xref: /openbmc/linux/drivers/mtd/devices/docg3.c (revision 63dc02bd)
1 /*
2  * Handles the M-Systems DiskOnChip G3 chip
3  *
4  * Copyright (C) 2011 Robert Jarzmik
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  *
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/platform_device.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/io.h>
29 #include <linux/delay.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/bitmap.h>
33 #include <linux/bitrev.h>
34 #include <linux/bch.h>
35 
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include "docg3.h"
41 
42 /*
43  * This driver handles the DiskOnChip G3 flash memory.
44  *
45  * As no specification is available from M-Systems/Sandisk, this drivers lacks
46  * several functions available on the chip, as :
47  *  - IPL write
48  *
49  * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
50  * the driver assumes a 16bits data bus.
51  *
52  * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
53  *  - a 1 byte Hamming code stored in the OOB for each page
54  *  - a 7 bytes BCH code stored in the OOB for each page
55  * The BCH ECC is :
56  *  - BCH is in GF(2^14)
57  *  - BCH is over data of 520 bytes (512 page + 7 page_info bytes
58  *                                   + 1 hamming byte)
59  *  - BCH can correct up to 4 bits (t = 4)
60  *  - BCH syndroms are calculated in hardware, and checked in hardware as well
61  *
62  */
63 
64 static unsigned int reliable_mode;
65 module_param(reliable_mode, uint, 0);
66 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
67 		 "2=reliable) : MLC normal operations are in normal mode");
68 
69 /**
70  * struct docg3_oobinfo - DiskOnChip G3 OOB layout
71  * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
72  * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
73  * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
74  * @oobavail: 8 available bytes remaining after ECC toll
75  */
76 static struct nand_ecclayout docg3_oobinfo = {
77 	.eccbytes = 8,
78 	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
79 	.oobfree = {{0, 7}, {15, 1} },
80 	.oobavail = 8,
81 };
82 
83 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
84 {
85 	u8 val = readb(docg3->cascade->base + reg);
86 
87 	trace_docg3_io(0, 8, reg, (int)val);
88 	return val;
89 }
90 
91 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
92 {
93 	u16 val = readw(docg3->cascade->base + reg);
94 
95 	trace_docg3_io(0, 16, reg, (int)val);
96 	return val;
97 }
98 
99 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
100 {
101 	writeb(val, docg3->cascade->base + reg);
102 	trace_docg3_io(1, 8, reg, val);
103 }
104 
105 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
106 {
107 	writew(val, docg3->cascade->base + reg);
108 	trace_docg3_io(1, 16, reg, val);
109 }
110 
111 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
112 {
113 	doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
114 }
115 
116 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
117 {
118 	doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
119 }
120 
121 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
122 {
123 	doc_writeb(docg3, addr, DOC_FLASHADDRESS);
124 }
125 
126 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
127 
128 static int doc_register_readb(struct docg3 *docg3, int reg)
129 {
130 	u8 val;
131 
132 	doc_writew(docg3, reg, DOC_READADDRESS);
133 	val = doc_readb(docg3, reg);
134 	doc_vdbg("Read register %04x : %02x\n", reg, val);
135 	return val;
136 }
137 
138 static int doc_register_readw(struct docg3 *docg3, int reg)
139 {
140 	u16 val;
141 
142 	doc_writew(docg3, reg, DOC_READADDRESS);
143 	val = doc_readw(docg3, reg);
144 	doc_vdbg("Read register %04x : %04x\n", reg, val);
145 	return val;
146 }
147 
148 /**
149  * doc_delay - delay docg3 operations
150  * @docg3: the device
151  * @nbNOPs: the number of NOPs to issue
152  *
153  * As no specification is available, the right timings between chip commands are
154  * unknown. The only available piece of information are the observed nops on a
155  * working docg3 chip.
156  * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
157  * friendlier msleep() functions or blocking mdelay().
158  */
159 static void doc_delay(struct docg3 *docg3, int nbNOPs)
160 {
161 	int i;
162 
163 	doc_vdbg("NOP x %d\n", nbNOPs);
164 	for (i = 0; i < nbNOPs; i++)
165 		doc_writeb(docg3, 0, DOC_NOP);
166 }
167 
168 static int is_prot_seq_error(struct docg3 *docg3)
169 {
170 	int ctrl;
171 
172 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
173 	return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
174 }
175 
176 static int doc_is_ready(struct docg3 *docg3)
177 {
178 	int ctrl;
179 
180 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
181 	return ctrl & DOC_CTRL_FLASHREADY;
182 }
183 
184 static int doc_wait_ready(struct docg3 *docg3)
185 {
186 	int maxWaitCycles = 100;
187 
188 	do {
189 		doc_delay(docg3, 4);
190 		cpu_relax();
191 	} while (!doc_is_ready(docg3) && maxWaitCycles--);
192 	doc_delay(docg3, 2);
193 	if (maxWaitCycles > 0)
194 		return 0;
195 	else
196 		return -EIO;
197 }
198 
199 static int doc_reset_seq(struct docg3 *docg3)
200 {
201 	int ret;
202 
203 	doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
204 	doc_flash_sequence(docg3, DOC_SEQ_RESET);
205 	doc_flash_command(docg3, DOC_CMD_RESET);
206 	doc_delay(docg3, 2);
207 	ret = doc_wait_ready(docg3);
208 
209 	doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
210 	return ret;
211 }
212 
213 /**
214  * doc_read_data_area - Read data from data area
215  * @docg3: the device
216  * @buf: the buffer to fill in (might be NULL is dummy reads)
217  * @len: the length to read
218  * @first: first time read, DOC_READADDRESS should be set
219  *
220  * Reads bytes from flash data. Handles the single byte / even bytes reads.
221  */
222 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
223 			       int first)
224 {
225 	int i, cdr, len4;
226 	u16 data16, *dst16;
227 	u8 data8, *dst8;
228 
229 	doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
230 	cdr = len & 0x3;
231 	len4 = len - cdr;
232 
233 	if (first)
234 		doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
235 	dst16 = buf;
236 	for (i = 0; i < len4; i += 2) {
237 		data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
238 		if (dst16) {
239 			*dst16 = data16;
240 			dst16++;
241 		}
242 	}
243 
244 	if (cdr) {
245 		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
246 			   DOC_READADDRESS);
247 		doc_delay(docg3, 1);
248 		dst8 = (u8 *)dst16;
249 		for (i = 0; i < cdr; i++) {
250 			data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
251 			if (dst8) {
252 				*dst8 = data8;
253 				dst8++;
254 			}
255 		}
256 	}
257 }
258 
259 /**
260  * doc_write_data_area - Write data into data area
261  * @docg3: the device
262  * @buf: the buffer to get input bytes from
263  * @len: the length to write
264  *
265  * Writes bytes into flash data. Handles the single byte / even bytes writes.
266  */
267 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
268 {
269 	int i, cdr, len4;
270 	u16 *src16;
271 	u8 *src8;
272 
273 	doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
274 	cdr = len & 0x3;
275 	len4 = len - cdr;
276 
277 	doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
278 	src16 = (u16 *)buf;
279 	for (i = 0; i < len4; i += 2) {
280 		doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
281 		src16++;
282 	}
283 
284 	src8 = (u8 *)src16;
285 	for (i = 0; i < cdr; i++) {
286 		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
287 			   DOC_READADDRESS);
288 		doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
289 		src8++;
290 	}
291 }
292 
293 /**
294  * doc_set_data_mode - Sets the flash to normal or reliable data mode
295  * @docg3: the device
296  *
297  * The reliable data mode is a bit slower than the fast mode, but less errors
298  * occur.  Entering the reliable mode cannot be done without entering the fast
299  * mode first.
300  *
301  * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
302  * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
303  * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
304  * result, which is a logical and between bytes from page 0 and page 1 (which is
305  * consistent with the fact that writing to a page is _clearing_ bits of that
306  * page).
307  */
308 static void doc_set_reliable_mode(struct docg3 *docg3)
309 {
310 	static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
311 
312 	doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
313 	switch (docg3->reliable) {
314 	case 0:
315 		break;
316 	case 1:
317 		doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
318 		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
319 		break;
320 	case 2:
321 		doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
322 		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
323 		doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
324 		break;
325 	default:
326 		doc_err("doc_set_reliable_mode(): invalid mode\n");
327 		break;
328 	}
329 	doc_delay(docg3, 2);
330 }
331 
332 /**
333  * doc_set_asic_mode - Set the ASIC mode
334  * @docg3: the device
335  * @mode: the mode
336  *
337  * The ASIC can work in 3 modes :
338  *  - RESET: all registers are zeroed
339  *  - NORMAL: receives and handles commands
340  *  - POWERDOWN: minimal poweruse, flash parts shut off
341  */
342 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
343 {
344 	int i;
345 
346 	for (i = 0; i < 12; i++)
347 		doc_readb(docg3, DOC_IOSPACE_IPL);
348 
349 	mode |= DOC_ASICMODE_MDWREN;
350 	doc_dbg("doc_set_asic_mode(%02x)\n", mode);
351 	doc_writeb(docg3, mode, DOC_ASICMODE);
352 	doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
353 	doc_delay(docg3, 1);
354 }
355 
356 /**
357  * doc_set_device_id - Sets the devices id for cascaded G3 chips
358  * @docg3: the device
359  * @id: the chip to select (amongst 0, 1, 2, 3)
360  *
361  * There can be 4 cascaded G3 chips. This function selects the one which will
362  * should be the active one.
363  */
364 static void doc_set_device_id(struct docg3 *docg3, int id)
365 {
366 	u8 ctrl;
367 
368 	doc_dbg("doc_set_device_id(%d)\n", id);
369 	doc_writeb(docg3, id, DOC_DEVICESELECT);
370 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
371 
372 	ctrl &= ~DOC_CTRL_VIOLATION;
373 	ctrl |= DOC_CTRL_CE;
374 	doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
375 }
376 
377 /**
378  * doc_set_extra_page_mode - Change flash page layout
379  * @docg3: the device
380  *
381  * Normally, the flash page is split into the data (512 bytes) and the out of
382  * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
383  * leveling counters are stored.  To access this last area of 4 bytes, a special
384  * mode must be input to the flash ASIC.
385  *
386  * Returns 0 if no error occured, -EIO else.
387  */
388 static int doc_set_extra_page_mode(struct docg3 *docg3)
389 {
390 	int fctrl;
391 
392 	doc_dbg("doc_set_extra_page_mode()\n");
393 	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
394 	doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
395 	doc_delay(docg3, 2);
396 
397 	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
398 	if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
399 		return -EIO;
400 	else
401 		return 0;
402 }
403 
404 /**
405  * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
406  * @docg3: the device
407  * @sector: the sector
408  */
409 static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
410 {
411 	doc_delay(docg3, 1);
412 	doc_flash_address(docg3, sector & 0xff);
413 	doc_flash_address(docg3, (sector >> 8) & 0xff);
414 	doc_flash_address(docg3, (sector >> 16) & 0xff);
415 	doc_delay(docg3, 1);
416 }
417 
418 /**
419  * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
420  * @docg3: the device
421  * @sector: the sector
422  * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
423  */
424 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
425 {
426 	ofs = ofs >> 2;
427 	doc_delay(docg3, 1);
428 	doc_flash_address(docg3, ofs & 0xff);
429 	doc_flash_address(docg3, sector & 0xff);
430 	doc_flash_address(docg3, (sector >> 8) & 0xff);
431 	doc_flash_address(docg3, (sector >> 16) & 0xff);
432 	doc_delay(docg3, 1);
433 }
434 
435 /**
436  * doc_seek - Set both flash planes to the specified block, page for reading
437  * @docg3: the device
438  * @block0: the first plane block index
439  * @block1: the second plane block index
440  * @page: the page index within the block
441  * @wear: if true, read will occur on the 4 extra bytes of the wear area
442  * @ofs: offset in page to read
443  *
444  * Programs the flash even and odd planes to the specific block and page.
445  * Alternatively, programs the flash to the wear area of the specified page.
446  */
447 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
448 			 int wear, int ofs)
449 {
450 	int sector, ret = 0;
451 
452 	doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
453 		block0, block1, page, ofs, wear);
454 
455 	if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
456 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
457 		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
458 		doc_delay(docg3, 2);
459 	} else {
460 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
461 		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
462 		doc_delay(docg3, 2);
463 	}
464 
465 	doc_set_reliable_mode(docg3);
466 	if (wear)
467 		ret = doc_set_extra_page_mode(docg3);
468 	if (ret)
469 		goto out;
470 
471 	doc_flash_sequence(docg3, DOC_SEQ_READ);
472 	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
473 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
474 	doc_setup_addr_sector(docg3, sector);
475 
476 	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
477 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
478 	doc_setup_addr_sector(docg3, sector);
479 	doc_delay(docg3, 1);
480 
481 out:
482 	return ret;
483 }
484 
485 /**
486  * doc_write_seek - Set both flash planes to the specified block, page for writing
487  * @docg3: the device
488  * @block0: the first plane block index
489  * @block1: the second plane block index
490  * @page: the page index within the block
491  * @ofs: offset in page to write
492  *
493  * Programs the flash even and odd planes to the specific block and page.
494  * Alternatively, programs the flash to the wear area of the specified page.
495  */
496 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
497 			 int ofs)
498 {
499 	int ret = 0, sector;
500 
501 	doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
502 		block0, block1, page, ofs);
503 
504 	doc_set_reliable_mode(docg3);
505 
506 	if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
507 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
508 		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
509 		doc_delay(docg3, 2);
510 	} else {
511 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
512 		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
513 		doc_delay(docg3, 2);
514 	}
515 
516 	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
517 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
518 
519 	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
520 	doc_setup_writeaddr_sector(docg3, sector, ofs);
521 
522 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
523 	doc_delay(docg3, 2);
524 	ret = doc_wait_ready(docg3);
525 	if (ret)
526 		goto out;
527 
528 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
529 	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
530 	doc_setup_writeaddr_sector(docg3, sector, ofs);
531 	doc_delay(docg3, 1);
532 
533 out:
534 	return ret;
535 }
536 
537 
538 /**
539  * doc_read_page_ecc_init - Initialize hardware ECC engine
540  * @docg3: the device
541  * @len: the number of bytes covered by the ECC (BCH covered)
542  *
543  * The function does initialize the hardware ECC engine to compute the Hamming
544  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
545  *
546  * Return 0 if succeeded, -EIO on error
547  */
548 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
549 {
550 	doc_writew(docg3, DOC_ECCCONF0_READ_MODE
551 		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
552 		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
553 		   DOC_ECCCONF0);
554 	doc_delay(docg3, 4);
555 	doc_register_readb(docg3, DOC_FLASHCONTROL);
556 	return doc_wait_ready(docg3);
557 }
558 
559 /**
560  * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
561  * @docg3: the device
562  * @len: the number of bytes covered by the ECC (BCH covered)
563  *
564  * The function does initialize the hardware ECC engine to compute the Hamming
565  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
566  *
567  * Return 0 if succeeded, -EIO on error
568  */
569 static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
570 {
571 	doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
572 		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
573 		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
574 		   DOC_ECCCONF0);
575 	doc_delay(docg3, 4);
576 	doc_register_readb(docg3, DOC_FLASHCONTROL);
577 	return doc_wait_ready(docg3);
578 }
579 
580 /**
581  * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
582  * @docg3: the device
583  *
584  * Disables the hardware ECC generator and checker, for unchecked reads (as when
585  * reading OOB only or write status byte).
586  */
587 static void doc_ecc_disable(struct docg3 *docg3)
588 {
589 	doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
590 	doc_delay(docg3, 4);
591 }
592 
593 /**
594  * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
595  * @docg3: the device
596  * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
597  *
598  * This function programs the ECC hardware to compute the hamming code on the
599  * last provided N bytes to the hardware generator.
600  */
601 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
602 {
603 	u8 ecc_conf1;
604 
605 	ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
606 	ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
607 	ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
608 	doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
609 }
610 
611 /**
612  * doc_ecc_bch_fix_data - Fix if need be read data from flash
613  * @docg3: the device
614  * @buf: the buffer of read data (512 + 7 + 1 bytes)
615  * @hwecc: the hardware calculated ECC.
616  *         It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
617  *         area data, and calc_ecc the ECC calculated by the hardware generator.
618  *
619  * Checks if the received data matches the ECC, and if an error is detected,
620  * tries to fix the bit flips (at most 4) in the buffer buf.  As the docg3
621  * understands the (data, ecc, syndroms) in an inverted order in comparison to
622  * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
623  * bit6 and bit 1, ...) for all ECC data.
624  *
625  * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
626  * algorithm is used to decode this.  However the hw operates on page
627  * data in a bit order that is the reverse of that of the bch alg,
628  * requiring that the bits be reversed on the result.  Thanks to Ivan
629  * Djelic for his analysis.
630  *
631  * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
632  * errors were detected and cannot be fixed.
633  */
634 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
635 {
636 	u8 ecc[DOC_ECC_BCH_SIZE];
637 	int errorpos[DOC_ECC_BCH_T], i, numerrs;
638 
639 	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
640 		ecc[i] = bitrev8(hwecc[i]);
641 	numerrs = decode_bch(docg3->cascade->bch, NULL,
642 			     DOC_ECC_BCH_COVERED_BYTES,
643 			     NULL, ecc, NULL, errorpos);
644 	BUG_ON(numerrs == -EINVAL);
645 	if (numerrs < 0)
646 		goto out;
647 
648 	for (i = 0; i < numerrs; i++)
649 		errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
650 	for (i = 0; i < numerrs; i++)
651 		if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
652 			/* error is located in data, correct it */
653 			change_bit(errorpos[i], buf);
654 out:
655 	doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
656 	return numerrs;
657 }
658 
659 
660 /**
661  * doc_read_page_prepare - Prepares reading data from a flash page
662  * @docg3: the device
663  * @block0: the first plane block index on flash memory
664  * @block1: the second plane block index on flash memory
665  * @page: the page index in the block
666  * @offset: the offset in the page (must be a multiple of 4)
667  *
668  * Prepares the page to be read in the flash memory :
669  *   - tell ASIC to map the flash pages
670  *   - tell ASIC to be in read mode
671  *
672  * After a call to this method, a call to doc_read_page_finish is mandatory,
673  * to end the read cycle of the flash.
674  *
675  * Read data from a flash page. The length to be read must be between 0 and
676  * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
677  * the extra bytes reading is not implemented).
678  *
679  * As pages are grouped by 2 (in 2 planes), reading from a page must be done
680  * in two steps:
681  *  - one read of 512 bytes at offset 0
682  *  - one read of 512 bytes at offset 512 + 16
683  *
684  * Returns 0 if successful, -EIO if a read error occured.
685  */
686 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
687 				 int page, int offset)
688 {
689 	int wear_area = 0, ret = 0;
690 
691 	doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
692 		block0, block1, page, offset);
693 	if (offset >= DOC_LAYOUT_WEAR_OFFSET)
694 		wear_area = 1;
695 	if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
696 		return -EINVAL;
697 
698 	doc_set_device_id(docg3, docg3->device_id);
699 	ret = doc_reset_seq(docg3);
700 	if (ret)
701 		goto err;
702 
703 	/* Program the flash address block and page */
704 	ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
705 	if (ret)
706 		goto err;
707 
708 	doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
709 	doc_delay(docg3, 2);
710 	doc_wait_ready(docg3);
711 
712 	doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
713 	doc_delay(docg3, 1);
714 	if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
715 		offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
716 	doc_flash_address(docg3, offset >> 2);
717 	doc_delay(docg3, 1);
718 	doc_wait_ready(docg3);
719 
720 	doc_flash_command(docg3, DOC_CMD_READ_FLASH);
721 
722 	return 0;
723 err:
724 	doc_writeb(docg3, 0, DOC_DATAEND);
725 	doc_delay(docg3, 2);
726 	return -EIO;
727 }
728 
729 /**
730  * doc_read_page_getbytes - Reads bytes from a prepared page
731  * @docg3: the device
732  * @len: the number of bytes to be read (must be a multiple of 4)
733  * @buf: the buffer to be filled in (or NULL is forget bytes)
734  * @first: 1 if first time read, DOC_READADDRESS should be set
735  *
736  */
737 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
738 				  int first)
739 {
740 	doc_read_data_area(docg3, buf, len, first);
741 	doc_delay(docg3, 2);
742 	return len;
743 }
744 
745 /**
746  * doc_write_page_putbytes - Writes bytes into a prepared page
747  * @docg3: the device
748  * @len: the number of bytes to be written
749  * @buf: the buffer of input bytes
750  *
751  */
752 static void doc_write_page_putbytes(struct docg3 *docg3, int len,
753 				    const u_char *buf)
754 {
755 	doc_write_data_area(docg3, buf, len);
756 	doc_delay(docg3, 2);
757 }
758 
759 /**
760  * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
761  * @docg3: the device
762  * @hwecc:  the array of 7 integers where the hardware ecc will be stored
763  */
764 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
765 {
766 	int i;
767 
768 	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
769 		hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
770 }
771 
772 /**
773  * doc_page_finish - Ends reading/writing of a flash page
774  * @docg3: the device
775  */
776 static void doc_page_finish(struct docg3 *docg3)
777 {
778 	doc_writeb(docg3, 0, DOC_DATAEND);
779 	doc_delay(docg3, 2);
780 }
781 
782 /**
783  * doc_read_page_finish - Ends reading of a flash page
784  * @docg3: the device
785  *
786  * As a side effect, resets the chip selector to 0. This ensures that after each
787  * read operation, the floor 0 is selected. Therefore, if the systems halts, the
788  * reboot will boot on floor 0, where the IPL is.
789  */
790 static void doc_read_page_finish(struct docg3 *docg3)
791 {
792 	doc_page_finish(docg3);
793 	doc_set_device_id(docg3, 0);
794 }
795 
796 /**
797  * calc_block_sector - Calculate blocks, pages and ofs.
798 
799  * @from: offset in flash
800  * @block0: first plane block index calculated
801  * @block1: second plane block index calculated
802  * @page: page calculated
803  * @ofs: offset in page
804  * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
805  * reliable mode.
806  *
807  * The calculation is based on the reliable/normal mode. In normal mode, the 64
808  * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
809  * clones, only 32 pages per block are available.
810  */
811 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
812 			      int *ofs, int reliable)
813 {
814 	uint sector, pages_biblock;
815 
816 	pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
817 	if (reliable == 1 || reliable == 2)
818 		pages_biblock /= 2;
819 
820 	sector = from / DOC_LAYOUT_PAGE_SIZE;
821 	*block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
822 	*block1 = *block0 + 1;
823 	*page = sector % pages_biblock;
824 	*page /= DOC_LAYOUT_NBPLANES;
825 	if (reliable == 1 || reliable == 2)
826 		*page *= 2;
827 	if (sector % 2)
828 		*ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
829 	else
830 		*ofs = 0;
831 }
832 
833 /**
834  * doc_read_oob - Read out of band bytes from flash
835  * @mtd: the device
836  * @from: the offset from first block and first page, in bytes, aligned on page
837  *        size
838  * @ops: the mtd oob structure
839  *
840  * Reads flash memory OOB area of pages.
841  *
842  * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured
843  */
844 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
845 			struct mtd_oob_ops *ops)
846 {
847 	struct docg3 *docg3 = mtd->priv;
848 	int block0, block1, page, ret, skip, ofs = 0;
849 	u8 *oobbuf = ops->oobbuf;
850 	u8 *buf = ops->datbuf;
851 	size_t len, ooblen, nbdata, nboob;
852 	u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
853 
854 	if (buf)
855 		len = ops->len;
856 	else
857 		len = 0;
858 	if (oobbuf)
859 		ooblen = ops->ooblen;
860 	else
861 		ooblen = 0;
862 
863 	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
864 		oobbuf += ops->ooboffs;
865 
866 	doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
867 		from, ops->mode, buf, len, oobbuf, ooblen);
868 	if (ooblen % DOC_LAYOUT_OOB_SIZE)
869 		return -EINVAL;
870 
871 	if (from + len > mtd->size)
872 		return -EINVAL;
873 
874 	ops->oobretlen = 0;
875 	ops->retlen = 0;
876 	ret = 0;
877 	skip = from % DOC_LAYOUT_PAGE_SIZE;
878 	mutex_lock(&docg3->cascade->lock);
879 	while (!ret && (len > 0 || ooblen > 0)) {
880 		calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
881 			docg3->reliable);
882 		nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
883 		nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
884 		ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
885 		if (ret < 0)
886 			goto out;
887 		ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
888 		if (ret < 0)
889 			goto err_in_read;
890 		ret = doc_read_page_getbytes(docg3, skip, NULL, 1);
891 		if (ret < skip)
892 			goto err_in_read;
893 		ret = doc_read_page_getbytes(docg3, nbdata, buf, 0);
894 		if (ret < nbdata)
895 			goto err_in_read;
896 		doc_read_page_getbytes(docg3,
897 				       DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
898 				       NULL, 0);
899 		ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0);
900 		if (ret < nboob)
901 			goto err_in_read;
902 		doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
903 				       NULL, 0);
904 
905 		doc_get_bch_hw_ecc(docg3, hwecc);
906 		eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
907 
908 		if (nboob >= DOC_LAYOUT_OOB_SIZE) {
909 			doc_dbg("OOB - INFO: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
910 				oobbuf[0], oobbuf[1], oobbuf[2], oobbuf[3],
911 				oobbuf[4], oobbuf[5], oobbuf[6]);
912 			doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
913 			doc_dbg("OOB - BCH_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
914 				oobbuf[8], oobbuf[9], oobbuf[10], oobbuf[11],
915 				oobbuf[12], oobbuf[13], oobbuf[14]);
916 			doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
917 		}
918 		doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
919 		doc_dbg("ECC HW_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
920 			hwecc[0], hwecc[1], hwecc[2], hwecc[3], hwecc[4],
921 			hwecc[5], hwecc[6]);
922 
923 		ret = -EIO;
924 		if (is_prot_seq_error(docg3))
925 			goto err_in_read;
926 		ret = 0;
927 		if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
928 		    (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
929 		    (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
930 		    (ops->mode != MTD_OPS_RAW) &&
931 		    (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
932 			ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
933 			if (ret < 0) {
934 				mtd->ecc_stats.failed++;
935 				ret = -EBADMSG;
936 			}
937 			if (ret > 0) {
938 				mtd->ecc_stats.corrected += ret;
939 				ret = -EUCLEAN;
940 			}
941 		}
942 
943 		doc_read_page_finish(docg3);
944 		ops->retlen += nbdata;
945 		ops->oobretlen += nboob;
946 		buf += nbdata;
947 		oobbuf += nboob;
948 		len -= nbdata;
949 		ooblen -= nboob;
950 		from += DOC_LAYOUT_PAGE_SIZE;
951 		skip = 0;
952 	}
953 
954 out:
955 	mutex_unlock(&docg3->cascade->lock);
956 	return ret;
957 err_in_read:
958 	doc_read_page_finish(docg3);
959 	goto out;
960 }
961 
962 /**
963  * doc_read - Read bytes from flash
964  * @mtd: the device
965  * @from: the offset from first block and first page, in bytes, aligned on page
966  *        size
967  * @len: the number of bytes to read (must be a multiple of 4)
968  * @retlen: the number of bytes actually read
969  * @buf: the filled in buffer
970  *
971  * Reads flash memory pages. This function does not read the OOB chunk, but only
972  * the page data.
973  *
974  * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured
975  */
976 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
977 	     size_t *retlen, u_char *buf)
978 {
979 	struct mtd_oob_ops ops;
980 	size_t ret;
981 
982 	memset(&ops, 0, sizeof(ops));
983 	ops.datbuf = buf;
984 	ops.len = len;
985 	ops.mode = MTD_OPS_AUTO_OOB;
986 
987 	ret = doc_read_oob(mtd, from, &ops);
988 	*retlen = ops.retlen;
989 	return ret;
990 }
991 
992 static int doc_reload_bbt(struct docg3 *docg3)
993 {
994 	int block = DOC_LAYOUT_BLOCK_BBT;
995 	int ret = 0, nbpages, page;
996 	u_char *buf = docg3->bbt;
997 
998 	nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
999 	for (page = 0; !ret && (page < nbpages); page++) {
1000 		ret = doc_read_page_prepare(docg3, block, block + 1,
1001 					    page + DOC_LAYOUT_PAGE_BBT, 0);
1002 		if (!ret)
1003 			ret = doc_read_page_ecc_init(docg3,
1004 						     DOC_LAYOUT_PAGE_SIZE);
1005 		if (!ret)
1006 			doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1007 					       buf, 1);
1008 		buf += DOC_LAYOUT_PAGE_SIZE;
1009 	}
1010 	doc_read_page_finish(docg3);
1011 	return ret;
1012 }
1013 
1014 /**
1015  * doc_block_isbad - Checks whether a block is good or not
1016  * @mtd: the device
1017  * @from: the offset to find the correct block
1018  *
1019  * Returns 1 if block is bad, 0 if block is good
1020  */
1021 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1022 {
1023 	struct docg3 *docg3 = mtd->priv;
1024 	int block0, block1, page, ofs, is_good;
1025 
1026 	calc_block_sector(from, &block0, &block1, &page, &ofs,
1027 		docg3->reliable);
1028 	doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1029 		from, block0, block1, page, ofs);
1030 
1031 	if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1032 		return 0;
1033 	if (block1 > docg3->max_block)
1034 		return -EINVAL;
1035 
1036 	is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1037 	return !is_good;
1038 }
1039 
1040 #if 0
1041 /**
1042  * doc_get_erase_count - Get block erase count
1043  * @docg3: the device
1044  * @from: the offset in which the block is.
1045  *
1046  * Get the number of times a block was erased. The number is the maximum of
1047  * erase times between first and second plane (which should be equal normally).
1048  *
1049  * Returns The number of erases, or -EINVAL or -EIO on error.
1050  */
1051 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1052 {
1053 	u8 buf[DOC_LAYOUT_WEAR_SIZE];
1054 	int ret, plane1_erase_count, plane2_erase_count;
1055 	int block0, block1, page, ofs;
1056 
1057 	doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1058 	if (from % DOC_LAYOUT_PAGE_SIZE)
1059 		return -EINVAL;
1060 	calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1061 	if (block1 > docg3->max_block)
1062 		return -EINVAL;
1063 
1064 	ret = doc_reset_seq(docg3);
1065 	if (!ret)
1066 		ret = doc_read_page_prepare(docg3, block0, block1, page,
1067 					    ofs + DOC_LAYOUT_WEAR_OFFSET);
1068 	if (!ret)
1069 		ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1070 					     buf, 1);
1071 	doc_read_page_finish(docg3);
1072 
1073 	if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1074 		return -EIO;
1075 	plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1076 		| ((u8)(~buf[5]) << 16);
1077 	plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1078 		| ((u8)(~buf[7]) << 16);
1079 
1080 	return max(plane1_erase_count, plane2_erase_count);
1081 }
1082 #endif
1083 
1084 /**
1085  * doc_get_op_status - get erase/write operation status
1086  * @docg3: the device
1087  *
1088  * Queries the status from the chip, and returns it
1089  *
1090  * Returns the status (bits DOC_PLANES_STATUS_*)
1091  */
1092 static int doc_get_op_status(struct docg3 *docg3)
1093 {
1094 	u8 status;
1095 
1096 	doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1097 	doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1098 	doc_delay(docg3, 5);
1099 
1100 	doc_ecc_disable(docg3);
1101 	doc_read_data_area(docg3, &status, 1, 1);
1102 	return status;
1103 }
1104 
1105 /**
1106  * doc_write_erase_wait_status - wait for write or erase completion
1107  * @docg3: the device
1108  *
1109  * Wait for the chip to be ready again after erase or write operation, and check
1110  * erase/write status.
1111  *
1112  * Returns 0 if erase successfull, -EIO if erase/write issue, -ETIMEOUT if
1113  * timeout
1114  */
1115 static int doc_write_erase_wait_status(struct docg3 *docg3)
1116 {
1117 	int i, status, ret = 0;
1118 
1119 	for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1120 		msleep(20);
1121 	if (!doc_is_ready(docg3)) {
1122 		doc_dbg("Timeout reached and the chip is still not ready\n");
1123 		ret = -EAGAIN;
1124 		goto out;
1125 	}
1126 
1127 	status = doc_get_op_status(docg3);
1128 	if (status & DOC_PLANES_STATUS_FAIL) {
1129 		doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1130 			status);
1131 		ret = -EIO;
1132 	}
1133 
1134 out:
1135 	doc_page_finish(docg3);
1136 	return ret;
1137 }
1138 
1139 /**
1140  * doc_erase_block - Erase a couple of blocks
1141  * @docg3: the device
1142  * @block0: the first block to erase (leftmost plane)
1143  * @block1: the second block to erase (rightmost plane)
1144  *
1145  * Erase both blocks, and return operation status
1146  *
1147  * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1148  * ready for too long
1149  */
1150 static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1151 {
1152 	int ret, sector;
1153 
1154 	doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1155 	ret = doc_reset_seq(docg3);
1156 	if (ret)
1157 		return -EIO;
1158 
1159 	doc_set_reliable_mode(docg3);
1160 	doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1161 
1162 	sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1163 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1164 	doc_setup_addr_sector(docg3, sector);
1165 	sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1166 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1167 	doc_setup_addr_sector(docg3, sector);
1168 	doc_delay(docg3, 1);
1169 
1170 	doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1171 	doc_delay(docg3, 2);
1172 
1173 	if (is_prot_seq_error(docg3)) {
1174 		doc_err("Erase blocks %d,%d error\n", block0, block1);
1175 		return -EIO;
1176 	}
1177 
1178 	return doc_write_erase_wait_status(docg3);
1179 }
1180 
1181 /**
1182  * doc_erase - Erase a portion of the chip
1183  * @mtd: the device
1184  * @info: the erase info
1185  *
1186  * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1187  * split into 2 pages of 512 bytes on 2 contiguous blocks.
1188  *
1189  * Returns 0 if erase successful, -EINVAL if adressing error, -EIO if erase
1190  * issue
1191  */
1192 static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1193 {
1194 	struct docg3 *docg3 = mtd->priv;
1195 	uint64_t len;
1196 	int block0, block1, page, ret, ofs = 0;
1197 
1198 	doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1199 
1200 	info->state = MTD_ERASE_PENDING;
1201 	calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1202 			  &ofs, docg3->reliable);
1203 	ret = -EINVAL;
1204 	if (info->addr + info->len > mtd->size || page || ofs)
1205 		goto reset_err;
1206 
1207 	ret = 0;
1208 	calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1209 			  docg3->reliable);
1210 	mutex_lock(&docg3->cascade->lock);
1211 	doc_set_device_id(docg3, docg3->device_id);
1212 	doc_set_reliable_mode(docg3);
1213 	for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1214 		info->state = MTD_ERASING;
1215 		ret = doc_erase_block(docg3, block0, block1);
1216 		block0 += 2;
1217 		block1 += 2;
1218 	}
1219 	mutex_unlock(&docg3->cascade->lock);
1220 
1221 	if (ret)
1222 		goto reset_err;
1223 
1224 	info->state = MTD_ERASE_DONE;
1225 	return 0;
1226 
1227 reset_err:
1228 	info->state = MTD_ERASE_FAILED;
1229 	return ret;
1230 }
1231 
1232 /**
1233  * doc_write_page - Write a single page to the chip
1234  * @docg3: the device
1235  * @to: the offset from first block and first page, in bytes, aligned on page
1236  *      size
1237  * @buf: buffer to get bytes from
1238  * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1239  *       written)
1240  * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1241  *           BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1242  *           remaining ones are filled with hardware Hamming and BCH
1243  *           computations. Its value is not meaningfull is oob == NULL.
1244  *
1245  * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1246  * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1247  * BCH generator if autoecc is not null.
1248  *
1249  * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1250  */
1251 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1252 			  const u_char *oob, int autoecc)
1253 {
1254 	int block0, block1, page, ret, ofs = 0;
1255 	u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1256 
1257 	doc_dbg("doc_write_page(to=%lld)\n", to);
1258 	calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1259 
1260 	doc_set_device_id(docg3, docg3->device_id);
1261 	ret = doc_reset_seq(docg3);
1262 	if (ret)
1263 		goto err;
1264 
1265 	/* Program the flash address block and page */
1266 	ret = doc_write_seek(docg3, block0, block1, page, ofs);
1267 	if (ret)
1268 		goto err;
1269 
1270 	doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1271 	doc_delay(docg3, 2);
1272 	doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1273 
1274 	if (oob && autoecc) {
1275 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1276 		doc_delay(docg3, 2);
1277 		oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1278 
1279 		hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1280 		doc_delay(docg3, 2);
1281 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1282 					&hamming);
1283 		doc_delay(docg3, 2);
1284 
1285 		doc_get_bch_hw_ecc(docg3, hwecc);
1286 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1287 		doc_delay(docg3, 2);
1288 
1289 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1290 	}
1291 	if (oob && !autoecc)
1292 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1293 
1294 	doc_delay(docg3, 2);
1295 	doc_page_finish(docg3);
1296 	doc_delay(docg3, 2);
1297 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1298 	doc_delay(docg3, 2);
1299 
1300 	/*
1301 	 * The wait status will perform another doc_page_finish() call, but that
1302 	 * seems to please the docg3, so leave it.
1303 	 */
1304 	ret = doc_write_erase_wait_status(docg3);
1305 	return ret;
1306 err:
1307 	doc_read_page_finish(docg3);
1308 	return ret;
1309 }
1310 
1311 /**
1312  * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1313  * @ops: the oob operations
1314  *
1315  * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1316  */
1317 static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1318 {
1319 	int autoecc;
1320 
1321 	switch (ops->mode) {
1322 	case MTD_OPS_PLACE_OOB:
1323 	case MTD_OPS_AUTO_OOB:
1324 		autoecc = 1;
1325 		break;
1326 	case MTD_OPS_RAW:
1327 		autoecc = 0;
1328 		break;
1329 	default:
1330 		autoecc = -EINVAL;
1331 	}
1332 	return autoecc;
1333 }
1334 
1335 /**
1336  * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1337  * @dst: the target 16 bytes OOB buffer
1338  * @oobsrc: the source 8 bytes non-ECC OOB buffer
1339  *
1340  */
1341 static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1342 {
1343 	memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1344 	dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1345 }
1346 
1347 /**
1348  * doc_backup_oob - Backup OOB into docg3 structure
1349  * @docg3: the device
1350  * @to: the page offset in the chip
1351  * @ops: the OOB size and buffer
1352  *
1353  * As the docg3 should write a page with its OOB in one pass, and some userland
1354  * applications do write_oob() to setup the OOB and then write(), store the OOB
1355  * into a temporary storage. This is very dangerous, as 2 concurrent
1356  * applications could store an OOB, and then write their pages (which will
1357  * result into one having its OOB corrupted).
1358  *
1359  * The only reliable way would be for userland to call doc_write_oob() with both
1360  * the page data _and_ the OOB area.
1361  *
1362  * Returns 0 if success, -EINVAL if ops content invalid
1363  */
1364 static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1365 			  struct mtd_oob_ops *ops)
1366 {
1367 	int ooblen = ops->ooblen, autoecc;
1368 
1369 	if (ooblen != DOC_LAYOUT_OOB_SIZE)
1370 		return -EINVAL;
1371 	autoecc = doc_guess_autoecc(ops);
1372 	if (autoecc < 0)
1373 		return autoecc;
1374 
1375 	docg3->oob_write_ofs = to;
1376 	docg3->oob_autoecc = autoecc;
1377 	if (ops->mode == MTD_OPS_AUTO_OOB) {
1378 		doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1379 		ops->oobretlen = 8;
1380 	} else {
1381 		memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1382 		ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1383 	}
1384 	return 0;
1385 }
1386 
1387 /**
1388  * doc_write_oob - Write out of band bytes to flash
1389  * @mtd: the device
1390  * @ofs: the offset from first block and first page, in bytes, aligned on page
1391  *       size
1392  * @ops: the mtd oob structure
1393  *
1394  * Either write OOB data into a temporary buffer, for the subsequent write
1395  * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1396  * as well, issue the page write.
1397  * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1398  * still be filled in if asked for).
1399  *
1400  * Returns 0 is successfull, EINVAL if length is not 14 bytes
1401  */
1402 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1403 			 struct mtd_oob_ops *ops)
1404 {
1405 	struct docg3 *docg3 = mtd->priv;
1406 	int ret, autoecc, oobdelta;
1407 	u8 *oobbuf = ops->oobbuf;
1408 	u8 *buf = ops->datbuf;
1409 	size_t len, ooblen;
1410 	u8 oob[DOC_LAYOUT_OOB_SIZE];
1411 
1412 	if (buf)
1413 		len = ops->len;
1414 	else
1415 		len = 0;
1416 	if (oobbuf)
1417 		ooblen = ops->ooblen;
1418 	else
1419 		ooblen = 0;
1420 
1421 	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1422 		oobbuf += ops->ooboffs;
1423 
1424 	doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1425 		ofs, ops->mode, buf, len, oobbuf, ooblen);
1426 	switch (ops->mode) {
1427 	case MTD_OPS_PLACE_OOB:
1428 	case MTD_OPS_RAW:
1429 		oobdelta = mtd->oobsize;
1430 		break;
1431 	case MTD_OPS_AUTO_OOB:
1432 		oobdelta = mtd->ecclayout->oobavail;
1433 		break;
1434 	default:
1435 		oobdelta = 0;
1436 	}
1437 	if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1438 	    (ofs % DOC_LAYOUT_PAGE_SIZE))
1439 		return -EINVAL;
1440 	if (len && ooblen &&
1441 	    (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1442 		return -EINVAL;
1443 	if (ofs + len > mtd->size)
1444 		return -EINVAL;
1445 
1446 	ops->oobretlen = 0;
1447 	ops->retlen = 0;
1448 	ret = 0;
1449 	if (len == 0 && ooblen == 0)
1450 		return -EINVAL;
1451 	if (len == 0 && ooblen > 0)
1452 		return doc_backup_oob(docg3, ofs, ops);
1453 
1454 	autoecc = doc_guess_autoecc(ops);
1455 	if (autoecc < 0)
1456 		return autoecc;
1457 
1458 	mutex_lock(&docg3->cascade->lock);
1459 	while (!ret && len > 0) {
1460 		memset(oob, 0, sizeof(oob));
1461 		if (ofs == docg3->oob_write_ofs)
1462 			memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1463 		else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1464 			doc_fill_autooob(oob, oobbuf);
1465 		else if (ooblen > 0)
1466 			memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1467 		ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1468 
1469 		ofs += DOC_LAYOUT_PAGE_SIZE;
1470 		len -= DOC_LAYOUT_PAGE_SIZE;
1471 		buf += DOC_LAYOUT_PAGE_SIZE;
1472 		if (ooblen) {
1473 			oobbuf += oobdelta;
1474 			ooblen -= oobdelta;
1475 			ops->oobretlen += oobdelta;
1476 		}
1477 		ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1478 	}
1479 
1480 	doc_set_device_id(docg3, 0);
1481 	mutex_unlock(&docg3->cascade->lock);
1482 	return ret;
1483 }
1484 
1485 /**
1486  * doc_write - Write a buffer to the chip
1487  * @mtd: the device
1488  * @to: the offset from first block and first page, in bytes, aligned on page
1489  *      size
1490  * @len: the number of bytes to write (must be a full page size, ie. 512)
1491  * @retlen: the number of bytes actually written (0 or 512)
1492  * @buf: the buffer to get bytes from
1493  *
1494  * Writes data to the chip.
1495  *
1496  * Returns 0 if write successful, -EIO if write error
1497  */
1498 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1499 		     size_t *retlen, const u_char *buf)
1500 {
1501 	struct docg3 *docg3 = mtd->priv;
1502 	int ret;
1503 	struct mtd_oob_ops ops;
1504 
1505 	doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1506 	ops.datbuf = (char *)buf;
1507 	ops.len = len;
1508 	ops.mode = MTD_OPS_PLACE_OOB;
1509 	ops.oobbuf = NULL;
1510 	ops.ooblen = 0;
1511 	ops.ooboffs = 0;
1512 
1513 	ret = doc_write_oob(mtd, to, &ops);
1514 	*retlen = ops.retlen;
1515 	return ret;
1516 }
1517 
1518 static struct docg3 *sysfs_dev2docg3(struct device *dev,
1519 				     struct device_attribute *attr)
1520 {
1521 	int floor;
1522 	struct platform_device *pdev = to_platform_device(dev);
1523 	struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1524 
1525 	floor = attr->attr.name[1] - '0';
1526 	if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1527 		return NULL;
1528 	else
1529 		return docg3_floors[floor]->priv;
1530 }
1531 
1532 static ssize_t dps0_is_key_locked(struct device *dev,
1533 				  struct device_attribute *attr, char *buf)
1534 {
1535 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1536 	int dps0;
1537 
1538 	mutex_lock(&docg3->cascade->lock);
1539 	doc_set_device_id(docg3, docg3->device_id);
1540 	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1541 	doc_set_device_id(docg3, 0);
1542 	mutex_unlock(&docg3->cascade->lock);
1543 
1544 	return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1545 }
1546 
1547 static ssize_t dps1_is_key_locked(struct device *dev,
1548 				  struct device_attribute *attr, char *buf)
1549 {
1550 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1551 	int dps1;
1552 
1553 	mutex_lock(&docg3->cascade->lock);
1554 	doc_set_device_id(docg3, docg3->device_id);
1555 	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1556 	doc_set_device_id(docg3, 0);
1557 	mutex_unlock(&docg3->cascade->lock);
1558 
1559 	return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1560 }
1561 
1562 static ssize_t dps0_insert_key(struct device *dev,
1563 			       struct device_attribute *attr,
1564 			       const char *buf, size_t count)
1565 {
1566 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1567 	int i;
1568 
1569 	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1570 		return -EINVAL;
1571 
1572 	mutex_lock(&docg3->cascade->lock);
1573 	doc_set_device_id(docg3, docg3->device_id);
1574 	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1575 		doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1576 	doc_set_device_id(docg3, 0);
1577 	mutex_unlock(&docg3->cascade->lock);
1578 	return count;
1579 }
1580 
1581 static ssize_t dps1_insert_key(struct device *dev,
1582 			       struct device_attribute *attr,
1583 			       const char *buf, size_t count)
1584 {
1585 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1586 	int i;
1587 
1588 	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1589 		return -EINVAL;
1590 
1591 	mutex_lock(&docg3->cascade->lock);
1592 	doc_set_device_id(docg3, docg3->device_id);
1593 	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1594 		doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1595 	doc_set_device_id(docg3, 0);
1596 	mutex_unlock(&docg3->cascade->lock);
1597 	return count;
1598 }
1599 
1600 #define FLOOR_SYSFS(id) { \
1601 	__ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1602 	__ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1603 	__ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \
1604 	__ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \
1605 }
1606 
1607 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1608 	FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1609 };
1610 
1611 static int doc_register_sysfs(struct platform_device *pdev,
1612 			      struct docg3_cascade *cascade)
1613 {
1614 	int ret = 0, floor, i = 0;
1615 	struct device *dev = &pdev->dev;
1616 
1617 	for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS &&
1618 		     cascade->floors[floor]; floor++)
1619 		for (i = 0; !ret && i < 4; i++)
1620 			ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1621 	if (!ret)
1622 		return 0;
1623 	do {
1624 		while (--i >= 0)
1625 			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1626 		i = 4;
1627 	} while (--floor >= 0);
1628 	return ret;
1629 }
1630 
1631 static void doc_unregister_sysfs(struct platform_device *pdev,
1632 				 struct docg3_cascade *cascade)
1633 {
1634 	struct device *dev = &pdev->dev;
1635 	int floor, i;
1636 
1637 	for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1638 	     floor++)
1639 		for (i = 0; i < 4; i++)
1640 			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1641 }
1642 
1643 /*
1644  * Debug sysfs entries
1645  */
1646 static int dbg_flashctrl_show(struct seq_file *s, void *p)
1647 {
1648 	struct docg3 *docg3 = (struct docg3 *)s->private;
1649 
1650 	int pos = 0;
1651 	u8 fctrl;
1652 
1653 	mutex_lock(&docg3->cascade->lock);
1654 	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1655 	mutex_unlock(&docg3->cascade->lock);
1656 
1657 	pos += seq_printf(s,
1658 		 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1659 		 fctrl,
1660 		 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1661 		 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1662 		 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1663 		 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1664 		 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1665 	return pos;
1666 }
1667 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1668 
1669 static int dbg_asicmode_show(struct seq_file *s, void *p)
1670 {
1671 	struct docg3 *docg3 = (struct docg3 *)s->private;
1672 
1673 	int pos = 0, pctrl, mode;
1674 
1675 	mutex_lock(&docg3->cascade->lock);
1676 	pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1677 	mode = pctrl & 0x03;
1678 	mutex_unlock(&docg3->cascade->lock);
1679 
1680 	pos += seq_printf(s,
1681 			 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1682 			 pctrl,
1683 			 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1684 			 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1685 			 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1686 			 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1687 			 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1688 			 mode >> 1, mode & 0x1);
1689 
1690 	switch (mode) {
1691 	case DOC_ASICMODE_RESET:
1692 		pos += seq_printf(s, "reset");
1693 		break;
1694 	case DOC_ASICMODE_NORMAL:
1695 		pos += seq_printf(s, "normal");
1696 		break;
1697 	case DOC_ASICMODE_POWERDOWN:
1698 		pos += seq_printf(s, "powerdown");
1699 		break;
1700 	}
1701 	pos += seq_printf(s, ")\n");
1702 	return pos;
1703 }
1704 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1705 
1706 static int dbg_device_id_show(struct seq_file *s, void *p)
1707 {
1708 	struct docg3 *docg3 = (struct docg3 *)s->private;
1709 	int pos = 0;
1710 	int id;
1711 
1712 	mutex_lock(&docg3->cascade->lock);
1713 	id = doc_register_readb(docg3, DOC_DEVICESELECT);
1714 	mutex_unlock(&docg3->cascade->lock);
1715 
1716 	pos += seq_printf(s, "DeviceId = %d\n", id);
1717 	return pos;
1718 }
1719 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1720 
1721 static int dbg_protection_show(struct seq_file *s, void *p)
1722 {
1723 	struct docg3 *docg3 = (struct docg3 *)s->private;
1724 	int pos = 0;
1725 	int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1726 
1727 	mutex_lock(&docg3->cascade->lock);
1728 	protect = doc_register_readb(docg3, DOC_PROTECTION);
1729 	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1730 	dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1731 	dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1732 	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1733 	dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1734 	dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1735 	mutex_unlock(&docg3->cascade->lock);
1736 
1737 	pos += seq_printf(s, "Protection = 0x%02x (",
1738 			 protect);
1739 	if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1740 		pos += seq_printf(s, "FOUNDRY_OTP_LOCK,");
1741 	if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1742 		pos += seq_printf(s, "CUSTOMER_OTP_LOCK,");
1743 	if (protect & DOC_PROTECT_LOCK_INPUT)
1744 		pos += seq_printf(s, "LOCK_INPUT,");
1745 	if (protect & DOC_PROTECT_STICKY_LOCK)
1746 		pos += seq_printf(s, "STICKY_LOCK,");
1747 	if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1748 		pos += seq_printf(s, "PROTECTION ON,");
1749 	if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1750 		pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,");
1751 	if (protect & DOC_PROTECT_PROTECTION_ERROR)
1752 		pos += seq_printf(s, "PROTECT_ERR,");
1753 	else
1754 		pos += seq_printf(s, "NO_PROTECT_ERR");
1755 	pos += seq_printf(s, ")\n");
1756 
1757 	pos += seq_printf(s, "DPS0 = 0x%02x : "
1758 			 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1759 			 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1760 			 dps0, dps0_low, dps0_high,
1761 			 !!(dps0 & DOC_DPS_OTP_PROTECTED),
1762 			 !!(dps0 & DOC_DPS_READ_PROTECTED),
1763 			 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1764 			 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1765 			 !!(dps0 & DOC_DPS_KEY_OK));
1766 	pos += seq_printf(s, "DPS1 = 0x%02x : "
1767 			 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1768 			 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1769 			 dps1, dps1_low, dps1_high,
1770 			 !!(dps1 & DOC_DPS_OTP_PROTECTED),
1771 			 !!(dps1 & DOC_DPS_READ_PROTECTED),
1772 			 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1773 			 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1774 			 !!(dps1 & DOC_DPS_KEY_OK));
1775 	return pos;
1776 }
1777 DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1778 
1779 static int __init doc_dbg_register(struct docg3 *docg3)
1780 {
1781 	struct dentry *root, *entry;
1782 
1783 	root = debugfs_create_dir("docg3", NULL);
1784 	if (!root)
1785 		return -ENOMEM;
1786 
1787 	entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
1788 				  &flashcontrol_fops);
1789 	if (entry)
1790 		entry = debugfs_create_file("asic_mode", S_IRUSR, root,
1791 					    docg3, &asic_mode_fops);
1792 	if (entry)
1793 		entry = debugfs_create_file("device_id", S_IRUSR, root,
1794 					    docg3, &device_id_fops);
1795 	if (entry)
1796 		entry = debugfs_create_file("protection", S_IRUSR, root,
1797 					    docg3, &protection_fops);
1798 	if (entry) {
1799 		docg3->debugfs_root = root;
1800 		return 0;
1801 	} else {
1802 		debugfs_remove_recursive(root);
1803 		return -ENOMEM;
1804 	}
1805 }
1806 
1807 static void __exit doc_dbg_unregister(struct docg3 *docg3)
1808 {
1809 	debugfs_remove_recursive(docg3->debugfs_root);
1810 }
1811 
1812 /**
1813  * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1814  * @chip_id: The chip ID of the supported chip
1815  * @mtd: The structure to fill
1816  */
1817 static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1818 {
1819 	struct docg3 *docg3 = mtd->priv;
1820 	int cfg;
1821 
1822 	cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1823 	docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1824 	docg3->reliable = reliable_mode;
1825 
1826 	switch (chip_id) {
1827 	case DOC_CHIPID_G3:
1828 		mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1829 				      docg3->device_id);
1830 		docg3->max_block = 2047;
1831 		break;
1832 	}
1833 	mtd->type = MTD_NANDFLASH;
1834 	mtd->flags = MTD_CAP_NANDFLASH;
1835 	mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1836 	if (docg3->reliable == 2)
1837 		mtd->size /= 2;
1838 	mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1839 	if (docg3->reliable == 2)
1840 		mtd->erasesize /= 2;
1841 	mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1842 	mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1843 	mtd->owner = THIS_MODULE;
1844 	mtd->_erase = doc_erase;
1845 	mtd->_read = doc_read;
1846 	mtd->_write = doc_write;
1847 	mtd->_read_oob = doc_read_oob;
1848 	mtd->_write_oob = doc_write_oob;
1849 	mtd->_block_isbad = doc_block_isbad;
1850 	mtd->ecclayout = &docg3_oobinfo;
1851 	mtd->ecc_strength = DOC_ECC_BCH_T;
1852 }
1853 
1854 /**
1855  * doc_probe_device - Check if a device is available
1856  * @base: the io space where the device is probed
1857  * @floor: the floor of the probed device
1858  * @dev: the device
1859  * @cascade: the cascade of chips this devices will belong to
1860  *
1861  * Checks whether a device at the specified IO range, and floor is available.
1862  *
1863  * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1864  * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1865  * launched.
1866  */
1867 static struct mtd_info * __init
1868 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1869 {
1870 	int ret, bbt_nbpages;
1871 	u16 chip_id, chip_id_inv;
1872 	struct docg3 *docg3;
1873 	struct mtd_info *mtd;
1874 
1875 	ret = -ENOMEM;
1876 	docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1877 	if (!docg3)
1878 		goto nomem1;
1879 	mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1880 	if (!mtd)
1881 		goto nomem2;
1882 	mtd->priv = docg3;
1883 	bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1884 				   8 * DOC_LAYOUT_PAGE_SIZE);
1885 	docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1886 	if (!docg3->bbt)
1887 		goto nomem3;
1888 
1889 	docg3->dev = dev;
1890 	docg3->device_id = floor;
1891 	docg3->cascade = cascade;
1892 	doc_set_device_id(docg3, docg3->device_id);
1893 	if (!floor)
1894 		doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1895 	doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1896 
1897 	chip_id = doc_register_readw(docg3, DOC_CHIPID);
1898 	chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1899 
1900 	ret = 0;
1901 	if (chip_id != (u16)(~chip_id_inv)) {
1902 		goto nomem3;
1903 	}
1904 
1905 	switch (chip_id) {
1906 	case DOC_CHIPID_G3:
1907 		doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1908 			 docg3->cascade->base, floor);
1909 		break;
1910 	default:
1911 		doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1912 		goto nomem3;
1913 	}
1914 
1915 	doc_set_driver_info(chip_id, mtd);
1916 
1917 	doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1918 	doc_reload_bbt(docg3);
1919 	return mtd;
1920 
1921 nomem3:
1922 	kfree(mtd);
1923 nomem2:
1924 	kfree(docg3);
1925 nomem1:
1926 	return ERR_PTR(ret);
1927 }
1928 
1929 /**
1930  * doc_release_device - Release a docg3 floor
1931  * @mtd: the device
1932  */
1933 static void doc_release_device(struct mtd_info *mtd)
1934 {
1935 	struct docg3 *docg3 = mtd->priv;
1936 
1937 	mtd_device_unregister(mtd);
1938 	kfree(docg3->bbt);
1939 	kfree(docg3);
1940 	kfree(mtd->name);
1941 	kfree(mtd);
1942 }
1943 
1944 /**
1945  * docg3_resume - Awakens docg3 floor
1946  * @pdev: platfrom device
1947  *
1948  * Returns 0 (always successfull)
1949  */
1950 static int docg3_resume(struct platform_device *pdev)
1951 {
1952 	int i;
1953 	struct docg3_cascade *cascade;
1954 	struct mtd_info **docg3_floors, *mtd;
1955 	struct docg3 *docg3;
1956 
1957 	cascade = platform_get_drvdata(pdev);
1958 	docg3_floors = cascade->floors;
1959 	mtd = docg3_floors[0];
1960 	docg3 = mtd->priv;
1961 
1962 	doc_dbg("docg3_resume()\n");
1963 	for (i = 0; i < 12; i++)
1964 		doc_readb(docg3, DOC_IOSPACE_IPL);
1965 	return 0;
1966 }
1967 
1968 /**
1969  * docg3_suspend - Put in low power mode the docg3 floor
1970  * @pdev: platform device
1971  * @state: power state
1972  *
1973  * Shuts off most of docg3 circuitery to lower power consumption.
1974  *
1975  * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1976  */
1977 static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1978 {
1979 	int floor, i;
1980 	struct docg3_cascade *cascade;
1981 	struct mtd_info **docg3_floors, *mtd;
1982 	struct docg3 *docg3;
1983 	u8 ctrl, pwr_down;
1984 
1985 	cascade = platform_get_drvdata(pdev);
1986 	docg3_floors = cascade->floors;
1987 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1988 		mtd = docg3_floors[floor];
1989 		if (!mtd)
1990 			continue;
1991 		docg3 = mtd->priv;
1992 
1993 		doc_writeb(docg3, floor, DOC_DEVICESELECT);
1994 		ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1995 		ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
1996 		doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
1997 
1998 		for (i = 0; i < 10; i++) {
1999 			usleep_range(3000, 4000);
2000 			pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2001 			if (pwr_down & DOC_POWERDOWN_READY)
2002 				break;
2003 		}
2004 		if (pwr_down & DOC_POWERDOWN_READY) {
2005 			doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2006 				floor);
2007 		} else {
2008 			doc_err("docg3_suspend(): floor %d powerdown failed\n",
2009 				floor);
2010 			return -EIO;
2011 		}
2012 	}
2013 
2014 	mtd = docg3_floors[0];
2015 	docg3 = mtd->priv;
2016 	doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2017 	return 0;
2018 }
2019 
2020 /**
2021  * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2022  * @pdev: platform device
2023  *
2024  * Probes for a G3 chip at the specified IO space in the platform data
2025  * ressources. The floor 0 must be available.
2026  *
2027  * Returns 0 on success, -ENOMEM, -ENXIO on error
2028  */
2029 static int __init docg3_probe(struct platform_device *pdev)
2030 {
2031 	struct device *dev = &pdev->dev;
2032 	struct mtd_info *mtd;
2033 	struct resource *ress;
2034 	void __iomem *base;
2035 	int ret, floor, found = 0;
2036 	struct docg3_cascade *cascade;
2037 
2038 	ret = -ENXIO;
2039 	ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2040 	if (!ress) {
2041 		dev_err(dev, "No I/O memory resource defined\n");
2042 		goto noress;
2043 	}
2044 	base = ioremap(ress->start, DOC_IOSPACE_SIZE);
2045 
2046 	ret = -ENOMEM;
2047 	cascade = kzalloc(sizeof(*cascade) * DOC_MAX_NBFLOORS,
2048 			  GFP_KERNEL);
2049 	if (!cascade)
2050 		goto nomem1;
2051 	cascade->base = base;
2052 	mutex_init(&cascade->lock);
2053 	cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2054 			     DOC_ECC_BCH_PRIMPOLY);
2055 	if (!cascade->bch)
2056 		goto nomem2;
2057 
2058 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2059 		mtd = doc_probe_device(cascade, floor, dev);
2060 		if (IS_ERR(mtd)) {
2061 			ret = PTR_ERR(mtd);
2062 			goto err_probe;
2063 		}
2064 		if (!mtd) {
2065 			if (floor == 0)
2066 				goto notfound;
2067 			else
2068 				continue;
2069 		}
2070 		cascade->floors[floor] = mtd;
2071 		ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2072 						0);
2073 		if (ret)
2074 			goto err_probe;
2075 		found++;
2076 	}
2077 
2078 	ret = doc_register_sysfs(pdev, cascade);
2079 	if (ret)
2080 		goto err_probe;
2081 	if (!found)
2082 		goto notfound;
2083 
2084 	platform_set_drvdata(pdev, cascade);
2085 	doc_dbg_register(cascade->floors[0]->priv);
2086 	return 0;
2087 
2088 notfound:
2089 	ret = -ENODEV;
2090 	dev_info(dev, "No supported DiskOnChip found\n");
2091 err_probe:
2092 	kfree(cascade->bch);
2093 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2094 		if (cascade->floors[floor])
2095 			doc_release_device(cascade->floors[floor]);
2096 nomem2:
2097 	kfree(cascade);
2098 nomem1:
2099 	iounmap(base);
2100 noress:
2101 	return ret;
2102 }
2103 
2104 /**
2105  * docg3_release - Release the driver
2106  * @pdev: the platform device
2107  *
2108  * Returns 0
2109  */
2110 static int __exit docg3_release(struct platform_device *pdev)
2111 {
2112 	struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2113 	struct docg3 *docg3 = cascade->floors[0]->priv;
2114 	void __iomem *base = cascade->base;
2115 	int floor;
2116 
2117 	doc_unregister_sysfs(pdev, cascade);
2118 	doc_dbg_unregister(docg3);
2119 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2120 		if (cascade->floors[floor])
2121 			doc_release_device(cascade->floors[floor]);
2122 
2123 	free_bch(docg3->cascade->bch);
2124 	kfree(cascade);
2125 	iounmap(base);
2126 	return 0;
2127 }
2128 
2129 static struct platform_driver g3_driver = {
2130 	.driver		= {
2131 		.name	= "docg3",
2132 		.owner	= THIS_MODULE,
2133 	},
2134 	.suspend	= docg3_suspend,
2135 	.resume		= docg3_resume,
2136 	.remove		= __exit_p(docg3_release),
2137 };
2138 
2139 static int __init docg3_init(void)
2140 {
2141 	return platform_driver_probe(&g3_driver, docg3_probe);
2142 }
2143 module_init(docg3_init);
2144 
2145 
2146 static void __exit docg3_exit(void)
2147 {
2148 	platform_driver_unregister(&g3_driver);
2149 }
2150 module_exit(docg3_exit);
2151 
2152 MODULE_LICENSE("GPL");
2153 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2154 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2155