xref: /openbmc/linux/drivers/mtd/devices/docg3.c (revision 8ee90c5c)
1 /*
2  * Handles the M-Systems DiskOnChip G3 chip
3  *
4  * Copyright (C) 2011 Robert Jarzmik
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  *
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/io.h>
30 #include <linux/delay.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/bitmap.h>
34 #include <linux/bitrev.h>
35 #include <linux/bch.h>
36 
37 #include <linux/debugfs.h>
38 #include <linux/seq_file.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include "docg3.h"
42 
43 /*
44  * This driver handles the DiskOnChip G3 flash memory.
45  *
46  * As no specification is available from M-Systems/Sandisk, this drivers lacks
47  * several functions available on the chip, as :
48  *  - IPL write
49  *
50  * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
51  * the driver assumes a 16bits data bus.
52  *
53  * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
54  *  - a 1 byte Hamming code stored in the OOB for each page
55  *  - a 7 bytes BCH code stored in the OOB for each page
56  * The BCH ECC is :
57  *  - BCH is in GF(2^14)
58  *  - BCH is over data of 520 bytes (512 page + 7 page_info bytes
59  *                                   + 1 hamming byte)
60  *  - BCH can correct up to 4 bits (t = 4)
61  *  - BCH syndroms are calculated in hardware, and checked in hardware as well
62  *
63  */
64 
65 static unsigned int reliable_mode;
66 module_param(reliable_mode, uint, 0);
67 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
68 		 "2=reliable) : MLC normal operations are in normal mode");
69 
70 static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section,
71 			       struct mtd_oob_region *oobregion)
72 {
73 	if (section)
74 		return -ERANGE;
75 
76 	/* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
77 	oobregion->offset = 7;
78 	oobregion->length = 8;
79 
80 	return 0;
81 }
82 
83 static int docg3_ooblayout_free(struct mtd_info *mtd, int section,
84 				struct mtd_oob_region *oobregion)
85 {
86 	if (section > 1)
87 		return -ERANGE;
88 
89 	/* free bytes: byte 0 until byte 6, byte 15 */
90 	if (!section) {
91 		oobregion->offset = 0;
92 		oobregion->length = 7;
93 	} else {
94 		oobregion->offset = 15;
95 		oobregion->length = 1;
96 	}
97 
98 	return 0;
99 }
100 
101 static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = {
102 	.ecc = docg3_ooblayout_ecc,
103 	.free = docg3_ooblayout_free,
104 };
105 
106 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
107 {
108 	u8 val = readb(docg3->cascade->base + reg);
109 
110 	trace_docg3_io(0, 8, reg, (int)val);
111 	return val;
112 }
113 
114 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
115 {
116 	u16 val = readw(docg3->cascade->base + reg);
117 
118 	trace_docg3_io(0, 16, reg, (int)val);
119 	return val;
120 }
121 
122 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
123 {
124 	writeb(val, docg3->cascade->base + reg);
125 	trace_docg3_io(1, 8, reg, val);
126 }
127 
128 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
129 {
130 	writew(val, docg3->cascade->base + reg);
131 	trace_docg3_io(1, 16, reg, val);
132 }
133 
134 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
135 {
136 	doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
137 }
138 
139 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
140 {
141 	doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
142 }
143 
144 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
145 {
146 	doc_writeb(docg3, addr, DOC_FLASHADDRESS);
147 }
148 
149 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
150 
151 static int doc_register_readb(struct docg3 *docg3, int reg)
152 {
153 	u8 val;
154 
155 	doc_writew(docg3, reg, DOC_READADDRESS);
156 	val = doc_readb(docg3, reg);
157 	doc_vdbg("Read register %04x : %02x\n", reg, val);
158 	return val;
159 }
160 
161 static int doc_register_readw(struct docg3 *docg3, int reg)
162 {
163 	u16 val;
164 
165 	doc_writew(docg3, reg, DOC_READADDRESS);
166 	val = doc_readw(docg3, reg);
167 	doc_vdbg("Read register %04x : %04x\n", reg, val);
168 	return val;
169 }
170 
171 /**
172  * doc_delay - delay docg3 operations
173  * @docg3: the device
174  * @nbNOPs: the number of NOPs to issue
175  *
176  * As no specification is available, the right timings between chip commands are
177  * unknown. The only available piece of information are the observed nops on a
178  * working docg3 chip.
179  * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
180  * friendlier msleep() functions or blocking mdelay().
181  */
182 static void doc_delay(struct docg3 *docg3, int nbNOPs)
183 {
184 	int i;
185 
186 	doc_vdbg("NOP x %d\n", nbNOPs);
187 	for (i = 0; i < nbNOPs; i++)
188 		doc_writeb(docg3, 0, DOC_NOP);
189 }
190 
191 static int is_prot_seq_error(struct docg3 *docg3)
192 {
193 	int ctrl;
194 
195 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
196 	return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
197 }
198 
199 static int doc_is_ready(struct docg3 *docg3)
200 {
201 	int ctrl;
202 
203 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
204 	return ctrl & DOC_CTRL_FLASHREADY;
205 }
206 
207 static int doc_wait_ready(struct docg3 *docg3)
208 {
209 	int maxWaitCycles = 100;
210 
211 	do {
212 		doc_delay(docg3, 4);
213 		cpu_relax();
214 	} while (!doc_is_ready(docg3) && maxWaitCycles--);
215 	doc_delay(docg3, 2);
216 	if (maxWaitCycles > 0)
217 		return 0;
218 	else
219 		return -EIO;
220 }
221 
222 static int doc_reset_seq(struct docg3 *docg3)
223 {
224 	int ret;
225 
226 	doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
227 	doc_flash_sequence(docg3, DOC_SEQ_RESET);
228 	doc_flash_command(docg3, DOC_CMD_RESET);
229 	doc_delay(docg3, 2);
230 	ret = doc_wait_ready(docg3);
231 
232 	doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
233 	return ret;
234 }
235 
236 /**
237  * doc_read_data_area - Read data from data area
238  * @docg3: the device
239  * @buf: the buffer to fill in (might be NULL is dummy reads)
240  * @len: the length to read
241  * @first: first time read, DOC_READADDRESS should be set
242  *
243  * Reads bytes from flash data. Handles the single byte / even bytes reads.
244  */
245 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
246 			       int first)
247 {
248 	int i, cdr, len4;
249 	u16 data16, *dst16;
250 	u8 data8, *dst8;
251 
252 	doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
253 	cdr = len & 0x1;
254 	len4 = len - cdr;
255 
256 	if (first)
257 		doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
258 	dst16 = buf;
259 	for (i = 0; i < len4; i += 2) {
260 		data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
261 		if (dst16) {
262 			*dst16 = data16;
263 			dst16++;
264 		}
265 	}
266 
267 	if (cdr) {
268 		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
269 			   DOC_READADDRESS);
270 		doc_delay(docg3, 1);
271 		dst8 = (u8 *)dst16;
272 		for (i = 0; i < cdr; i++) {
273 			data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
274 			if (dst8) {
275 				*dst8 = data8;
276 				dst8++;
277 			}
278 		}
279 	}
280 }
281 
282 /**
283  * doc_write_data_area - Write data into data area
284  * @docg3: the device
285  * @buf: the buffer to get input bytes from
286  * @len: the length to write
287  *
288  * Writes bytes into flash data. Handles the single byte / even bytes writes.
289  */
290 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
291 {
292 	int i, cdr, len4;
293 	u16 *src16;
294 	u8 *src8;
295 
296 	doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
297 	cdr = len & 0x3;
298 	len4 = len - cdr;
299 
300 	doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
301 	src16 = (u16 *)buf;
302 	for (i = 0; i < len4; i += 2) {
303 		doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
304 		src16++;
305 	}
306 
307 	src8 = (u8 *)src16;
308 	for (i = 0; i < cdr; i++) {
309 		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
310 			   DOC_READADDRESS);
311 		doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
312 		src8++;
313 	}
314 }
315 
316 /**
317  * doc_set_data_mode - Sets the flash to normal or reliable data mode
318  * @docg3: the device
319  *
320  * The reliable data mode is a bit slower than the fast mode, but less errors
321  * occur.  Entering the reliable mode cannot be done without entering the fast
322  * mode first.
323  *
324  * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
325  * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
326  * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
327  * result, which is a logical and between bytes from page 0 and page 1 (which is
328  * consistent with the fact that writing to a page is _clearing_ bits of that
329  * page).
330  */
331 static void doc_set_reliable_mode(struct docg3 *docg3)
332 {
333 	static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
334 
335 	doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
336 	switch (docg3->reliable) {
337 	case 0:
338 		break;
339 	case 1:
340 		doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
341 		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
342 		break;
343 	case 2:
344 		doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
345 		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
346 		doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
347 		break;
348 	default:
349 		doc_err("doc_set_reliable_mode(): invalid mode\n");
350 		break;
351 	}
352 	doc_delay(docg3, 2);
353 }
354 
355 /**
356  * doc_set_asic_mode - Set the ASIC mode
357  * @docg3: the device
358  * @mode: the mode
359  *
360  * The ASIC can work in 3 modes :
361  *  - RESET: all registers are zeroed
362  *  - NORMAL: receives and handles commands
363  *  - POWERDOWN: minimal poweruse, flash parts shut off
364  */
365 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
366 {
367 	int i;
368 
369 	for (i = 0; i < 12; i++)
370 		doc_readb(docg3, DOC_IOSPACE_IPL);
371 
372 	mode |= DOC_ASICMODE_MDWREN;
373 	doc_dbg("doc_set_asic_mode(%02x)\n", mode);
374 	doc_writeb(docg3, mode, DOC_ASICMODE);
375 	doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
376 	doc_delay(docg3, 1);
377 }
378 
379 /**
380  * doc_set_device_id - Sets the devices id for cascaded G3 chips
381  * @docg3: the device
382  * @id: the chip to select (amongst 0, 1, 2, 3)
383  *
384  * There can be 4 cascaded G3 chips. This function selects the one which will
385  * should be the active one.
386  */
387 static void doc_set_device_id(struct docg3 *docg3, int id)
388 {
389 	u8 ctrl;
390 
391 	doc_dbg("doc_set_device_id(%d)\n", id);
392 	doc_writeb(docg3, id, DOC_DEVICESELECT);
393 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
394 
395 	ctrl &= ~DOC_CTRL_VIOLATION;
396 	ctrl |= DOC_CTRL_CE;
397 	doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
398 }
399 
400 /**
401  * doc_set_extra_page_mode - Change flash page layout
402  * @docg3: the device
403  *
404  * Normally, the flash page is split into the data (512 bytes) and the out of
405  * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
406  * leveling counters are stored.  To access this last area of 4 bytes, a special
407  * mode must be input to the flash ASIC.
408  *
409  * Returns 0 if no error occurred, -EIO else.
410  */
411 static int doc_set_extra_page_mode(struct docg3 *docg3)
412 {
413 	int fctrl;
414 
415 	doc_dbg("doc_set_extra_page_mode()\n");
416 	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
417 	doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
418 	doc_delay(docg3, 2);
419 
420 	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
421 	if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
422 		return -EIO;
423 	else
424 		return 0;
425 }
426 
427 /**
428  * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
429  * @docg3: the device
430  * @sector: the sector
431  */
432 static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
433 {
434 	doc_delay(docg3, 1);
435 	doc_flash_address(docg3, sector & 0xff);
436 	doc_flash_address(docg3, (sector >> 8) & 0xff);
437 	doc_flash_address(docg3, (sector >> 16) & 0xff);
438 	doc_delay(docg3, 1);
439 }
440 
441 /**
442  * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
443  * @docg3: the device
444  * @sector: the sector
445  * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
446  */
447 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
448 {
449 	ofs = ofs >> 2;
450 	doc_delay(docg3, 1);
451 	doc_flash_address(docg3, ofs & 0xff);
452 	doc_flash_address(docg3, sector & 0xff);
453 	doc_flash_address(docg3, (sector >> 8) & 0xff);
454 	doc_flash_address(docg3, (sector >> 16) & 0xff);
455 	doc_delay(docg3, 1);
456 }
457 
458 /**
459  * doc_seek - Set both flash planes to the specified block, page for reading
460  * @docg3: the device
461  * @block0: the first plane block index
462  * @block1: the second plane block index
463  * @page: the page index within the block
464  * @wear: if true, read will occur on the 4 extra bytes of the wear area
465  * @ofs: offset in page to read
466  *
467  * Programs the flash even and odd planes to the specific block and page.
468  * Alternatively, programs the flash to the wear area of the specified page.
469  */
470 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
471 			 int wear, int ofs)
472 {
473 	int sector, ret = 0;
474 
475 	doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
476 		block0, block1, page, ofs, wear);
477 
478 	if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
479 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
480 		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
481 		doc_delay(docg3, 2);
482 	} else {
483 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
484 		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
485 		doc_delay(docg3, 2);
486 	}
487 
488 	doc_set_reliable_mode(docg3);
489 	if (wear)
490 		ret = doc_set_extra_page_mode(docg3);
491 	if (ret)
492 		goto out;
493 
494 	doc_flash_sequence(docg3, DOC_SEQ_READ);
495 	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
496 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
497 	doc_setup_addr_sector(docg3, sector);
498 
499 	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
500 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
501 	doc_setup_addr_sector(docg3, sector);
502 	doc_delay(docg3, 1);
503 
504 out:
505 	return ret;
506 }
507 
508 /**
509  * doc_write_seek - Set both flash planes to the specified block, page for writing
510  * @docg3: the device
511  * @block0: the first plane block index
512  * @block1: the second plane block index
513  * @page: the page index within the block
514  * @ofs: offset in page to write
515  *
516  * Programs the flash even and odd planes to the specific block and page.
517  * Alternatively, programs the flash to the wear area of the specified page.
518  */
519 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
520 			 int ofs)
521 {
522 	int ret = 0, sector;
523 
524 	doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
525 		block0, block1, page, ofs);
526 
527 	doc_set_reliable_mode(docg3);
528 
529 	if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
530 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
531 		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
532 		doc_delay(docg3, 2);
533 	} else {
534 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
535 		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
536 		doc_delay(docg3, 2);
537 	}
538 
539 	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
540 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
541 
542 	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
543 	doc_setup_writeaddr_sector(docg3, sector, ofs);
544 
545 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
546 	doc_delay(docg3, 2);
547 	ret = doc_wait_ready(docg3);
548 	if (ret)
549 		goto out;
550 
551 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
552 	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
553 	doc_setup_writeaddr_sector(docg3, sector, ofs);
554 	doc_delay(docg3, 1);
555 
556 out:
557 	return ret;
558 }
559 
560 
561 /**
562  * doc_read_page_ecc_init - Initialize hardware ECC engine
563  * @docg3: the device
564  * @len: the number of bytes covered by the ECC (BCH covered)
565  *
566  * The function does initialize the hardware ECC engine to compute the Hamming
567  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
568  *
569  * Return 0 if succeeded, -EIO on error
570  */
571 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
572 {
573 	doc_writew(docg3, DOC_ECCCONF0_READ_MODE
574 		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
575 		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
576 		   DOC_ECCCONF0);
577 	doc_delay(docg3, 4);
578 	doc_register_readb(docg3, DOC_FLASHCONTROL);
579 	return doc_wait_ready(docg3);
580 }
581 
582 /**
583  * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
584  * @docg3: the device
585  * @len: the number of bytes covered by the ECC (BCH covered)
586  *
587  * The function does initialize the hardware ECC engine to compute the Hamming
588  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
589  *
590  * Return 0 if succeeded, -EIO on error
591  */
592 static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
593 {
594 	doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
595 		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
596 		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
597 		   DOC_ECCCONF0);
598 	doc_delay(docg3, 4);
599 	doc_register_readb(docg3, DOC_FLASHCONTROL);
600 	return doc_wait_ready(docg3);
601 }
602 
603 /**
604  * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
605  * @docg3: the device
606  *
607  * Disables the hardware ECC generator and checker, for unchecked reads (as when
608  * reading OOB only or write status byte).
609  */
610 static void doc_ecc_disable(struct docg3 *docg3)
611 {
612 	doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
613 	doc_delay(docg3, 4);
614 }
615 
616 /**
617  * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
618  * @docg3: the device
619  * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
620  *
621  * This function programs the ECC hardware to compute the hamming code on the
622  * last provided N bytes to the hardware generator.
623  */
624 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
625 {
626 	u8 ecc_conf1;
627 
628 	ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
629 	ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
630 	ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
631 	doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
632 }
633 
634 /**
635  * doc_ecc_bch_fix_data - Fix if need be read data from flash
636  * @docg3: the device
637  * @buf: the buffer of read data (512 + 7 + 1 bytes)
638  * @hwecc: the hardware calculated ECC.
639  *         It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
640  *         area data, and calc_ecc the ECC calculated by the hardware generator.
641  *
642  * Checks if the received data matches the ECC, and if an error is detected,
643  * tries to fix the bit flips (at most 4) in the buffer buf.  As the docg3
644  * understands the (data, ecc, syndroms) in an inverted order in comparison to
645  * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
646  * bit6 and bit 1, ...) for all ECC data.
647  *
648  * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
649  * algorithm is used to decode this.  However the hw operates on page
650  * data in a bit order that is the reverse of that of the bch alg,
651  * requiring that the bits be reversed on the result.  Thanks to Ivan
652  * Djelic for his analysis.
653  *
654  * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
655  * errors were detected and cannot be fixed.
656  */
657 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
658 {
659 	u8 ecc[DOC_ECC_BCH_SIZE];
660 	int errorpos[DOC_ECC_BCH_T], i, numerrs;
661 
662 	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
663 		ecc[i] = bitrev8(hwecc[i]);
664 	numerrs = decode_bch(docg3->cascade->bch, NULL,
665 			     DOC_ECC_BCH_COVERED_BYTES,
666 			     NULL, ecc, NULL, errorpos);
667 	BUG_ON(numerrs == -EINVAL);
668 	if (numerrs < 0)
669 		goto out;
670 
671 	for (i = 0; i < numerrs; i++)
672 		errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
673 	for (i = 0; i < numerrs; i++)
674 		if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
675 			/* error is located in data, correct it */
676 			change_bit(errorpos[i], buf);
677 out:
678 	doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
679 	return numerrs;
680 }
681 
682 
683 /**
684  * doc_read_page_prepare - Prepares reading data from a flash page
685  * @docg3: the device
686  * @block0: the first plane block index on flash memory
687  * @block1: the second plane block index on flash memory
688  * @page: the page index in the block
689  * @offset: the offset in the page (must be a multiple of 4)
690  *
691  * Prepares the page to be read in the flash memory :
692  *   - tell ASIC to map the flash pages
693  *   - tell ASIC to be in read mode
694  *
695  * After a call to this method, a call to doc_read_page_finish is mandatory,
696  * to end the read cycle of the flash.
697  *
698  * Read data from a flash page. The length to be read must be between 0 and
699  * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
700  * the extra bytes reading is not implemented).
701  *
702  * As pages are grouped by 2 (in 2 planes), reading from a page must be done
703  * in two steps:
704  *  - one read of 512 bytes at offset 0
705  *  - one read of 512 bytes at offset 512 + 16
706  *
707  * Returns 0 if successful, -EIO if a read error occurred.
708  */
709 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
710 				 int page, int offset)
711 {
712 	int wear_area = 0, ret = 0;
713 
714 	doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
715 		block0, block1, page, offset);
716 	if (offset >= DOC_LAYOUT_WEAR_OFFSET)
717 		wear_area = 1;
718 	if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
719 		return -EINVAL;
720 
721 	doc_set_device_id(docg3, docg3->device_id);
722 	ret = doc_reset_seq(docg3);
723 	if (ret)
724 		goto err;
725 
726 	/* Program the flash address block and page */
727 	ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
728 	if (ret)
729 		goto err;
730 
731 	doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
732 	doc_delay(docg3, 2);
733 	doc_wait_ready(docg3);
734 
735 	doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
736 	doc_delay(docg3, 1);
737 	if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
738 		offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
739 	doc_flash_address(docg3, offset >> 2);
740 	doc_delay(docg3, 1);
741 	doc_wait_ready(docg3);
742 
743 	doc_flash_command(docg3, DOC_CMD_READ_FLASH);
744 
745 	return 0;
746 err:
747 	doc_writeb(docg3, 0, DOC_DATAEND);
748 	doc_delay(docg3, 2);
749 	return -EIO;
750 }
751 
752 /**
753  * doc_read_page_getbytes - Reads bytes from a prepared page
754  * @docg3: the device
755  * @len: the number of bytes to be read (must be a multiple of 4)
756  * @buf: the buffer to be filled in (or NULL is forget bytes)
757  * @first: 1 if first time read, DOC_READADDRESS should be set
758  * @last_odd: 1 if last read ended up on an odd byte
759  *
760  * Reads bytes from a prepared page. There is a trickery here : if the last read
761  * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
762  * planes, the first byte must be read apart. If a word (16bit) read was used,
763  * the read would return the byte of plane 2 as low *and* high endian, which
764  * will mess the read.
765  *
766  */
767 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
768 				  int first, int last_odd)
769 {
770 	if (last_odd && len > 0) {
771 		doc_read_data_area(docg3, buf, 1, first);
772 		doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
773 	} else {
774 		doc_read_data_area(docg3, buf, len, first);
775 	}
776 	doc_delay(docg3, 2);
777 	return len;
778 }
779 
780 /**
781  * doc_write_page_putbytes - Writes bytes into a prepared page
782  * @docg3: the device
783  * @len: the number of bytes to be written
784  * @buf: the buffer of input bytes
785  *
786  */
787 static void doc_write_page_putbytes(struct docg3 *docg3, int len,
788 				    const u_char *buf)
789 {
790 	doc_write_data_area(docg3, buf, len);
791 	doc_delay(docg3, 2);
792 }
793 
794 /**
795  * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
796  * @docg3: the device
797  * @hwecc:  the array of 7 integers where the hardware ecc will be stored
798  */
799 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
800 {
801 	int i;
802 
803 	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
804 		hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
805 }
806 
807 /**
808  * doc_page_finish - Ends reading/writing of a flash page
809  * @docg3: the device
810  */
811 static void doc_page_finish(struct docg3 *docg3)
812 {
813 	doc_writeb(docg3, 0, DOC_DATAEND);
814 	doc_delay(docg3, 2);
815 }
816 
817 /**
818  * doc_read_page_finish - Ends reading of a flash page
819  * @docg3: the device
820  *
821  * As a side effect, resets the chip selector to 0. This ensures that after each
822  * read operation, the floor 0 is selected. Therefore, if the systems halts, the
823  * reboot will boot on floor 0, where the IPL is.
824  */
825 static void doc_read_page_finish(struct docg3 *docg3)
826 {
827 	doc_page_finish(docg3);
828 	doc_set_device_id(docg3, 0);
829 }
830 
831 /**
832  * calc_block_sector - Calculate blocks, pages and ofs.
833 
834  * @from: offset in flash
835  * @block0: first plane block index calculated
836  * @block1: second plane block index calculated
837  * @page: page calculated
838  * @ofs: offset in page
839  * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
840  * reliable mode.
841  *
842  * The calculation is based on the reliable/normal mode. In normal mode, the 64
843  * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
844  * clones, only 32 pages per block are available.
845  */
846 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
847 			      int *ofs, int reliable)
848 {
849 	uint sector, pages_biblock;
850 
851 	pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
852 	if (reliable == 1 || reliable == 2)
853 		pages_biblock /= 2;
854 
855 	sector = from / DOC_LAYOUT_PAGE_SIZE;
856 	*block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
857 	*block1 = *block0 + 1;
858 	*page = sector % pages_biblock;
859 	*page /= DOC_LAYOUT_NBPLANES;
860 	if (reliable == 1 || reliable == 2)
861 		*page *= 2;
862 	if (sector % 2)
863 		*ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
864 	else
865 		*ofs = 0;
866 }
867 
868 /**
869  * doc_read_oob - Read out of band bytes from flash
870  * @mtd: the device
871  * @from: the offset from first block and first page, in bytes, aligned on page
872  *        size
873  * @ops: the mtd oob structure
874  *
875  * Reads flash memory OOB area of pages.
876  *
877  * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
878  */
879 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
880 			struct mtd_oob_ops *ops)
881 {
882 	struct docg3 *docg3 = mtd->priv;
883 	int block0, block1, page, ret, skip, ofs = 0;
884 	u8 *oobbuf = ops->oobbuf;
885 	u8 *buf = ops->datbuf;
886 	size_t len, ooblen, nbdata, nboob;
887 	u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
888 	int max_bitflips = 0;
889 
890 	if (buf)
891 		len = ops->len;
892 	else
893 		len = 0;
894 	if (oobbuf)
895 		ooblen = ops->ooblen;
896 	else
897 		ooblen = 0;
898 
899 	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
900 		oobbuf += ops->ooboffs;
901 
902 	doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
903 		from, ops->mode, buf, len, oobbuf, ooblen);
904 	if (ooblen % DOC_LAYOUT_OOB_SIZE)
905 		return -EINVAL;
906 
907 	if (from + len > mtd->size)
908 		return -EINVAL;
909 
910 	ops->oobretlen = 0;
911 	ops->retlen = 0;
912 	ret = 0;
913 	skip = from % DOC_LAYOUT_PAGE_SIZE;
914 	mutex_lock(&docg3->cascade->lock);
915 	while (ret >= 0 && (len > 0 || ooblen > 0)) {
916 		calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
917 			docg3->reliable);
918 		nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
919 		nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
920 		ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
921 		if (ret < 0)
922 			goto out;
923 		ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
924 		if (ret < 0)
925 			goto err_in_read;
926 		ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
927 		if (ret < skip)
928 			goto err_in_read;
929 		ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
930 		if (ret < nbdata)
931 			goto err_in_read;
932 		doc_read_page_getbytes(docg3,
933 				       DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
934 				       NULL, 0, (skip + nbdata) % 2);
935 		ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
936 		if (ret < nboob)
937 			goto err_in_read;
938 		doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
939 				       NULL, 0, nboob % 2);
940 
941 		doc_get_bch_hw_ecc(docg3, hwecc);
942 		eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
943 
944 		if (nboob >= DOC_LAYOUT_OOB_SIZE) {
945 			doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
946 			doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
947 			doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
948 			doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
949 		}
950 		doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
951 		doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
952 
953 		ret = -EIO;
954 		if (is_prot_seq_error(docg3))
955 			goto err_in_read;
956 		ret = 0;
957 		if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
958 		    (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
959 		    (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
960 		    (ops->mode != MTD_OPS_RAW) &&
961 		    (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
962 			ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
963 			if (ret < 0) {
964 				mtd->ecc_stats.failed++;
965 				ret = -EBADMSG;
966 			}
967 			if (ret > 0) {
968 				mtd->ecc_stats.corrected += ret;
969 				max_bitflips = max(max_bitflips, ret);
970 				ret = max_bitflips;
971 			}
972 		}
973 
974 		doc_read_page_finish(docg3);
975 		ops->retlen += nbdata;
976 		ops->oobretlen += nboob;
977 		buf += nbdata;
978 		oobbuf += nboob;
979 		len -= nbdata;
980 		ooblen -= nboob;
981 		from += DOC_LAYOUT_PAGE_SIZE;
982 		skip = 0;
983 	}
984 
985 out:
986 	mutex_unlock(&docg3->cascade->lock);
987 	return ret;
988 err_in_read:
989 	doc_read_page_finish(docg3);
990 	goto out;
991 }
992 
993 /**
994  * doc_read - Read bytes from flash
995  * @mtd: the device
996  * @from: the offset from first block and first page, in bytes, aligned on page
997  *        size
998  * @len: the number of bytes to read (must be a multiple of 4)
999  * @retlen: the number of bytes actually read
1000  * @buf: the filled in buffer
1001  *
1002  * Reads flash memory pages. This function does not read the OOB chunk, but only
1003  * the page data.
1004  *
1005  * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
1006  */
1007 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
1008 	     size_t *retlen, u_char *buf)
1009 {
1010 	struct mtd_oob_ops ops;
1011 	size_t ret;
1012 
1013 	memset(&ops, 0, sizeof(ops));
1014 	ops.datbuf = buf;
1015 	ops.len = len;
1016 	ops.mode = MTD_OPS_AUTO_OOB;
1017 
1018 	ret = doc_read_oob(mtd, from, &ops);
1019 	*retlen = ops.retlen;
1020 	return ret;
1021 }
1022 
1023 static int doc_reload_bbt(struct docg3 *docg3)
1024 {
1025 	int block = DOC_LAYOUT_BLOCK_BBT;
1026 	int ret = 0, nbpages, page;
1027 	u_char *buf = docg3->bbt;
1028 
1029 	nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
1030 	for (page = 0; !ret && (page < nbpages); page++) {
1031 		ret = doc_read_page_prepare(docg3, block, block + 1,
1032 					    page + DOC_LAYOUT_PAGE_BBT, 0);
1033 		if (!ret)
1034 			ret = doc_read_page_ecc_init(docg3,
1035 						     DOC_LAYOUT_PAGE_SIZE);
1036 		if (!ret)
1037 			doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1038 					       buf, 1, 0);
1039 		buf += DOC_LAYOUT_PAGE_SIZE;
1040 	}
1041 	doc_read_page_finish(docg3);
1042 	return ret;
1043 }
1044 
1045 /**
1046  * doc_block_isbad - Checks whether a block is good or not
1047  * @mtd: the device
1048  * @from: the offset to find the correct block
1049  *
1050  * Returns 1 if block is bad, 0 if block is good
1051  */
1052 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1053 {
1054 	struct docg3 *docg3 = mtd->priv;
1055 	int block0, block1, page, ofs, is_good;
1056 
1057 	calc_block_sector(from, &block0, &block1, &page, &ofs,
1058 		docg3->reliable);
1059 	doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1060 		from, block0, block1, page, ofs);
1061 
1062 	if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1063 		return 0;
1064 	if (block1 > docg3->max_block)
1065 		return -EINVAL;
1066 
1067 	is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1068 	return !is_good;
1069 }
1070 
1071 #if 0
1072 /**
1073  * doc_get_erase_count - Get block erase count
1074  * @docg3: the device
1075  * @from: the offset in which the block is.
1076  *
1077  * Get the number of times a block was erased. The number is the maximum of
1078  * erase times between first and second plane (which should be equal normally).
1079  *
1080  * Returns The number of erases, or -EINVAL or -EIO on error.
1081  */
1082 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1083 {
1084 	u8 buf[DOC_LAYOUT_WEAR_SIZE];
1085 	int ret, plane1_erase_count, plane2_erase_count;
1086 	int block0, block1, page, ofs;
1087 
1088 	doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1089 	if (from % DOC_LAYOUT_PAGE_SIZE)
1090 		return -EINVAL;
1091 	calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1092 	if (block1 > docg3->max_block)
1093 		return -EINVAL;
1094 
1095 	ret = doc_reset_seq(docg3);
1096 	if (!ret)
1097 		ret = doc_read_page_prepare(docg3, block0, block1, page,
1098 					    ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1099 	if (!ret)
1100 		ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1101 					     buf, 1, 0);
1102 	doc_read_page_finish(docg3);
1103 
1104 	if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1105 		return -EIO;
1106 	plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1107 		| ((u8)(~buf[5]) << 16);
1108 	plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1109 		| ((u8)(~buf[7]) << 16);
1110 
1111 	return max(plane1_erase_count, plane2_erase_count);
1112 }
1113 #endif
1114 
1115 /**
1116  * doc_get_op_status - get erase/write operation status
1117  * @docg3: the device
1118  *
1119  * Queries the status from the chip, and returns it
1120  *
1121  * Returns the status (bits DOC_PLANES_STATUS_*)
1122  */
1123 static int doc_get_op_status(struct docg3 *docg3)
1124 {
1125 	u8 status;
1126 
1127 	doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1128 	doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1129 	doc_delay(docg3, 5);
1130 
1131 	doc_ecc_disable(docg3);
1132 	doc_read_data_area(docg3, &status, 1, 1);
1133 	return status;
1134 }
1135 
1136 /**
1137  * doc_write_erase_wait_status - wait for write or erase completion
1138  * @docg3: the device
1139  *
1140  * Wait for the chip to be ready again after erase or write operation, and check
1141  * erase/write status.
1142  *
1143  * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1144  * timeout
1145  */
1146 static int doc_write_erase_wait_status(struct docg3 *docg3)
1147 {
1148 	int i, status, ret = 0;
1149 
1150 	for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1151 		msleep(20);
1152 	if (!doc_is_ready(docg3)) {
1153 		doc_dbg("Timeout reached and the chip is still not ready\n");
1154 		ret = -EAGAIN;
1155 		goto out;
1156 	}
1157 
1158 	status = doc_get_op_status(docg3);
1159 	if (status & DOC_PLANES_STATUS_FAIL) {
1160 		doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1161 			status);
1162 		ret = -EIO;
1163 	}
1164 
1165 out:
1166 	doc_page_finish(docg3);
1167 	return ret;
1168 }
1169 
1170 /**
1171  * doc_erase_block - Erase a couple of blocks
1172  * @docg3: the device
1173  * @block0: the first block to erase (leftmost plane)
1174  * @block1: the second block to erase (rightmost plane)
1175  *
1176  * Erase both blocks, and return operation status
1177  *
1178  * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1179  * ready for too long
1180  */
1181 static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1182 {
1183 	int ret, sector;
1184 
1185 	doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1186 	ret = doc_reset_seq(docg3);
1187 	if (ret)
1188 		return -EIO;
1189 
1190 	doc_set_reliable_mode(docg3);
1191 	doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1192 
1193 	sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1194 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1195 	doc_setup_addr_sector(docg3, sector);
1196 	sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1197 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1198 	doc_setup_addr_sector(docg3, sector);
1199 	doc_delay(docg3, 1);
1200 
1201 	doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1202 	doc_delay(docg3, 2);
1203 
1204 	if (is_prot_seq_error(docg3)) {
1205 		doc_err("Erase blocks %d,%d error\n", block0, block1);
1206 		return -EIO;
1207 	}
1208 
1209 	return doc_write_erase_wait_status(docg3);
1210 }
1211 
1212 /**
1213  * doc_erase - Erase a portion of the chip
1214  * @mtd: the device
1215  * @info: the erase info
1216  *
1217  * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1218  * split into 2 pages of 512 bytes on 2 contiguous blocks.
1219  *
1220  * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1221  * issue
1222  */
1223 static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1224 {
1225 	struct docg3 *docg3 = mtd->priv;
1226 	uint64_t len;
1227 	int block0, block1, page, ret, ofs = 0;
1228 
1229 	doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1230 
1231 	info->state = MTD_ERASE_PENDING;
1232 	calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1233 			  &ofs, docg3->reliable);
1234 	ret = -EINVAL;
1235 	if (info->addr + info->len > mtd->size || page || ofs)
1236 		goto reset_err;
1237 
1238 	ret = 0;
1239 	calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1240 			  docg3->reliable);
1241 	mutex_lock(&docg3->cascade->lock);
1242 	doc_set_device_id(docg3, docg3->device_id);
1243 	doc_set_reliable_mode(docg3);
1244 	for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1245 		info->state = MTD_ERASING;
1246 		ret = doc_erase_block(docg3, block0, block1);
1247 		block0 += 2;
1248 		block1 += 2;
1249 	}
1250 	mutex_unlock(&docg3->cascade->lock);
1251 
1252 	if (ret)
1253 		goto reset_err;
1254 
1255 	info->state = MTD_ERASE_DONE;
1256 	return 0;
1257 
1258 reset_err:
1259 	info->state = MTD_ERASE_FAILED;
1260 	return ret;
1261 }
1262 
1263 /**
1264  * doc_write_page - Write a single page to the chip
1265  * @docg3: the device
1266  * @to: the offset from first block and first page, in bytes, aligned on page
1267  *      size
1268  * @buf: buffer to get bytes from
1269  * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1270  *       written)
1271  * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1272  *           BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1273  *           remaining ones are filled with hardware Hamming and BCH
1274  *           computations. Its value is not meaningfull is oob == NULL.
1275  *
1276  * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1277  * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1278  * BCH generator if autoecc is not null.
1279  *
1280  * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1281  */
1282 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1283 			  const u_char *oob, int autoecc)
1284 {
1285 	int block0, block1, page, ret, ofs = 0;
1286 	u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1287 
1288 	doc_dbg("doc_write_page(to=%lld)\n", to);
1289 	calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1290 
1291 	doc_set_device_id(docg3, docg3->device_id);
1292 	ret = doc_reset_seq(docg3);
1293 	if (ret)
1294 		goto err;
1295 
1296 	/* Program the flash address block and page */
1297 	ret = doc_write_seek(docg3, block0, block1, page, ofs);
1298 	if (ret)
1299 		goto err;
1300 
1301 	doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1302 	doc_delay(docg3, 2);
1303 	doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1304 
1305 	if (oob && autoecc) {
1306 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1307 		doc_delay(docg3, 2);
1308 		oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1309 
1310 		hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1311 		doc_delay(docg3, 2);
1312 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1313 					&hamming);
1314 		doc_delay(docg3, 2);
1315 
1316 		doc_get_bch_hw_ecc(docg3, hwecc);
1317 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1318 		doc_delay(docg3, 2);
1319 
1320 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1321 	}
1322 	if (oob && !autoecc)
1323 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1324 
1325 	doc_delay(docg3, 2);
1326 	doc_page_finish(docg3);
1327 	doc_delay(docg3, 2);
1328 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1329 	doc_delay(docg3, 2);
1330 
1331 	/*
1332 	 * The wait status will perform another doc_page_finish() call, but that
1333 	 * seems to please the docg3, so leave it.
1334 	 */
1335 	ret = doc_write_erase_wait_status(docg3);
1336 	return ret;
1337 err:
1338 	doc_read_page_finish(docg3);
1339 	return ret;
1340 }
1341 
1342 /**
1343  * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1344  * @ops: the oob operations
1345  *
1346  * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1347  */
1348 static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1349 {
1350 	int autoecc;
1351 
1352 	switch (ops->mode) {
1353 	case MTD_OPS_PLACE_OOB:
1354 	case MTD_OPS_AUTO_OOB:
1355 		autoecc = 1;
1356 		break;
1357 	case MTD_OPS_RAW:
1358 		autoecc = 0;
1359 		break;
1360 	default:
1361 		autoecc = -EINVAL;
1362 	}
1363 	return autoecc;
1364 }
1365 
1366 /**
1367  * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1368  * @dst: the target 16 bytes OOB buffer
1369  * @oobsrc: the source 8 bytes non-ECC OOB buffer
1370  *
1371  */
1372 static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1373 {
1374 	memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1375 	dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1376 }
1377 
1378 /**
1379  * doc_backup_oob - Backup OOB into docg3 structure
1380  * @docg3: the device
1381  * @to: the page offset in the chip
1382  * @ops: the OOB size and buffer
1383  *
1384  * As the docg3 should write a page with its OOB in one pass, and some userland
1385  * applications do write_oob() to setup the OOB and then write(), store the OOB
1386  * into a temporary storage. This is very dangerous, as 2 concurrent
1387  * applications could store an OOB, and then write their pages (which will
1388  * result into one having its OOB corrupted).
1389  *
1390  * The only reliable way would be for userland to call doc_write_oob() with both
1391  * the page data _and_ the OOB area.
1392  *
1393  * Returns 0 if success, -EINVAL if ops content invalid
1394  */
1395 static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1396 			  struct mtd_oob_ops *ops)
1397 {
1398 	int ooblen = ops->ooblen, autoecc;
1399 
1400 	if (ooblen != DOC_LAYOUT_OOB_SIZE)
1401 		return -EINVAL;
1402 	autoecc = doc_guess_autoecc(ops);
1403 	if (autoecc < 0)
1404 		return autoecc;
1405 
1406 	docg3->oob_write_ofs = to;
1407 	docg3->oob_autoecc = autoecc;
1408 	if (ops->mode == MTD_OPS_AUTO_OOB) {
1409 		doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1410 		ops->oobretlen = 8;
1411 	} else {
1412 		memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1413 		ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1414 	}
1415 	return 0;
1416 }
1417 
1418 /**
1419  * doc_write_oob - Write out of band bytes to flash
1420  * @mtd: the device
1421  * @ofs: the offset from first block and first page, in bytes, aligned on page
1422  *       size
1423  * @ops: the mtd oob structure
1424  *
1425  * Either write OOB data into a temporary buffer, for the subsequent write
1426  * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1427  * as well, issue the page write.
1428  * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1429  * still be filled in if asked for).
1430  *
1431  * Returns 0 is successful, EINVAL if length is not 14 bytes
1432  */
1433 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1434 			 struct mtd_oob_ops *ops)
1435 {
1436 	struct docg3 *docg3 = mtd->priv;
1437 	int ret, autoecc, oobdelta;
1438 	u8 *oobbuf = ops->oobbuf;
1439 	u8 *buf = ops->datbuf;
1440 	size_t len, ooblen;
1441 	u8 oob[DOC_LAYOUT_OOB_SIZE];
1442 
1443 	if (buf)
1444 		len = ops->len;
1445 	else
1446 		len = 0;
1447 	if (oobbuf)
1448 		ooblen = ops->ooblen;
1449 	else
1450 		ooblen = 0;
1451 
1452 	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1453 		oobbuf += ops->ooboffs;
1454 
1455 	doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1456 		ofs, ops->mode, buf, len, oobbuf, ooblen);
1457 	switch (ops->mode) {
1458 	case MTD_OPS_PLACE_OOB:
1459 	case MTD_OPS_RAW:
1460 		oobdelta = mtd->oobsize;
1461 		break;
1462 	case MTD_OPS_AUTO_OOB:
1463 		oobdelta = mtd->oobavail;
1464 		break;
1465 	default:
1466 		return -EINVAL;
1467 	}
1468 	if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1469 	    (ofs % DOC_LAYOUT_PAGE_SIZE))
1470 		return -EINVAL;
1471 	if (len && ooblen &&
1472 	    (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1473 		return -EINVAL;
1474 	if (ofs + len > mtd->size)
1475 		return -EINVAL;
1476 
1477 	ops->oobretlen = 0;
1478 	ops->retlen = 0;
1479 	ret = 0;
1480 	if (len == 0 && ooblen == 0)
1481 		return -EINVAL;
1482 	if (len == 0 && ooblen > 0)
1483 		return doc_backup_oob(docg3, ofs, ops);
1484 
1485 	autoecc = doc_guess_autoecc(ops);
1486 	if (autoecc < 0)
1487 		return autoecc;
1488 
1489 	mutex_lock(&docg3->cascade->lock);
1490 	while (!ret && len > 0) {
1491 		memset(oob, 0, sizeof(oob));
1492 		if (ofs == docg3->oob_write_ofs)
1493 			memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1494 		else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1495 			doc_fill_autooob(oob, oobbuf);
1496 		else if (ooblen > 0)
1497 			memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1498 		ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1499 
1500 		ofs += DOC_LAYOUT_PAGE_SIZE;
1501 		len -= DOC_LAYOUT_PAGE_SIZE;
1502 		buf += DOC_LAYOUT_PAGE_SIZE;
1503 		if (ooblen) {
1504 			oobbuf += oobdelta;
1505 			ooblen -= oobdelta;
1506 			ops->oobretlen += oobdelta;
1507 		}
1508 		ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1509 	}
1510 
1511 	doc_set_device_id(docg3, 0);
1512 	mutex_unlock(&docg3->cascade->lock);
1513 	return ret;
1514 }
1515 
1516 /**
1517  * doc_write - Write a buffer to the chip
1518  * @mtd: the device
1519  * @to: the offset from first block and first page, in bytes, aligned on page
1520  *      size
1521  * @len: the number of bytes to write (must be a full page size, ie. 512)
1522  * @retlen: the number of bytes actually written (0 or 512)
1523  * @buf: the buffer to get bytes from
1524  *
1525  * Writes data to the chip.
1526  *
1527  * Returns 0 if write successful, -EIO if write error
1528  */
1529 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1530 		     size_t *retlen, const u_char *buf)
1531 {
1532 	struct docg3 *docg3 = mtd->priv;
1533 	int ret;
1534 	struct mtd_oob_ops ops;
1535 
1536 	doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1537 	ops.datbuf = (char *)buf;
1538 	ops.len = len;
1539 	ops.mode = MTD_OPS_PLACE_OOB;
1540 	ops.oobbuf = NULL;
1541 	ops.ooblen = 0;
1542 	ops.ooboffs = 0;
1543 
1544 	ret = doc_write_oob(mtd, to, &ops);
1545 	*retlen = ops.retlen;
1546 	return ret;
1547 }
1548 
1549 static struct docg3 *sysfs_dev2docg3(struct device *dev,
1550 				     struct device_attribute *attr)
1551 {
1552 	int floor;
1553 	struct platform_device *pdev = to_platform_device(dev);
1554 	struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1555 
1556 	floor = attr->attr.name[1] - '0';
1557 	if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1558 		return NULL;
1559 	else
1560 		return docg3_floors[floor]->priv;
1561 }
1562 
1563 static ssize_t dps0_is_key_locked(struct device *dev,
1564 				  struct device_attribute *attr, char *buf)
1565 {
1566 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1567 	int dps0;
1568 
1569 	mutex_lock(&docg3->cascade->lock);
1570 	doc_set_device_id(docg3, docg3->device_id);
1571 	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1572 	doc_set_device_id(docg3, 0);
1573 	mutex_unlock(&docg3->cascade->lock);
1574 
1575 	return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1576 }
1577 
1578 static ssize_t dps1_is_key_locked(struct device *dev,
1579 				  struct device_attribute *attr, char *buf)
1580 {
1581 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1582 	int dps1;
1583 
1584 	mutex_lock(&docg3->cascade->lock);
1585 	doc_set_device_id(docg3, docg3->device_id);
1586 	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1587 	doc_set_device_id(docg3, 0);
1588 	mutex_unlock(&docg3->cascade->lock);
1589 
1590 	return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1591 }
1592 
1593 static ssize_t dps0_insert_key(struct device *dev,
1594 			       struct device_attribute *attr,
1595 			       const char *buf, size_t count)
1596 {
1597 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1598 	int i;
1599 
1600 	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1601 		return -EINVAL;
1602 
1603 	mutex_lock(&docg3->cascade->lock);
1604 	doc_set_device_id(docg3, docg3->device_id);
1605 	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1606 		doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1607 	doc_set_device_id(docg3, 0);
1608 	mutex_unlock(&docg3->cascade->lock);
1609 	return count;
1610 }
1611 
1612 static ssize_t dps1_insert_key(struct device *dev,
1613 			       struct device_attribute *attr,
1614 			       const char *buf, size_t count)
1615 {
1616 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1617 	int i;
1618 
1619 	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1620 		return -EINVAL;
1621 
1622 	mutex_lock(&docg3->cascade->lock);
1623 	doc_set_device_id(docg3, docg3->device_id);
1624 	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1625 		doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1626 	doc_set_device_id(docg3, 0);
1627 	mutex_unlock(&docg3->cascade->lock);
1628 	return count;
1629 }
1630 
1631 #define FLOOR_SYSFS(id) { \
1632 	__ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1633 	__ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1634 	__ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1635 	__ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1636 }
1637 
1638 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1639 	FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1640 };
1641 
1642 static int doc_register_sysfs(struct platform_device *pdev,
1643 			      struct docg3_cascade *cascade)
1644 {
1645 	struct device *dev = &pdev->dev;
1646 	int floor;
1647 	int ret;
1648 	int i;
1649 
1650 	for (floor = 0;
1651 	     floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1652 	     floor++) {
1653 		for (i = 0; i < 4; i++) {
1654 			ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1655 			if (ret)
1656 				goto remove_files;
1657 		}
1658 	}
1659 
1660 	return 0;
1661 
1662 remove_files:
1663 	do {
1664 		while (--i >= 0)
1665 			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1666 		i = 4;
1667 	} while (--floor >= 0);
1668 
1669 	return ret;
1670 }
1671 
1672 static void doc_unregister_sysfs(struct platform_device *pdev,
1673 				 struct docg3_cascade *cascade)
1674 {
1675 	struct device *dev = &pdev->dev;
1676 	int floor, i;
1677 
1678 	for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1679 	     floor++)
1680 		for (i = 0; i < 4; i++)
1681 			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1682 }
1683 
1684 /*
1685  * Debug sysfs entries
1686  */
1687 static int dbg_flashctrl_show(struct seq_file *s, void *p)
1688 {
1689 	struct docg3 *docg3 = (struct docg3 *)s->private;
1690 
1691 	u8 fctrl;
1692 
1693 	mutex_lock(&docg3->cascade->lock);
1694 	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1695 	mutex_unlock(&docg3->cascade->lock);
1696 
1697 	seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1698 		   fctrl,
1699 		   fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1700 		   fctrl & DOC_CTRL_CE ? "active" : "inactive",
1701 		   fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1702 		   fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1703 		   fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1704 
1705 	return 0;
1706 }
1707 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1708 
1709 static int dbg_asicmode_show(struct seq_file *s, void *p)
1710 {
1711 	struct docg3 *docg3 = (struct docg3 *)s->private;
1712 
1713 	int pctrl, mode;
1714 
1715 	mutex_lock(&docg3->cascade->lock);
1716 	pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1717 	mode = pctrl & 0x03;
1718 	mutex_unlock(&docg3->cascade->lock);
1719 
1720 	seq_printf(s,
1721 		   "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1722 		   pctrl,
1723 		   pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1724 		   pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1725 		   pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1726 		   pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1727 		   pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1728 		   mode >> 1, mode & 0x1);
1729 
1730 	switch (mode) {
1731 	case DOC_ASICMODE_RESET:
1732 		seq_puts(s, "reset");
1733 		break;
1734 	case DOC_ASICMODE_NORMAL:
1735 		seq_puts(s, "normal");
1736 		break;
1737 	case DOC_ASICMODE_POWERDOWN:
1738 		seq_puts(s, "powerdown");
1739 		break;
1740 	}
1741 	seq_puts(s, ")\n");
1742 	return 0;
1743 }
1744 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1745 
1746 static int dbg_device_id_show(struct seq_file *s, void *p)
1747 {
1748 	struct docg3 *docg3 = (struct docg3 *)s->private;
1749 	int id;
1750 
1751 	mutex_lock(&docg3->cascade->lock);
1752 	id = doc_register_readb(docg3, DOC_DEVICESELECT);
1753 	mutex_unlock(&docg3->cascade->lock);
1754 
1755 	seq_printf(s, "DeviceId = %d\n", id);
1756 	return 0;
1757 }
1758 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1759 
1760 static int dbg_protection_show(struct seq_file *s, void *p)
1761 {
1762 	struct docg3 *docg3 = (struct docg3 *)s->private;
1763 	int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1764 
1765 	mutex_lock(&docg3->cascade->lock);
1766 	protect = doc_register_readb(docg3, DOC_PROTECTION);
1767 	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1768 	dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1769 	dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1770 	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1771 	dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1772 	dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1773 	mutex_unlock(&docg3->cascade->lock);
1774 
1775 	seq_printf(s, "Protection = 0x%02x (", protect);
1776 	if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1777 		seq_puts(s, "FOUNDRY_OTP_LOCK,");
1778 	if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1779 		seq_puts(s, "CUSTOMER_OTP_LOCK,");
1780 	if (protect & DOC_PROTECT_LOCK_INPUT)
1781 		seq_puts(s, "LOCK_INPUT,");
1782 	if (protect & DOC_PROTECT_STICKY_LOCK)
1783 		seq_puts(s, "STICKY_LOCK,");
1784 	if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1785 		seq_puts(s, "PROTECTION ON,");
1786 	if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1787 		seq_puts(s, "IPL_DOWNLOAD_LOCK,");
1788 	if (protect & DOC_PROTECT_PROTECTION_ERROR)
1789 		seq_puts(s, "PROTECT_ERR,");
1790 	else
1791 		seq_puts(s, "NO_PROTECT_ERR");
1792 	seq_puts(s, ")\n");
1793 
1794 	seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1795 		   dps0, dps0_low, dps0_high,
1796 		   !!(dps0 & DOC_DPS_OTP_PROTECTED),
1797 		   !!(dps0 & DOC_DPS_READ_PROTECTED),
1798 		   !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1799 		   !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1800 		   !!(dps0 & DOC_DPS_KEY_OK));
1801 	seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1802 		   dps1, dps1_low, dps1_high,
1803 		   !!(dps1 & DOC_DPS_OTP_PROTECTED),
1804 		   !!(dps1 & DOC_DPS_READ_PROTECTED),
1805 		   !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1806 		   !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1807 		   !!(dps1 & DOC_DPS_KEY_OK));
1808 	return 0;
1809 }
1810 DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1811 
1812 static void __init doc_dbg_register(struct mtd_info *floor)
1813 {
1814 	struct dentry *root = floor->dbg.dfs_dir;
1815 	struct docg3 *docg3 = floor->priv;
1816 
1817 	if (IS_ERR_OR_NULL(root))
1818 		return;
1819 
1820 	debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3,
1821 			    &flashcontrol_fops);
1822 	debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3,
1823 			    &asic_mode_fops);
1824 	debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3,
1825 			    &device_id_fops);
1826 	debugfs_create_file("docg3_protection", S_IRUSR, root, docg3,
1827 			    &protection_fops);
1828 }
1829 
1830 /**
1831  * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1832  * @chip_id: The chip ID of the supported chip
1833  * @mtd: The structure to fill
1834  */
1835 static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1836 {
1837 	struct docg3 *docg3 = mtd->priv;
1838 	int cfg;
1839 
1840 	cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1841 	docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1842 	docg3->reliable = reliable_mode;
1843 
1844 	switch (chip_id) {
1845 	case DOC_CHIPID_G3:
1846 		mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1847 				      docg3->device_id);
1848 		if (!mtd->name)
1849 			return -ENOMEM;
1850 		docg3->max_block = 2047;
1851 		break;
1852 	}
1853 	mtd->type = MTD_NANDFLASH;
1854 	mtd->flags = MTD_CAP_NANDFLASH;
1855 	mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1856 	if (docg3->reliable == 2)
1857 		mtd->size /= 2;
1858 	mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1859 	if (docg3->reliable == 2)
1860 		mtd->erasesize /= 2;
1861 	mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1862 	mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1863 	mtd->_erase = doc_erase;
1864 	mtd->_read = doc_read;
1865 	mtd->_write = doc_write;
1866 	mtd->_read_oob = doc_read_oob;
1867 	mtd->_write_oob = doc_write_oob;
1868 	mtd->_block_isbad = doc_block_isbad;
1869 	mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops);
1870 	mtd->oobavail = 8;
1871 	mtd->ecc_strength = DOC_ECC_BCH_T;
1872 
1873 	return 0;
1874 }
1875 
1876 /**
1877  * doc_probe_device - Check if a device is available
1878  * @base: the io space where the device is probed
1879  * @floor: the floor of the probed device
1880  * @dev: the device
1881  * @cascade: the cascade of chips this devices will belong to
1882  *
1883  * Checks whether a device at the specified IO range, and floor is available.
1884  *
1885  * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1886  * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1887  * launched.
1888  */
1889 static struct mtd_info * __init
1890 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1891 {
1892 	int ret, bbt_nbpages;
1893 	u16 chip_id, chip_id_inv;
1894 	struct docg3 *docg3;
1895 	struct mtd_info *mtd;
1896 
1897 	ret = -ENOMEM;
1898 	docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1899 	if (!docg3)
1900 		goto nomem1;
1901 	mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1902 	if (!mtd)
1903 		goto nomem2;
1904 	mtd->priv = docg3;
1905 	mtd->dev.parent = dev;
1906 	bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1907 				   8 * DOC_LAYOUT_PAGE_SIZE);
1908 	docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1909 	if (!docg3->bbt)
1910 		goto nomem3;
1911 
1912 	docg3->dev = dev;
1913 	docg3->device_id = floor;
1914 	docg3->cascade = cascade;
1915 	doc_set_device_id(docg3, docg3->device_id);
1916 	if (!floor)
1917 		doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1918 	doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1919 
1920 	chip_id = doc_register_readw(docg3, DOC_CHIPID);
1921 	chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1922 
1923 	ret = 0;
1924 	if (chip_id != (u16)(~chip_id_inv)) {
1925 		goto nomem4;
1926 	}
1927 
1928 	switch (chip_id) {
1929 	case DOC_CHIPID_G3:
1930 		doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1931 			 docg3->cascade->base, floor);
1932 		break;
1933 	default:
1934 		doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1935 		goto nomem4;
1936 	}
1937 
1938 	ret = doc_set_driver_info(chip_id, mtd);
1939 	if (ret)
1940 		goto nomem4;
1941 
1942 	doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1943 	doc_reload_bbt(docg3);
1944 	return mtd;
1945 
1946 nomem4:
1947 	kfree(docg3->bbt);
1948 nomem3:
1949 	kfree(mtd);
1950 nomem2:
1951 	kfree(docg3);
1952 nomem1:
1953 	return ERR_PTR(ret);
1954 }
1955 
1956 /**
1957  * doc_release_device - Release a docg3 floor
1958  * @mtd: the device
1959  */
1960 static void doc_release_device(struct mtd_info *mtd)
1961 {
1962 	struct docg3 *docg3 = mtd->priv;
1963 
1964 	mtd_device_unregister(mtd);
1965 	kfree(docg3->bbt);
1966 	kfree(docg3);
1967 	kfree(mtd->name);
1968 	kfree(mtd);
1969 }
1970 
1971 /**
1972  * docg3_resume - Awakens docg3 floor
1973  * @pdev: platfrom device
1974  *
1975  * Returns 0 (always successful)
1976  */
1977 static int docg3_resume(struct platform_device *pdev)
1978 {
1979 	int i;
1980 	struct docg3_cascade *cascade;
1981 	struct mtd_info **docg3_floors, *mtd;
1982 	struct docg3 *docg3;
1983 
1984 	cascade = platform_get_drvdata(pdev);
1985 	docg3_floors = cascade->floors;
1986 	mtd = docg3_floors[0];
1987 	docg3 = mtd->priv;
1988 
1989 	doc_dbg("docg3_resume()\n");
1990 	for (i = 0; i < 12; i++)
1991 		doc_readb(docg3, DOC_IOSPACE_IPL);
1992 	return 0;
1993 }
1994 
1995 /**
1996  * docg3_suspend - Put in low power mode the docg3 floor
1997  * @pdev: platform device
1998  * @state: power state
1999  *
2000  * Shuts off most of docg3 circuitery to lower power consumption.
2001  *
2002  * Returns 0 if suspend succeeded, -EIO if chip refused suspend
2003  */
2004 static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
2005 {
2006 	int floor, i;
2007 	struct docg3_cascade *cascade;
2008 	struct mtd_info **docg3_floors, *mtd;
2009 	struct docg3 *docg3;
2010 	u8 ctrl, pwr_down;
2011 
2012 	cascade = platform_get_drvdata(pdev);
2013 	docg3_floors = cascade->floors;
2014 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2015 		mtd = docg3_floors[floor];
2016 		if (!mtd)
2017 			continue;
2018 		docg3 = mtd->priv;
2019 
2020 		doc_writeb(docg3, floor, DOC_DEVICESELECT);
2021 		ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
2022 		ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
2023 		doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
2024 
2025 		for (i = 0; i < 10; i++) {
2026 			usleep_range(3000, 4000);
2027 			pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2028 			if (pwr_down & DOC_POWERDOWN_READY)
2029 				break;
2030 		}
2031 		if (pwr_down & DOC_POWERDOWN_READY) {
2032 			doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2033 				floor);
2034 		} else {
2035 			doc_err("docg3_suspend(): floor %d powerdown failed\n",
2036 				floor);
2037 			return -EIO;
2038 		}
2039 	}
2040 
2041 	mtd = docg3_floors[0];
2042 	docg3 = mtd->priv;
2043 	doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2044 	return 0;
2045 }
2046 
2047 /**
2048  * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2049  * @pdev: platform device
2050  *
2051  * Probes for a G3 chip at the specified IO space in the platform data
2052  * ressources. The floor 0 must be available.
2053  *
2054  * Returns 0 on success, -ENOMEM, -ENXIO on error
2055  */
2056 static int __init docg3_probe(struct platform_device *pdev)
2057 {
2058 	struct device *dev = &pdev->dev;
2059 	struct mtd_info *mtd;
2060 	struct resource *ress;
2061 	void __iomem *base;
2062 	int ret, floor;
2063 	struct docg3_cascade *cascade;
2064 
2065 	ret = -ENXIO;
2066 	ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2067 	if (!ress) {
2068 		dev_err(dev, "No I/O memory resource defined\n");
2069 		return ret;
2070 	}
2071 	base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
2072 
2073 	ret = -ENOMEM;
2074 	cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS,
2075 			       GFP_KERNEL);
2076 	if (!cascade)
2077 		return ret;
2078 	cascade->base = base;
2079 	mutex_init(&cascade->lock);
2080 	cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2081 			     DOC_ECC_BCH_PRIMPOLY);
2082 	if (!cascade->bch)
2083 		return ret;
2084 
2085 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2086 		mtd = doc_probe_device(cascade, floor, dev);
2087 		if (IS_ERR(mtd)) {
2088 			ret = PTR_ERR(mtd);
2089 			goto err_probe;
2090 		}
2091 		if (!mtd) {
2092 			if (floor == 0)
2093 				goto notfound;
2094 			else
2095 				continue;
2096 		}
2097 		cascade->floors[floor] = mtd;
2098 		ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2099 						0);
2100 		if (ret)
2101 			goto err_probe;
2102 
2103 		doc_dbg_register(cascade->floors[floor]);
2104 	}
2105 
2106 	ret = doc_register_sysfs(pdev, cascade);
2107 	if (ret)
2108 		goto err_probe;
2109 
2110 	platform_set_drvdata(pdev, cascade);
2111 	return 0;
2112 
2113 notfound:
2114 	ret = -ENODEV;
2115 	dev_info(dev, "No supported DiskOnChip found\n");
2116 err_probe:
2117 	free_bch(cascade->bch);
2118 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2119 		if (cascade->floors[floor])
2120 			doc_release_device(cascade->floors[floor]);
2121 	return ret;
2122 }
2123 
2124 /**
2125  * docg3_release - Release the driver
2126  * @pdev: the platform device
2127  *
2128  * Returns 0
2129  */
2130 static int docg3_release(struct platform_device *pdev)
2131 {
2132 	struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2133 	struct docg3 *docg3 = cascade->floors[0]->priv;
2134 	int floor;
2135 
2136 	doc_unregister_sysfs(pdev, cascade);
2137 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2138 		if (cascade->floors[floor])
2139 			doc_release_device(cascade->floors[floor]);
2140 
2141 	free_bch(docg3->cascade->bch);
2142 	return 0;
2143 }
2144 
2145 #ifdef CONFIG_OF
2146 static const struct of_device_id docg3_dt_ids[] = {
2147 	{ .compatible = "m-systems,diskonchip-g3" },
2148 	{}
2149 };
2150 MODULE_DEVICE_TABLE(of, docg3_dt_ids);
2151 #endif
2152 
2153 static struct platform_driver g3_driver = {
2154 	.driver		= {
2155 		.name	= "docg3",
2156 		.of_match_table = of_match_ptr(docg3_dt_ids),
2157 	},
2158 	.suspend	= docg3_suspend,
2159 	.resume		= docg3_resume,
2160 	.remove		= docg3_release,
2161 };
2162 
2163 module_platform_driver_probe(g3_driver, docg3_probe);
2164 
2165 MODULE_LICENSE("GPL");
2166 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2167 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2168