xref: /openbmc/linux/drivers/mtd/devices/docg3.c (revision 56a0eccd)
1 /*
2  * Handles the M-Systems DiskOnChip G3 chip
3  *
4  * Copyright (C) 2011 Robert Jarzmik
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  *
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/io.h>
30 #include <linux/delay.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/bitmap.h>
34 #include <linux/bitrev.h>
35 #include <linux/bch.h>
36 
37 #include <linux/debugfs.h>
38 #include <linux/seq_file.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include "docg3.h"
42 
43 /*
44  * This driver handles the DiskOnChip G3 flash memory.
45  *
46  * As no specification is available from M-Systems/Sandisk, this drivers lacks
47  * several functions available on the chip, as :
48  *  - IPL write
49  *
50  * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
51  * the driver assumes a 16bits data bus.
52  *
53  * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
54  *  - a 1 byte Hamming code stored in the OOB for each page
55  *  - a 7 bytes BCH code stored in the OOB for each page
56  * The BCH ECC is :
57  *  - BCH is in GF(2^14)
58  *  - BCH is over data of 520 bytes (512 page + 7 page_info bytes
59  *                                   + 1 hamming byte)
60  *  - BCH can correct up to 4 bits (t = 4)
61  *  - BCH syndroms are calculated in hardware, and checked in hardware as well
62  *
63  */
64 
65 static unsigned int reliable_mode;
66 module_param(reliable_mode, uint, 0);
67 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
68 		 "2=reliable) : MLC normal operations are in normal mode");
69 
70 /**
71  * struct docg3_oobinfo - DiskOnChip G3 OOB layout
72  * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
73  * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
74  * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
75  */
76 static struct nand_ecclayout docg3_oobinfo = {
77 	.eccbytes = 8,
78 	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
79 	.oobfree = {{0, 7}, {15, 1} },
80 };
81 
82 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
83 {
84 	u8 val = readb(docg3->cascade->base + reg);
85 
86 	trace_docg3_io(0, 8, reg, (int)val);
87 	return val;
88 }
89 
90 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
91 {
92 	u16 val = readw(docg3->cascade->base + reg);
93 
94 	trace_docg3_io(0, 16, reg, (int)val);
95 	return val;
96 }
97 
98 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
99 {
100 	writeb(val, docg3->cascade->base + reg);
101 	trace_docg3_io(1, 8, reg, val);
102 }
103 
104 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
105 {
106 	writew(val, docg3->cascade->base + reg);
107 	trace_docg3_io(1, 16, reg, val);
108 }
109 
110 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
111 {
112 	doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
113 }
114 
115 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
116 {
117 	doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
118 }
119 
120 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
121 {
122 	doc_writeb(docg3, addr, DOC_FLASHADDRESS);
123 }
124 
125 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
126 
127 static int doc_register_readb(struct docg3 *docg3, int reg)
128 {
129 	u8 val;
130 
131 	doc_writew(docg3, reg, DOC_READADDRESS);
132 	val = doc_readb(docg3, reg);
133 	doc_vdbg("Read register %04x : %02x\n", reg, val);
134 	return val;
135 }
136 
137 static int doc_register_readw(struct docg3 *docg3, int reg)
138 {
139 	u16 val;
140 
141 	doc_writew(docg3, reg, DOC_READADDRESS);
142 	val = doc_readw(docg3, reg);
143 	doc_vdbg("Read register %04x : %04x\n", reg, val);
144 	return val;
145 }
146 
147 /**
148  * doc_delay - delay docg3 operations
149  * @docg3: the device
150  * @nbNOPs: the number of NOPs to issue
151  *
152  * As no specification is available, the right timings between chip commands are
153  * unknown. The only available piece of information are the observed nops on a
154  * working docg3 chip.
155  * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
156  * friendlier msleep() functions or blocking mdelay().
157  */
158 static void doc_delay(struct docg3 *docg3, int nbNOPs)
159 {
160 	int i;
161 
162 	doc_vdbg("NOP x %d\n", nbNOPs);
163 	for (i = 0; i < nbNOPs; i++)
164 		doc_writeb(docg3, 0, DOC_NOP);
165 }
166 
167 static int is_prot_seq_error(struct docg3 *docg3)
168 {
169 	int ctrl;
170 
171 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
172 	return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
173 }
174 
175 static int doc_is_ready(struct docg3 *docg3)
176 {
177 	int ctrl;
178 
179 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
180 	return ctrl & DOC_CTRL_FLASHREADY;
181 }
182 
183 static int doc_wait_ready(struct docg3 *docg3)
184 {
185 	int maxWaitCycles = 100;
186 
187 	do {
188 		doc_delay(docg3, 4);
189 		cpu_relax();
190 	} while (!doc_is_ready(docg3) && maxWaitCycles--);
191 	doc_delay(docg3, 2);
192 	if (maxWaitCycles > 0)
193 		return 0;
194 	else
195 		return -EIO;
196 }
197 
198 static int doc_reset_seq(struct docg3 *docg3)
199 {
200 	int ret;
201 
202 	doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
203 	doc_flash_sequence(docg3, DOC_SEQ_RESET);
204 	doc_flash_command(docg3, DOC_CMD_RESET);
205 	doc_delay(docg3, 2);
206 	ret = doc_wait_ready(docg3);
207 
208 	doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
209 	return ret;
210 }
211 
212 /**
213  * doc_read_data_area - Read data from data area
214  * @docg3: the device
215  * @buf: the buffer to fill in (might be NULL is dummy reads)
216  * @len: the length to read
217  * @first: first time read, DOC_READADDRESS should be set
218  *
219  * Reads bytes from flash data. Handles the single byte / even bytes reads.
220  */
221 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
222 			       int first)
223 {
224 	int i, cdr, len4;
225 	u16 data16, *dst16;
226 	u8 data8, *dst8;
227 
228 	doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
229 	cdr = len & 0x1;
230 	len4 = len - cdr;
231 
232 	if (first)
233 		doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
234 	dst16 = buf;
235 	for (i = 0; i < len4; i += 2) {
236 		data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
237 		if (dst16) {
238 			*dst16 = data16;
239 			dst16++;
240 		}
241 	}
242 
243 	if (cdr) {
244 		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
245 			   DOC_READADDRESS);
246 		doc_delay(docg3, 1);
247 		dst8 = (u8 *)dst16;
248 		for (i = 0; i < cdr; i++) {
249 			data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
250 			if (dst8) {
251 				*dst8 = data8;
252 				dst8++;
253 			}
254 		}
255 	}
256 }
257 
258 /**
259  * doc_write_data_area - Write data into data area
260  * @docg3: the device
261  * @buf: the buffer to get input bytes from
262  * @len: the length to write
263  *
264  * Writes bytes into flash data. Handles the single byte / even bytes writes.
265  */
266 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
267 {
268 	int i, cdr, len4;
269 	u16 *src16;
270 	u8 *src8;
271 
272 	doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
273 	cdr = len & 0x3;
274 	len4 = len - cdr;
275 
276 	doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
277 	src16 = (u16 *)buf;
278 	for (i = 0; i < len4; i += 2) {
279 		doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
280 		src16++;
281 	}
282 
283 	src8 = (u8 *)src16;
284 	for (i = 0; i < cdr; i++) {
285 		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
286 			   DOC_READADDRESS);
287 		doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
288 		src8++;
289 	}
290 }
291 
292 /**
293  * doc_set_data_mode - Sets the flash to normal or reliable data mode
294  * @docg3: the device
295  *
296  * The reliable data mode is a bit slower than the fast mode, but less errors
297  * occur.  Entering the reliable mode cannot be done without entering the fast
298  * mode first.
299  *
300  * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
301  * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
302  * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
303  * result, which is a logical and between bytes from page 0 and page 1 (which is
304  * consistent with the fact that writing to a page is _clearing_ bits of that
305  * page).
306  */
307 static void doc_set_reliable_mode(struct docg3 *docg3)
308 {
309 	static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
310 
311 	doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
312 	switch (docg3->reliable) {
313 	case 0:
314 		break;
315 	case 1:
316 		doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
317 		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
318 		break;
319 	case 2:
320 		doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
321 		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
322 		doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
323 		break;
324 	default:
325 		doc_err("doc_set_reliable_mode(): invalid mode\n");
326 		break;
327 	}
328 	doc_delay(docg3, 2);
329 }
330 
331 /**
332  * doc_set_asic_mode - Set the ASIC mode
333  * @docg3: the device
334  * @mode: the mode
335  *
336  * The ASIC can work in 3 modes :
337  *  - RESET: all registers are zeroed
338  *  - NORMAL: receives and handles commands
339  *  - POWERDOWN: minimal poweruse, flash parts shut off
340  */
341 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
342 {
343 	int i;
344 
345 	for (i = 0; i < 12; i++)
346 		doc_readb(docg3, DOC_IOSPACE_IPL);
347 
348 	mode |= DOC_ASICMODE_MDWREN;
349 	doc_dbg("doc_set_asic_mode(%02x)\n", mode);
350 	doc_writeb(docg3, mode, DOC_ASICMODE);
351 	doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
352 	doc_delay(docg3, 1);
353 }
354 
355 /**
356  * doc_set_device_id - Sets the devices id for cascaded G3 chips
357  * @docg3: the device
358  * @id: the chip to select (amongst 0, 1, 2, 3)
359  *
360  * There can be 4 cascaded G3 chips. This function selects the one which will
361  * should be the active one.
362  */
363 static void doc_set_device_id(struct docg3 *docg3, int id)
364 {
365 	u8 ctrl;
366 
367 	doc_dbg("doc_set_device_id(%d)\n", id);
368 	doc_writeb(docg3, id, DOC_DEVICESELECT);
369 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
370 
371 	ctrl &= ~DOC_CTRL_VIOLATION;
372 	ctrl |= DOC_CTRL_CE;
373 	doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
374 }
375 
376 /**
377  * doc_set_extra_page_mode - Change flash page layout
378  * @docg3: the device
379  *
380  * Normally, the flash page is split into the data (512 bytes) and the out of
381  * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
382  * leveling counters are stored.  To access this last area of 4 bytes, a special
383  * mode must be input to the flash ASIC.
384  *
385  * Returns 0 if no error occurred, -EIO else.
386  */
387 static int doc_set_extra_page_mode(struct docg3 *docg3)
388 {
389 	int fctrl;
390 
391 	doc_dbg("doc_set_extra_page_mode()\n");
392 	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
393 	doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
394 	doc_delay(docg3, 2);
395 
396 	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
397 	if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
398 		return -EIO;
399 	else
400 		return 0;
401 }
402 
403 /**
404  * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
405  * @docg3: the device
406  * @sector: the sector
407  */
408 static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
409 {
410 	doc_delay(docg3, 1);
411 	doc_flash_address(docg3, sector & 0xff);
412 	doc_flash_address(docg3, (sector >> 8) & 0xff);
413 	doc_flash_address(docg3, (sector >> 16) & 0xff);
414 	doc_delay(docg3, 1);
415 }
416 
417 /**
418  * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
419  * @docg3: the device
420  * @sector: the sector
421  * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
422  */
423 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
424 {
425 	ofs = ofs >> 2;
426 	doc_delay(docg3, 1);
427 	doc_flash_address(docg3, ofs & 0xff);
428 	doc_flash_address(docg3, sector & 0xff);
429 	doc_flash_address(docg3, (sector >> 8) & 0xff);
430 	doc_flash_address(docg3, (sector >> 16) & 0xff);
431 	doc_delay(docg3, 1);
432 }
433 
434 /**
435  * doc_seek - Set both flash planes to the specified block, page for reading
436  * @docg3: the device
437  * @block0: the first plane block index
438  * @block1: the second plane block index
439  * @page: the page index within the block
440  * @wear: if true, read will occur on the 4 extra bytes of the wear area
441  * @ofs: offset in page to read
442  *
443  * Programs the flash even and odd planes to the specific block and page.
444  * Alternatively, programs the flash to the wear area of the specified page.
445  */
446 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
447 			 int wear, int ofs)
448 {
449 	int sector, ret = 0;
450 
451 	doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
452 		block0, block1, page, ofs, wear);
453 
454 	if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
455 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
456 		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
457 		doc_delay(docg3, 2);
458 	} else {
459 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
460 		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
461 		doc_delay(docg3, 2);
462 	}
463 
464 	doc_set_reliable_mode(docg3);
465 	if (wear)
466 		ret = doc_set_extra_page_mode(docg3);
467 	if (ret)
468 		goto out;
469 
470 	doc_flash_sequence(docg3, DOC_SEQ_READ);
471 	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
472 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
473 	doc_setup_addr_sector(docg3, sector);
474 
475 	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
476 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
477 	doc_setup_addr_sector(docg3, sector);
478 	doc_delay(docg3, 1);
479 
480 out:
481 	return ret;
482 }
483 
484 /**
485  * doc_write_seek - Set both flash planes to the specified block, page for writing
486  * @docg3: the device
487  * @block0: the first plane block index
488  * @block1: the second plane block index
489  * @page: the page index within the block
490  * @ofs: offset in page to write
491  *
492  * Programs the flash even and odd planes to the specific block and page.
493  * Alternatively, programs the flash to the wear area of the specified page.
494  */
495 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
496 			 int ofs)
497 {
498 	int ret = 0, sector;
499 
500 	doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
501 		block0, block1, page, ofs);
502 
503 	doc_set_reliable_mode(docg3);
504 
505 	if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
506 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
507 		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
508 		doc_delay(docg3, 2);
509 	} else {
510 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
511 		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
512 		doc_delay(docg3, 2);
513 	}
514 
515 	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
516 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
517 
518 	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
519 	doc_setup_writeaddr_sector(docg3, sector, ofs);
520 
521 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
522 	doc_delay(docg3, 2);
523 	ret = doc_wait_ready(docg3);
524 	if (ret)
525 		goto out;
526 
527 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
528 	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
529 	doc_setup_writeaddr_sector(docg3, sector, ofs);
530 	doc_delay(docg3, 1);
531 
532 out:
533 	return ret;
534 }
535 
536 
537 /**
538  * doc_read_page_ecc_init - Initialize hardware ECC engine
539  * @docg3: the device
540  * @len: the number of bytes covered by the ECC (BCH covered)
541  *
542  * The function does initialize the hardware ECC engine to compute the Hamming
543  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
544  *
545  * Return 0 if succeeded, -EIO on error
546  */
547 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
548 {
549 	doc_writew(docg3, DOC_ECCCONF0_READ_MODE
550 		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
551 		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
552 		   DOC_ECCCONF0);
553 	doc_delay(docg3, 4);
554 	doc_register_readb(docg3, DOC_FLASHCONTROL);
555 	return doc_wait_ready(docg3);
556 }
557 
558 /**
559  * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
560  * @docg3: the device
561  * @len: the number of bytes covered by the ECC (BCH covered)
562  *
563  * The function does initialize the hardware ECC engine to compute the Hamming
564  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
565  *
566  * Return 0 if succeeded, -EIO on error
567  */
568 static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
569 {
570 	doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
571 		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
572 		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
573 		   DOC_ECCCONF0);
574 	doc_delay(docg3, 4);
575 	doc_register_readb(docg3, DOC_FLASHCONTROL);
576 	return doc_wait_ready(docg3);
577 }
578 
579 /**
580  * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
581  * @docg3: the device
582  *
583  * Disables the hardware ECC generator and checker, for unchecked reads (as when
584  * reading OOB only or write status byte).
585  */
586 static void doc_ecc_disable(struct docg3 *docg3)
587 {
588 	doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
589 	doc_delay(docg3, 4);
590 }
591 
592 /**
593  * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
594  * @docg3: the device
595  * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
596  *
597  * This function programs the ECC hardware to compute the hamming code on the
598  * last provided N bytes to the hardware generator.
599  */
600 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
601 {
602 	u8 ecc_conf1;
603 
604 	ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
605 	ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
606 	ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
607 	doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
608 }
609 
610 /**
611  * doc_ecc_bch_fix_data - Fix if need be read data from flash
612  * @docg3: the device
613  * @buf: the buffer of read data (512 + 7 + 1 bytes)
614  * @hwecc: the hardware calculated ECC.
615  *         It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
616  *         area data, and calc_ecc the ECC calculated by the hardware generator.
617  *
618  * Checks if the received data matches the ECC, and if an error is detected,
619  * tries to fix the bit flips (at most 4) in the buffer buf.  As the docg3
620  * understands the (data, ecc, syndroms) in an inverted order in comparison to
621  * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
622  * bit6 and bit 1, ...) for all ECC data.
623  *
624  * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
625  * algorithm is used to decode this.  However the hw operates on page
626  * data in a bit order that is the reverse of that of the bch alg,
627  * requiring that the bits be reversed on the result.  Thanks to Ivan
628  * Djelic for his analysis.
629  *
630  * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
631  * errors were detected and cannot be fixed.
632  */
633 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
634 {
635 	u8 ecc[DOC_ECC_BCH_SIZE];
636 	int errorpos[DOC_ECC_BCH_T], i, numerrs;
637 
638 	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
639 		ecc[i] = bitrev8(hwecc[i]);
640 	numerrs = decode_bch(docg3->cascade->bch, NULL,
641 			     DOC_ECC_BCH_COVERED_BYTES,
642 			     NULL, ecc, NULL, errorpos);
643 	BUG_ON(numerrs == -EINVAL);
644 	if (numerrs < 0)
645 		goto out;
646 
647 	for (i = 0; i < numerrs; i++)
648 		errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
649 	for (i = 0; i < numerrs; i++)
650 		if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
651 			/* error is located in data, correct it */
652 			change_bit(errorpos[i], buf);
653 out:
654 	doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
655 	return numerrs;
656 }
657 
658 
659 /**
660  * doc_read_page_prepare - Prepares reading data from a flash page
661  * @docg3: the device
662  * @block0: the first plane block index on flash memory
663  * @block1: the second plane block index on flash memory
664  * @page: the page index in the block
665  * @offset: the offset in the page (must be a multiple of 4)
666  *
667  * Prepares the page to be read in the flash memory :
668  *   - tell ASIC to map the flash pages
669  *   - tell ASIC to be in read mode
670  *
671  * After a call to this method, a call to doc_read_page_finish is mandatory,
672  * to end the read cycle of the flash.
673  *
674  * Read data from a flash page. The length to be read must be between 0 and
675  * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
676  * the extra bytes reading is not implemented).
677  *
678  * As pages are grouped by 2 (in 2 planes), reading from a page must be done
679  * in two steps:
680  *  - one read of 512 bytes at offset 0
681  *  - one read of 512 bytes at offset 512 + 16
682  *
683  * Returns 0 if successful, -EIO if a read error occurred.
684  */
685 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
686 				 int page, int offset)
687 {
688 	int wear_area = 0, ret = 0;
689 
690 	doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
691 		block0, block1, page, offset);
692 	if (offset >= DOC_LAYOUT_WEAR_OFFSET)
693 		wear_area = 1;
694 	if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
695 		return -EINVAL;
696 
697 	doc_set_device_id(docg3, docg3->device_id);
698 	ret = doc_reset_seq(docg3);
699 	if (ret)
700 		goto err;
701 
702 	/* Program the flash address block and page */
703 	ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
704 	if (ret)
705 		goto err;
706 
707 	doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
708 	doc_delay(docg3, 2);
709 	doc_wait_ready(docg3);
710 
711 	doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
712 	doc_delay(docg3, 1);
713 	if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
714 		offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
715 	doc_flash_address(docg3, offset >> 2);
716 	doc_delay(docg3, 1);
717 	doc_wait_ready(docg3);
718 
719 	doc_flash_command(docg3, DOC_CMD_READ_FLASH);
720 
721 	return 0;
722 err:
723 	doc_writeb(docg3, 0, DOC_DATAEND);
724 	doc_delay(docg3, 2);
725 	return -EIO;
726 }
727 
728 /**
729  * doc_read_page_getbytes - Reads bytes from a prepared page
730  * @docg3: the device
731  * @len: the number of bytes to be read (must be a multiple of 4)
732  * @buf: the buffer to be filled in (or NULL is forget bytes)
733  * @first: 1 if first time read, DOC_READADDRESS should be set
734  * @last_odd: 1 if last read ended up on an odd byte
735  *
736  * Reads bytes from a prepared page. There is a trickery here : if the last read
737  * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
738  * planes, the first byte must be read apart. If a word (16bit) read was used,
739  * the read would return the byte of plane 2 as low *and* high endian, which
740  * will mess the read.
741  *
742  */
743 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
744 				  int first, int last_odd)
745 {
746 	if (last_odd && len > 0) {
747 		doc_read_data_area(docg3, buf, 1, first);
748 		doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
749 	} else {
750 		doc_read_data_area(docg3, buf, len, first);
751 	}
752 	doc_delay(docg3, 2);
753 	return len;
754 }
755 
756 /**
757  * doc_write_page_putbytes - Writes bytes into a prepared page
758  * @docg3: the device
759  * @len: the number of bytes to be written
760  * @buf: the buffer of input bytes
761  *
762  */
763 static void doc_write_page_putbytes(struct docg3 *docg3, int len,
764 				    const u_char *buf)
765 {
766 	doc_write_data_area(docg3, buf, len);
767 	doc_delay(docg3, 2);
768 }
769 
770 /**
771  * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
772  * @docg3: the device
773  * @hwecc:  the array of 7 integers where the hardware ecc will be stored
774  */
775 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
776 {
777 	int i;
778 
779 	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
780 		hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
781 }
782 
783 /**
784  * doc_page_finish - Ends reading/writing of a flash page
785  * @docg3: the device
786  */
787 static void doc_page_finish(struct docg3 *docg3)
788 {
789 	doc_writeb(docg3, 0, DOC_DATAEND);
790 	doc_delay(docg3, 2);
791 }
792 
793 /**
794  * doc_read_page_finish - Ends reading of a flash page
795  * @docg3: the device
796  *
797  * As a side effect, resets the chip selector to 0. This ensures that after each
798  * read operation, the floor 0 is selected. Therefore, if the systems halts, the
799  * reboot will boot on floor 0, where the IPL is.
800  */
801 static void doc_read_page_finish(struct docg3 *docg3)
802 {
803 	doc_page_finish(docg3);
804 	doc_set_device_id(docg3, 0);
805 }
806 
807 /**
808  * calc_block_sector - Calculate blocks, pages and ofs.
809 
810  * @from: offset in flash
811  * @block0: first plane block index calculated
812  * @block1: second plane block index calculated
813  * @page: page calculated
814  * @ofs: offset in page
815  * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
816  * reliable mode.
817  *
818  * The calculation is based on the reliable/normal mode. In normal mode, the 64
819  * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
820  * clones, only 32 pages per block are available.
821  */
822 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
823 			      int *ofs, int reliable)
824 {
825 	uint sector, pages_biblock;
826 
827 	pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
828 	if (reliable == 1 || reliable == 2)
829 		pages_biblock /= 2;
830 
831 	sector = from / DOC_LAYOUT_PAGE_SIZE;
832 	*block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
833 	*block1 = *block0 + 1;
834 	*page = sector % pages_biblock;
835 	*page /= DOC_LAYOUT_NBPLANES;
836 	if (reliable == 1 || reliable == 2)
837 		*page *= 2;
838 	if (sector % 2)
839 		*ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
840 	else
841 		*ofs = 0;
842 }
843 
844 /**
845  * doc_read_oob - Read out of band bytes from flash
846  * @mtd: the device
847  * @from: the offset from first block and first page, in bytes, aligned on page
848  *        size
849  * @ops: the mtd oob structure
850  *
851  * Reads flash memory OOB area of pages.
852  *
853  * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
854  */
855 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
856 			struct mtd_oob_ops *ops)
857 {
858 	struct docg3 *docg3 = mtd->priv;
859 	int block0, block1, page, ret, skip, ofs = 0;
860 	u8 *oobbuf = ops->oobbuf;
861 	u8 *buf = ops->datbuf;
862 	size_t len, ooblen, nbdata, nboob;
863 	u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
864 	int max_bitflips = 0;
865 
866 	if (buf)
867 		len = ops->len;
868 	else
869 		len = 0;
870 	if (oobbuf)
871 		ooblen = ops->ooblen;
872 	else
873 		ooblen = 0;
874 
875 	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
876 		oobbuf += ops->ooboffs;
877 
878 	doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
879 		from, ops->mode, buf, len, oobbuf, ooblen);
880 	if (ooblen % DOC_LAYOUT_OOB_SIZE)
881 		return -EINVAL;
882 
883 	if (from + len > mtd->size)
884 		return -EINVAL;
885 
886 	ops->oobretlen = 0;
887 	ops->retlen = 0;
888 	ret = 0;
889 	skip = from % DOC_LAYOUT_PAGE_SIZE;
890 	mutex_lock(&docg3->cascade->lock);
891 	while (ret >= 0 && (len > 0 || ooblen > 0)) {
892 		calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
893 			docg3->reliable);
894 		nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
895 		nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
896 		ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
897 		if (ret < 0)
898 			goto out;
899 		ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
900 		if (ret < 0)
901 			goto err_in_read;
902 		ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
903 		if (ret < skip)
904 			goto err_in_read;
905 		ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
906 		if (ret < nbdata)
907 			goto err_in_read;
908 		doc_read_page_getbytes(docg3,
909 				       DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
910 				       NULL, 0, (skip + nbdata) % 2);
911 		ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
912 		if (ret < nboob)
913 			goto err_in_read;
914 		doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
915 				       NULL, 0, nboob % 2);
916 
917 		doc_get_bch_hw_ecc(docg3, hwecc);
918 		eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
919 
920 		if (nboob >= DOC_LAYOUT_OOB_SIZE) {
921 			doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
922 			doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
923 			doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
924 			doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
925 		}
926 		doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
927 		doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
928 
929 		ret = -EIO;
930 		if (is_prot_seq_error(docg3))
931 			goto err_in_read;
932 		ret = 0;
933 		if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
934 		    (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
935 		    (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
936 		    (ops->mode != MTD_OPS_RAW) &&
937 		    (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
938 			ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
939 			if (ret < 0) {
940 				mtd->ecc_stats.failed++;
941 				ret = -EBADMSG;
942 			}
943 			if (ret > 0) {
944 				mtd->ecc_stats.corrected += ret;
945 				max_bitflips = max(max_bitflips, ret);
946 				ret = max_bitflips;
947 			}
948 		}
949 
950 		doc_read_page_finish(docg3);
951 		ops->retlen += nbdata;
952 		ops->oobretlen += nboob;
953 		buf += nbdata;
954 		oobbuf += nboob;
955 		len -= nbdata;
956 		ooblen -= nboob;
957 		from += DOC_LAYOUT_PAGE_SIZE;
958 		skip = 0;
959 	}
960 
961 out:
962 	mutex_unlock(&docg3->cascade->lock);
963 	return ret;
964 err_in_read:
965 	doc_read_page_finish(docg3);
966 	goto out;
967 }
968 
969 /**
970  * doc_read - Read bytes from flash
971  * @mtd: the device
972  * @from: the offset from first block and first page, in bytes, aligned on page
973  *        size
974  * @len: the number of bytes to read (must be a multiple of 4)
975  * @retlen: the number of bytes actually read
976  * @buf: the filled in buffer
977  *
978  * Reads flash memory pages. This function does not read the OOB chunk, but only
979  * the page data.
980  *
981  * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
982  */
983 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
984 	     size_t *retlen, u_char *buf)
985 {
986 	struct mtd_oob_ops ops;
987 	size_t ret;
988 
989 	memset(&ops, 0, sizeof(ops));
990 	ops.datbuf = buf;
991 	ops.len = len;
992 	ops.mode = MTD_OPS_AUTO_OOB;
993 
994 	ret = doc_read_oob(mtd, from, &ops);
995 	*retlen = ops.retlen;
996 	return ret;
997 }
998 
999 static int doc_reload_bbt(struct docg3 *docg3)
1000 {
1001 	int block = DOC_LAYOUT_BLOCK_BBT;
1002 	int ret = 0, nbpages, page;
1003 	u_char *buf = docg3->bbt;
1004 
1005 	nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
1006 	for (page = 0; !ret && (page < nbpages); page++) {
1007 		ret = doc_read_page_prepare(docg3, block, block + 1,
1008 					    page + DOC_LAYOUT_PAGE_BBT, 0);
1009 		if (!ret)
1010 			ret = doc_read_page_ecc_init(docg3,
1011 						     DOC_LAYOUT_PAGE_SIZE);
1012 		if (!ret)
1013 			doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1014 					       buf, 1, 0);
1015 		buf += DOC_LAYOUT_PAGE_SIZE;
1016 	}
1017 	doc_read_page_finish(docg3);
1018 	return ret;
1019 }
1020 
1021 /**
1022  * doc_block_isbad - Checks whether a block is good or not
1023  * @mtd: the device
1024  * @from: the offset to find the correct block
1025  *
1026  * Returns 1 if block is bad, 0 if block is good
1027  */
1028 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1029 {
1030 	struct docg3 *docg3 = mtd->priv;
1031 	int block0, block1, page, ofs, is_good;
1032 
1033 	calc_block_sector(from, &block0, &block1, &page, &ofs,
1034 		docg3->reliable);
1035 	doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1036 		from, block0, block1, page, ofs);
1037 
1038 	if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1039 		return 0;
1040 	if (block1 > docg3->max_block)
1041 		return -EINVAL;
1042 
1043 	is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1044 	return !is_good;
1045 }
1046 
1047 #if 0
1048 /**
1049  * doc_get_erase_count - Get block erase count
1050  * @docg3: the device
1051  * @from: the offset in which the block is.
1052  *
1053  * Get the number of times a block was erased. The number is the maximum of
1054  * erase times between first and second plane (which should be equal normally).
1055  *
1056  * Returns The number of erases, or -EINVAL or -EIO on error.
1057  */
1058 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1059 {
1060 	u8 buf[DOC_LAYOUT_WEAR_SIZE];
1061 	int ret, plane1_erase_count, plane2_erase_count;
1062 	int block0, block1, page, ofs;
1063 
1064 	doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1065 	if (from % DOC_LAYOUT_PAGE_SIZE)
1066 		return -EINVAL;
1067 	calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1068 	if (block1 > docg3->max_block)
1069 		return -EINVAL;
1070 
1071 	ret = doc_reset_seq(docg3);
1072 	if (!ret)
1073 		ret = doc_read_page_prepare(docg3, block0, block1, page,
1074 					    ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1075 	if (!ret)
1076 		ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1077 					     buf, 1, 0);
1078 	doc_read_page_finish(docg3);
1079 
1080 	if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1081 		return -EIO;
1082 	plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1083 		| ((u8)(~buf[5]) << 16);
1084 	plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1085 		| ((u8)(~buf[7]) << 16);
1086 
1087 	return max(plane1_erase_count, plane2_erase_count);
1088 }
1089 #endif
1090 
1091 /**
1092  * doc_get_op_status - get erase/write operation status
1093  * @docg3: the device
1094  *
1095  * Queries the status from the chip, and returns it
1096  *
1097  * Returns the status (bits DOC_PLANES_STATUS_*)
1098  */
1099 static int doc_get_op_status(struct docg3 *docg3)
1100 {
1101 	u8 status;
1102 
1103 	doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1104 	doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1105 	doc_delay(docg3, 5);
1106 
1107 	doc_ecc_disable(docg3);
1108 	doc_read_data_area(docg3, &status, 1, 1);
1109 	return status;
1110 }
1111 
1112 /**
1113  * doc_write_erase_wait_status - wait for write or erase completion
1114  * @docg3: the device
1115  *
1116  * Wait for the chip to be ready again after erase or write operation, and check
1117  * erase/write status.
1118  *
1119  * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1120  * timeout
1121  */
1122 static int doc_write_erase_wait_status(struct docg3 *docg3)
1123 {
1124 	int i, status, ret = 0;
1125 
1126 	for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1127 		msleep(20);
1128 	if (!doc_is_ready(docg3)) {
1129 		doc_dbg("Timeout reached and the chip is still not ready\n");
1130 		ret = -EAGAIN;
1131 		goto out;
1132 	}
1133 
1134 	status = doc_get_op_status(docg3);
1135 	if (status & DOC_PLANES_STATUS_FAIL) {
1136 		doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1137 			status);
1138 		ret = -EIO;
1139 	}
1140 
1141 out:
1142 	doc_page_finish(docg3);
1143 	return ret;
1144 }
1145 
1146 /**
1147  * doc_erase_block - Erase a couple of blocks
1148  * @docg3: the device
1149  * @block0: the first block to erase (leftmost plane)
1150  * @block1: the second block to erase (rightmost plane)
1151  *
1152  * Erase both blocks, and return operation status
1153  *
1154  * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1155  * ready for too long
1156  */
1157 static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1158 {
1159 	int ret, sector;
1160 
1161 	doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1162 	ret = doc_reset_seq(docg3);
1163 	if (ret)
1164 		return -EIO;
1165 
1166 	doc_set_reliable_mode(docg3);
1167 	doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1168 
1169 	sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1170 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1171 	doc_setup_addr_sector(docg3, sector);
1172 	sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1173 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1174 	doc_setup_addr_sector(docg3, sector);
1175 	doc_delay(docg3, 1);
1176 
1177 	doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1178 	doc_delay(docg3, 2);
1179 
1180 	if (is_prot_seq_error(docg3)) {
1181 		doc_err("Erase blocks %d,%d error\n", block0, block1);
1182 		return -EIO;
1183 	}
1184 
1185 	return doc_write_erase_wait_status(docg3);
1186 }
1187 
1188 /**
1189  * doc_erase - Erase a portion of the chip
1190  * @mtd: the device
1191  * @info: the erase info
1192  *
1193  * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1194  * split into 2 pages of 512 bytes on 2 contiguous blocks.
1195  *
1196  * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1197  * issue
1198  */
1199 static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1200 {
1201 	struct docg3 *docg3 = mtd->priv;
1202 	uint64_t len;
1203 	int block0, block1, page, ret, ofs = 0;
1204 
1205 	doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1206 
1207 	info->state = MTD_ERASE_PENDING;
1208 	calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1209 			  &ofs, docg3->reliable);
1210 	ret = -EINVAL;
1211 	if (info->addr + info->len > mtd->size || page || ofs)
1212 		goto reset_err;
1213 
1214 	ret = 0;
1215 	calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1216 			  docg3->reliable);
1217 	mutex_lock(&docg3->cascade->lock);
1218 	doc_set_device_id(docg3, docg3->device_id);
1219 	doc_set_reliable_mode(docg3);
1220 	for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1221 		info->state = MTD_ERASING;
1222 		ret = doc_erase_block(docg3, block0, block1);
1223 		block0 += 2;
1224 		block1 += 2;
1225 	}
1226 	mutex_unlock(&docg3->cascade->lock);
1227 
1228 	if (ret)
1229 		goto reset_err;
1230 
1231 	info->state = MTD_ERASE_DONE;
1232 	return 0;
1233 
1234 reset_err:
1235 	info->state = MTD_ERASE_FAILED;
1236 	return ret;
1237 }
1238 
1239 /**
1240  * doc_write_page - Write a single page to the chip
1241  * @docg3: the device
1242  * @to: the offset from first block and first page, in bytes, aligned on page
1243  *      size
1244  * @buf: buffer to get bytes from
1245  * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1246  *       written)
1247  * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1248  *           BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1249  *           remaining ones are filled with hardware Hamming and BCH
1250  *           computations. Its value is not meaningfull is oob == NULL.
1251  *
1252  * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1253  * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1254  * BCH generator if autoecc is not null.
1255  *
1256  * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1257  */
1258 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1259 			  const u_char *oob, int autoecc)
1260 {
1261 	int block0, block1, page, ret, ofs = 0;
1262 	u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1263 
1264 	doc_dbg("doc_write_page(to=%lld)\n", to);
1265 	calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1266 
1267 	doc_set_device_id(docg3, docg3->device_id);
1268 	ret = doc_reset_seq(docg3);
1269 	if (ret)
1270 		goto err;
1271 
1272 	/* Program the flash address block and page */
1273 	ret = doc_write_seek(docg3, block0, block1, page, ofs);
1274 	if (ret)
1275 		goto err;
1276 
1277 	doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1278 	doc_delay(docg3, 2);
1279 	doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1280 
1281 	if (oob && autoecc) {
1282 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1283 		doc_delay(docg3, 2);
1284 		oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1285 
1286 		hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1287 		doc_delay(docg3, 2);
1288 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1289 					&hamming);
1290 		doc_delay(docg3, 2);
1291 
1292 		doc_get_bch_hw_ecc(docg3, hwecc);
1293 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1294 		doc_delay(docg3, 2);
1295 
1296 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1297 	}
1298 	if (oob && !autoecc)
1299 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1300 
1301 	doc_delay(docg3, 2);
1302 	doc_page_finish(docg3);
1303 	doc_delay(docg3, 2);
1304 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1305 	doc_delay(docg3, 2);
1306 
1307 	/*
1308 	 * The wait status will perform another doc_page_finish() call, but that
1309 	 * seems to please the docg3, so leave it.
1310 	 */
1311 	ret = doc_write_erase_wait_status(docg3);
1312 	return ret;
1313 err:
1314 	doc_read_page_finish(docg3);
1315 	return ret;
1316 }
1317 
1318 /**
1319  * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1320  * @ops: the oob operations
1321  *
1322  * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1323  */
1324 static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1325 {
1326 	int autoecc;
1327 
1328 	switch (ops->mode) {
1329 	case MTD_OPS_PLACE_OOB:
1330 	case MTD_OPS_AUTO_OOB:
1331 		autoecc = 1;
1332 		break;
1333 	case MTD_OPS_RAW:
1334 		autoecc = 0;
1335 		break;
1336 	default:
1337 		autoecc = -EINVAL;
1338 	}
1339 	return autoecc;
1340 }
1341 
1342 /**
1343  * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1344  * @dst: the target 16 bytes OOB buffer
1345  * @oobsrc: the source 8 bytes non-ECC OOB buffer
1346  *
1347  */
1348 static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1349 {
1350 	memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1351 	dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1352 }
1353 
1354 /**
1355  * doc_backup_oob - Backup OOB into docg3 structure
1356  * @docg3: the device
1357  * @to: the page offset in the chip
1358  * @ops: the OOB size and buffer
1359  *
1360  * As the docg3 should write a page with its OOB in one pass, and some userland
1361  * applications do write_oob() to setup the OOB and then write(), store the OOB
1362  * into a temporary storage. This is very dangerous, as 2 concurrent
1363  * applications could store an OOB, and then write their pages (which will
1364  * result into one having its OOB corrupted).
1365  *
1366  * The only reliable way would be for userland to call doc_write_oob() with both
1367  * the page data _and_ the OOB area.
1368  *
1369  * Returns 0 if success, -EINVAL if ops content invalid
1370  */
1371 static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1372 			  struct mtd_oob_ops *ops)
1373 {
1374 	int ooblen = ops->ooblen, autoecc;
1375 
1376 	if (ooblen != DOC_LAYOUT_OOB_SIZE)
1377 		return -EINVAL;
1378 	autoecc = doc_guess_autoecc(ops);
1379 	if (autoecc < 0)
1380 		return autoecc;
1381 
1382 	docg3->oob_write_ofs = to;
1383 	docg3->oob_autoecc = autoecc;
1384 	if (ops->mode == MTD_OPS_AUTO_OOB) {
1385 		doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1386 		ops->oobretlen = 8;
1387 	} else {
1388 		memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1389 		ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1390 	}
1391 	return 0;
1392 }
1393 
1394 /**
1395  * doc_write_oob - Write out of band bytes to flash
1396  * @mtd: the device
1397  * @ofs: the offset from first block and first page, in bytes, aligned on page
1398  *       size
1399  * @ops: the mtd oob structure
1400  *
1401  * Either write OOB data into a temporary buffer, for the subsequent write
1402  * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1403  * as well, issue the page write.
1404  * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1405  * still be filled in if asked for).
1406  *
1407  * Returns 0 is successful, EINVAL if length is not 14 bytes
1408  */
1409 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1410 			 struct mtd_oob_ops *ops)
1411 {
1412 	struct docg3 *docg3 = mtd->priv;
1413 	int ret, autoecc, oobdelta;
1414 	u8 *oobbuf = ops->oobbuf;
1415 	u8 *buf = ops->datbuf;
1416 	size_t len, ooblen;
1417 	u8 oob[DOC_LAYOUT_OOB_SIZE];
1418 
1419 	if (buf)
1420 		len = ops->len;
1421 	else
1422 		len = 0;
1423 	if (oobbuf)
1424 		ooblen = ops->ooblen;
1425 	else
1426 		ooblen = 0;
1427 
1428 	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1429 		oobbuf += ops->ooboffs;
1430 
1431 	doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1432 		ofs, ops->mode, buf, len, oobbuf, ooblen);
1433 	switch (ops->mode) {
1434 	case MTD_OPS_PLACE_OOB:
1435 	case MTD_OPS_RAW:
1436 		oobdelta = mtd->oobsize;
1437 		break;
1438 	case MTD_OPS_AUTO_OOB:
1439 		oobdelta = mtd->oobavail;
1440 		break;
1441 	default:
1442 		return -EINVAL;
1443 	}
1444 	if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1445 	    (ofs % DOC_LAYOUT_PAGE_SIZE))
1446 		return -EINVAL;
1447 	if (len && ooblen &&
1448 	    (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1449 		return -EINVAL;
1450 	if (ofs + len > mtd->size)
1451 		return -EINVAL;
1452 
1453 	ops->oobretlen = 0;
1454 	ops->retlen = 0;
1455 	ret = 0;
1456 	if (len == 0 && ooblen == 0)
1457 		return -EINVAL;
1458 	if (len == 0 && ooblen > 0)
1459 		return doc_backup_oob(docg3, ofs, ops);
1460 
1461 	autoecc = doc_guess_autoecc(ops);
1462 	if (autoecc < 0)
1463 		return autoecc;
1464 
1465 	mutex_lock(&docg3->cascade->lock);
1466 	while (!ret && len > 0) {
1467 		memset(oob, 0, sizeof(oob));
1468 		if (ofs == docg3->oob_write_ofs)
1469 			memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1470 		else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1471 			doc_fill_autooob(oob, oobbuf);
1472 		else if (ooblen > 0)
1473 			memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1474 		ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1475 
1476 		ofs += DOC_LAYOUT_PAGE_SIZE;
1477 		len -= DOC_LAYOUT_PAGE_SIZE;
1478 		buf += DOC_LAYOUT_PAGE_SIZE;
1479 		if (ooblen) {
1480 			oobbuf += oobdelta;
1481 			ooblen -= oobdelta;
1482 			ops->oobretlen += oobdelta;
1483 		}
1484 		ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1485 	}
1486 
1487 	doc_set_device_id(docg3, 0);
1488 	mutex_unlock(&docg3->cascade->lock);
1489 	return ret;
1490 }
1491 
1492 /**
1493  * doc_write - Write a buffer to the chip
1494  * @mtd: the device
1495  * @to: the offset from first block and first page, in bytes, aligned on page
1496  *      size
1497  * @len: the number of bytes to write (must be a full page size, ie. 512)
1498  * @retlen: the number of bytes actually written (0 or 512)
1499  * @buf: the buffer to get bytes from
1500  *
1501  * Writes data to the chip.
1502  *
1503  * Returns 0 if write successful, -EIO if write error
1504  */
1505 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1506 		     size_t *retlen, const u_char *buf)
1507 {
1508 	struct docg3 *docg3 = mtd->priv;
1509 	int ret;
1510 	struct mtd_oob_ops ops;
1511 
1512 	doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1513 	ops.datbuf = (char *)buf;
1514 	ops.len = len;
1515 	ops.mode = MTD_OPS_PLACE_OOB;
1516 	ops.oobbuf = NULL;
1517 	ops.ooblen = 0;
1518 	ops.ooboffs = 0;
1519 
1520 	ret = doc_write_oob(mtd, to, &ops);
1521 	*retlen = ops.retlen;
1522 	return ret;
1523 }
1524 
1525 static struct docg3 *sysfs_dev2docg3(struct device *dev,
1526 				     struct device_attribute *attr)
1527 {
1528 	int floor;
1529 	struct platform_device *pdev = to_platform_device(dev);
1530 	struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1531 
1532 	floor = attr->attr.name[1] - '0';
1533 	if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1534 		return NULL;
1535 	else
1536 		return docg3_floors[floor]->priv;
1537 }
1538 
1539 static ssize_t dps0_is_key_locked(struct device *dev,
1540 				  struct device_attribute *attr, char *buf)
1541 {
1542 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1543 	int dps0;
1544 
1545 	mutex_lock(&docg3->cascade->lock);
1546 	doc_set_device_id(docg3, docg3->device_id);
1547 	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1548 	doc_set_device_id(docg3, 0);
1549 	mutex_unlock(&docg3->cascade->lock);
1550 
1551 	return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1552 }
1553 
1554 static ssize_t dps1_is_key_locked(struct device *dev,
1555 				  struct device_attribute *attr, char *buf)
1556 {
1557 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1558 	int dps1;
1559 
1560 	mutex_lock(&docg3->cascade->lock);
1561 	doc_set_device_id(docg3, docg3->device_id);
1562 	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1563 	doc_set_device_id(docg3, 0);
1564 	mutex_unlock(&docg3->cascade->lock);
1565 
1566 	return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1567 }
1568 
1569 static ssize_t dps0_insert_key(struct device *dev,
1570 			       struct device_attribute *attr,
1571 			       const char *buf, size_t count)
1572 {
1573 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1574 	int i;
1575 
1576 	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1577 		return -EINVAL;
1578 
1579 	mutex_lock(&docg3->cascade->lock);
1580 	doc_set_device_id(docg3, docg3->device_id);
1581 	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1582 		doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1583 	doc_set_device_id(docg3, 0);
1584 	mutex_unlock(&docg3->cascade->lock);
1585 	return count;
1586 }
1587 
1588 static ssize_t dps1_insert_key(struct device *dev,
1589 			       struct device_attribute *attr,
1590 			       const char *buf, size_t count)
1591 {
1592 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1593 	int i;
1594 
1595 	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1596 		return -EINVAL;
1597 
1598 	mutex_lock(&docg3->cascade->lock);
1599 	doc_set_device_id(docg3, docg3->device_id);
1600 	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1601 		doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1602 	doc_set_device_id(docg3, 0);
1603 	mutex_unlock(&docg3->cascade->lock);
1604 	return count;
1605 }
1606 
1607 #define FLOOR_SYSFS(id) { \
1608 	__ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1609 	__ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1610 	__ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1611 	__ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1612 }
1613 
1614 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1615 	FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1616 };
1617 
1618 static int doc_register_sysfs(struct platform_device *pdev,
1619 			      struct docg3_cascade *cascade)
1620 {
1621 	struct device *dev = &pdev->dev;
1622 	int floor;
1623 	int ret;
1624 	int i;
1625 
1626 	for (floor = 0;
1627 	     floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1628 	     floor++) {
1629 		for (i = 0; i < 4; i++) {
1630 			ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1631 			if (ret)
1632 				goto remove_files;
1633 		}
1634 	}
1635 
1636 	return 0;
1637 
1638 remove_files:
1639 	do {
1640 		while (--i >= 0)
1641 			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1642 		i = 4;
1643 	} while (--floor >= 0);
1644 
1645 	return ret;
1646 }
1647 
1648 static void doc_unregister_sysfs(struct platform_device *pdev,
1649 				 struct docg3_cascade *cascade)
1650 {
1651 	struct device *dev = &pdev->dev;
1652 	int floor, i;
1653 
1654 	for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1655 	     floor++)
1656 		for (i = 0; i < 4; i++)
1657 			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1658 }
1659 
1660 /*
1661  * Debug sysfs entries
1662  */
1663 static int dbg_flashctrl_show(struct seq_file *s, void *p)
1664 {
1665 	struct docg3 *docg3 = (struct docg3 *)s->private;
1666 
1667 	u8 fctrl;
1668 
1669 	mutex_lock(&docg3->cascade->lock);
1670 	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1671 	mutex_unlock(&docg3->cascade->lock);
1672 
1673 	seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1674 		   fctrl,
1675 		   fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1676 		   fctrl & DOC_CTRL_CE ? "active" : "inactive",
1677 		   fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1678 		   fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1679 		   fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1680 
1681 	return 0;
1682 }
1683 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1684 
1685 static int dbg_asicmode_show(struct seq_file *s, void *p)
1686 {
1687 	struct docg3 *docg3 = (struct docg3 *)s->private;
1688 
1689 	int pctrl, mode;
1690 
1691 	mutex_lock(&docg3->cascade->lock);
1692 	pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1693 	mode = pctrl & 0x03;
1694 	mutex_unlock(&docg3->cascade->lock);
1695 
1696 	seq_printf(s,
1697 		   "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1698 		   pctrl,
1699 		   pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1700 		   pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1701 		   pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1702 		   pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1703 		   pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1704 		   mode >> 1, mode & 0x1);
1705 
1706 	switch (mode) {
1707 	case DOC_ASICMODE_RESET:
1708 		seq_puts(s, "reset");
1709 		break;
1710 	case DOC_ASICMODE_NORMAL:
1711 		seq_puts(s, "normal");
1712 		break;
1713 	case DOC_ASICMODE_POWERDOWN:
1714 		seq_puts(s, "powerdown");
1715 		break;
1716 	}
1717 	seq_puts(s, ")\n");
1718 	return 0;
1719 }
1720 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1721 
1722 static int dbg_device_id_show(struct seq_file *s, void *p)
1723 {
1724 	struct docg3 *docg3 = (struct docg3 *)s->private;
1725 	int id;
1726 
1727 	mutex_lock(&docg3->cascade->lock);
1728 	id = doc_register_readb(docg3, DOC_DEVICESELECT);
1729 	mutex_unlock(&docg3->cascade->lock);
1730 
1731 	seq_printf(s, "DeviceId = %d\n", id);
1732 	return 0;
1733 }
1734 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1735 
1736 static int dbg_protection_show(struct seq_file *s, void *p)
1737 {
1738 	struct docg3 *docg3 = (struct docg3 *)s->private;
1739 	int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1740 
1741 	mutex_lock(&docg3->cascade->lock);
1742 	protect = doc_register_readb(docg3, DOC_PROTECTION);
1743 	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1744 	dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1745 	dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1746 	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1747 	dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1748 	dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1749 	mutex_unlock(&docg3->cascade->lock);
1750 
1751 	seq_printf(s, "Protection = 0x%02x (", protect);
1752 	if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1753 		seq_puts(s, "FOUNDRY_OTP_LOCK,");
1754 	if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1755 		seq_puts(s, "CUSTOMER_OTP_LOCK,");
1756 	if (protect & DOC_PROTECT_LOCK_INPUT)
1757 		seq_puts(s, "LOCK_INPUT,");
1758 	if (protect & DOC_PROTECT_STICKY_LOCK)
1759 		seq_puts(s, "STICKY_LOCK,");
1760 	if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1761 		seq_puts(s, "PROTECTION ON,");
1762 	if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1763 		seq_puts(s, "IPL_DOWNLOAD_LOCK,");
1764 	if (protect & DOC_PROTECT_PROTECTION_ERROR)
1765 		seq_puts(s, "PROTECT_ERR,");
1766 	else
1767 		seq_puts(s, "NO_PROTECT_ERR");
1768 	seq_puts(s, ")\n");
1769 
1770 	seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1771 		   dps0, dps0_low, dps0_high,
1772 		   !!(dps0 & DOC_DPS_OTP_PROTECTED),
1773 		   !!(dps0 & DOC_DPS_READ_PROTECTED),
1774 		   !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1775 		   !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1776 		   !!(dps0 & DOC_DPS_KEY_OK));
1777 	seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1778 		   dps1, dps1_low, dps1_high,
1779 		   !!(dps1 & DOC_DPS_OTP_PROTECTED),
1780 		   !!(dps1 & DOC_DPS_READ_PROTECTED),
1781 		   !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1782 		   !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1783 		   !!(dps1 & DOC_DPS_KEY_OK));
1784 	return 0;
1785 }
1786 DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1787 
1788 static int __init doc_dbg_register(struct docg3 *docg3)
1789 {
1790 	struct dentry *root, *entry;
1791 
1792 	root = debugfs_create_dir("docg3", NULL);
1793 	if (!root)
1794 		return -ENOMEM;
1795 
1796 	entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
1797 				  &flashcontrol_fops);
1798 	if (entry)
1799 		entry = debugfs_create_file("asic_mode", S_IRUSR, root,
1800 					    docg3, &asic_mode_fops);
1801 	if (entry)
1802 		entry = debugfs_create_file("device_id", S_IRUSR, root,
1803 					    docg3, &device_id_fops);
1804 	if (entry)
1805 		entry = debugfs_create_file("protection", S_IRUSR, root,
1806 					    docg3, &protection_fops);
1807 	if (entry) {
1808 		docg3->debugfs_root = root;
1809 		return 0;
1810 	} else {
1811 		debugfs_remove_recursive(root);
1812 		return -ENOMEM;
1813 	}
1814 }
1815 
1816 static void doc_dbg_unregister(struct docg3 *docg3)
1817 {
1818 	debugfs_remove_recursive(docg3->debugfs_root);
1819 }
1820 
1821 /**
1822  * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1823  * @chip_id: The chip ID of the supported chip
1824  * @mtd: The structure to fill
1825  */
1826 static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1827 {
1828 	struct docg3 *docg3 = mtd->priv;
1829 	int cfg;
1830 
1831 	cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1832 	docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1833 	docg3->reliable = reliable_mode;
1834 
1835 	switch (chip_id) {
1836 	case DOC_CHIPID_G3:
1837 		mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1838 				      docg3->device_id);
1839 		if (!mtd->name)
1840 			return -ENOMEM;
1841 		docg3->max_block = 2047;
1842 		break;
1843 	}
1844 	mtd->type = MTD_NANDFLASH;
1845 	mtd->flags = MTD_CAP_NANDFLASH;
1846 	mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1847 	if (docg3->reliable == 2)
1848 		mtd->size /= 2;
1849 	mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1850 	if (docg3->reliable == 2)
1851 		mtd->erasesize /= 2;
1852 	mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1853 	mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1854 	mtd->_erase = doc_erase;
1855 	mtd->_read = doc_read;
1856 	mtd->_write = doc_write;
1857 	mtd->_read_oob = doc_read_oob;
1858 	mtd->_write_oob = doc_write_oob;
1859 	mtd->_block_isbad = doc_block_isbad;
1860 	mtd->ecclayout = &docg3_oobinfo;
1861 	mtd->oobavail = 8;
1862 	mtd->ecc_strength = DOC_ECC_BCH_T;
1863 
1864 	return 0;
1865 }
1866 
1867 /**
1868  * doc_probe_device - Check if a device is available
1869  * @base: the io space where the device is probed
1870  * @floor: the floor of the probed device
1871  * @dev: the device
1872  * @cascade: the cascade of chips this devices will belong to
1873  *
1874  * Checks whether a device at the specified IO range, and floor is available.
1875  *
1876  * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1877  * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1878  * launched.
1879  */
1880 static struct mtd_info * __init
1881 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1882 {
1883 	int ret, bbt_nbpages;
1884 	u16 chip_id, chip_id_inv;
1885 	struct docg3 *docg3;
1886 	struct mtd_info *mtd;
1887 
1888 	ret = -ENOMEM;
1889 	docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1890 	if (!docg3)
1891 		goto nomem1;
1892 	mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1893 	if (!mtd)
1894 		goto nomem2;
1895 	mtd->priv = docg3;
1896 	mtd->dev.parent = dev;
1897 	bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1898 				   8 * DOC_LAYOUT_PAGE_SIZE);
1899 	docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1900 	if (!docg3->bbt)
1901 		goto nomem3;
1902 
1903 	docg3->dev = dev;
1904 	docg3->device_id = floor;
1905 	docg3->cascade = cascade;
1906 	doc_set_device_id(docg3, docg3->device_id);
1907 	if (!floor)
1908 		doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1909 	doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1910 
1911 	chip_id = doc_register_readw(docg3, DOC_CHIPID);
1912 	chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1913 
1914 	ret = 0;
1915 	if (chip_id != (u16)(~chip_id_inv)) {
1916 		goto nomem4;
1917 	}
1918 
1919 	switch (chip_id) {
1920 	case DOC_CHIPID_G3:
1921 		doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1922 			 docg3->cascade->base, floor);
1923 		break;
1924 	default:
1925 		doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1926 		goto nomem4;
1927 	}
1928 
1929 	ret = doc_set_driver_info(chip_id, mtd);
1930 	if (ret)
1931 		goto nomem4;
1932 
1933 	doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1934 	doc_reload_bbt(docg3);
1935 	return mtd;
1936 
1937 nomem4:
1938 	kfree(docg3->bbt);
1939 nomem3:
1940 	kfree(mtd);
1941 nomem2:
1942 	kfree(docg3);
1943 nomem1:
1944 	return ERR_PTR(ret);
1945 }
1946 
1947 /**
1948  * doc_release_device - Release a docg3 floor
1949  * @mtd: the device
1950  */
1951 static void doc_release_device(struct mtd_info *mtd)
1952 {
1953 	struct docg3 *docg3 = mtd->priv;
1954 
1955 	mtd_device_unregister(mtd);
1956 	kfree(docg3->bbt);
1957 	kfree(docg3);
1958 	kfree(mtd->name);
1959 	kfree(mtd);
1960 }
1961 
1962 /**
1963  * docg3_resume - Awakens docg3 floor
1964  * @pdev: platfrom device
1965  *
1966  * Returns 0 (always successful)
1967  */
1968 static int docg3_resume(struct platform_device *pdev)
1969 {
1970 	int i;
1971 	struct docg3_cascade *cascade;
1972 	struct mtd_info **docg3_floors, *mtd;
1973 	struct docg3 *docg3;
1974 
1975 	cascade = platform_get_drvdata(pdev);
1976 	docg3_floors = cascade->floors;
1977 	mtd = docg3_floors[0];
1978 	docg3 = mtd->priv;
1979 
1980 	doc_dbg("docg3_resume()\n");
1981 	for (i = 0; i < 12; i++)
1982 		doc_readb(docg3, DOC_IOSPACE_IPL);
1983 	return 0;
1984 }
1985 
1986 /**
1987  * docg3_suspend - Put in low power mode the docg3 floor
1988  * @pdev: platform device
1989  * @state: power state
1990  *
1991  * Shuts off most of docg3 circuitery to lower power consumption.
1992  *
1993  * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1994  */
1995 static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1996 {
1997 	int floor, i;
1998 	struct docg3_cascade *cascade;
1999 	struct mtd_info **docg3_floors, *mtd;
2000 	struct docg3 *docg3;
2001 	u8 ctrl, pwr_down;
2002 
2003 	cascade = platform_get_drvdata(pdev);
2004 	docg3_floors = cascade->floors;
2005 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2006 		mtd = docg3_floors[floor];
2007 		if (!mtd)
2008 			continue;
2009 		docg3 = mtd->priv;
2010 
2011 		doc_writeb(docg3, floor, DOC_DEVICESELECT);
2012 		ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
2013 		ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
2014 		doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
2015 
2016 		for (i = 0; i < 10; i++) {
2017 			usleep_range(3000, 4000);
2018 			pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2019 			if (pwr_down & DOC_POWERDOWN_READY)
2020 				break;
2021 		}
2022 		if (pwr_down & DOC_POWERDOWN_READY) {
2023 			doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2024 				floor);
2025 		} else {
2026 			doc_err("docg3_suspend(): floor %d powerdown failed\n",
2027 				floor);
2028 			return -EIO;
2029 		}
2030 	}
2031 
2032 	mtd = docg3_floors[0];
2033 	docg3 = mtd->priv;
2034 	doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2035 	return 0;
2036 }
2037 
2038 /**
2039  * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2040  * @pdev: platform device
2041  *
2042  * Probes for a G3 chip at the specified IO space in the platform data
2043  * ressources. The floor 0 must be available.
2044  *
2045  * Returns 0 on success, -ENOMEM, -ENXIO on error
2046  */
2047 static int __init docg3_probe(struct platform_device *pdev)
2048 {
2049 	struct device *dev = &pdev->dev;
2050 	struct mtd_info *mtd;
2051 	struct resource *ress;
2052 	void __iomem *base;
2053 	int ret, floor;
2054 	struct docg3_cascade *cascade;
2055 
2056 	ret = -ENXIO;
2057 	ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2058 	if (!ress) {
2059 		dev_err(dev, "No I/O memory resource defined\n");
2060 		return ret;
2061 	}
2062 	base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
2063 
2064 	ret = -ENOMEM;
2065 	cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS,
2066 			       GFP_KERNEL);
2067 	if (!cascade)
2068 		return ret;
2069 	cascade->base = base;
2070 	mutex_init(&cascade->lock);
2071 	cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2072 			     DOC_ECC_BCH_PRIMPOLY);
2073 	if (!cascade->bch)
2074 		return ret;
2075 
2076 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2077 		mtd = doc_probe_device(cascade, floor, dev);
2078 		if (IS_ERR(mtd)) {
2079 			ret = PTR_ERR(mtd);
2080 			goto err_probe;
2081 		}
2082 		if (!mtd) {
2083 			if (floor == 0)
2084 				goto notfound;
2085 			else
2086 				continue;
2087 		}
2088 		cascade->floors[floor] = mtd;
2089 		ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2090 						0);
2091 		if (ret)
2092 			goto err_probe;
2093 	}
2094 
2095 	ret = doc_register_sysfs(pdev, cascade);
2096 	if (ret)
2097 		goto err_probe;
2098 
2099 	platform_set_drvdata(pdev, cascade);
2100 	doc_dbg_register(cascade->floors[0]->priv);
2101 	return 0;
2102 
2103 notfound:
2104 	ret = -ENODEV;
2105 	dev_info(dev, "No supported DiskOnChip found\n");
2106 err_probe:
2107 	free_bch(cascade->bch);
2108 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2109 		if (cascade->floors[floor])
2110 			doc_release_device(cascade->floors[floor]);
2111 	return ret;
2112 }
2113 
2114 /**
2115  * docg3_release - Release the driver
2116  * @pdev: the platform device
2117  *
2118  * Returns 0
2119  */
2120 static int docg3_release(struct platform_device *pdev)
2121 {
2122 	struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2123 	struct docg3 *docg3 = cascade->floors[0]->priv;
2124 	int floor;
2125 
2126 	doc_unregister_sysfs(pdev, cascade);
2127 	doc_dbg_unregister(docg3);
2128 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2129 		if (cascade->floors[floor])
2130 			doc_release_device(cascade->floors[floor]);
2131 
2132 	free_bch(docg3->cascade->bch);
2133 	return 0;
2134 }
2135 
2136 #ifdef CONFIG_OF
2137 static const struct of_device_id docg3_dt_ids[] = {
2138 	{ .compatible = "m-systems,diskonchip-g3" },
2139 	{}
2140 };
2141 MODULE_DEVICE_TABLE(of, docg3_dt_ids);
2142 #endif
2143 
2144 static struct platform_driver g3_driver = {
2145 	.driver		= {
2146 		.name	= "docg3",
2147 		.of_match_table = of_match_ptr(docg3_dt_ids),
2148 	},
2149 	.suspend	= docg3_suspend,
2150 	.resume		= docg3_resume,
2151 	.remove		= docg3_release,
2152 };
2153 
2154 module_platform_driver_probe(g3_driver, docg3_probe);
2155 
2156 MODULE_LICENSE("GPL");
2157 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2158 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2159