 * @ofs: offset in page to write 515 * 516 * Programs the flash even and odd planes to the specific block and page. 517 * Alternatively, programs the flash to the wear area of the specified page. 518 */ 519 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page, 520 int ofs) 521 { 522 int ret = 0, sector; 523 524 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n", 525 block0, block1, page, ofs); 526 527 doc_set_reliable_mode(docg3); 528 529 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) { 530 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 531 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 532 doc_delay(docg3, 2); 533 } else { 534 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 535 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 536 doc_delay(docg3, 2); 537 } 538 539 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP); 540 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); 541 542 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 543 doc_setup_writeaddr_sector(docg3, sector, ofs); 544 545 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3); 546 doc_delay(docg3, 2); 547 ret = doc_wait_ready(docg3); 548 if (ret) 549 goto out; 550 551 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); 552 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 553 doc_setup_writeaddr_sector(docg3, sector, ofs); 554 doc_delay(docg3, 1); 555 556 out: 557 return ret; 558 } 559 560 561 /** 562 * doc_read_page_ecc_init - Initialize hardware ECC engine 563 * @docg3: the device 564 * @len: the number of bytes covered by the ECC (BCH covered) 565 * 566 * The function does initialize the hardware ECC engine to compute the Hamming 567 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). 568 * 569 * Return 0 if succeeded, -EIO on error 570 */ 571 static int doc_read_page_ecc_init(struct docg3 *docg3, int len) 572 { 573 doc_writew(docg3, DOC_ECCCONF0_READ_MODE 574 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 575 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 576 DOC_ECCCONF0); 577 doc_delay(docg3, 4); 578 doc_register_readb(docg3, DOC_FLASHCONTROL); 579 return doc_wait_ready(docg3); 580 } 581 582 /** 583 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine 584 * @docg3: the device 585 * @len: the number of bytes covered by the ECC (BCH covered) 586 * 587 * The function does initialize the hardware ECC engine to compute the Hamming 588 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). 589 * 590 * Return 0 if succeeded, -EIO on error 591 */ 592 static int doc_write_page_ecc_init(struct docg3 *docg3, int len) 593 { 594 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE 595 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 596 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 597 DOC_ECCCONF0); 598 doc_delay(docg3, 4); 599 doc_register_readb(docg3, DOC_FLASHCONTROL); 600 return doc_wait_ready(docg3); 601 } 602 603 /** 604 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator 605 * @docg3: the device 606 * 607 * Disables the hardware ECC generator and checker, for unchecked reads (as when 608 * reading OOB only or write status byte). 609 */ 610 static void doc_ecc_disable(struct docg3 *docg3) 611 { 612 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0); 613 doc_delay(docg3, 4); 614 } 615 616 /** 617 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine 618 * @docg3: the device 619 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered) 620 * 621 * This function programs the ECC hardware to compute the hamming code on the 622 * last provided N bytes to the hardware generator. 623 */ 624 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes) 625 { 626 u8 ecc_conf1; 627 628 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1); 629 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK; 630 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK); 631 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1); 632 } 633 634 /** 635 * doc_ecc_bch_fix_data - Fix if need be read data from flash 636 * @docg3: the device 637 * @buf: the buffer of read data (512 + 7 + 1 bytes) 638 * @hwecc: the hardware calculated ECC. 639 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB 640 * area data, and calc_ecc the ECC calculated by the hardware generator. 641 * 642 * Checks if the received data matches the ECC, and if an error is detected, 643 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3 644 * understands the (data, ecc, syndroms) in an inverted order in comparison to 645 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0, 646 * bit6 and bit 1, ...) for all ECC data. 647 * 648 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch 649 * algorithm is used to decode this. However the hw operates on page 650 * data in a bit order that is the reverse of that of the bch alg, 651 * requiring that the bits be reversed on the result. Thanks to Ivan 652 * Djelic for his analysis. 653 * 654 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit 655 * errors were detected and cannot be fixed. 656 */ 657 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc) 658 { 659 u8 ecc[DOC_ECC_BCH_SIZE]; 660 int errorpos[DOC_ECC_BCH_T], i, numerrs; 661 662 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 663 ecc[i] = bitrev8(hwecc[i]); 664 numerrs = decode_bch(docg3->cascade->bch, NULL, 665 DOC_ECC_BCH_COVERED_BYTES, 666 NULL, ecc, NULL, errorpos); 667 BUG_ON(numerrs == -EINVAL); 668 if (numerrs < 0) 669 goto out; 670 671 for (i = 0; i < numerrs; i++) 672 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7)); 673 for (i = 0; i < numerrs; i++) 674 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8) 675 /* error is located in data, correct it */ 676 change_bit(errorpos[i], buf); 677 out: 678 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs); 679 return numerrs; 680 } 681 682 683 /** 684 * doc_read_page_prepare - Prepares reading data from a flash page 685 * @docg3: the device 686 * @block0: the first plane block index on flash memory 687 * @block1: the second plane block index on flash memory 688 * @page: the page index in the block 689 * @offset: the offset in the page (must be a multiple of 4) 690 * 691 * Prepares the page to be read in the flash memory : 692 * - tell ASIC to map the flash pages 693 * - tell ASIC to be in read mode 694 * 695 * After a call to this method, a call to doc_read_page_finish is mandatory, 696 * to end the read cycle of the flash. 697 * 698 * Read data from a flash page. The length to be read must be between 0 and 699 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because 700 * the extra bytes reading is not implemented). 701 * 702 * As pages are grouped by 2 (in 2 planes), reading from a page must be done 703 * in two steps: 704 * - one read of 512 bytes at offset 0 705 * - one read of 512 bytes at offset 512 + 16 706 * 707 * Returns 0 if successful, -EIO if a read error occurred. 708 */ 709 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1, 710 int page, int offset) 711 { 712 int wear_area = 0, ret = 0; 713 714 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", 715 block0, block1, page, offset); 716 if (offset >= DOC_LAYOUT_WEAR_OFFSET) 717 wear_area = 1; 718 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2)) 719 return -EINVAL; 720 721 doc_set_device_id(docg3, docg3->device_id); 722 ret = doc_reset_seq(docg3); 723 if (ret) 724 goto err; 725 726 /* Program the flash address block and page */ 727 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); 728 if (ret) 729 goto err; 730 731 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES); 732 doc_delay(docg3, 2); 733 doc_wait_ready(docg3); 734 735 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ); 736 doc_delay(docg3, 1); 737 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2) 738 offset -= 2 * DOC_LAYOUT_PAGE_SIZE; 739 doc_flash_address(docg3, offset >> 2); 740 doc_delay(docg3, 1); 741 doc_wait_ready(docg3); 742 743 doc_flash_command(docg3, DOC_CMD_READ_FLASH); 744 745 return 0; 746 err: 747 doc_writeb(docg3, 0, DOC_DATAEND); 748 doc_delay(docg3, 2); 749 return -EIO; 750 } 751 752 /** 753 * doc_read_page_getbytes - Reads bytes from a prepared page 754 * @docg3: the device 755 * @len: the number of bytes to be read (must be a multiple of 4) 756 * @buf: the buffer to be filled in (or NULL is forget bytes) 757 * @first: 1 if first time read, DOC_READADDRESS should be set 758 * @last_odd: 1 if last read ended up on an odd byte 759 * 760 * Reads bytes from a prepared page. There is a trickery here : if the last read 761 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2 762 * planes, the first byte must be read apart. If a word (16bit) read was used, 763 * the read would return the byte of plane 2 as low *and* high endian, which 764 * will mess the read. 765 * 766 */ 767 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf, 768 int first, int last_odd) 769 { 770 if (last_odd && len > 0) { 771 doc_read_data_area(docg3, buf, 1, first); 772 doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0); 773 } else { 774 doc_read_data_area(docg3, buf, len, first); 775 } 776 doc_delay(docg3, 2); 777 return len; 778 } 779 780 /** 781 * doc_write_page_putbytes - Writes bytes into a prepared page 782 * @docg3: the device 783 * @len: the number of bytes to be written 784 * @buf: the buffer of input bytes 785 * 786 */ 787 static void doc_write_page_putbytes(struct docg3 *docg3, int len, 788 const u_char *buf) 789 { 790 doc_write_data_area(docg3, buf, len); 791 doc_delay(docg3, 2); 792 } 793 794 /** 795 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC 796 * @docg3: the device 797 * @hwecc: the array of 7 integers where the hardware ecc will be stored 798 */ 799 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc) 800 { 801 int i; 802 803 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 804 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i)); 805 } 806 807 /** 808 * doc_page_finish - Ends reading/writing of a flash page 809 * @docg3: the device 810 */ 811 static void doc_page_finish(struct docg3 *docg3) 812 { 813 doc_writeb(docg3, 0, DOC_DATAEND); 814 doc_delay(docg3, 2); 815 } 816 817 /** 818 * doc_read_page_finish - Ends reading of a flash page 819 * @docg3: the device 820 * 821 * As a side effect, resets the chip selector to 0. This ensures that after each 822 * read operation, the floor 0 is selected. Therefore, if the systems halts, the 823 * reboot will boot on floor 0, where the IPL is. 824 */ 825 static void doc_read_page_finish(struct docg3 *docg3) 826 { 827 doc_page_finish(docg3); 828 doc_set_device_id(docg3, 0); 829 } 830 831 /** 832 * calc_block_sector - Calculate blocks, pages and ofs. 833 834 * @from: offset in flash 835 * @block0: first plane block index calculated 836 * @block1: second plane block index calculated 837 * @page: page calculated 838 * @ofs: offset in page 839 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in 840 * reliable mode. 841 * 842 * The calculation is based on the reliable/normal mode. In normal mode, the 64 843 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are 844 * clones, only 32 pages per block are available. 845 */ 846 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page, 847 int *ofs, int reliable) 848 { 849 uint sector, pages_biblock; 850 851 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES; 852 if (reliable == 1 || reliable == 2) 853 pages_biblock /= 2; 854 855 sector = from / DOC_LAYOUT_PAGE_SIZE; 856 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES; 857 *block1 = *block0 + 1; 858 *page = sector % pages_biblock; 859 *page /= DOC_LAYOUT_NBPLANES; 860 if (reliable == 1 || reliable == 2) 861 *page *= 2; 862 if (sector % 2) 863 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE; 864 else 865 *ofs = 0; 866 } 867 868 /** 869 * doc_read_oob - Read out of band bytes from flash 870 * @mtd: the device 871 * @from: the offset from first block and first page, in bytes, aligned on page 872 * size 873 * @ops: the mtd oob structure 874 * 875 * Reads flash memory OOB area of pages. 876 * 877 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred 878 */ 879 static int doc_read_oob(struct mtd_info *mtd, loff_t from, 880 struct mtd_oob_ops *ops) 881 { 882 struct docg3 *docg3 = mtd->priv; 883 int block0, block1, page, ret, skip, ofs = 0; 884 u8 *oobbuf = ops->oobbuf; 885 u8 *buf = ops->datbuf; 886 size_t len, ooblen, nbdata, nboob; 887 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1; 888 int max_bitflips = 0; 889 890 if (buf) 891 len = ops->len; 892 else 893 len = 0; 894 if (oobbuf) 895 ooblen = ops->ooblen; 896 else 897 ooblen = 0; 898 899 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) 900 oobbuf += ops->ooboffs; 901 902 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 903 from, ops->mode, buf, len, oobbuf, ooblen); 904 if (ooblen % DOC_LAYOUT_OOB_SIZE) 905 return -EINVAL; 906 907 ops->oobretlen = 0; 908 ops->retlen = 0; 909 ret = 0; 910 skip = from % DOC_LAYOUT_PAGE_SIZE; 911 mutex_lock(&docg3->cascade->lock); 912 while (ret >= 0 && (len > 0 || ooblen > 0)) { 913 calc_block_sector(from - skip, &block0, &block1, &page, &ofs, 914 docg3->reliable); 915 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip); 916 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE); 917 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); 918 if (ret < 0) 919 goto out; 920 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 921 if (ret < 0) 922 goto err_in_read; 923 ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0); 924 if (ret < skip) 925 goto err_in_read; 926 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2); 927 if (ret < nbdata) 928 goto err_in_read; 929 doc_read_page_getbytes(docg3, 930 DOC_LAYOUT_PAGE_SIZE - nbdata - skip, 931 NULL, 0, (skip + nbdata) % 2); 932 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0); 933 if (ret < nboob) 934 goto err_in_read; 935 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob, 936 NULL, 0, nboob % 2); 937 938 doc_get_bch_hw_ecc(docg3, hwecc); 939 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); 940 941 if (nboob >= DOC_LAYOUT_OOB_SIZE) { 942 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf); 943 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); 944 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8); 945 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); 946 } 947 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); 948 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc); 949 950 ret = -EIO; 951 if (is_prot_seq_error(docg3)) 952 goto err_in_read; 953 ret = 0; 954 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) && 955 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) && 956 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) && 957 (ops->mode != MTD_OPS_RAW) && 958 (nbdata == DOC_LAYOUT_PAGE_SIZE)) { 959 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc); 960 if (ret < 0) { 961 mtd->ecc_stats.failed++; 962 ret = -EBADMSG; 963 } 964 if (ret > 0) { 965 mtd->ecc_stats.corrected += ret; 966 max_bitflips = max(max_bitflips, ret); 967 ret = max_bitflips; 968 } 969 } 970 971 doc_read_page_finish(docg3); 972 ops->retlen += nbdata; 973 ops->oobretlen += nboob; 974 buf += nbdata; 975 oobbuf += nboob; 976 len -= nbdata; 977 ooblen -= nboob; 978 from += DOC_LAYOUT_PAGE_SIZE; 979 skip = 0; 980 } 981 982 out: 983 mutex_unlock(&docg3->cascade->lock); 984 return ret; 985 err_in_read: 986 doc_read_page_finish(docg3); 987 goto out; 988 } 989 990 static int doc_reload_bbt(struct docg3 *docg3) 991 { 992 int block = DOC_LAYOUT_BLOCK_BBT; 993 int ret = 0, nbpages, page; 994 u_char *buf = docg3->bbt; 995 996 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); 997 for (page = 0; !ret && (page < nbpages); page++) { 998 ret = doc_read_page_prepare(docg3, block, block + 1, 999 page + DOC_LAYOUT_PAGE_BBT, 0); 1000 if (!ret) 1001 ret = doc_read_page_ecc_init(docg3, 1002 DOC_LAYOUT_PAGE_SIZE); 1003 if (!ret) 1004 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE, 1005 buf, 1, 0); 1006 buf += DOC_LAYOUT_PAGE_SIZE; 1007 } 1008 doc_read_page_finish(docg3); 1009 return ret; 1010 } 1011 1012 /** 1013 * doc_block_isbad - Checks whether a block is good or not 1014 * @mtd: the device 1015 * @from: the offset to find the correct block 1016 * 1017 * Returns 1 if block is bad, 0 if block is good 1018 */ 1019 static int doc_block_isbad(struct mtd_info *mtd, loff_t from) 1020 { 1021 struct docg3 *docg3 = mtd->priv; 1022 int block0, block1, page, ofs, is_good; 1023 1024 calc_block_sector(from, &block0, &block1, &page, &ofs, 1025 docg3->reliable); 1026 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", 1027 from, block0, block1, page, ofs); 1028 1029 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA) 1030 return 0; 1031 if (block1 > docg3->max_block) 1032 return -EINVAL; 1033 1034 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7)); 1035 return !is_good; 1036 } 1037 1038 #if 0 1039 /** 1040 * doc_get_erase_count - Get block erase count 1041 * @docg3: the device 1042 * @from: the offset in which the block is. 1043 * 1044 * Get the number of times a block was erased. The number is the maximum of 1045 * erase times between first and second plane (which should be equal normally). 1046 * 1047 * Returns The number of erases, or -EINVAL or -EIO on error. 1048 */ 1049 static int doc_get_erase_count(struct docg3 *docg3, loff_t from) 1050 { 1051 u8 buf[DOC_LAYOUT_WEAR_SIZE]; 1052 int ret, plane1_erase_count, plane2_erase_count; 1053 int block0, block1, page, ofs; 1054 1055 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf); 1056 if (from % DOC_LAYOUT_PAGE_SIZE) 1057 return -EINVAL; 1058 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable); 1059 if (block1 > docg3->max_block) 1060 return -EINVAL; 1061 1062 ret = doc_reset_seq(docg3); 1063 if (!ret) 1064 ret = doc_read_page_prepare(docg3, block0, block1, page, 1065 ofs + DOC_LAYOUT_WEAR_OFFSET, 0); 1066 if (!ret) 1067 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE, 1068 buf, 1, 0); 1069 doc_read_page_finish(docg3); 1070 1071 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK)) 1072 return -EIO; 1073 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8) 1074 | ((u8)(~buf[5]) << 16); 1075 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8) 1076 | ((u8)(~buf[7]) << 16); 1077 1078 return max(plane1_erase_count, plane2_erase_count); 1079 } 1080 #endif 1081 1082 /** 1083 * doc_get_op_status - get erase/write operation status 1084 * @docg3: the device 1085 * 1086 * Queries the status from the chip, and returns it 1087 * 1088 * Returns the status (bits DOC_PLANES_STATUS_*) 1089 */ 1090 static int doc_get_op_status(struct docg3 *docg3) 1091 { 1092 u8 status; 1093 1094 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS); 1095 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS); 1096 doc_delay(docg3, 5); 1097 1098 doc_ecc_disable(docg3); 1099 doc_read_data_area(docg3, &status, 1, 1); 1100 return status; 1101 } 1102 1103 /** 1104 * doc_write_erase_wait_status - wait for write or erase completion 1105 * @docg3: the device 1106 * 1107 * Wait for the chip to be ready again after erase or write operation, and check 1108 * erase/write status. 1109 * 1110 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if 1111 * timeout 1112 */ 1113 static int doc_write_erase_wait_status(struct docg3 *docg3) 1114 { 1115 int i, status, ret = 0; 1116 1117 for (i = 0; !doc_is_ready(docg3) && i < 5; i++) 1118 msleep(20); 1119 if (!doc_is_ready(docg3)) { 1120 doc_dbg("Timeout reached and the chip is still not ready\n"); 1121 ret = -EAGAIN; 1122 goto out; 1123 } 1124 1125 status = doc_get_op_status(docg3); 1126 if (status & DOC_PLANES_STATUS_FAIL) { 1127 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n", 1128 status); 1129 ret = -EIO; 1130 } 1131 1132 out: 1133 doc_page_finish(docg3); 1134 return ret; 1135 } 1136 1137 /** 1138 * doc_erase_block - Erase a couple of blocks 1139 * @docg3: the device 1140 * @block0: the first block to erase (leftmost plane) 1141 * @block1: the second block to erase (rightmost plane) 1142 * 1143 * Erase both blocks, and return operation status 1144 * 1145 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not 1146 * ready for too long 1147 */ 1148 static int doc_erase_block(struct docg3 *docg3, int block0, int block1) 1149 { 1150 int ret, sector; 1151 1152 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1); 1153 ret = doc_reset_seq(docg3); 1154 if (ret) 1155 return -EIO; 1156 1157 doc_set_reliable_mode(docg3); 1158 doc_flash_sequence(docg3, DOC_SEQ_ERASE); 1159 1160 sector = block0 << DOC_ADDR_BLOCK_SHIFT; 1161 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 1162 doc_setup_addr_sector(docg3, sector); 1163 sector = block1 << DOC_ADDR_BLOCK_SHIFT; 1164 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 1165 doc_setup_addr_sector(docg3, sector); 1166 doc_delay(docg3, 1); 1167 1168 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2); 1169 doc_delay(docg3, 2); 1170 1171 if (is_prot_seq_error(docg3)) { 1172 doc_err("Erase blocks %d,%d error\n", block0, block1); 1173 return -EIO; 1174 } 1175 1176 return doc_write_erase_wait_status(docg3); 1177 } 1178 1179 /** 1180 * doc_erase - Erase a portion of the chip 1181 * @mtd: the device 1182 * @info: the erase info 1183 * 1184 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is 1185 * split into 2 pages of 512 bytes on 2 contiguous blocks. 1186 * 1187 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase 1188 * issue 1189 */ 1190 static int doc_erase(struct mtd_info *mtd, struct erase_info *info) 1191 { 1192 struct docg3 *docg3 = mtd->priv; 1193 uint64_t len; 1194 int block0, block1, page, ret = 0, ofs = 0; 1195 1196 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); 1197 1198 calc_block_sector(info->addr + info->len, &block0, &block1, &page, 1199 &ofs, docg3->reliable); 1200 if (info->addr + info->len > mtd->size || page || ofs) 1201 return -EINVAL; 1202 1203 calc_block_sector(info->addr, &block0, &block1, &page, &ofs, 1204 docg3->reliable); 1205 mutex_lock(&docg3->cascade->lock); 1206 doc_set_device_id(docg3, docg3->device_id); 1207 doc_set_reliable_mode(docg3); 1208 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { 1209 ret = doc_erase_block(docg3, block0, block1); 1210 block0 += 2; 1211 block1 += 2; 1212 } 1213 mutex_unlock(&docg3->cascade->lock); 1214 1215 return ret; 1216 } 1217 1218 /** 1219 * doc_write_page - Write a single page to the chip 1220 * @docg3: the device 1221 * @to: the offset from first block and first page, in bytes, aligned on page 1222 * size 1223 * @buf: buffer to get bytes from 1224 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be 1225 * written) 1226 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or 1227 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken, 1228 * remaining ones are filled with hardware Hamming and BCH 1229 * computations. Its value is not meaningfull is oob == NULL. 1230 * 1231 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the 1232 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and 1233 * BCH generator if autoecc is not null. 1234 * 1235 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout 1236 */ 1237 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf, 1238 const u_char *oob, int autoecc) 1239 { 1240 int block0, block1, page, ret, ofs = 0; 1241 u8 hwecc[DOC_ECC_BCH_SIZE], hamming; 1242 1243 doc_dbg("doc_write_page(to=%lld)\n", to); 1244 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable); 1245 1246 doc_set_device_id(docg3, docg3->device_id); 1247 ret = doc_reset_seq(docg3); 1248 if (ret) 1249 goto err; 1250 1251 /* Program the flash address block and page */ 1252 ret = doc_write_seek(docg3, block0, block1, page, ofs); 1253 if (ret) 1254 goto err; 1255 1256 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 1257 doc_delay(docg3, 2); 1258 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf); 1259 1260 if (oob && autoecc) { 1261 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob); 1262 doc_delay(docg3, 2); 1263 oob += DOC_LAYOUT_OOB_UNUSED_OFS; 1264 1265 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY); 1266 doc_delay(docg3, 2); 1267 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ, 1268 &hamming); 1269 doc_delay(docg3, 2); 1270 1271 doc_get_bch_hw_ecc(docg3, hwecc); 1272 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc); 1273 doc_delay(docg3, 2); 1274 1275 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob); 1276 } 1277 if (oob && !autoecc) 1278 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob); 1279 1280 doc_delay(docg3, 2); 1281 doc_page_finish(docg3); 1282 doc_delay(docg3, 2); 1283 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2); 1284 doc_delay(docg3, 2); 1285 1286 /* 1287 * The wait status will perform another doc_page_finish() call, but that 1288 * seems to please the docg3, so leave it. 1289 */ 1290 ret = doc_write_erase_wait_status(docg3); 1291 return ret; 1292 err: 1293 doc_read_page_finish(docg3); 1294 return ret; 1295 } 1296 1297 /** 1298 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops 1299 * @ops: the oob operations 1300 * 1301 * Returns 0 or 1 if success, -EINVAL if invalid oob mode 1302 */ 1303 static int doc_guess_autoecc(struct mtd_oob_ops *ops) 1304 { 1305 int autoecc; 1306 1307 switch (ops->mode) { 1308 case MTD_OPS_PLACE_OOB: 1309 case MTD_OPS_AUTO_OOB: 1310 autoecc = 1; 1311 break; 1312 case MTD_OPS_RAW: 1313 autoecc = 0; 1314 break; 1315 default: 1316 autoecc = -EINVAL; 1317 } 1318 return autoecc; 1319 } 1320 1321 /** 1322 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes 1323 * @dst: the target 16 bytes OOB buffer 1324 * @oobsrc: the source 8 bytes non-ECC OOB buffer 1325 * 1326 */ 1327 static void doc_fill_autooob(u8 *dst, u8 *oobsrc) 1328 { 1329 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ); 1330 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ]; 1331 } 1332 1333 /** 1334 * doc_backup_oob - Backup OOB into docg3 structure 1335 * @docg3: the device 1336 * @to: the page offset in the chip 1337 * @ops: the OOB size and buffer 1338 * 1339 * As the docg3 should write a page with its OOB in one pass, and some userland 1340 * applications do write_oob() to setup the OOB and then write(), store the OOB 1341 * into a temporary storage. This is very dangerous, as 2 concurrent 1342 * applications could store an OOB, and then write their pages (which will 1343 * result into one having its OOB corrupted). 1344 * 1345 * The only reliable way would be for userland to call doc_write_oob() with both 1346 * the page data _and_ the OOB area. 1347 * 1348 * Returns 0 if success, -EINVAL if ops content invalid 1349 */ 1350 static int doc_backup_oob(struct docg3 *docg3, loff_t to, 1351 struct mtd_oob_ops *ops) 1352 { 1353 int ooblen = ops->ooblen, autoecc; 1354 1355 if (ooblen != DOC_LAYOUT_OOB_SIZE) 1356 return -EINVAL; 1357 autoecc = doc_guess_autoecc(ops); 1358 if (autoecc < 0) 1359 return autoecc; 1360 1361 docg3->oob_write_ofs = to; 1362 docg3->oob_autoecc = autoecc; 1363 if (ops->mode == MTD_OPS_AUTO_OOB) { 1364 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf); 1365 ops->oobretlen = 8; 1366 } else { 1367 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE); 1368 ops->oobretlen = DOC_LAYOUT_OOB_SIZE; 1369 } 1370 return 0; 1371 } 1372 1373 /** 1374 * doc_write_oob - Write out of band bytes to flash 1375 * @mtd: the device 1376 * @ofs: the offset from first block and first page, in bytes, aligned on page 1377 * size 1378 * @ops: the mtd oob structure 1379 * 1380 * Either write OOB data into a temporary buffer, for the subsequent write 1381 * page. The provided OOB should be 16 bytes long. If a data buffer is provided 1382 * as well, issue the page write. 1383 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will 1384 * still be filled in if asked for). 1385 * 1386 * Returns 0 is successful, EINVAL if length is not 14 bytes 1387 */ 1388 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, 1389 struct mtd_oob_ops *ops) 1390 { 1391 struct docg3 *docg3 = mtd->priv; 1392 int ret, autoecc, oobdelta; 1393 u8 *oobbuf = ops->oobbuf; 1394 u8 *buf = ops->datbuf; 1395 size_t len, ooblen; 1396 u8 oob[DOC_LAYOUT_OOB_SIZE]; 1397 1398 if (buf) 1399 len = ops->len; 1400 else 1401 len = 0; 1402 if (oobbuf) 1403 ooblen = ops->ooblen; 1404 else 1405 ooblen = 0; 1406 1407 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) 1408 oobbuf += ops->ooboffs; 1409 1410 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 1411 ofs, ops->mode, buf, len, oobbuf, ooblen); 1412 switch (ops->mode) { 1413 case MTD_OPS_PLACE_OOB: 1414 case MTD_OPS_RAW: 1415 oobdelta = mtd->oobsize; 1416 break; 1417 case MTD_OPS_AUTO_OOB: 1418 oobdelta = mtd->oobavail; 1419 break; 1420 default: 1421 return -EINVAL; 1422 } 1423 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) || 1424 (ofs % DOC_LAYOUT_PAGE_SIZE)) 1425 return -EINVAL; 1426 if (len && ooblen && 1427 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta)) 1428 return -EINVAL; 1429 1430 ops->oobretlen = 0; 1431 ops->retlen = 0; 1432 ret = 0; 1433 if (len == 0 && ooblen == 0) 1434 return -EINVAL; 1435 if (len == 0 && ooblen > 0) 1436 return doc_backup_oob(docg3, ofs, ops); 1437 1438 autoecc = doc_guess_autoecc(ops); 1439 if (autoecc < 0) 1440 return autoecc; 1441 1442 mutex_lock(&docg3->cascade->lock); 1443 while (!ret && len > 0) { 1444 memset(oob, 0, sizeof(oob)); 1445 if (ofs == docg3->oob_write_ofs) 1446 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE); 1447 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB) 1448 doc_fill_autooob(oob, oobbuf); 1449 else if (ooblen > 0) 1450 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE); 1451 ret = doc_write_page(docg3, ofs, buf, oob, autoecc); 1452 1453 ofs += DOC_LAYOUT_PAGE_SIZE; 1454 len -= DOC_LAYOUT_PAGE_SIZE; 1455 buf += DOC_LAYOUT_PAGE_SIZE; 1456 if (ooblen) { 1457 oobbuf += oobdelta; 1458 ooblen -= oobdelta; 1459 ops->oobretlen += oobdelta; 1460 } 1461 ops->retlen += DOC_LAYOUT_PAGE_SIZE; 1462 } 1463 1464 doc_set_device_id(docg3, 0); 1465 mutex_unlock(&docg3->cascade->lock); 1466 return ret; 1467 } 1468 1469 static struct docg3 *sysfs_dev2docg3(struct device *dev, 1470 struct device_attribute *attr) 1471 { 1472 int floor; 1473 struct platform_device *pdev = to_platform_device(dev); 1474 struct mtd_info **docg3_floors = platform_get_drvdata(pdev); 1475 1476 floor = attr->attr.name[1] - '0'; 1477 if (floor < 0 || floor >= DOC_MAX_NBFLOORS) 1478 return NULL; 1479 else 1480 return docg3_floors[floor]->priv; 1481 } 1482 1483 static ssize_t dps0_is_key_locked(struct device *dev, 1484 struct device_attribute *attr, char *buf) 1485 { 1486 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1487 int dps0; 1488 1489 mutex_lock(&docg3->cascade->lock); 1490 doc_set_device_id(docg3, docg3->device_id); 1491 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1492 doc_set_device_id(docg3, 0); 1493 mutex_unlock(&docg3->cascade->lock); 1494 1495 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK)); 1496 } 1497 1498 static ssize_t dps1_is_key_locked(struct device *dev, 1499 struct device_attribute *attr, char *buf) 1500 { 1501 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1502 int dps1; 1503 1504 mutex_lock(&docg3->cascade->lock); 1505 doc_set_device_id(docg3, docg3->device_id); 1506 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1507 doc_set_device_id(docg3, 0); 1508 mutex_unlock(&docg3->cascade->lock); 1509 1510 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK)); 1511 } 1512 1513 static ssize_t dps0_insert_key(struct device *dev, 1514 struct device_attribute *attr, 1515 const char *buf, size_t count) 1516 { 1517 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1518 int i; 1519 1520 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1521 return -EINVAL; 1522 1523 mutex_lock(&docg3->cascade->lock); 1524 doc_set_device_id(docg3, docg3->device_id); 1525 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1526 doc_writeb(docg3, buf[i], DOC_DPS0_KEY); 1527 doc_set_device_id(docg3, 0); 1528 mutex_unlock(&docg3->cascade->lock); 1529 return count; 1530 } 1531 1532 static ssize_t dps1_insert_key(struct device *dev, 1533 struct device_attribute *attr, 1534 const char *buf, size_t count) 1535 { 1536 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1537 int i; 1538 1539 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1540 return -EINVAL; 1541 1542 mutex_lock(&docg3->cascade->lock); 1543 doc_set_device_id(docg3, docg3->device_id); 1544 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1545 doc_writeb(docg3, buf[i], DOC_DPS1_KEY); 1546 doc_set_device_id(docg3, 0); 1547 mutex_unlock(&docg3->cascade->lock); 1548 return count; 1549 } 1550 1551 #define FLOOR_SYSFS(id) { \ 1552 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \ 1553 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \ 1554 __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \ 1555 __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \ 1556 } 1557 1558 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = { 1559 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3) 1560 }; 1561 1562 static int doc_register_sysfs(struct platform_device *pdev, 1563 struct docg3_cascade *cascade) 1564 { 1565 struct device *dev = &pdev->dev; 1566 int floor; 1567 int ret; 1568 int i; 1569 1570 for (floor = 0; 1571 floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; 1572 floor++) { 1573 for (i = 0; i < 4; i++) { 1574 ret = device_create_file(dev, &doc_sys_attrs[floor][i]); 1575 if (ret) 1576 goto remove_files; 1577 } 1578 } 1579 1580 return 0; 1581 1582 remove_files: 1583 do { 1584 while (--i >= 0) 1585 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1586 i = 4; 1587 } while (--floor >= 0); 1588 1589 return ret; 1590 } 1591 1592 static void doc_unregister_sysfs(struct platform_device *pdev, 1593 struct docg3_cascade *cascade) 1594 { 1595 struct device *dev = &pdev->dev; 1596 int floor, i; 1597 1598 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; 1599 floor++) 1600 for (i = 0; i < 4; i++) 1601 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1602 } 1603 1604 /* 1605 * Debug sysfs entries 1606 */ 1607 static int dbg_flashctrl_show(struct seq_file *s, void *p) 1608 { 1609 struct docg3 *docg3 = (struct docg3 *)s->private; 1610 1611 u8 fctrl; 1612 1613 mutex_lock(&docg3->cascade->lock); 1614 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 1615 mutex_unlock(&docg3->cascade->lock); 1616 1617 seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", 1618 fctrl, 1619 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-", 1620 fctrl & DOC_CTRL_CE ? "active" : "inactive", 1621 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-", 1622 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-", 1623 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready"); 1624 1625 return 0; 1626 } 1627 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show); 1628 1629 static int dbg_asicmode_show(struct seq_file *s, void *p) 1630 { 1631 struct docg3 *docg3 = (struct docg3 *)s->private; 1632 1633 int pctrl, mode; 1634 1635 mutex_lock(&docg3->cascade->lock); 1636 pctrl = doc_register_readb(docg3, DOC_ASICMODE); 1637 mode = pctrl & 0x03; 1638 mutex_unlock(&docg3->cascade->lock); 1639 1640 seq_printf(s, 1641 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", 1642 pctrl, 1643 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0, 1644 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0, 1645 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0, 1646 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0, 1647 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0, 1648 mode >> 1, mode & 0x1); 1649 1650 switch (mode) { 1651 case DOC_ASICMODE_RESET: 1652 seq_puts(s, "reset"); 1653 break; 1654 case DOC_ASICMODE_NORMAL: 1655 seq_puts(s, "normal"); 1656 break; 1657 case DOC_ASICMODE_POWERDOWN: 1658 seq_puts(s, "powerdown"); 1659 break; 1660 } 1661 seq_puts(s, ")\n"); 1662 return 0; 1663 } 1664 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show); 1665 1666 static int dbg_device_id_show(struct seq_file *s, void *p) 1667 { 1668 struct docg3 *docg3 = (struct docg3 *)s->private; 1669 int id; 1670 1671 mutex_lock(&docg3->cascade->lock); 1672 id = doc_register_readb(docg3, DOC_DEVICESELECT); 1673 mutex_unlock(&docg3->cascade->lock); 1674 1675 seq_printf(s, "DeviceId = %d\n", id); 1676 return 0; 1677 } 1678 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show); 1679 1680 static int dbg_protection_show(struct seq_file *s, void *p) 1681 { 1682 struct docg3 *docg3 = (struct docg3 *)s->private; 1683 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high; 1684 1685 mutex_lock(&docg3->cascade->lock); 1686 protect = doc_register_readb(docg3, DOC_PROTECTION); 1687 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1688 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW); 1689 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH); 1690 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1691 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW); 1692 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH); 1693 mutex_unlock(&docg3->cascade->lock); 1694 1695 seq_printf(s, "Protection = 0x%02x (", protect); 1696 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK) 1697 seq_puts(s, "FOUNDRY_OTP_LOCK,"); 1698 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK) 1699 seq_puts(s, "CUSTOMER_OTP_LOCK,"); 1700 if (protect & DOC_PROTECT_LOCK_INPUT) 1701 seq_puts(s, "LOCK_INPUT,"); 1702 if (protect & DOC_PROTECT_STICKY_LOCK) 1703 seq_puts(s, "STICKY_LOCK,"); 1704 if (protect & DOC_PROTECT_PROTECTION_ENABLED) 1705 seq_puts(s, "PROTECTION ON,"); 1706 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK) 1707 seq_puts(s, "IPL_DOWNLOAD_LOCK,"); 1708 if (protect & DOC_PROTECT_PROTECTION_ERROR) 1709 seq_puts(s, "PROTECT_ERR,"); 1710 else 1711 seq_puts(s, "NO_PROTECT_ERR"); 1712 seq_puts(s, ")\n"); 1713 1714 seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 1715 dps0, dps0_low, dps0_high, 1716 !!(dps0 & DOC_DPS_OTP_PROTECTED), 1717 !!(dps0 & DOC_DPS_READ_PROTECTED), 1718 !!(dps0 & DOC_DPS_WRITE_PROTECTED), 1719 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED), 1720 !!(dps0 & DOC_DPS_KEY_OK)); 1721 seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 1722 dps1, dps1_low, dps1_high, 1723 !!(dps1 & DOC_DPS_OTP_PROTECTED), 1724 !!(dps1 & DOC_DPS_READ_PROTECTED), 1725 !!(dps1 & DOC_DPS_WRITE_PROTECTED), 1726 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED), 1727 !!(dps1 & DOC_DPS_KEY_OK)); 1728 return 0; 1729 } 1730 DEBUGFS_RO_ATTR(protection, dbg_protection_show); 1731 1732 static void __init doc_dbg_register(struct mtd_info *floor) 1733 { 1734 struct dentry *root = floor->dbg.dfs_dir; 1735 struct docg3 *docg3 = floor->priv; 1736 1737 if (IS_ERR_OR_NULL(root)) { 1738 if (IS_ENABLED(CONFIG_DEBUG_FS) && 1739 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1740 dev_warn(floor->dev.parent, 1741 "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); 1742 return; 1743 } 1744 1745 debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3, 1746 &flashcontrol_fops); 1747 debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3, 1748 &asic_mode_fops); 1749 debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3, 1750 &device_id_fops); 1751 debugfs_create_file("docg3_protection", S_IRUSR, root, docg3, 1752 &protection_fops); 1753 } 1754 1755 /** 1756 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure 1757 * @chip_id: The chip ID of the supported chip 1758 * @mtd: The structure to fill 1759 */ 1760 static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd) 1761 { 1762 struct docg3 *docg3 = mtd->priv; 1763 int cfg; 1764 1765 cfg = doc_register_readb(docg3, DOC_CONFIGURATION); 1766 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0); 1767 docg3->reliable = reliable_mode; 1768 1769 switch (chip_id) { 1770 case DOC_CHIPID_G3: 1771 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d", 1772 docg3->device_id); 1773 if (!mtd->name) 1774 return -ENOMEM; 1775 docg3->max_block = 2047; 1776 break; 1777 } 1778 mtd->type = MTD_NANDFLASH; 1779 mtd->flags = MTD_CAP_NANDFLASH; 1780 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE; 1781 if (docg3->reliable == 2) 1782 mtd->size /= 2; 1783 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; 1784 if (docg3->reliable == 2) 1785 mtd->erasesize /= 2; 1786 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE; 1787 mtd->oobsize = DOC_LAYOUT_OOB_SIZE; 1788 mtd->_erase = doc_erase; 1789 mtd->_read_oob = doc_read_oob; 1790 mtd->_write_oob = doc_write_oob; 1791 mtd->_block_isbad = doc_block_isbad; 1792 mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops); 1793 mtd->oobavail = 8; 1794 mtd->ecc_strength = DOC_ECC_BCH_T; 1795 1796 return 0; 1797 } 1798 1799 /** 1800 * doc_probe_device - Check if a device is available 1801 * @base: the io space where the device is probed 1802 * @floor: the floor of the probed device 1803 * @dev: the device 1804 * @cascade: the cascade of chips this devices will belong to 1805 * 1806 * Checks whether a device at the specified IO range, and floor is available. 1807 * 1808 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM 1809 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is 1810 * launched. 1811 */ 1812 static struct mtd_info * __init 1813 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev) 1814 { 1815 int ret, bbt_nbpages; 1816 u16 chip_id, chip_id_inv; 1817 struct docg3 *docg3; 1818 struct mtd_info *mtd; 1819 1820 ret = -ENOMEM; 1821 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL); 1822 if (!docg3) 1823 goto nomem1; 1824 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); 1825 if (!mtd) 1826 goto nomem2; 1827 mtd->priv = docg3; 1828 mtd->dev.parent = dev; 1829 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1, 1830 8 * DOC_LAYOUT_PAGE_SIZE); 1831 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL); 1832 if (!docg3->bbt) 1833 goto nomem3; 1834 1835 docg3->dev = dev; 1836 docg3->device_id = floor; 1837 docg3->cascade = cascade; 1838 doc_set_device_id(docg3, docg3->device_id); 1839 if (!floor) 1840 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); 1841 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL); 1842 1843 chip_id = doc_register_readw(docg3, DOC_CHIPID); 1844 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV); 1845 1846 ret = 0; 1847 if (chip_id != (u16)(~chip_id_inv)) { 1848 goto nomem4; 1849 } 1850 1851 switch (chip_id) { 1852 case DOC_CHIPID_G3: 1853 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n", 1854 docg3->cascade->base, floor); 1855 break; 1856 default: 1857 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); 1858 goto nomem4; 1859 } 1860 1861 ret = doc_set_driver_info(chip_id, mtd); 1862 if (ret) 1863 goto nomem4; 1864 1865 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ); 1866 doc_reload_bbt(docg3); 1867 return mtd; 1868 1869 nomem4: 1870 kfree(docg3->bbt); 1871 nomem3: 1872 kfree(mtd); 1873 nomem2: 1874 kfree(docg3); 1875 nomem1: 1876 return ERR_PTR(ret); 1877 } 1878 1879 /** 1880 * doc_release_device - Release a docg3 floor 1881 * @mtd: the device 1882 */ 1883 static void doc_release_device(struct mtd_info *mtd) 1884 { 1885 struct docg3 *docg3 = mtd->priv; 1886 1887 mtd_device_unregister(mtd); 1888 kfree(docg3->bbt); 1889 kfree(docg3); 1890 kfree(mtd->name); 1891 kfree(mtd); 1892 } 1893 1894 /** 1895 * docg3_resume - Awakens docg3 floor 1896 * @pdev: platfrom device 1897 * 1898 * Returns 0 (always successful) 1899 */ 1900 static int docg3_resume(struct platform_device *pdev) 1901 { 1902 int i; 1903 struct docg3_cascade *cascade; 1904 struct mtd_info **docg3_floors, *mtd; 1905 struct docg3 *docg3; 1906 1907 cascade = platform_get_drvdata(pdev); 1908 docg3_floors = cascade->floors; 1909 mtd = docg3_floors[0]; 1910 docg3 = mtd->priv; 1911 1912 doc_dbg("docg3_resume()\n"); 1913 for (i = 0; i < 12; i++) 1914 doc_readb(docg3, DOC_IOSPACE_IPL); 1915 return 0; 1916 } 1917 1918 /** 1919 * docg3_suspend - Put in low power mode the docg3 floor 1920 * @pdev: platform device 1921 * @state: power state 1922 * 1923 * Shuts off most of docg3 circuitery to lower power consumption. 1924 * 1925 * Returns 0 if suspend succeeded, -EIO if chip refused suspend 1926 */ 1927 static int docg3_suspend(struct platform_device *pdev, pm_message_t state) 1928 { 1929 int floor, i; 1930 struct docg3_cascade *cascade; 1931 struct mtd_info **docg3_floors, *mtd; 1932 struct docg3 *docg3; 1933 u8 ctrl, pwr_down; 1934 1935 cascade = platform_get_drvdata(pdev); 1936 docg3_floors = cascade->floors; 1937 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 1938 mtd = docg3_floors[floor]; 1939 if (!mtd) 1940 continue; 1941 docg3 = mtd->priv; 1942 1943 doc_writeb(docg3, floor, DOC_DEVICESELECT); 1944 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 1945 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE; 1946 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 1947 1948 for (i = 0; i < 10; i++) { 1949 usleep_range(3000, 4000); 1950 pwr_down = doc_register_readb(docg3, DOC_POWERMODE); 1951 if (pwr_down & DOC_POWERDOWN_READY) 1952 break; 1953 } 1954 if (pwr_down & DOC_POWERDOWN_READY) { 1955 doc_dbg("docg3_suspend(): floor %d powerdown ok\n", 1956 floor); 1957 } else { 1958 doc_err("docg3_suspend(): floor %d powerdown failed\n", 1959 floor); 1960 return -EIO; 1961 } 1962 } 1963 1964 mtd = docg3_floors[0]; 1965 docg3 = mtd->priv; 1966 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN); 1967 return 0; 1968 } 1969 1970 /** 1971 * doc_probe - Probe the IO space for a DiskOnChip G3 chip 1972 * @pdev: platform device 1973 * 1974 * Probes for a G3 chip at the specified IO space in the platform data 1975 * ressources. The floor 0 must be available. 1976 * 1977 * Returns 0 on success, -ENOMEM, -ENXIO on error 1978 */ 1979 static int __init docg3_probe(struct platform_device *pdev) 1980 { 1981 struct device *dev = &pdev->dev; 1982 struct mtd_info *mtd; 1983 struct resource *ress; 1984 void __iomem *base; 1985 int ret, floor; 1986 struct docg3_cascade *cascade; 1987 1988 ret = -ENXIO; 1989 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1990 if (!ress) { 1991 dev_err(dev, "No I/O memory resource defined\n"); 1992 return ret; 1993 } 1994 base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE); 1995 1996 ret = -ENOMEM; 1997 cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS, 1998 GFP_KERNEL); 1999 if (!cascade) 2000 return ret; 2001 cascade->base = base; 2002 mutex_init(&cascade->lock); 2003 cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T, 2004 DOC_ECC_BCH_PRIMPOLY); 2005 if (!cascade->bch) 2006 return ret; 2007 2008 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 2009 mtd = doc_probe_device(cascade, floor, dev); 2010 if (IS_ERR(mtd)) { 2011 ret = PTR_ERR(mtd); 2012 goto err_probe; 2013 } 2014 if (!mtd) { 2015 if (floor == 0) 2016 goto notfound; 2017 else 2018 continue; 2019 } 2020 cascade->floors[floor] = mtd; 2021 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 2022 0); 2023 if (ret) 2024 goto err_probe; 2025 2026 doc_dbg_register(cascade->floors[floor]); 2027 } 2028 2029 ret = doc_register_sysfs(pdev, cascade); 2030 if (ret) 2031 goto err_probe; 2032 2033 platform_set_drvdata(pdev, cascade); 2034 return 0; 2035 2036 notfound: 2037 ret = -ENODEV; 2038 dev_info(dev, "No supported DiskOnChip found\n"); 2039 err_probe: 2040 free_bch(cascade->bch); 2041 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2042 if (cascade->floors[floor]) 2043 doc_release_device(cascade->floors[floor]); 2044 return ret; 2045 } 2046 2047 /** 2048 * docg3_release - Release the driver 2049 * @pdev: the platform device 2050 * 2051 * Returns 0 2052 */ 2053 static int docg3_release(struct platform_device *pdev) 2054 { 2055 struct docg3_cascade *cascade = platform_get_drvdata(pdev); 2056 struct docg3 *docg3 = cascade->floors[0]->priv; 2057 int floor; 2058 2059 doc_unregister_sysfs(pdev, cascade); 2060 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2061 if (cascade->floors[floor]) 2062 doc_release_device(cascade->floors[floor]); 2063 2064 free_bch(docg3->cascade->bch); 2065 return 0; 2066 } 2067 2068 #ifdef CONFIG_OF 2069 static const struct of_device_id docg3_dt_ids[] = { 2070 { .compatible = "m-systems,diskonchip-g3" }, 2071 {} 2072 }; 2073 MODULE_DEVICE_TABLE(of, docg3_dt_ids); 2074 #endif 2075 2076 static struct platform_driver g3_driver = { 2077 .driver = { 2078 .name = "docg3", 2079 .of_match_table = of_match_ptr(docg3_dt_ids), 2080 }, 2081 .suspend = docg3_suspend, 2082 .resume = docg3_resume, 2083 .remove = docg3_release, 2084 }; 2085 2086 module_platform_driver_probe(g3_driver, docg3_probe); 2087 2088 MODULE_LICENSE("GPL"); 2089 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); 2090 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3"); 2091