xref: /openbmc/linux/drivers/mtd/devices/docg3.c (revision 09bae3b6)
1 /*
2  * Handles the M-Systems DiskOnChip G3 chip
3  *
4  * Copyright (C) 2011 Robert Jarzmik
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  *
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/io.h>
30 #include <linux/delay.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/bitmap.h>
34 #include <linux/bitrev.h>
35 #include <linux/bch.h>
36 
37 #include <linux/debugfs.h>
38 #include <linux/seq_file.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include "docg3.h"
42 
43 /*
44  * This driver handles the DiskOnChip G3 flash memory.
45  *
46  * As no specification is available from M-Systems/Sandisk, this drivers lacks
47  * several functions available on the chip, as :
48  *  - IPL write
49  *
50  * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
51  * the driver assumes a 16bits data bus.
52  *
53  * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
54  *  - a 1 byte Hamming code stored in the OOB for each page
55  *  - a 7 bytes BCH code stored in the OOB for each page
56  * The BCH ECC is :
57  *  - BCH is in GF(2^14)
58  *  - BCH is over data of 520 bytes (512 page + 7 page_info bytes
59  *                                   + 1 hamming byte)
60  *  - BCH can correct up to 4 bits (t = 4)
61  *  - BCH syndroms are calculated in hardware, and checked in hardware as well
62  *
63  */
64 
65 static unsigned int reliable_mode;
66 module_param(reliable_mode, uint, 0);
67 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
68 		 "2=reliable) : MLC normal operations are in normal mode");
69 
70 static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section,
71 			       struct mtd_oob_region *oobregion)
72 {
73 	if (section)
74 		return -ERANGE;
75 
76 	/* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
77 	oobregion->offset = 7;
78 	oobregion->length = 8;
79 
80 	return 0;
81 }
82 
83 static int docg3_ooblayout_free(struct mtd_info *mtd, int section,
84 				struct mtd_oob_region *oobregion)
85 {
86 	if (section > 1)
87 		return -ERANGE;
88 
89 	/* free bytes: byte 0 until byte 6, byte 15 */
90 	if (!section) {
91 		oobregion->offset = 0;
92 		oobregion->length = 7;
93 	} else {
94 		oobregion->offset = 15;
95 		oobregion->length = 1;
96 	}
97 
98 	return 0;
99 }
100 
101 static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = {
102 	.ecc = docg3_ooblayout_ecc,
103 	.free = docg3_ooblayout_free,
104 };
105 
106 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
107 {
108 	u8 val = readb(docg3->cascade->base + reg);
109 
110 	trace_docg3_io(0, 8, reg, (int)val);
111 	return val;
112 }
113 
114 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
115 {
116 	u16 val = readw(docg3->cascade->base + reg);
117 
118 	trace_docg3_io(0, 16, reg, (int)val);
119 	return val;
120 }
121 
122 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
123 {
124 	writeb(val, docg3->cascade->base + reg);
125 	trace_docg3_io(1, 8, reg, val);
126 }
127 
128 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
129 {
130 	writew(val, docg3->cascade->base + reg);
131 	trace_docg3_io(1, 16, reg, val);
132 }
133 
134 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
135 {
136 	doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
137 }
138 
139 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
140 {
141 	doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
142 }
143 
144 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
145 {
146 	doc_writeb(docg3, addr, DOC_FLASHADDRESS);
147 }
148 
149 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
150 
151 static int doc_register_readb(struct docg3 *docg3, int reg)
152 {
153 	u8 val;
154 
155 	doc_writew(docg3, reg, DOC_READADDRESS);
156 	val = doc_readb(docg3, reg);
157 	doc_vdbg("Read register %04x : %02x\n", reg, val);
158 	return val;
159 }
160 
161 static int doc_register_readw(struct docg3 *docg3, int reg)
162 {
163 	u16 val;
164 
165 	doc_writew(docg3, reg, DOC_READADDRESS);
166 	val = doc_readw(docg3, reg);
167 	doc_vdbg("Read register %04x : %04x\n", reg, val);
168 	return val;
169 }
170 
171 /**
172  * doc_delay - delay docg3 operations
173  * @docg3: the device
174  * @nbNOPs: the number of NOPs to issue
175  *
176  * As no specification is available, the right timings between chip commands are
177  * unknown. The only available piece of information are the observed nops on a
178  * working docg3 chip.
179  * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
180  * friendlier msleep() functions or blocking mdelay().
181  */
182 static void doc_delay(struct docg3 *docg3, int nbNOPs)
183 {
184 	int i;
185 
186 	doc_vdbg("NOP x %d\n", nbNOPs);
187 	for (i = 0; i < nbNOPs; i++)
188 		doc_writeb(docg3, 0, DOC_NOP);
189 }
190 
191 static int is_prot_seq_error(struct docg3 *docg3)
192 {
193 	int ctrl;
194 
195 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
196 	return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
197 }
198 
199 static int doc_is_ready(struct docg3 *docg3)
200 {
201 	int ctrl;
202 
203 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
204 	return ctrl & DOC_CTRL_FLASHREADY;
205 }
206 
207 static int doc_wait_ready(struct docg3 *docg3)
208 {
209 	int maxWaitCycles = 100;
210 
211 	do {
212 		doc_delay(docg3, 4);
213 		cpu_relax();
214 	} while (!doc_is_ready(docg3) && maxWaitCycles--);
215 	doc_delay(docg3, 2);
216 	if (maxWaitCycles > 0)
217 		return 0;
218 	else
219 		return -EIO;
220 }
221 
222 static int doc_reset_seq(struct docg3 *docg3)
223 {
224 	int ret;
225 
226 	doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
227 	doc_flash_sequence(docg3, DOC_SEQ_RESET);
228 	doc_flash_command(docg3, DOC_CMD_RESET);
229 	doc_delay(docg3, 2);
230 	ret = doc_wait_ready(docg3);
231 
232 	doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
233 	return ret;
234 }
235 
236 /**
237  * doc_read_data_area - Read data from data area
238  * @docg3: the device
239  * @buf: the buffer to fill in (might be NULL is dummy reads)
240  * @len: the length to read
241  * @first: first time read, DOC_READADDRESS should be set
242  *
243  * Reads bytes from flash data. Handles the single byte / even bytes reads.
244  */
245 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
246 			       int first)
247 {
248 	int i, cdr, len4;
249 	u16 data16, *dst16;
250 	u8 data8, *dst8;
251 
252 	doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
253 	cdr = len & 0x1;
254 	len4 = len - cdr;
255 
256 	if (first)
257 		doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
258 	dst16 = buf;
259 	for (i = 0; i < len4; i += 2) {
260 		data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
261 		if (dst16) {
262 			*dst16 = data16;
263 			dst16++;
264 		}
265 	}
266 
267 	if (cdr) {
268 		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
269 			   DOC_READADDRESS);
270 		doc_delay(docg3, 1);
271 		dst8 = (u8 *)dst16;
272 		for (i = 0; i < cdr; i++) {
273 			data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
274 			if (dst8) {
275 				*dst8 = data8;
276 				dst8++;
277 			}
278 		}
279 	}
280 }
281 
282 /**
283  * doc_write_data_area - Write data into data area
284  * @docg3: the device
285  * @buf: the buffer to get input bytes from
286  * @len: the length to write
287  *
288  * Writes bytes into flash data. Handles the single byte / even bytes writes.
289  */
290 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
291 {
292 	int i, cdr, len4;
293 	u16 *src16;
294 	u8 *src8;
295 
296 	doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
297 	cdr = len & 0x3;
298 	len4 = len - cdr;
299 
300 	doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
301 	src16 = (u16 *)buf;
302 	for (i = 0; i < len4; i += 2) {
303 		doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
304 		src16++;
305 	}
306 
307 	src8 = (u8 *)src16;
308 	for (i = 0; i < cdr; i++) {
309 		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
310 			   DOC_READADDRESS);
311 		doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
312 		src8++;
313 	}
314 }
315 
316 /**
317  * doc_set_data_mode - Sets the flash to normal or reliable data mode
318  * @docg3: the device
319  *
320  * The reliable data mode is a bit slower than the fast mode, but less errors
321  * occur.  Entering the reliable mode cannot be done without entering the fast
322  * mode first.
323  *
324  * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
325  * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
326  * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
327  * result, which is a logical and between bytes from page 0 and page 1 (which is
328  * consistent with the fact that writing to a page is _clearing_ bits of that
329  * page).
330  */
331 static void doc_set_reliable_mode(struct docg3 *docg3)
332 {
333 	static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
334 
335 	doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
336 	switch (docg3->reliable) {
337 	case 0:
338 		break;
339 	case 1:
340 		doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
341 		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
342 		break;
343 	case 2:
344 		doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
345 		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
346 		doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
347 		break;
348 	default:
349 		doc_err("doc_set_reliable_mode(): invalid mode\n");
350 		break;
351 	}
352 	doc_delay(docg3, 2);
353 }
354 
355 /**
356  * doc_set_asic_mode - Set the ASIC mode
357  * @docg3: the device
358  * @mode: the mode
359  *
360  * The ASIC can work in 3 modes :
361  *  - RESET: all registers are zeroed
362  *  - NORMAL: receives and handles commands
363  *  - POWERDOWN: minimal poweruse, flash parts shut off
364  */
365 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
366 {
367 	int i;
368 
369 	for (i = 0; i < 12; i++)
370 		doc_readb(docg3, DOC_IOSPACE_IPL);
371 
372 	mode |= DOC_ASICMODE_MDWREN;
373 	doc_dbg("doc_set_asic_mode(%02x)\n", mode);
374 	doc_writeb(docg3, mode, DOC_ASICMODE);
375 	doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
376 	doc_delay(docg3, 1);
377 }
378 
379 /**
380  * doc_set_device_id - Sets the devices id for cascaded G3 chips
381  * @docg3: the device
382  * @id: the chip to select (amongst 0, 1, 2, 3)
383  *
384  * There can be 4 cascaded G3 chips. This function selects the one which will
385  * should be the active one.
386  */
387 static void doc_set_device_id(struct docg3 *docg3, int id)
388 {
389 	u8 ctrl;
390 
391 	doc_dbg("doc_set_device_id(%d)\n", id);
392 	doc_writeb(docg3, id, DOC_DEVICESELECT);
393 	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
394 
395 	ctrl &= ~DOC_CTRL_VIOLATION;
396 	ctrl |= DOC_CTRL_CE;
397 	doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
398 }
399 
400 /**
401  * doc_set_extra_page_mode - Change flash page layout
402  * @docg3: the device
403  *
404  * Normally, the flash page is split into the data (512 bytes) and the out of
405  * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
406  * leveling counters are stored.  To access this last area of 4 bytes, a special
407  * mode must be input to the flash ASIC.
408  *
409  * Returns 0 if no error occurred, -EIO else.
410  */
411 static int doc_set_extra_page_mode(struct docg3 *docg3)
412 {
413 	int fctrl;
414 
415 	doc_dbg("doc_set_extra_page_mode()\n");
416 	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
417 	doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
418 	doc_delay(docg3, 2);
419 
420 	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
421 	if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
422 		return -EIO;
423 	else
424 		return 0;
425 }
426 
427 /**
428  * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
429  * @docg3: the device
430  * @sector: the sector
431  */
432 static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
433 {
434 	doc_delay(docg3, 1);
435 	doc_flash_address(docg3, sector & 0xff);
436 	doc_flash_address(docg3, (sector >> 8) & 0xff);
437 	doc_flash_address(docg3, (sector >> 16) & 0xff);
438 	doc_delay(docg3, 1);
439 }
440 
441 /**
442  * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
443  * @docg3: the device
444  * @sector: the sector
445  * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
446  */
447 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
448 {
449 	ofs = ofs >> 2;
450 	doc_delay(docg3, 1);
451 	doc_flash_address(docg3, ofs & 0xff);
452 	doc_flash_address(docg3, sector & 0xff);
453 	doc_flash_address(docg3, (sector >> 8) & 0xff);
454 	doc_flash_address(docg3, (sector >> 16) & 0xff);
455 	doc_delay(docg3, 1);
456 }
457 
458 /**
459  * doc_seek - Set both flash planes to the specified block, page for reading
460  * @docg3: the device
461  * @block0: the first plane block index
462  * @block1: the second plane block index
463  * @page: the page index within the block
464  * @wear: if true, read will occur on the 4 extra bytes of the wear area
465  * @ofs: offset in page to read
466  *
467  * Programs the flash even and odd planes to the specific block and page.
468  * Alternatively, programs the flash to the wear area of the specified page.
469  */
470 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
471 			 int wear, int ofs)
472 {
473 	int sector, ret = 0;
474 
475 	doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
476 		block0, block1, page, ofs, wear);
477 
478 	if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
479 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
480 		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
481 		doc_delay(docg3, 2);
482 	} else {
483 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
484 		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
485 		doc_delay(docg3, 2);
486 	}
487 
488 	doc_set_reliable_mode(docg3);
489 	if (wear)
490 		ret = doc_set_extra_page_mode(docg3);
491 	if (ret)
492 		goto out;
493 
494 	doc_flash_sequence(docg3, DOC_SEQ_READ);
495 	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
496 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
497 	doc_setup_addr_sector(docg3, sector);
498 
499 	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
500 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
501 	doc_setup_addr_sector(docg3, sector);
502 	doc_delay(docg3, 1);
503 
504 out:
505 	return ret;
506 }
507 
508 /**
509  * doc_write_seek - Set both flash planes to the specified block, page for writing
510  * @docg3: the device
511  * @block0: the first plane block index
512  * @block1: the second plane block index
513  * @page: the page index within the block
514  * @ofs: offset in page to write
515  *
516  * Programs the flash even and odd planes to the specific block and page.
517  * Alternatively, programs the flash to the wear area of the specified page.
518  */
519 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
520 			 int ofs)
521 {
522 	int ret = 0, sector;
523 
524 	doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
525 		block0, block1, page, ofs);
526 
527 	doc_set_reliable_mode(docg3);
528 
529 	if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
530 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
531 		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
532 		doc_delay(docg3, 2);
533 	} else {
534 		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
535 		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
536 		doc_delay(docg3, 2);
537 	}
538 
539 	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
540 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
541 
542 	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
543 	doc_setup_writeaddr_sector(docg3, sector, ofs);
544 
545 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
546 	doc_delay(docg3, 2);
547 	ret = doc_wait_ready(docg3);
548 	if (ret)
549 		goto out;
550 
551 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
552 	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
553 	doc_setup_writeaddr_sector(docg3, sector, ofs);
554 	doc_delay(docg3, 1);
555 
556 out:
557 	return ret;
558 }
559 
560 
561 /**
562  * doc_read_page_ecc_init - Initialize hardware ECC engine
563  * @docg3: the device
564  * @len: the number of bytes covered by the ECC (BCH covered)
565  *
566  * The function does initialize the hardware ECC engine to compute the Hamming
567  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
568  *
569  * Return 0 if succeeded, -EIO on error
570  */
571 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
572 {
573 	doc_writew(docg3, DOC_ECCCONF0_READ_MODE
574 		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
575 		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
576 		   DOC_ECCCONF0);
577 	doc_delay(docg3, 4);
578 	doc_register_readb(docg3, DOC_FLASHCONTROL);
579 	return doc_wait_ready(docg3);
580 }
581 
582 /**
583  * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
584  * @docg3: the device
585  * @len: the number of bytes covered by the ECC (BCH covered)
586  *
587  * The function does initialize the hardware ECC engine to compute the Hamming
588  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
589  *
590  * Return 0 if succeeded, -EIO on error
591  */
592 static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
593 {
594 	doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
595 		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
596 		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
597 		   DOC_ECCCONF0);
598 	doc_delay(docg3, 4);
599 	doc_register_readb(docg3, DOC_FLASHCONTROL);
600 	return doc_wait_ready(docg3);
601 }
602 
603 /**
604  * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
605  * @docg3: the device
606  *
607  * Disables the hardware ECC generator and checker, for unchecked reads (as when
608  * reading OOB only or write status byte).
609  */
610 static void doc_ecc_disable(struct docg3 *docg3)
611 {
612 	doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
613 	doc_delay(docg3, 4);
614 }
615 
616 /**
617  * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
618  * @docg3: the device
619  * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
620  *
621  * This function programs the ECC hardware to compute the hamming code on the
622  * last provided N bytes to the hardware generator.
623  */
624 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
625 {
626 	u8 ecc_conf1;
627 
628 	ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
629 	ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
630 	ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
631 	doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
632 }
633 
634 /**
635  * doc_ecc_bch_fix_data - Fix if need be read data from flash
636  * @docg3: the device
637  * @buf: the buffer of read data (512 + 7 + 1 bytes)
638  * @hwecc: the hardware calculated ECC.
639  *         It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
640  *         area data, and calc_ecc the ECC calculated by the hardware generator.
641  *
642  * Checks if the received data matches the ECC, and if an error is detected,
643  * tries to fix the bit flips (at most 4) in the buffer buf.  As the docg3
644  * understands the (data, ecc, syndroms) in an inverted order in comparison to
645  * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
646  * bit6 and bit 1, ...) for all ECC data.
647  *
648  * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
649  * algorithm is used to decode this.  However the hw operates on page
650  * data in a bit order that is the reverse of that of the bch alg,
651  * requiring that the bits be reversed on the result.  Thanks to Ivan
652  * Djelic for his analysis.
653  *
654  * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
655  * errors were detected and cannot be fixed.
656  */
657 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
658 {
659 	u8 ecc[DOC_ECC_BCH_SIZE];
660 	int errorpos[DOC_ECC_BCH_T], i, numerrs;
661 
662 	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
663 		ecc[i] = bitrev8(hwecc[i]);
664 	numerrs = decode_bch(docg3->cascade->bch, NULL,
665 			     DOC_ECC_BCH_COVERED_BYTES,
666 			     NULL, ecc, NULL, errorpos);
667 	BUG_ON(numerrs == -EINVAL);
668 	if (numerrs < 0)
669 		goto out;
670 
671 	for (i = 0; i < numerrs; i++)
672 		errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
673 	for (i = 0; i < numerrs; i++)
674 		if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
675 			/* error is located in data, correct it */
676 			change_bit(errorpos[i], buf);
677 out:
678 	doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
679 	return numerrs;
680 }
681 
682 
683 /**
684  * doc_read_page_prepare - Prepares reading data from a flash page
685  * @docg3: the device
686  * @block0: the first plane block index on flash memory
687  * @block1: the second plane block index on flash memory
688  * @page: the page index in the block
689  * @offset: the offset in the page (must be a multiple of 4)
690  *
691  * Prepares the page to be read in the flash memory :
692  *   - tell ASIC to map the flash pages
693  *   - tell ASIC to be in read mode
694  *
695  * After a call to this method, a call to doc_read_page_finish is mandatory,
696  * to end the read cycle of the flash.
697  *
698  * Read data from a flash page. The length to be read must be between 0 and
699  * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
700  * the extra bytes reading is not implemented).
701  *
702  * As pages are grouped by 2 (in 2 planes), reading from a page must be done
703  * in two steps:
704  *  - one read of 512 bytes at offset 0
705  *  - one read of 512 bytes at offset 512 + 16
706  *
707  * Returns 0 if successful, -EIO if a read error occurred.
708  */
709 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
710 				 int page, int offset)
711 {
712 	int wear_area = 0, ret = 0;
713 
714 	doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
715 		block0, block1, page, offset);
716 	if (offset >= DOC_LAYOUT_WEAR_OFFSET)
717 		wear_area = 1;
718 	if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
719 		return -EINVAL;
720 
721 	doc_set_device_id(docg3, docg3->device_id);
722 	ret = doc_reset_seq(docg3);
723 	if (ret)
724 		goto err;
725 
726 	/* Program the flash address block and page */
727 	ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
728 	if (ret)
729 		goto err;
730 
731 	doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
732 	doc_delay(docg3, 2);
733 	doc_wait_ready(docg3);
734 
735 	doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
736 	doc_delay(docg3, 1);
737 	if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
738 		offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
739 	doc_flash_address(docg3, offset >> 2);
740 	doc_delay(docg3, 1);
741 	doc_wait_ready(docg3);
742 
743 	doc_flash_command(docg3, DOC_CMD_READ_FLASH);
744 
745 	return 0;
746 err:
747 	doc_writeb(docg3, 0, DOC_DATAEND);
748 	doc_delay(docg3, 2);
749 	return -EIO;
750 }
751 
752 /**
753  * doc_read_page_getbytes - Reads bytes from a prepared page
754  * @docg3: the device
755  * @len: the number of bytes to be read (must be a multiple of 4)
756  * @buf: the buffer to be filled in (or NULL is forget bytes)
757  * @first: 1 if first time read, DOC_READADDRESS should be set
758  * @last_odd: 1 if last read ended up on an odd byte
759  *
760  * Reads bytes from a prepared page. There is a trickery here : if the last read
761  * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
762  * planes, the first byte must be read apart. If a word (16bit) read was used,
763  * the read would return the byte of plane 2 as low *and* high endian, which
764  * will mess the read.
765  *
766  */
767 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
768 				  int first, int last_odd)
769 {
770 	if (last_odd && len > 0) {
771 		doc_read_data_area(docg3, buf, 1, first);
772 		doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
773 	} else {
774 		doc_read_data_area(docg3, buf, len, first);
775 	}
776 	doc_delay(docg3, 2);
777 	return len;
778 }
779 
780 /**
781  * doc_write_page_putbytes - Writes bytes into a prepared page
782  * @docg3: the device
783  * @len: the number of bytes to be written
784  * @buf: the buffer of input bytes
785  *
786  */
787 static void doc_write_page_putbytes(struct docg3 *docg3, int len,
788 				    const u_char *buf)
789 {
790 	doc_write_data_area(docg3, buf, len);
791 	doc_delay(docg3, 2);
792 }
793 
794 /**
795  * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
796  * @docg3: the device
797  * @hwecc:  the array of 7 integers where the hardware ecc will be stored
798  */
799 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
800 {
801 	int i;
802 
803 	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
804 		hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
805 }
806 
807 /**
808  * doc_page_finish - Ends reading/writing of a flash page
809  * @docg3: the device
810  */
811 static void doc_page_finish(struct docg3 *docg3)
812 {
813 	doc_writeb(docg3, 0, DOC_DATAEND);
814 	doc_delay(docg3, 2);
815 }
816 
817 /**
818  * doc_read_page_finish - Ends reading of a flash page
819  * @docg3: the device
820  *
821  * As a side effect, resets the chip selector to 0. This ensures that after each
822  * read operation, the floor 0 is selected. Therefore, if the systems halts, the
823  * reboot will boot on floor 0, where the IPL is.
824  */
825 static void doc_read_page_finish(struct docg3 *docg3)
826 {
827 	doc_page_finish(docg3);
828 	doc_set_device_id(docg3, 0);
829 }
830 
831 /**
832  * calc_block_sector - Calculate blocks, pages and ofs.
833 
834  * @from: offset in flash
835  * @block0: first plane block index calculated
836  * @block1: second plane block index calculated
837  * @page: page calculated
838  * @ofs: offset in page
839  * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
840  * reliable mode.
841  *
842  * The calculation is based on the reliable/normal mode. In normal mode, the 64
843  * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
844  * clones, only 32 pages per block are available.
845  */
846 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
847 			      int *ofs, int reliable)
848 {
849 	uint sector, pages_biblock;
850 
851 	pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
852 	if (reliable == 1 || reliable == 2)
853 		pages_biblock /= 2;
854 
855 	sector = from / DOC_LAYOUT_PAGE_SIZE;
856 	*block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
857 	*block1 = *block0 + 1;
858 	*page = sector % pages_biblock;
859 	*page /= DOC_LAYOUT_NBPLANES;
860 	if (reliable == 1 || reliable == 2)
861 		*page *= 2;
862 	if (sector % 2)
863 		*ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
864 	else
865 		*ofs = 0;
866 }
867 
868 /**
869  * doc_read_oob - Read out of band bytes from flash
870  * @mtd: the device
871  * @from: the offset from first block and first page, in bytes, aligned on page
872  *        size
873  * @ops: the mtd oob structure
874  *
875  * Reads flash memory OOB area of pages.
876  *
877  * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
878  */
879 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
880 			struct mtd_oob_ops *ops)
881 {
882 	struct docg3 *docg3 = mtd->priv;
883 	int block0, block1, page, ret, skip, ofs = 0;
884 	u8 *oobbuf = ops->oobbuf;
885 	u8 *buf = ops->datbuf;
886 	size_t len, ooblen, nbdata, nboob;
887 	u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
888 	int max_bitflips = 0;
889 
890 	if (buf)
891 		len = ops->len;
892 	else
893 		len = 0;
894 	if (oobbuf)
895 		ooblen = ops->ooblen;
896 	else
897 		ooblen = 0;
898 
899 	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
900 		oobbuf += ops->ooboffs;
901 
902 	doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
903 		from, ops->mode, buf, len, oobbuf, ooblen);
904 	if (ooblen % DOC_LAYOUT_OOB_SIZE)
905 		return -EINVAL;
906 
907 	ops->oobretlen = 0;
908 	ops->retlen = 0;
909 	ret = 0;
910 	skip = from % DOC_LAYOUT_PAGE_SIZE;
911 	mutex_lock(&docg3->cascade->lock);
912 	while (ret >= 0 && (len > 0 || ooblen > 0)) {
913 		calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
914 			docg3->reliable);
915 		nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
916 		nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
917 		ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
918 		if (ret < 0)
919 			goto out;
920 		ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
921 		if (ret < 0)
922 			goto err_in_read;
923 		ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
924 		if (ret < skip)
925 			goto err_in_read;
926 		ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
927 		if (ret < nbdata)
928 			goto err_in_read;
929 		doc_read_page_getbytes(docg3,
930 				       DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
931 				       NULL, 0, (skip + nbdata) % 2);
932 		ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
933 		if (ret < nboob)
934 			goto err_in_read;
935 		doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
936 				       NULL, 0, nboob % 2);
937 
938 		doc_get_bch_hw_ecc(docg3, hwecc);
939 		eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
940 
941 		if (nboob >= DOC_LAYOUT_OOB_SIZE) {
942 			doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
943 			doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
944 			doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
945 			doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
946 		}
947 		doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
948 		doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
949 
950 		ret = -EIO;
951 		if (is_prot_seq_error(docg3))
952 			goto err_in_read;
953 		ret = 0;
954 		if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
955 		    (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
956 		    (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
957 		    (ops->mode != MTD_OPS_RAW) &&
958 		    (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
959 			ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
960 			if (ret < 0) {
961 				mtd->ecc_stats.failed++;
962 				ret = -EBADMSG;
963 			}
964 			if (ret > 0) {
965 				mtd->ecc_stats.corrected += ret;
966 				max_bitflips = max(max_bitflips, ret);
967 				ret = max_bitflips;
968 			}
969 		}
970 
971 		doc_read_page_finish(docg3);
972 		ops->retlen += nbdata;
973 		ops->oobretlen += nboob;
974 		buf += nbdata;
975 		oobbuf += nboob;
976 		len -= nbdata;
977 		ooblen -= nboob;
978 		from += DOC_LAYOUT_PAGE_SIZE;
979 		skip = 0;
980 	}
981 
982 out:
983 	mutex_unlock(&docg3->cascade->lock);
984 	return ret;
985 err_in_read:
986 	doc_read_page_finish(docg3);
987 	goto out;
988 }
989 
990 static int doc_reload_bbt(struct docg3 *docg3)
991 {
992 	int block = DOC_LAYOUT_BLOCK_BBT;
993 	int ret = 0, nbpages, page;
994 	u_char *buf = docg3->bbt;
995 
996 	nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
997 	for (page = 0; !ret && (page < nbpages); page++) {
998 		ret = doc_read_page_prepare(docg3, block, block + 1,
999 					    page + DOC_LAYOUT_PAGE_BBT, 0);
1000 		if (!ret)
1001 			ret = doc_read_page_ecc_init(docg3,
1002 						     DOC_LAYOUT_PAGE_SIZE);
1003 		if (!ret)
1004 			doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1005 					       buf, 1, 0);
1006 		buf += DOC_LAYOUT_PAGE_SIZE;
1007 	}
1008 	doc_read_page_finish(docg3);
1009 	return ret;
1010 }
1011 
1012 /**
1013  * doc_block_isbad - Checks whether a block is good or not
1014  * @mtd: the device
1015  * @from: the offset to find the correct block
1016  *
1017  * Returns 1 if block is bad, 0 if block is good
1018  */
1019 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1020 {
1021 	struct docg3 *docg3 = mtd->priv;
1022 	int block0, block1, page, ofs, is_good;
1023 
1024 	calc_block_sector(from, &block0, &block1, &page, &ofs,
1025 		docg3->reliable);
1026 	doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1027 		from, block0, block1, page, ofs);
1028 
1029 	if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1030 		return 0;
1031 	if (block1 > docg3->max_block)
1032 		return -EINVAL;
1033 
1034 	is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1035 	return !is_good;
1036 }
1037 
1038 #if 0
1039 /**
1040  * doc_get_erase_count - Get block erase count
1041  * @docg3: the device
1042  * @from: the offset in which the block is.
1043  *
1044  * Get the number of times a block was erased. The number is the maximum of
1045  * erase times between first and second plane (which should be equal normally).
1046  *
1047  * Returns The number of erases, or -EINVAL or -EIO on error.
1048  */
1049 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1050 {
1051 	u8 buf[DOC_LAYOUT_WEAR_SIZE];
1052 	int ret, plane1_erase_count, plane2_erase_count;
1053 	int block0, block1, page, ofs;
1054 
1055 	doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1056 	if (from % DOC_LAYOUT_PAGE_SIZE)
1057 		return -EINVAL;
1058 	calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1059 	if (block1 > docg3->max_block)
1060 		return -EINVAL;
1061 
1062 	ret = doc_reset_seq(docg3);
1063 	if (!ret)
1064 		ret = doc_read_page_prepare(docg3, block0, block1, page,
1065 					    ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1066 	if (!ret)
1067 		ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1068 					     buf, 1, 0);
1069 	doc_read_page_finish(docg3);
1070 
1071 	if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1072 		return -EIO;
1073 	plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1074 		| ((u8)(~buf[5]) << 16);
1075 	plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1076 		| ((u8)(~buf[7]) << 16);
1077 
1078 	return max(plane1_erase_count, plane2_erase_count);
1079 }
1080 #endif
1081 
1082 /**
1083  * doc_get_op_status - get erase/write operation status
1084  * @docg3: the device
1085  *
1086  * Queries the status from the chip, and returns it
1087  *
1088  * Returns the status (bits DOC_PLANES_STATUS_*)
1089  */
1090 static int doc_get_op_status(struct docg3 *docg3)
1091 {
1092 	u8 status;
1093 
1094 	doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1095 	doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1096 	doc_delay(docg3, 5);
1097 
1098 	doc_ecc_disable(docg3);
1099 	doc_read_data_area(docg3, &status, 1, 1);
1100 	return status;
1101 }
1102 
1103 /**
1104  * doc_write_erase_wait_status - wait for write or erase completion
1105  * @docg3: the device
1106  *
1107  * Wait for the chip to be ready again after erase or write operation, and check
1108  * erase/write status.
1109  *
1110  * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1111  * timeout
1112  */
1113 static int doc_write_erase_wait_status(struct docg3 *docg3)
1114 {
1115 	int i, status, ret = 0;
1116 
1117 	for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1118 		msleep(20);
1119 	if (!doc_is_ready(docg3)) {
1120 		doc_dbg("Timeout reached and the chip is still not ready\n");
1121 		ret = -EAGAIN;
1122 		goto out;
1123 	}
1124 
1125 	status = doc_get_op_status(docg3);
1126 	if (status & DOC_PLANES_STATUS_FAIL) {
1127 		doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1128 			status);
1129 		ret = -EIO;
1130 	}
1131 
1132 out:
1133 	doc_page_finish(docg3);
1134 	return ret;
1135 }
1136 
1137 /**
1138  * doc_erase_block - Erase a couple of blocks
1139  * @docg3: the device
1140  * @block0: the first block to erase (leftmost plane)
1141  * @block1: the second block to erase (rightmost plane)
1142  *
1143  * Erase both blocks, and return operation status
1144  *
1145  * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1146  * ready for too long
1147  */
1148 static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1149 {
1150 	int ret, sector;
1151 
1152 	doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1153 	ret = doc_reset_seq(docg3);
1154 	if (ret)
1155 		return -EIO;
1156 
1157 	doc_set_reliable_mode(docg3);
1158 	doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1159 
1160 	sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1161 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1162 	doc_setup_addr_sector(docg3, sector);
1163 	sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1164 	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1165 	doc_setup_addr_sector(docg3, sector);
1166 	doc_delay(docg3, 1);
1167 
1168 	doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1169 	doc_delay(docg3, 2);
1170 
1171 	if (is_prot_seq_error(docg3)) {
1172 		doc_err("Erase blocks %d,%d error\n", block0, block1);
1173 		return -EIO;
1174 	}
1175 
1176 	return doc_write_erase_wait_status(docg3);
1177 }
1178 
1179 /**
1180  * doc_erase - Erase a portion of the chip
1181  * @mtd: the device
1182  * @info: the erase info
1183  *
1184  * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1185  * split into 2 pages of 512 bytes on 2 contiguous blocks.
1186  *
1187  * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1188  * issue
1189  */
1190 static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1191 {
1192 	struct docg3 *docg3 = mtd->priv;
1193 	uint64_t len;
1194 	int block0, block1, page, ret = 0, ofs = 0;
1195 
1196 	doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1197 
1198 	calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1199 			  &ofs, docg3->reliable);
1200 	if (info->addr + info->len > mtd->size || page || ofs)
1201 		return -EINVAL;
1202 
1203 	calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1204 			  docg3->reliable);
1205 	mutex_lock(&docg3->cascade->lock);
1206 	doc_set_device_id(docg3, docg3->device_id);
1207 	doc_set_reliable_mode(docg3);
1208 	for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1209 		ret = doc_erase_block(docg3, block0, block1);
1210 		block0 += 2;
1211 		block1 += 2;
1212 	}
1213 	mutex_unlock(&docg3->cascade->lock);
1214 
1215 	return ret;
1216 }
1217 
1218 /**
1219  * doc_write_page - Write a single page to the chip
1220  * @docg3: the device
1221  * @to: the offset from first block and first page, in bytes, aligned on page
1222  *      size
1223  * @buf: buffer to get bytes from
1224  * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1225  *       written)
1226  * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1227  *           BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1228  *           remaining ones are filled with hardware Hamming and BCH
1229  *           computations. Its value is not meaningfull is oob == NULL.
1230  *
1231  * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1232  * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1233  * BCH generator if autoecc is not null.
1234  *
1235  * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1236  */
1237 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1238 			  const u_char *oob, int autoecc)
1239 {
1240 	int block0, block1, page, ret, ofs = 0;
1241 	u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1242 
1243 	doc_dbg("doc_write_page(to=%lld)\n", to);
1244 	calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1245 
1246 	doc_set_device_id(docg3, docg3->device_id);
1247 	ret = doc_reset_seq(docg3);
1248 	if (ret)
1249 		goto err;
1250 
1251 	/* Program the flash address block and page */
1252 	ret = doc_write_seek(docg3, block0, block1, page, ofs);
1253 	if (ret)
1254 		goto err;
1255 
1256 	doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1257 	doc_delay(docg3, 2);
1258 	doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1259 
1260 	if (oob && autoecc) {
1261 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1262 		doc_delay(docg3, 2);
1263 		oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1264 
1265 		hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1266 		doc_delay(docg3, 2);
1267 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1268 					&hamming);
1269 		doc_delay(docg3, 2);
1270 
1271 		doc_get_bch_hw_ecc(docg3, hwecc);
1272 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1273 		doc_delay(docg3, 2);
1274 
1275 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1276 	}
1277 	if (oob && !autoecc)
1278 		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1279 
1280 	doc_delay(docg3, 2);
1281 	doc_page_finish(docg3);
1282 	doc_delay(docg3, 2);
1283 	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1284 	doc_delay(docg3, 2);
1285 
1286 	/*
1287 	 * The wait status will perform another doc_page_finish() call, but that
1288 	 * seems to please the docg3, so leave it.
1289 	 */
1290 	ret = doc_write_erase_wait_status(docg3);
1291 	return ret;
1292 err:
1293 	doc_read_page_finish(docg3);
1294 	return ret;
1295 }
1296 
1297 /**
1298  * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1299  * @ops: the oob operations
1300  *
1301  * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1302  */
1303 static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1304 {
1305 	int autoecc;
1306 
1307 	switch (ops->mode) {
1308 	case MTD_OPS_PLACE_OOB:
1309 	case MTD_OPS_AUTO_OOB:
1310 		autoecc = 1;
1311 		break;
1312 	case MTD_OPS_RAW:
1313 		autoecc = 0;
1314 		break;
1315 	default:
1316 		autoecc = -EINVAL;
1317 	}
1318 	return autoecc;
1319 }
1320 
1321 /**
1322  * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1323  * @dst: the target 16 bytes OOB buffer
1324  * @oobsrc: the source 8 bytes non-ECC OOB buffer
1325  *
1326  */
1327 static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1328 {
1329 	memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1330 	dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1331 }
1332 
1333 /**
1334  * doc_backup_oob - Backup OOB into docg3 structure
1335  * @docg3: the device
1336  * @to: the page offset in the chip
1337  * @ops: the OOB size and buffer
1338  *
1339  * As the docg3 should write a page with its OOB in one pass, and some userland
1340  * applications do write_oob() to setup the OOB and then write(), store the OOB
1341  * into a temporary storage. This is very dangerous, as 2 concurrent
1342  * applications could store an OOB, and then write their pages (which will
1343  * result into one having its OOB corrupted).
1344  *
1345  * The only reliable way would be for userland to call doc_write_oob() with both
1346  * the page data _and_ the OOB area.
1347  *
1348  * Returns 0 if success, -EINVAL if ops content invalid
1349  */
1350 static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1351 			  struct mtd_oob_ops *ops)
1352 {
1353 	int ooblen = ops->ooblen, autoecc;
1354 
1355 	if (ooblen != DOC_LAYOUT_OOB_SIZE)
1356 		return -EINVAL;
1357 	autoecc = doc_guess_autoecc(ops);
1358 	if (autoecc < 0)
1359 		return autoecc;
1360 
1361 	docg3->oob_write_ofs = to;
1362 	docg3->oob_autoecc = autoecc;
1363 	if (ops->mode == MTD_OPS_AUTO_OOB) {
1364 		doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1365 		ops->oobretlen = 8;
1366 	} else {
1367 		memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1368 		ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1369 	}
1370 	return 0;
1371 }
1372 
1373 /**
1374  * doc_write_oob - Write out of band bytes to flash
1375  * @mtd: the device
1376  * @ofs: the offset from first block and first page, in bytes, aligned on page
1377  *       size
1378  * @ops: the mtd oob structure
1379  *
1380  * Either write OOB data into a temporary buffer, for the subsequent write
1381  * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1382  * as well, issue the page write.
1383  * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1384  * still be filled in if asked for).
1385  *
1386  * Returns 0 is successful, EINVAL if length is not 14 bytes
1387  */
1388 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1389 			 struct mtd_oob_ops *ops)
1390 {
1391 	struct docg3 *docg3 = mtd->priv;
1392 	int ret, autoecc, oobdelta;
1393 	u8 *oobbuf = ops->oobbuf;
1394 	u8 *buf = ops->datbuf;
1395 	size_t len, ooblen;
1396 	u8 oob[DOC_LAYOUT_OOB_SIZE];
1397 
1398 	if (buf)
1399 		len = ops->len;
1400 	else
1401 		len = 0;
1402 	if (oobbuf)
1403 		ooblen = ops->ooblen;
1404 	else
1405 		ooblen = 0;
1406 
1407 	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1408 		oobbuf += ops->ooboffs;
1409 
1410 	doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1411 		ofs, ops->mode, buf, len, oobbuf, ooblen);
1412 	switch (ops->mode) {
1413 	case MTD_OPS_PLACE_OOB:
1414 	case MTD_OPS_RAW:
1415 		oobdelta = mtd->oobsize;
1416 		break;
1417 	case MTD_OPS_AUTO_OOB:
1418 		oobdelta = mtd->oobavail;
1419 		break;
1420 	default:
1421 		return -EINVAL;
1422 	}
1423 	if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1424 	    (ofs % DOC_LAYOUT_PAGE_SIZE))
1425 		return -EINVAL;
1426 	if (len && ooblen &&
1427 	    (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1428 		return -EINVAL;
1429 
1430 	ops->oobretlen = 0;
1431 	ops->retlen = 0;
1432 	ret = 0;
1433 	if (len == 0 && ooblen == 0)
1434 		return -EINVAL;
1435 	if (len == 0 && ooblen > 0)
1436 		return doc_backup_oob(docg3, ofs, ops);
1437 
1438 	autoecc = doc_guess_autoecc(ops);
1439 	if (autoecc < 0)
1440 		return autoecc;
1441 
1442 	mutex_lock(&docg3->cascade->lock);
1443 	while (!ret && len > 0) {
1444 		memset(oob, 0, sizeof(oob));
1445 		if (ofs == docg3->oob_write_ofs)
1446 			memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1447 		else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1448 			doc_fill_autooob(oob, oobbuf);
1449 		else if (ooblen > 0)
1450 			memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1451 		ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1452 
1453 		ofs += DOC_LAYOUT_PAGE_SIZE;
1454 		len -= DOC_LAYOUT_PAGE_SIZE;
1455 		buf += DOC_LAYOUT_PAGE_SIZE;
1456 		if (ooblen) {
1457 			oobbuf += oobdelta;
1458 			ooblen -= oobdelta;
1459 			ops->oobretlen += oobdelta;
1460 		}
1461 		ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1462 	}
1463 
1464 	doc_set_device_id(docg3, 0);
1465 	mutex_unlock(&docg3->cascade->lock);
1466 	return ret;
1467 }
1468 
1469 static struct docg3 *sysfs_dev2docg3(struct device *dev,
1470 				     struct device_attribute *attr)
1471 {
1472 	int floor;
1473 	struct mtd_info **docg3_floors = dev_get_drvdata(dev);
1474 
1475 	floor = attr->attr.name[1] - '0';
1476 	if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1477 		return NULL;
1478 	else
1479 		return docg3_floors[floor]->priv;
1480 }
1481 
1482 static ssize_t dps0_is_key_locked(struct device *dev,
1483 				  struct device_attribute *attr, char *buf)
1484 {
1485 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1486 	int dps0;
1487 
1488 	mutex_lock(&docg3->cascade->lock);
1489 	doc_set_device_id(docg3, docg3->device_id);
1490 	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1491 	doc_set_device_id(docg3, 0);
1492 	mutex_unlock(&docg3->cascade->lock);
1493 
1494 	return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1495 }
1496 
1497 static ssize_t dps1_is_key_locked(struct device *dev,
1498 				  struct device_attribute *attr, char *buf)
1499 {
1500 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1501 	int dps1;
1502 
1503 	mutex_lock(&docg3->cascade->lock);
1504 	doc_set_device_id(docg3, docg3->device_id);
1505 	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1506 	doc_set_device_id(docg3, 0);
1507 	mutex_unlock(&docg3->cascade->lock);
1508 
1509 	return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1510 }
1511 
1512 static ssize_t dps0_insert_key(struct device *dev,
1513 			       struct device_attribute *attr,
1514 			       const char *buf, size_t count)
1515 {
1516 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1517 	int i;
1518 
1519 	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1520 		return -EINVAL;
1521 
1522 	mutex_lock(&docg3->cascade->lock);
1523 	doc_set_device_id(docg3, docg3->device_id);
1524 	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1525 		doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1526 	doc_set_device_id(docg3, 0);
1527 	mutex_unlock(&docg3->cascade->lock);
1528 	return count;
1529 }
1530 
1531 static ssize_t dps1_insert_key(struct device *dev,
1532 			       struct device_attribute *attr,
1533 			       const char *buf, size_t count)
1534 {
1535 	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1536 	int i;
1537 
1538 	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1539 		return -EINVAL;
1540 
1541 	mutex_lock(&docg3->cascade->lock);
1542 	doc_set_device_id(docg3, docg3->device_id);
1543 	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1544 		doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1545 	doc_set_device_id(docg3, 0);
1546 	mutex_unlock(&docg3->cascade->lock);
1547 	return count;
1548 }
1549 
1550 #define FLOOR_SYSFS(id) { \
1551 	__ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1552 	__ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1553 	__ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1554 	__ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1555 }
1556 
1557 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1558 	FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1559 };
1560 
1561 static int doc_register_sysfs(struct platform_device *pdev,
1562 			      struct docg3_cascade *cascade)
1563 {
1564 	struct device *dev = &pdev->dev;
1565 	int floor;
1566 	int ret;
1567 	int i;
1568 
1569 	for (floor = 0;
1570 	     floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1571 	     floor++) {
1572 		for (i = 0; i < 4; i++) {
1573 			ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1574 			if (ret)
1575 				goto remove_files;
1576 		}
1577 	}
1578 
1579 	return 0;
1580 
1581 remove_files:
1582 	do {
1583 		while (--i >= 0)
1584 			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1585 		i = 4;
1586 	} while (--floor >= 0);
1587 
1588 	return ret;
1589 }
1590 
1591 static void doc_unregister_sysfs(struct platform_device *pdev,
1592 				 struct docg3_cascade *cascade)
1593 {
1594 	struct device *dev = &pdev->dev;
1595 	int floor, i;
1596 
1597 	for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1598 	     floor++)
1599 		for (i = 0; i < 4; i++)
1600 			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1601 }
1602 
1603 /*
1604  * Debug sysfs entries
1605  */
1606 static int dbg_flashctrl_show(struct seq_file *s, void *p)
1607 {
1608 	struct docg3 *docg3 = (struct docg3 *)s->private;
1609 
1610 	u8 fctrl;
1611 
1612 	mutex_lock(&docg3->cascade->lock);
1613 	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1614 	mutex_unlock(&docg3->cascade->lock);
1615 
1616 	seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1617 		   fctrl,
1618 		   fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1619 		   fctrl & DOC_CTRL_CE ? "active" : "inactive",
1620 		   fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1621 		   fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1622 		   fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1623 
1624 	return 0;
1625 }
1626 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1627 
1628 static int dbg_asicmode_show(struct seq_file *s, void *p)
1629 {
1630 	struct docg3 *docg3 = (struct docg3 *)s->private;
1631 
1632 	int pctrl, mode;
1633 
1634 	mutex_lock(&docg3->cascade->lock);
1635 	pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1636 	mode = pctrl & 0x03;
1637 	mutex_unlock(&docg3->cascade->lock);
1638 
1639 	seq_printf(s,
1640 		   "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1641 		   pctrl,
1642 		   pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1643 		   pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1644 		   pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1645 		   pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1646 		   pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1647 		   mode >> 1, mode & 0x1);
1648 
1649 	switch (mode) {
1650 	case DOC_ASICMODE_RESET:
1651 		seq_puts(s, "reset");
1652 		break;
1653 	case DOC_ASICMODE_NORMAL:
1654 		seq_puts(s, "normal");
1655 		break;
1656 	case DOC_ASICMODE_POWERDOWN:
1657 		seq_puts(s, "powerdown");
1658 		break;
1659 	}
1660 	seq_puts(s, ")\n");
1661 	return 0;
1662 }
1663 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1664 
1665 static int dbg_device_id_show(struct seq_file *s, void *p)
1666 {
1667 	struct docg3 *docg3 = (struct docg3 *)s->private;
1668 	int id;
1669 
1670 	mutex_lock(&docg3->cascade->lock);
1671 	id = doc_register_readb(docg3, DOC_DEVICESELECT);
1672 	mutex_unlock(&docg3->cascade->lock);
1673 
1674 	seq_printf(s, "DeviceId = %d\n", id);
1675 	return 0;
1676 }
1677 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1678 
1679 static int dbg_protection_show(struct seq_file *s, void *p)
1680 {
1681 	struct docg3 *docg3 = (struct docg3 *)s->private;
1682 	int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1683 
1684 	mutex_lock(&docg3->cascade->lock);
1685 	protect = doc_register_readb(docg3, DOC_PROTECTION);
1686 	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1687 	dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1688 	dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1689 	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1690 	dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1691 	dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1692 	mutex_unlock(&docg3->cascade->lock);
1693 
1694 	seq_printf(s, "Protection = 0x%02x (", protect);
1695 	if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1696 		seq_puts(s, "FOUNDRY_OTP_LOCK,");
1697 	if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1698 		seq_puts(s, "CUSTOMER_OTP_LOCK,");
1699 	if (protect & DOC_PROTECT_LOCK_INPUT)
1700 		seq_puts(s, "LOCK_INPUT,");
1701 	if (protect & DOC_PROTECT_STICKY_LOCK)
1702 		seq_puts(s, "STICKY_LOCK,");
1703 	if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1704 		seq_puts(s, "PROTECTION ON,");
1705 	if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1706 		seq_puts(s, "IPL_DOWNLOAD_LOCK,");
1707 	if (protect & DOC_PROTECT_PROTECTION_ERROR)
1708 		seq_puts(s, "PROTECT_ERR,");
1709 	else
1710 		seq_puts(s, "NO_PROTECT_ERR");
1711 	seq_puts(s, ")\n");
1712 
1713 	seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1714 		   dps0, dps0_low, dps0_high,
1715 		   !!(dps0 & DOC_DPS_OTP_PROTECTED),
1716 		   !!(dps0 & DOC_DPS_READ_PROTECTED),
1717 		   !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1718 		   !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1719 		   !!(dps0 & DOC_DPS_KEY_OK));
1720 	seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1721 		   dps1, dps1_low, dps1_high,
1722 		   !!(dps1 & DOC_DPS_OTP_PROTECTED),
1723 		   !!(dps1 & DOC_DPS_READ_PROTECTED),
1724 		   !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1725 		   !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1726 		   !!(dps1 & DOC_DPS_KEY_OK));
1727 	return 0;
1728 }
1729 DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1730 
1731 static void __init doc_dbg_register(struct mtd_info *floor)
1732 {
1733 	struct dentry *root = floor->dbg.dfs_dir;
1734 	struct docg3 *docg3 = floor->priv;
1735 
1736 	if (IS_ERR_OR_NULL(root)) {
1737 		if (IS_ENABLED(CONFIG_DEBUG_FS) &&
1738 		    !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1739 			dev_warn(floor->dev.parent,
1740 				 "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
1741 		return;
1742 	}
1743 
1744 	debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3,
1745 			    &flashcontrol_fops);
1746 	debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3,
1747 			    &asic_mode_fops);
1748 	debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3,
1749 			    &device_id_fops);
1750 	debugfs_create_file("docg3_protection", S_IRUSR, root, docg3,
1751 			    &protection_fops);
1752 }
1753 
1754 /**
1755  * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1756  * @chip_id: The chip ID of the supported chip
1757  * @mtd: The structure to fill
1758  */
1759 static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1760 {
1761 	struct docg3 *docg3 = mtd->priv;
1762 	int cfg;
1763 
1764 	cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1765 	docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1766 	docg3->reliable = reliable_mode;
1767 
1768 	switch (chip_id) {
1769 	case DOC_CHIPID_G3:
1770 		mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1771 				      docg3->device_id);
1772 		if (!mtd->name)
1773 			return -ENOMEM;
1774 		docg3->max_block = 2047;
1775 		break;
1776 	}
1777 	mtd->type = MTD_NANDFLASH;
1778 	mtd->flags = MTD_CAP_NANDFLASH;
1779 	mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1780 	if (docg3->reliable == 2)
1781 		mtd->size /= 2;
1782 	mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1783 	if (docg3->reliable == 2)
1784 		mtd->erasesize /= 2;
1785 	mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1786 	mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1787 	mtd->_erase = doc_erase;
1788 	mtd->_read_oob = doc_read_oob;
1789 	mtd->_write_oob = doc_write_oob;
1790 	mtd->_block_isbad = doc_block_isbad;
1791 	mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops);
1792 	mtd->oobavail = 8;
1793 	mtd->ecc_strength = DOC_ECC_BCH_T;
1794 
1795 	return 0;
1796 }
1797 
1798 /**
1799  * doc_probe_device - Check if a device is available
1800  * @base: the io space where the device is probed
1801  * @floor: the floor of the probed device
1802  * @dev: the device
1803  * @cascade: the cascade of chips this devices will belong to
1804  *
1805  * Checks whether a device at the specified IO range, and floor is available.
1806  *
1807  * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1808  * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1809  * launched.
1810  */
1811 static struct mtd_info * __init
1812 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1813 {
1814 	int ret, bbt_nbpages;
1815 	u16 chip_id, chip_id_inv;
1816 	struct docg3 *docg3;
1817 	struct mtd_info *mtd;
1818 
1819 	ret = -ENOMEM;
1820 	docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1821 	if (!docg3)
1822 		goto nomem1;
1823 	mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1824 	if (!mtd)
1825 		goto nomem2;
1826 	mtd->priv = docg3;
1827 	mtd->dev.parent = dev;
1828 	bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1829 				   8 * DOC_LAYOUT_PAGE_SIZE);
1830 	docg3->bbt = kcalloc(DOC_LAYOUT_PAGE_SIZE, bbt_nbpages, GFP_KERNEL);
1831 	if (!docg3->bbt)
1832 		goto nomem3;
1833 
1834 	docg3->dev = dev;
1835 	docg3->device_id = floor;
1836 	docg3->cascade = cascade;
1837 	doc_set_device_id(docg3, docg3->device_id);
1838 	if (!floor)
1839 		doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1840 	doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1841 
1842 	chip_id = doc_register_readw(docg3, DOC_CHIPID);
1843 	chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1844 
1845 	ret = 0;
1846 	if (chip_id != (u16)(~chip_id_inv)) {
1847 		goto nomem4;
1848 	}
1849 
1850 	switch (chip_id) {
1851 	case DOC_CHIPID_G3:
1852 		doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1853 			 docg3->cascade->base, floor);
1854 		break;
1855 	default:
1856 		doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1857 		goto nomem4;
1858 	}
1859 
1860 	ret = doc_set_driver_info(chip_id, mtd);
1861 	if (ret)
1862 		goto nomem4;
1863 
1864 	doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1865 	doc_reload_bbt(docg3);
1866 	return mtd;
1867 
1868 nomem4:
1869 	kfree(docg3->bbt);
1870 nomem3:
1871 	kfree(mtd);
1872 nomem2:
1873 	kfree(docg3);
1874 nomem1:
1875 	return ERR_PTR(ret);
1876 }
1877 
1878 /**
1879  * doc_release_device - Release a docg3 floor
1880  * @mtd: the device
1881  */
1882 static void doc_release_device(struct mtd_info *mtd)
1883 {
1884 	struct docg3 *docg3 = mtd->priv;
1885 
1886 	mtd_device_unregister(mtd);
1887 	kfree(docg3->bbt);
1888 	kfree(docg3);
1889 	kfree(mtd->name);
1890 	kfree(mtd);
1891 }
1892 
1893 /**
1894  * docg3_resume - Awakens docg3 floor
1895  * @pdev: platfrom device
1896  *
1897  * Returns 0 (always successful)
1898  */
1899 static int docg3_resume(struct platform_device *pdev)
1900 {
1901 	int i;
1902 	struct docg3_cascade *cascade;
1903 	struct mtd_info **docg3_floors, *mtd;
1904 	struct docg3 *docg3;
1905 
1906 	cascade = platform_get_drvdata(pdev);
1907 	docg3_floors = cascade->floors;
1908 	mtd = docg3_floors[0];
1909 	docg3 = mtd->priv;
1910 
1911 	doc_dbg("docg3_resume()\n");
1912 	for (i = 0; i < 12; i++)
1913 		doc_readb(docg3, DOC_IOSPACE_IPL);
1914 	return 0;
1915 }
1916 
1917 /**
1918  * docg3_suspend - Put in low power mode the docg3 floor
1919  * @pdev: platform device
1920  * @state: power state
1921  *
1922  * Shuts off most of docg3 circuitery to lower power consumption.
1923  *
1924  * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1925  */
1926 static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1927 {
1928 	int floor, i;
1929 	struct docg3_cascade *cascade;
1930 	struct mtd_info **docg3_floors, *mtd;
1931 	struct docg3 *docg3;
1932 	u8 ctrl, pwr_down;
1933 
1934 	cascade = platform_get_drvdata(pdev);
1935 	docg3_floors = cascade->floors;
1936 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1937 		mtd = docg3_floors[floor];
1938 		if (!mtd)
1939 			continue;
1940 		docg3 = mtd->priv;
1941 
1942 		doc_writeb(docg3, floor, DOC_DEVICESELECT);
1943 		ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1944 		ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
1945 		doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
1946 
1947 		for (i = 0; i < 10; i++) {
1948 			usleep_range(3000, 4000);
1949 			pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
1950 			if (pwr_down & DOC_POWERDOWN_READY)
1951 				break;
1952 		}
1953 		if (pwr_down & DOC_POWERDOWN_READY) {
1954 			doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
1955 				floor);
1956 		} else {
1957 			doc_err("docg3_suspend(): floor %d powerdown failed\n",
1958 				floor);
1959 			return -EIO;
1960 		}
1961 	}
1962 
1963 	mtd = docg3_floors[0];
1964 	docg3 = mtd->priv;
1965 	doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
1966 	return 0;
1967 }
1968 
1969 /**
1970  * doc_probe - Probe the IO space for a DiskOnChip G3 chip
1971  * @pdev: platform device
1972  *
1973  * Probes for a G3 chip at the specified IO space in the platform data
1974  * ressources. The floor 0 must be available.
1975  *
1976  * Returns 0 on success, -ENOMEM, -ENXIO on error
1977  */
1978 static int __init docg3_probe(struct platform_device *pdev)
1979 {
1980 	struct device *dev = &pdev->dev;
1981 	struct mtd_info *mtd;
1982 	struct resource *ress;
1983 	void __iomem *base;
1984 	int ret, floor;
1985 	struct docg3_cascade *cascade;
1986 
1987 	ret = -ENXIO;
1988 	ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1989 	if (!ress) {
1990 		dev_err(dev, "No I/O memory resource defined\n");
1991 		return ret;
1992 	}
1993 	base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
1994 
1995 	ret = -ENOMEM;
1996 	cascade = devm_kcalloc(dev, DOC_MAX_NBFLOORS, sizeof(*cascade),
1997 			       GFP_KERNEL);
1998 	if (!cascade)
1999 		return ret;
2000 	cascade->base = base;
2001 	mutex_init(&cascade->lock);
2002 	cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2003 			     DOC_ECC_BCH_PRIMPOLY);
2004 	if (!cascade->bch)
2005 		return ret;
2006 
2007 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2008 		mtd = doc_probe_device(cascade, floor, dev);
2009 		if (IS_ERR(mtd)) {
2010 			ret = PTR_ERR(mtd);
2011 			goto err_probe;
2012 		}
2013 		if (!mtd) {
2014 			if (floor == 0)
2015 				goto notfound;
2016 			else
2017 				continue;
2018 		}
2019 		cascade->floors[floor] = mtd;
2020 		ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2021 						0);
2022 		if (ret)
2023 			goto err_probe;
2024 
2025 		doc_dbg_register(cascade->floors[floor]);
2026 	}
2027 
2028 	ret = doc_register_sysfs(pdev, cascade);
2029 	if (ret)
2030 		goto err_probe;
2031 
2032 	platform_set_drvdata(pdev, cascade);
2033 	return 0;
2034 
2035 notfound:
2036 	ret = -ENODEV;
2037 	dev_info(dev, "No supported DiskOnChip found\n");
2038 err_probe:
2039 	free_bch(cascade->bch);
2040 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2041 		if (cascade->floors[floor])
2042 			doc_release_device(cascade->floors[floor]);
2043 	return ret;
2044 }
2045 
2046 /**
2047  * docg3_release - Release the driver
2048  * @pdev: the platform device
2049  *
2050  * Returns 0
2051  */
2052 static int docg3_release(struct platform_device *pdev)
2053 {
2054 	struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2055 	struct docg3 *docg3 = cascade->floors[0]->priv;
2056 	int floor;
2057 
2058 	doc_unregister_sysfs(pdev, cascade);
2059 	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2060 		if (cascade->floors[floor])
2061 			doc_release_device(cascade->floors[floor]);
2062 
2063 	free_bch(docg3->cascade->bch);
2064 	return 0;
2065 }
2066 
2067 #ifdef CONFIG_OF
2068 static const struct of_device_id docg3_dt_ids[] = {
2069 	{ .compatible = "m-systems,diskonchip-g3" },
2070 	{}
2071 };
2072 MODULE_DEVICE_TABLE(of, docg3_dt_ids);
2073 #endif
2074 
2075 static struct platform_driver g3_driver = {
2076 	.driver		= {
2077 		.name	= "docg3",
2078 		.of_match_table = of_match_ptr(docg3_dt_ids),
2079 	},
2080 	.suspend	= docg3_suspend,
2081 	.resume		= docg3_resume,
2082 	.remove		= docg3_release,
2083 };
2084 
2085 module_platform_driver_probe(g3_driver, docg3_probe);
2086 
2087 MODULE_LICENSE("GPL");
2088 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2089 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2090