1 /* 2 * Handles the M-Systems DiskOnChip G3 chip 3 * 4 * Copyright (C) 2011 Robert Jarzmik 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/of.h> 26 #include <linux/platform_device.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/io.h> 30 #include <linux/delay.h> 31 #include <linux/mtd/mtd.h> 32 #include <linux/mtd/partitions.h> 33 #include <linux/bitmap.h> 34 #include <linux/bitrev.h> 35 #include <linux/bch.h> 36 37 #include <linux/debugfs.h> 38 #include <linux/seq_file.h> 39 40 #define CREATE_TRACE_POINTS 41 #include "docg3.h" 42 43 /* 44 * This driver handles the DiskOnChip G3 flash memory. 45 * 46 * As no specification is available from M-Systems/Sandisk, this drivers lacks 47 * several functions available on the chip, as : 48 * - IPL write 49 * 50 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and 51 * the driver assumes a 16bits data bus. 52 * 53 * DocG3 relies on 2 ECC algorithms, which are handled in hardware : 54 * - a 1 byte Hamming code stored in the OOB for each page 55 * - a 7 bytes BCH code stored in the OOB for each page 56 * The BCH ECC is : 57 * - BCH is in GF(2^14) 58 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes 59 * + 1 hamming byte) 60 * - BCH can correct up to 4 bits (t = 4) 61 * - BCH syndroms are calculated in hardware, and checked in hardware as well 62 * 63 */ 64 65 static unsigned int reliable_mode; 66 module_param(reliable_mode, uint, 0); 67 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, " 68 "2=reliable) : MLC normal operations are in normal mode"); 69 70 static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section, 71 struct mtd_oob_region *oobregion) 72 { 73 if (section) 74 return -ERANGE; 75 76 /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */ 77 oobregion->offset = 7; 78 oobregion->length = 8; 79 80 return 0; 81 } 82 83 static int docg3_ooblayout_free(struct mtd_info *mtd, int section, 84 struct mtd_oob_region *oobregion) 85 { 86 if (section > 1) 87 return -ERANGE; 88 89 /* free bytes: byte 0 until byte 6, byte 15 */ 90 if (!section) { 91 oobregion->offset = 0; 92 oobregion->length = 7; 93 } else { 94 oobregion->offset = 15; 95 oobregion->length = 1; 96 } 97 98 return 0; 99 } 100 101 static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = { 102 .ecc = docg3_ooblayout_ecc, 103 .free = docg3_ooblayout_free, 104 }; 105 106 static inline u8 doc_readb(struct docg3 *docg3, u16 reg) 107 { 108 u8 val = readb(docg3->cascade->base + reg); 109 110 trace_docg3_io(0, 8, reg, (int)val); 111 return val; 112 } 113 114 static inline u16 doc_readw(struct docg3 *docg3, u16 reg) 115 { 116 u16 val = readw(docg3->cascade->base + reg); 117 118 trace_docg3_io(0, 16, reg, (int)val); 119 return val; 120 } 121 122 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) 123 { 124 writeb(val, docg3->cascade->base + reg); 125 trace_docg3_io(1, 8, reg, val); 126 } 127 128 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) 129 { 130 writew(val, docg3->cascade->base + reg); 131 trace_docg3_io(1, 16, reg, val); 132 } 133 134 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd) 135 { 136 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND); 137 } 138 139 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq) 140 { 141 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE); 142 } 143 144 static inline void doc_flash_address(struct docg3 *docg3, u8 addr) 145 { 146 doc_writeb(docg3, addr, DOC_FLASHADDRESS); 147 } 148 149 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL }; 150 151 static int doc_register_readb(struct docg3 *docg3, int reg) 152 { 153 u8 val; 154 155 doc_writew(docg3, reg, DOC_READADDRESS); 156 val = doc_readb(docg3, reg); 157 doc_vdbg("Read register %04x : %02x\n", reg, val); 158 return val; 159 } 160 161 static int doc_register_readw(struct docg3 *docg3, int reg) 162 { 163 u16 val; 164 165 doc_writew(docg3, reg, DOC_READADDRESS); 166 val = doc_readw(docg3, reg); 167 doc_vdbg("Read register %04x : %04x\n", reg, val); 168 return val; 169 } 170 171 /** 172 * doc_delay - delay docg3 operations 173 * @docg3: the device 174 * @nbNOPs: the number of NOPs to issue 175 * 176 * As no specification is available, the right timings between chip commands are 177 * unknown. The only available piece of information are the observed nops on a 178 * working docg3 chip. 179 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler 180 * friendlier msleep() functions or blocking mdelay(). 181 */ 182 static void doc_delay(struct docg3 *docg3, int nbNOPs) 183 { 184 int i; 185 186 doc_vdbg("NOP x %d\n", nbNOPs); 187 for (i = 0; i < nbNOPs; i++) 188 doc_writeb(docg3, 0, DOC_NOP); 189 } 190 191 static int is_prot_seq_error(struct docg3 *docg3) 192 { 193 int ctrl; 194 195 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 196 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR); 197 } 198 199 static int doc_is_ready(struct docg3 *docg3) 200 { 201 int ctrl; 202 203 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 204 return ctrl & DOC_CTRL_FLASHREADY; 205 } 206 207 static int doc_wait_ready(struct docg3 *docg3) 208 { 209 int maxWaitCycles = 100; 210 211 do { 212 doc_delay(docg3, 4); 213 cpu_relax(); 214 } while (!doc_is_ready(docg3) && maxWaitCycles--); 215 doc_delay(docg3, 2); 216 if (maxWaitCycles > 0) 217 return 0; 218 else 219 return -EIO; 220 } 221 222 static int doc_reset_seq(struct docg3 *docg3) 223 { 224 int ret; 225 226 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL); 227 doc_flash_sequence(docg3, DOC_SEQ_RESET); 228 doc_flash_command(docg3, DOC_CMD_RESET); 229 doc_delay(docg3, 2); 230 ret = doc_wait_ready(docg3); 231 232 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true"); 233 return ret; 234 } 235 236 /** 237 * doc_read_data_area - Read data from data area 238 * @docg3: the device 239 * @buf: the buffer to fill in (might be NULL is dummy reads) 240 * @len: the length to read 241 * @first: first time read, DOC_READADDRESS should be set 242 * 243 * Reads bytes from flash data. Handles the single byte / even bytes reads. 244 */ 245 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len, 246 int first) 247 { 248 int i, cdr, len4; 249 u16 data16, *dst16; 250 u8 data8, *dst8; 251 252 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len); 253 cdr = len & 0x1; 254 len4 = len - cdr; 255 256 if (first) 257 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 258 dst16 = buf; 259 for (i = 0; i < len4; i += 2) { 260 data16 = doc_readw(docg3, DOC_IOSPACE_DATA); 261 if (dst16) { 262 *dst16 = data16; 263 dst16++; 264 } 265 } 266 267 if (cdr) { 268 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 269 DOC_READADDRESS); 270 doc_delay(docg3, 1); 271 dst8 = (u8 *)dst16; 272 for (i = 0; i < cdr; i++) { 273 data8 = doc_readb(docg3, DOC_IOSPACE_DATA); 274 if (dst8) { 275 *dst8 = data8; 276 dst8++; 277 } 278 } 279 } 280 } 281 282 /** 283 * doc_write_data_area - Write data into data area 284 * @docg3: the device 285 * @buf: the buffer to get input bytes from 286 * @len: the length to write 287 * 288 * Writes bytes into flash data. Handles the single byte / even bytes writes. 289 */ 290 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len) 291 { 292 int i, cdr, len4; 293 u16 *src16; 294 u8 *src8; 295 296 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len); 297 cdr = len & 0x3; 298 len4 = len - cdr; 299 300 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 301 src16 = (u16 *)buf; 302 for (i = 0; i < len4; i += 2) { 303 doc_writew(docg3, *src16, DOC_IOSPACE_DATA); 304 src16++; 305 } 306 307 src8 = (u8 *)src16; 308 for (i = 0; i < cdr; i++) { 309 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 310 DOC_READADDRESS); 311 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA); 312 src8++; 313 } 314 } 315 316 /** 317 * doc_set_data_mode - Sets the flash to normal or reliable data mode 318 * @docg3: the device 319 * 320 * The reliable data mode is a bit slower than the fast mode, but less errors 321 * occur. Entering the reliable mode cannot be done without entering the fast 322 * mode first. 323 * 324 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks 325 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading 326 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same 327 * result, which is a logical and between bytes from page 0 and page 1 (which is 328 * consistent with the fact that writing to a page is _clearing_ bits of that 329 * page). 330 */ 331 static void doc_set_reliable_mode(struct docg3 *docg3) 332 { 333 static char *strmode[] = { "normal", "fast", "reliable", "invalid" }; 334 335 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]); 336 switch (docg3->reliable) { 337 case 0: 338 break; 339 case 1: 340 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE); 341 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 342 break; 343 case 2: 344 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE); 345 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 346 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE); 347 break; 348 default: 349 doc_err("doc_set_reliable_mode(): invalid mode\n"); 350 break; 351 } 352 doc_delay(docg3, 2); 353 } 354 355 /** 356 * doc_set_asic_mode - Set the ASIC mode 357 * @docg3: the device 358 * @mode: the mode 359 * 360 * The ASIC can work in 3 modes : 361 * - RESET: all registers are zeroed 362 * - NORMAL: receives and handles commands 363 * - POWERDOWN: minimal poweruse, flash parts shut off 364 */ 365 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode) 366 { 367 int i; 368 369 for (i = 0; i < 12; i++) 370 doc_readb(docg3, DOC_IOSPACE_IPL); 371 372 mode |= DOC_ASICMODE_MDWREN; 373 doc_dbg("doc_set_asic_mode(%02x)\n", mode); 374 doc_writeb(docg3, mode, DOC_ASICMODE); 375 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM); 376 doc_delay(docg3, 1); 377 } 378 379 /** 380 * doc_set_device_id - Sets the devices id for cascaded G3 chips 381 * @docg3: the device 382 * @id: the chip to select (amongst 0, 1, 2, 3) 383 * 384 * There can be 4 cascaded G3 chips. This function selects the one which will 385 * should be the active one. 386 */ 387 static void doc_set_device_id(struct docg3 *docg3, int id) 388 { 389 u8 ctrl; 390 391 doc_dbg("doc_set_device_id(%d)\n", id); 392 doc_writeb(docg3, id, DOC_DEVICESELECT); 393 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 394 395 ctrl &= ~DOC_CTRL_VIOLATION; 396 ctrl |= DOC_CTRL_CE; 397 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 398 } 399 400 /** 401 * doc_set_extra_page_mode - Change flash page layout 402 * @docg3: the device 403 * 404 * Normally, the flash page is split into the data (512 bytes) and the out of 405 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear 406 * leveling counters are stored. To access this last area of 4 bytes, a special 407 * mode must be input to the flash ASIC. 408 * 409 * Returns 0 if no error occurred, -EIO else. 410 */ 411 static int doc_set_extra_page_mode(struct docg3 *docg3) 412 { 413 int fctrl; 414 415 doc_dbg("doc_set_extra_page_mode()\n"); 416 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532); 417 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532); 418 doc_delay(docg3, 2); 419 420 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 421 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR)) 422 return -EIO; 423 else 424 return 0; 425 } 426 427 /** 428 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane 429 * @docg3: the device 430 * @sector: the sector 431 */ 432 static void doc_setup_addr_sector(struct docg3 *docg3, int sector) 433 { 434 doc_delay(docg3, 1); 435 doc_flash_address(docg3, sector & 0xff); 436 doc_flash_address(docg3, (sector >> 8) & 0xff); 437 doc_flash_address(docg3, (sector >> 16) & 0xff); 438 doc_delay(docg3, 1); 439 } 440 441 /** 442 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane 443 * @docg3: the device 444 * @sector: the sector 445 * @ofs: the offset in the page, between 0 and (512 + 16 + 512) 446 */ 447 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs) 448 { 449 ofs = ofs >> 2; 450 doc_delay(docg3, 1); 451 doc_flash_address(docg3, ofs & 0xff); 452 doc_flash_address(docg3, sector & 0xff); 453 doc_flash_address(docg3, (sector >> 8) & 0xff); 454 doc_flash_address(docg3, (sector >> 16) & 0xff); 455 doc_delay(docg3, 1); 456 } 457 458 /** 459 * doc_seek - Set both flash planes to the specified block, page for reading 460 * @docg3: the device 461 * @block0: the first plane block index 462 * @block1: the second plane block index 463 * @page: the page index within the block 464 * @wear: if true, read will occur on the 4 extra bytes of the wear area 465 * @ofs: offset in page to read 466 * 467 * Programs the flash even and odd planes to the specific block and page. 468 * Alternatively, programs the flash to the wear area of the specified page. 469 */ 470 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page, 471 int wear, int ofs) 472 { 473 int sector, ret = 0; 474 475 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", 476 block0, block1, page, ofs, wear); 477 478 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) { 479 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 480 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 481 doc_delay(docg3, 2); 482 } else { 483 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 484 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 485 doc_delay(docg3, 2); 486 } 487 488 doc_set_reliable_mode(docg3); 489 if (wear) 490 ret = doc_set_extra_page_mode(docg3); 491 if (ret) 492 goto out; 493 494 doc_flash_sequence(docg3, DOC_SEQ_READ); 495 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 496 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 497 doc_setup_addr_sector(docg3, sector); 498 499 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 500 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 501 doc_setup_addr_sector(docg3, sector); 502 doc_delay(docg3, 1); 503 504 out: 505 return ret; 506 } 507 508 /** 509 * doc_write_seek - Set both flash planes to the specified block, page for writing 510 * @docg3: the device 511 * @block0: the first plane block index 512 * @block1: the second plane block index 513 * @page: the page index within the block 514 * @ofs: offset in page to write 515 * 516 * Programs the flash even and odd planes to the specific block and page. 517 * Alternatively, programs the flash to the wear area of the specified page. 518 */ 519 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page, 520 int ofs) 521 { 522 int ret = 0, sector; 523 524 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n", 525 block0, block1, page, ofs); 526 527 doc_set_reliable_mode(docg3); 528 529 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) { 530 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 531 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 532 doc_delay(docg3, 2); 533 } else { 534 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 535 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 536 doc_delay(docg3, 2); 537 } 538 539 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP); 540 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); 541 542 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 543 doc_setup_writeaddr_sector(docg3, sector, ofs); 544 545 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3); 546 doc_delay(docg3, 2); 547 ret = doc_wait_ready(docg3); 548 if (ret) 549 goto out; 550 551 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); 552 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 553 doc_setup_writeaddr_sector(docg3, sector, ofs); 554 doc_delay(docg3, 1); 555 556 out: 557 return ret; 558 } 559 560 561 /** 562 * doc_read_page_ecc_init - Initialize hardware ECC engine 563 * @docg3: the device 564 * @len: the number of bytes covered by the ECC (BCH covered) 565 * 566 * The function does initialize the hardware ECC engine to compute the Hamming 567 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). 568 * 569 * Return 0 if succeeded, -EIO on error 570 */ 571 static int doc_read_page_ecc_init(struct docg3 *docg3, int len) 572 { 573 doc_writew(docg3, DOC_ECCCONF0_READ_MODE 574 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 575 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 576 DOC_ECCCONF0); 577 doc_delay(docg3, 4); 578 doc_register_readb(docg3, DOC_FLASHCONTROL); 579 return doc_wait_ready(docg3); 580 } 581 582 /** 583 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine 584 * @docg3: the device 585 * @len: the number of bytes covered by the ECC (BCH covered) 586 * 587 * The function does initialize the hardware ECC engine to compute the Hamming 588 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). 589 * 590 * Return 0 if succeeded, -EIO on error 591 */ 592 static int doc_write_page_ecc_init(struct docg3 *docg3, int len) 593 { 594 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE 595 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 596 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 597 DOC_ECCCONF0); 598 doc_delay(docg3, 4); 599 doc_register_readb(docg3, DOC_FLASHCONTROL); 600 return doc_wait_ready(docg3); 601 } 602 603 /** 604 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator 605 * @docg3: the device 606 * 607 * Disables the hardware ECC generator and checker, for unchecked reads (as when 608 * reading OOB only or write status byte). 609 */ 610 static void doc_ecc_disable(struct docg3 *docg3) 611 { 612 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0); 613 doc_delay(docg3, 4); 614 } 615 616 /** 617 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine 618 * @docg3: the device 619 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered) 620 * 621 * This function programs the ECC hardware to compute the hamming code on the 622 * last provided N bytes to the hardware generator. 623 */ 624 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes) 625 { 626 u8 ecc_conf1; 627 628 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1); 629 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK; 630 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK); 631 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1); 632 } 633 634 /** 635 * doc_ecc_bch_fix_data - Fix if need be read data from flash 636 * @docg3: the device 637 * @buf: the buffer of read data (512 + 7 + 1 bytes) 638 * @hwecc: the hardware calculated ECC. 639 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB 640 * area data, and calc_ecc the ECC calculated by the hardware generator. 641 * 642 * Checks if the received data matches the ECC, and if an error is detected, 643 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3 644 * understands the (data, ecc, syndroms) in an inverted order in comparison to 645 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0, 646 * bit6 and bit 1, ...) for all ECC data. 647 * 648 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch 649 * algorithm is used to decode this. However the hw operates on page 650 * data in a bit order that is the reverse of that of the bch alg, 651 * requiring that the bits be reversed on the result. Thanks to Ivan 652 * Djelic for his analysis. 653 * 654 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit 655 * errors were detected and cannot be fixed. 656 */ 657 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc) 658 { 659 u8 ecc[DOC_ECC_BCH_SIZE]; 660 int errorpos[DOC_ECC_BCH_T], i, numerrs; 661 662 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 663 ecc[i] = bitrev8(hwecc[i]); 664 numerrs = decode_bch(docg3->cascade->bch, NULL, 665 DOC_ECC_BCH_COVERED_BYTES, 666 NULL, ecc, NULL, errorpos); 667 BUG_ON(numerrs == -EINVAL); 668 if (numerrs < 0) 669 goto out; 670 671 for (i = 0; i < numerrs; i++) 672 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7)); 673 for (i = 0; i < numerrs; i++) 674 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8) 675 /* error is located in data, correct it */ 676 change_bit(errorpos[i], buf); 677 out: 678 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs); 679 return numerrs; 680 } 681 682 683 /** 684 * doc_read_page_prepare - Prepares reading data from a flash page 685 * @docg3: the device 686 * @block0: the first plane block index on flash memory 687 * @block1: the second plane block index on flash memory 688 * @page: the page index in the block 689 * @offset: the offset in the page (must be a multiple of 4) 690 * 691 * Prepares the page to be read in the flash memory : 692 * - tell ASIC to map the flash pages 693 * - tell ASIC to be in read mode 694 * 695 * After a call to this method, a call to doc_read_page_finish is mandatory, 696 * to end the read cycle of the flash. 697 * 698 * Read data from a flash page. The length to be read must be between 0 and 699 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because 700 * the extra bytes reading is not implemented). 701 * 702 * As pages are grouped by 2 (in 2 planes), reading from a page must be done 703 * in two steps: 704 * - one read of 512 bytes at offset 0 705 * - one read of 512 bytes at offset 512 + 16 706 * 707 * Returns 0 if successful, -EIO if a read error occurred. 708 */ 709 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1, 710 int page, int offset) 711 { 712 int wear_area = 0, ret = 0; 713 714 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", 715 block0, block1, page, offset); 716 if (offset >= DOC_LAYOUT_WEAR_OFFSET) 717 wear_area = 1; 718 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2)) 719 return -EINVAL; 720 721 doc_set_device_id(docg3, docg3->device_id); 722 ret = doc_reset_seq(docg3); 723 if (ret) 724 goto err; 725 726 /* Program the flash address block and page */ 727 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); 728 if (ret) 729 goto err; 730 731 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES); 732 doc_delay(docg3, 2); 733 doc_wait_ready(docg3); 734 735 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ); 736 doc_delay(docg3, 1); 737 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2) 738 offset -= 2 * DOC_LAYOUT_PAGE_SIZE; 739 doc_flash_address(docg3, offset >> 2); 740 doc_delay(docg3, 1); 741 doc_wait_ready(docg3); 742 743 doc_flash_command(docg3, DOC_CMD_READ_FLASH); 744 745 return 0; 746 err: 747 doc_writeb(docg3, 0, DOC_DATAEND); 748 doc_delay(docg3, 2); 749 return -EIO; 750 } 751 752 /** 753 * doc_read_page_getbytes - Reads bytes from a prepared page 754 * @docg3: the device 755 * @len: the number of bytes to be read (must be a multiple of 4) 756 * @buf: the buffer to be filled in (or NULL is forget bytes) 757 * @first: 1 if first time read, DOC_READADDRESS should be set 758 * @last_odd: 1 if last read ended up on an odd byte 759 * 760 * Reads bytes from a prepared page. There is a trickery here : if the last read 761 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2 762 * planes, the first byte must be read apart. If a word (16bit) read was used, 763 * the read would return the byte of plane 2 as low *and* high endian, which 764 * will mess the read. 765 * 766 */ 767 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf, 768 int first, int last_odd) 769 { 770 if (last_odd && len > 0) { 771 doc_read_data_area(docg3, buf, 1, first); 772 doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0); 773 } else { 774 doc_read_data_area(docg3, buf, len, first); 775 } 776 doc_delay(docg3, 2); 777 return len; 778 } 779 780 /** 781 * doc_write_page_putbytes - Writes bytes into a prepared page 782 * @docg3: the device 783 * @len: the number of bytes to be written 784 * @buf: the buffer of input bytes 785 * 786 */ 787 static void doc_write_page_putbytes(struct docg3 *docg3, int len, 788 const u_char *buf) 789 { 790 doc_write_data_area(docg3, buf, len); 791 doc_delay(docg3, 2); 792 } 793 794 /** 795 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC 796 * @docg3: the device 797 * @hwecc: the array of 7 integers where the hardware ecc will be stored 798 */ 799 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc) 800 { 801 int i; 802 803 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 804 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i)); 805 } 806 807 /** 808 * doc_page_finish - Ends reading/writing of a flash page 809 * @docg3: the device 810 */ 811 static void doc_page_finish(struct docg3 *docg3) 812 { 813 doc_writeb(docg3, 0, DOC_DATAEND); 814 doc_delay(docg3, 2); 815 } 816 817 /** 818 * doc_read_page_finish - Ends reading of a flash page 819 * @docg3: the device 820 * 821 * As a side effect, resets the chip selector to 0. This ensures that after each 822 * read operation, the floor 0 is selected. Therefore, if the systems halts, the 823 * reboot will boot on floor 0, where the IPL is. 824 */ 825 static void doc_read_page_finish(struct docg3 *docg3) 826 { 827 doc_page_finish(docg3); 828 doc_set_device_id(docg3, 0); 829 } 830 831 /** 832 * calc_block_sector - Calculate blocks, pages and ofs. 833 834 * @from: offset in flash 835 * @block0: first plane block index calculated 836 * @block1: second plane block index calculated 837 * @page: page calculated 838 * @ofs: offset in page 839 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in 840 * reliable mode. 841 * 842 * The calculation is based on the reliable/normal mode. In normal mode, the 64 843 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are 844 * clones, only 32 pages per block are available. 845 */ 846 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page, 847 int *ofs, int reliable) 848 { 849 uint sector, pages_biblock; 850 851 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES; 852 if (reliable == 1 || reliable == 2) 853 pages_biblock /= 2; 854 855 sector = from / DOC_LAYOUT_PAGE_SIZE; 856 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES; 857 *block1 = *block0 + 1; 858 *page = sector % pages_biblock; 859 *page /= DOC_LAYOUT_NBPLANES; 860 if (reliable == 1 || reliable == 2) 861 *page *= 2; 862 if (sector % 2) 863 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE; 864 else 865 *ofs = 0; 866 } 867 868 /** 869 * doc_read_oob - Read out of band bytes from flash 870 * @mtd: the device 871 * @from: the offset from first block and first page, in bytes, aligned on page 872 * size 873 * @ops: the mtd oob structure 874 * 875 * Reads flash memory OOB area of pages. 876 * 877 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred 878 */ 879 static int doc_read_oob(struct mtd_info *mtd, loff_t from, 880 struct mtd_oob_ops *ops) 881 { 882 struct docg3 *docg3 = mtd->priv; 883 int block0, block1, page, ret, skip, ofs = 0; 884 u8 *oobbuf = ops->oobbuf; 885 u8 *buf = ops->datbuf; 886 size_t len, ooblen, nbdata, nboob; 887 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1; 888 int max_bitflips = 0; 889 890 if (buf) 891 len = ops->len; 892 else 893 len = 0; 894 if (oobbuf) 895 ooblen = ops->ooblen; 896 else 897 ooblen = 0; 898 899 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) 900 oobbuf += ops->ooboffs; 901 902 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 903 from, ops->mode, buf, len, oobbuf, ooblen); 904 if (ooblen % DOC_LAYOUT_OOB_SIZE) 905 return -EINVAL; 906 907 if (from + len > mtd->size) 908 return -EINVAL; 909 910 ops->oobretlen = 0; 911 ops->retlen = 0; 912 ret = 0; 913 skip = from % DOC_LAYOUT_PAGE_SIZE; 914 mutex_lock(&docg3->cascade->lock); 915 while (ret >= 0 && (len > 0 || ooblen > 0)) { 916 calc_block_sector(from - skip, &block0, &block1, &page, &ofs, 917 docg3->reliable); 918 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip); 919 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE); 920 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); 921 if (ret < 0) 922 goto out; 923 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 924 if (ret < 0) 925 goto err_in_read; 926 ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0); 927 if (ret < skip) 928 goto err_in_read; 929 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2); 930 if (ret < nbdata) 931 goto err_in_read; 932 doc_read_page_getbytes(docg3, 933 DOC_LAYOUT_PAGE_SIZE - nbdata - skip, 934 NULL, 0, (skip + nbdata) % 2); 935 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0); 936 if (ret < nboob) 937 goto err_in_read; 938 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob, 939 NULL, 0, nboob % 2); 940 941 doc_get_bch_hw_ecc(docg3, hwecc); 942 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); 943 944 if (nboob >= DOC_LAYOUT_OOB_SIZE) { 945 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf); 946 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); 947 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8); 948 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); 949 } 950 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); 951 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc); 952 953 ret = -EIO; 954 if (is_prot_seq_error(docg3)) 955 goto err_in_read; 956 ret = 0; 957 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) && 958 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) && 959 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) && 960 (ops->mode != MTD_OPS_RAW) && 961 (nbdata == DOC_LAYOUT_PAGE_SIZE)) { 962 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc); 963 if (ret < 0) { 964 mtd->ecc_stats.failed++; 965 ret = -EBADMSG; 966 } 967 if (ret > 0) { 968 mtd->ecc_stats.corrected += ret; 969 max_bitflips = max(max_bitflips, ret); 970 ret = max_bitflips; 971 } 972 } 973 974 doc_read_page_finish(docg3); 975 ops->retlen += nbdata; 976 ops->oobretlen += nboob; 977 buf += nbdata; 978 oobbuf += nboob; 979 len -= nbdata; 980 ooblen -= nboob; 981 from += DOC_LAYOUT_PAGE_SIZE; 982 skip = 0; 983 } 984 985 out: 986 mutex_unlock(&docg3->cascade->lock); 987 return ret; 988 err_in_read: 989 doc_read_page_finish(docg3); 990 goto out; 991 } 992 993 /** 994 * doc_read - Read bytes from flash 995 * @mtd: the device 996 * @from: the offset from first block and first page, in bytes, aligned on page 997 * size 998 * @len: the number of bytes to read (must be a multiple of 4) 999 * @retlen: the number of bytes actually read 1000 * @buf: the filled in buffer 1001 * 1002 * Reads flash memory pages. This function does not read the OOB chunk, but only 1003 * the page data. 1004 * 1005 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred 1006 */ 1007 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, 1008 size_t *retlen, u_char *buf) 1009 { 1010 struct mtd_oob_ops ops; 1011 size_t ret; 1012 1013 memset(&ops, 0, sizeof(ops)); 1014 ops.datbuf = buf; 1015 ops.len = len; 1016 ops.mode = MTD_OPS_AUTO_OOB; 1017 1018 ret = doc_read_oob(mtd, from, &ops); 1019 *retlen = ops.retlen; 1020 return ret; 1021 } 1022 1023 static int doc_reload_bbt(struct docg3 *docg3) 1024 { 1025 int block = DOC_LAYOUT_BLOCK_BBT; 1026 int ret = 0, nbpages, page; 1027 u_char *buf = docg3->bbt; 1028 1029 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); 1030 for (page = 0; !ret && (page < nbpages); page++) { 1031 ret = doc_read_page_prepare(docg3, block, block + 1, 1032 page + DOC_LAYOUT_PAGE_BBT, 0); 1033 if (!ret) 1034 ret = doc_read_page_ecc_init(docg3, 1035 DOC_LAYOUT_PAGE_SIZE); 1036 if (!ret) 1037 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE, 1038 buf, 1, 0); 1039 buf += DOC_LAYOUT_PAGE_SIZE; 1040 } 1041 doc_read_page_finish(docg3); 1042 return ret; 1043 } 1044 1045 /** 1046 * doc_block_isbad - Checks whether a block is good or not 1047 * @mtd: the device 1048 * @from: the offset to find the correct block 1049 * 1050 * Returns 1 if block is bad, 0 if block is good 1051 */ 1052 static int doc_block_isbad(struct mtd_info *mtd, loff_t from) 1053 { 1054 struct docg3 *docg3 = mtd->priv; 1055 int block0, block1, page, ofs, is_good; 1056 1057 calc_block_sector(from, &block0, &block1, &page, &ofs, 1058 docg3->reliable); 1059 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", 1060 from, block0, block1, page, ofs); 1061 1062 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA) 1063 return 0; 1064 if (block1 > docg3->max_block) 1065 return -EINVAL; 1066 1067 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7)); 1068 return !is_good; 1069 } 1070 1071 #if 0 1072 /** 1073 * doc_get_erase_count - Get block erase count 1074 * @docg3: the device 1075 * @from: the offset in which the block is. 1076 * 1077 * Get the number of times a block was erased. The number is the maximum of 1078 * erase times between first and second plane (which should be equal normally). 1079 * 1080 * Returns The number of erases, or -EINVAL or -EIO on error. 1081 */ 1082 static int doc_get_erase_count(struct docg3 *docg3, loff_t from) 1083 { 1084 u8 buf[DOC_LAYOUT_WEAR_SIZE]; 1085 int ret, plane1_erase_count, plane2_erase_count; 1086 int block0, block1, page, ofs; 1087 1088 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf); 1089 if (from % DOC_LAYOUT_PAGE_SIZE) 1090 return -EINVAL; 1091 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable); 1092 if (block1 > docg3->max_block) 1093 return -EINVAL; 1094 1095 ret = doc_reset_seq(docg3); 1096 if (!ret) 1097 ret = doc_read_page_prepare(docg3, block0, block1, page, 1098 ofs + DOC_LAYOUT_WEAR_OFFSET, 0); 1099 if (!ret) 1100 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE, 1101 buf, 1, 0); 1102 doc_read_page_finish(docg3); 1103 1104 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK)) 1105 return -EIO; 1106 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8) 1107 | ((u8)(~buf[5]) << 16); 1108 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8) 1109 | ((u8)(~buf[7]) << 16); 1110 1111 return max(plane1_erase_count, plane2_erase_count); 1112 } 1113 #endif 1114 1115 /** 1116 * doc_get_op_status - get erase/write operation status 1117 * @docg3: the device 1118 * 1119 * Queries the status from the chip, and returns it 1120 * 1121 * Returns the status (bits DOC_PLANES_STATUS_*) 1122 */ 1123 static int doc_get_op_status(struct docg3 *docg3) 1124 { 1125 u8 status; 1126 1127 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS); 1128 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS); 1129 doc_delay(docg3, 5); 1130 1131 doc_ecc_disable(docg3); 1132 doc_read_data_area(docg3, &status, 1, 1); 1133 return status; 1134 } 1135 1136 /** 1137 * doc_write_erase_wait_status - wait for write or erase completion 1138 * @docg3: the device 1139 * 1140 * Wait for the chip to be ready again after erase or write operation, and check 1141 * erase/write status. 1142 * 1143 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if 1144 * timeout 1145 */ 1146 static int doc_write_erase_wait_status(struct docg3 *docg3) 1147 { 1148 int i, status, ret = 0; 1149 1150 for (i = 0; !doc_is_ready(docg3) && i < 5; i++) 1151 msleep(20); 1152 if (!doc_is_ready(docg3)) { 1153 doc_dbg("Timeout reached and the chip is still not ready\n"); 1154 ret = -EAGAIN; 1155 goto out; 1156 } 1157 1158 status = doc_get_op_status(docg3); 1159 if (status & DOC_PLANES_STATUS_FAIL) { 1160 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n", 1161 status); 1162 ret = -EIO; 1163 } 1164 1165 out: 1166 doc_page_finish(docg3); 1167 return ret; 1168 } 1169 1170 /** 1171 * doc_erase_block - Erase a couple of blocks 1172 * @docg3: the device 1173 * @block0: the first block to erase (leftmost plane) 1174 * @block1: the second block to erase (rightmost plane) 1175 * 1176 * Erase both blocks, and return operation status 1177 * 1178 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not 1179 * ready for too long 1180 */ 1181 static int doc_erase_block(struct docg3 *docg3, int block0, int block1) 1182 { 1183 int ret, sector; 1184 1185 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1); 1186 ret = doc_reset_seq(docg3); 1187 if (ret) 1188 return -EIO; 1189 1190 doc_set_reliable_mode(docg3); 1191 doc_flash_sequence(docg3, DOC_SEQ_ERASE); 1192 1193 sector = block0 << DOC_ADDR_BLOCK_SHIFT; 1194 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 1195 doc_setup_addr_sector(docg3, sector); 1196 sector = block1 << DOC_ADDR_BLOCK_SHIFT; 1197 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 1198 doc_setup_addr_sector(docg3, sector); 1199 doc_delay(docg3, 1); 1200 1201 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2); 1202 doc_delay(docg3, 2); 1203 1204 if (is_prot_seq_error(docg3)) { 1205 doc_err("Erase blocks %d,%d error\n", block0, block1); 1206 return -EIO; 1207 } 1208 1209 return doc_write_erase_wait_status(docg3); 1210 } 1211 1212 /** 1213 * doc_erase - Erase a portion of the chip 1214 * @mtd: the device 1215 * @info: the erase info 1216 * 1217 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is 1218 * split into 2 pages of 512 bytes on 2 contiguous blocks. 1219 * 1220 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase 1221 * issue 1222 */ 1223 static int doc_erase(struct mtd_info *mtd, struct erase_info *info) 1224 { 1225 struct docg3 *docg3 = mtd->priv; 1226 uint64_t len; 1227 int block0, block1, page, ret, ofs = 0; 1228 1229 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); 1230 1231 info->state = MTD_ERASE_PENDING; 1232 calc_block_sector(info->addr + info->len, &block0, &block1, &page, 1233 &ofs, docg3->reliable); 1234 ret = -EINVAL; 1235 if (info->addr + info->len > mtd->size || page || ofs) 1236 goto reset_err; 1237 1238 ret = 0; 1239 calc_block_sector(info->addr, &block0, &block1, &page, &ofs, 1240 docg3->reliable); 1241 mutex_lock(&docg3->cascade->lock); 1242 doc_set_device_id(docg3, docg3->device_id); 1243 doc_set_reliable_mode(docg3); 1244 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { 1245 info->state = MTD_ERASING; 1246 ret = doc_erase_block(docg3, block0, block1); 1247 block0 += 2; 1248 block1 += 2; 1249 } 1250 mutex_unlock(&docg3->cascade->lock); 1251 1252 if (ret) 1253 goto reset_err; 1254 1255 info->state = MTD_ERASE_DONE; 1256 return 0; 1257 1258 reset_err: 1259 info->state = MTD_ERASE_FAILED; 1260 return ret; 1261 } 1262 1263 /** 1264 * doc_write_page - Write a single page to the chip 1265 * @docg3: the device 1266 * @to: the offset from first block and first page, in bytes, aligned on page 1267 * size 1268 * @buf: buffer to get bytes from 1269 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be 1270 * written) 1271 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or 1272 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken, 1273 * remaining ones are filled with hardware Hamming and BCH 1274 * computations. Its value is not meaningfull is oob == NULL. 1275 * 1276 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the 1277 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and 1278 * BCH generator if autoecc is not null. 1279 * 1280 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout 1281 */ 1282 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf, 1283 const u_char *oob, int autoecc) 1284 { 1285 int block0, block1, page, ret, ofs = 0; 1286 u8 hwecc[DOC_ECC_BCH_SIZE], hamming; 1287 1288 doc_dbg("doc_write_page(to=%lld)\n", to); 1289 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable); 1290 1291 doc_set_device_id(docg3, docg3->device_id); 1292 ret = doc_reset_seq(docg3); 1293 if (ret) 1294 goto err; 1295 1296 /* Program the flash address block and page */ 1297 ret = doc_write_seek(docg3, block0, block1, page, ofs); 1298 if (ret) 1299 goto err; 1300 1301 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 1302 doc_delay(docg3, 2); 1303 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf); 1304 1305 if (oob && autoecc) { 1306 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob); 1307 doc_delay(docg3, 2); 1308 oob += DOC_LAYOUT_OOB_UNUSED_OFS; 1309 1310 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY); 1311 doc_delay(docg3, 2); 1312 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ, 1313 &hamming); 1314 doc_delay(docg3, 2); 1315 1316 doc_get_bch_hw_ecc(docg3, hwecc); 1317 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc); 1318 doc_delay(docg3, 2); 1319 1320 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob); 1321 } 1322 if (oob && !autoecc) 1323 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob); 1324 1325 doc_delay(docg3, 2); 1326 doc_page_finish(docg3); 1327 doc_delay(docg3, 2); 1328 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2); 1329 doc_delay(docg3, 2); 1330 1331 /* 1332 * The wait status will perform another doc_page_finish() call, but that 1333 * seems to please the docg3, so leave it. 1334 */ 1335 ret = doc_write_erase_wait_status(docg3); 1336 return ret; 1337 err: 1338 doc_read_page_finish(docg3); 1339 return ret; 1340 } 1341 1342 /** 1343 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops 1344 * @ops: the oob operations 1345 * 1346 * Returns 0 or 1 if success, -EINVAL if invalid oob mode 1347 */ 1348 static int doc_guess_autoecc(struct mtd_oob_ops *ops) 1349 { 1350 int autoecc; 1351 1352 switch (ops->mode) { 1353 case MTD_OPS_PLACE_OOB: 1354 case MTD_OPS_AUTO_OOB: 1355 autoecc = 1; 1356 break; 1357 case MTD_OPS_RAW: 1358 autoecc = 0; 1359 break; 1360 default: 1361 autoecc = -EINVAL; 1362 } 1363 return autoecc; 1364 } 1365 1366 /** 1367 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes 1368 * @dst: the target 16 bytes OOB buffer 1369 * @oobsrc: the source 8 bytes non-ECC OOB buffer 1370 * 1371 */ 1372 static void doc_fill_autooob(u8 *dst, u8 *oobsrc) 1373 { 1374 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ); 1375 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ]; 1376 } 1377 1378 /** 1379 * doc_backup_oob - Backup OOB into docg3 structure 1380 * @docg3: the device 1381 * @to: the page offset in the chip 1382 * @ops: the OOB size and buffer 1383 * 1384 * As the docg3 should write a page with its OOB in one pass, and some userland 1385 * applications do write_oob() to setup the OOB and then write(), store the OOB 1386 * into a temporary storage. This is very dangerous, as 2 concurrent 1387 * applications could store an OOB, and then write their pages (which will 1388 * result into one having its OOB corrupted). 1389 * 1390 * The only reliable way would be for userland to call doc_write_oob() with both 1391 * the page data _and_ the OOB area. 1392 * 1393 * Returns 0 if success, -EINVAL if ops content invalid 1394 */ 1395 static int doc_backup_oob(struct docg3 *docg3, loff_t to, 1396 struct mtd_oob_ops *ops) 1397 { 1398 int ooblen = ops->ooblen, autoecc; 1399 1400 if (ooblen != DOC_LAYOUT_OOB_SIZE) 1401 return -EINVAL; 1402 autoecc = doc_guess_autoecc(ops); 1403 if (autoecc < 0) 1404 return autoecc; 1405 1406 docg3->oob_write_ofs = to; 1407 docg3->oob_autoecc = autoecc; 1408 if (ops->mode == MTD_OPS_AUTO_OOB) { 1409 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf); 1410 ops->oobretlen = 8; 1411 } else { 1412 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE); 1413 ops->oobretlen = DOC_LAYOUT_OOB_SIZE; 1414 } 1415 return 0; 1416 } 1417 1418 /** 1419 * doc_write_oob - Write out of band bytes to flash 1420 * @mtd: the device 1421 * @ofs: the offset from first block and first page, in bytes, aligned on page 1422 * size 1423 * @ops: the mtd oob structure 1424 * 1425 * Either write OOB data into a temporary buffer, for the subsequent write 1426 * page. The provided OOB should be 16 bytes long. If a data buffer is provided 1427 * as well, issue the page write. 1428 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will 1429 * still be filled in if asked for). 1430 * 1431 * Returns 0 is successful, EINVAL if length is not 14 bytes 1432 */ 1433 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, 1434 struct mtd_oob_ops *ops) 1435 { 1436 struct docg3 *docg3 = mtd->priv; 1437 int ret, autoecc, oobdelta; 1438 u8 *oobbuf = ops->oobbuf; 1439 u8 *buf = ops->datbuf; 1440 size_t len, ooblen; 1441 u8 oob[DOC_LAYOUT_OOB_SIZE]; 1442 1443 if (buf) 1444 len = ops->len; 1445 else 1446 len = 0; 1447 if (oobbuf) 1448 ooblen = ops->ooblen; 1449 else 1450 ooblen = 0; 1451 1452 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) 1453 oobbuf += ops->ooboffs; 1454 1455 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 1456 ofs, ops->mode, buf, len, oobbuf, ooblen); 1457 switch (ops->mode) { 1458 case MTD_OPS_PLACE_OOB: 1459 case MTD_OPS_RAW: 1460 oobdelta = mtd->oobsize; 1461 break; 1462 case MTD_OPS_AUTO_OOB: 1463 oobdelta = mtd->oobavail; 1464 break; 1465 default: 1466 return -EINVAL; 1467 } 1468 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) || 1469 (ofs % DOC_LAYOUT_PAGE_SIZE)) 1470 return -EINVAL; 1471 if (len && ooblen && 1472 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta)) 1473 return -EINVAL; 1474 if (ofs + len > mtd->size) 1475 return -EINVAL; 1476 1477 ops->oobretlen = 0; 1478 ops->retlen = 0; 1479 ret = 0; 1480 if (len == 0 && ooblen == 0) 1481 return -EINVAL; 1482 if (len == 0 && ooblen > 0) 1483 return doc_backup_oob(docg3, ofs, ops); 1484 1485 autoecc = doc_guess_autoecc(ops); 1486 if (autoecc < 0) 1487 return autoecc; 1488 1489 mutex_lock(&docg3->cascade->lock); 1490 while (!ret && len > 0) { 1491 memset(oob, 0, sizeof(oob)); 1492 if (ofs == docg3->oob_write_ofs) 1493 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE); 1494 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB) 1495 doc_fill_autooob(oob, oobbuf); 1496 else if (ooblen > 0) 1497 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE); 1498 ret = doc_write_page(docg3, ofs, buf, oob, autoecc); 1499 1500 ofs += DOC_LAYOUT_PAGE_SIZE; 1501 len -= DOC_LAYOUT_PAGE_SIZE; 1502 buf += DOC_LAYOUT_PAGE_SIZE; 1503 if (ooblen) { 1504 oobbuf += oobdelta; 1505 ooblen -= oobdelta; 1506 ops->oobretlen += oobdelta; 1507 } 1508 ops->retlen += DOC_LAYOUT_PAGE_SIZE; 1509 } 1510 1511 doc_set_device_id(docg3, 0); 1512 mutex_unlock(&docg3->cascade->lock); 1513 return ret; 1514 } 1515 1516 /** 1517 * doc_write - Write a buffer to the chip 1518 * @mtd: the device 1519 * @to: the offset from first block and first page, in bytes, aligned on page 1520 * size 1521 * @len: the number of bytes to write (must be a full page size, ie. 512) 1522 * @retlen: the number of bytes actually written (0 or 512) 1523 * @buf: the buffer to get bytes from 1524 * 1525 * Writes data to the chip. 1526 * 1527 * Returns 0 if write successful, -EIO if write error 1528 */ 1529 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, 1530 size_t *retlen, const u_char *buf) 1531 { 1532 struct docg3 *docg3 = mtd->priv; 1533 int ret; 1534 struct mtd_oob_ops ops; 1535 1536 doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len); 1537 ops.datbuf = (char *)buf; 1538 ops.len = len; 1539 ops.mode = MTD_OPS_PLACE_OOB; 1540 ops.oobbuf = NULL; 1541 ops.ooblen = 0; 1542 ops.ooboffs = 0; 1543 1544 ret = doc_write_oob(mtd, to, &ops); 1545 *retlen = ops.retlen; 1546 return ret; 1547 } 1548 1549 static struct docg3 *sysfs_dev2docg3(struct device *dev, 1550 struct device_attribute *attr) 1551 { 1552 int floor; 1553 struct platform_device *pdev = to_platform_device(dev); 1554 struct mtd_info **docg3_floors = platform_get_drvdata(pdev); 1555 1556 floor = attr->attr.name[1] - '0'; 1557 if (floor < 0 || floor >= DOC_MAX_NBFLOORS) 1558 return NULL; 1559 else 1560 return docg3_floors[floor]->priv; 1561 } 1562 1563 static ssize_t dps0_is_key_locked(struct device *dev, 1564 struct device_attribute *attr, char *buf) 1565 { 1566 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1567 int dps0; 1568 1569 mutex_lock(&docg3->cascade->lock); 1570 doc_set_device_id(docg3, docg3->device_id); 1571 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1572 doc_set_device_id(docg3, 0); 1573 mutex_unlock(&docg3->cascade->lock); 1574 1575 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK)); 1576 } 1577 1578 static ssize_t dps1_is_key_locked(struct device *dev, 1579 struct device_attribute *attr, char *buf) 1580 { 1581 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1582 int dps1; 1583 1584 mutex_lock(&docg3->cascade->lock); 1585 doc_set_device_id(docg3, docg3->device_id); 1586 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1587 doc_set_device_id(docg3, 0); 1588 mutex_unlock(&docg3->cascade->lock); 1589 1590 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK)); 1591 } 1592 1593 static ssize_t dps0_insert_key(struct device *dev, 1594 struct device_attribute *attr, 1595 const char *buf, size_t count) 1596 { 1597 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1598 int i; 1599 1600 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1601 return -EINVAL; 1602 1603 mutex_lock(&docg3->cascade->lock); 1604 doc_set_device_id(docg3, docg3->device_id); 1605 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1606 doc_writeb(docg3, buf[i], DOC_DPS0_KEY); 1607 doc_set_device_id(docg3, 0); 1608 mutex_unlock(&docg3->cascade->lock); 1609 return count; 1610 } 1611 1612 static ssize_t dps1_insert_key(struct device *dev, 1613 struct device_attribute *attr, 1614 const char *buf, size_t count) 1615 { 1616 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1617 int i; 1618 1619 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1620 return -EINVAL; 1621 1622 mutex_lock(&docg3->cascade->lock); 1623 doc_set_device_id(docg3, docg3->device_id); 1624 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1625 doc_writeb(docg3, buf[i], DOC_DPS1_KEY); 1626 doc_set_device_id(docg3, 0); 1627 mutex_unlock(&docg3->cascade->lock); 1628 return count; 1629 } 1630 1631 #define FLOOR_SYSFS(id) { \ 1632 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \ 1633 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \ 1634 __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \ 1635 __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \ 1636 } 1637 1638 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = { 1639 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3) 1640 }; 1641 1642 static int doc_register_sysfs(struct platform_device *pdev, 1643 struct docg3_cascade *cascade) 1644 { 1645 struct device *dev = &pdev->dev; 1646 int floor; 1647 int ret; 1648 int i; 1649 1650 for (floor = 0; 1651 floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; 1652 floor++) { 1653 for (i = 0; i < 4; i++) { 1654 ret = device_create_file(dev, &doc_sys_attrs[floor][i]); 1655 if (ret) 1656 goto remove_files; 1657 } 1658 } 1659 1660 return 0; 1661 1662 remove_files: 1663 do { 1664 while (--i >= 0) 1665 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1666 i = 4; 1667 } while (--floor >= 0); 1668 1669 return ret; 1670 } 1671 1672 static void doc_unregister_sysfs(struct platform_device *pdev, 1673 struct docg3_cascade *cascade) 1674 { 1675 struct device *dev = &pdev->dev; 1676 int floor, i; 1677 1678 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; 1679 floor++) 1680 for (i = 0; i < 4; i++) 1681 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1682 } 1683 1684 /* 1685 * Debug sysfs entries 1686 */ 1687 static int dbg_flashctrl_show(struct seq_file *s, void *p) 1688 { 1689 struct docg3 *docg3 = (struct docg3 *)s->private; 1690 1691 u8 fctrl; 1692 1693 mutex_lock(&docg3->cascade->lock); 1694 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 1695 mutex_unlock(&docg3->cascade->lock); 1696 1697 seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", 1698 fctrl, 1699 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-", 1700 fctrl & DOC_CTRL_CE ? "active" : "inactive", 1701 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-", 1702 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-", 1703 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready"); 1704 1705 return 0; 1706 } 1707 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show); 1708 1709 static int dbg_asicmode_show(struct seq_file *s, void *p) 1710 { 1711 struct docg3 *docg3 = (struct docg3 *)s->private; 1712 1713 int pctrl, mode; 1714 1715 mutex_lock(&docg3->cascade->lock); 1716 pctrl = doc_register_readb(docg3, DOC_ASICMODE); 1717 mode = pctrl & 0x03; 1718 mutex_unlock(&docg3->cascade->lock); 1719 1720 seq_printf(s, 1721 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", 1722 pctrl, 1723 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0, 1724 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0, 1725 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0, 1726 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0, 1727 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0, 1728 mode >> 1, mode & 0x1); 1729 1730 switch (mode) { 1731 case DOC_ASICMODE_RESET: 1732 seq_puts(s, "reset"); 1733 break; 1734 case DOC_ASICMODE_NORMAL: 1735 seq_puts(s, "normal"); 1736 break; 1737 case DOC_ASICMODE_POWERDOWN: 1738 seq_puts(s, "powerdown"); 1739 break; 1740 } 1741 seq_puts(s, ")\n"); 1742 return 0; 1743 } 1744 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show); 1745 1746 static int dbg_device_id_show(struct seq_file *s, void *p) 1747 { 1748 struct docg3 *docg3 = (struct docg3 *)s->private; 1749 int id; 1750 1751 mutex_lock(&docg3->cascade->lock); 1752 id = doc_register_readb(docg3, DOC_DEVICESELECT); 1753 mutex_unlock(&docg3->cascade->lock); 1754 1755 seq_printf(s, "DeviceId = %d\n", id); 1756 return 0; 1757 } 1758 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show); 1759 1760 static int dbg_protection_show(struct seq_file *s, void *p) 1761 { 1762 struct docg3 *docg3 = (struct docg3 *)s->private; 1763 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high; 1764 1765 mutex_lock(&docg3->cascade->lock); 1766 protect = doc_register_readb(docg3, DOC_PROTECTION); 1767 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1768 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW); 1769 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH); 1770 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1771 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW); 1772 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH); 1773 mutex_unlock(&docg3->cascade->lock); 1774 1775 seq_printf(s, "Protection = 0x%02x (", protect); 1776 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK) 1777 seq_puts(s, "FOUNDRY_OTP_LOCK,"); 1778 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK) 1779 seq_puts(s, "CUSTOMER_OTP_LOCK,"); 1780 if (protect & DOC_PROTECT_LOCK_INPUT) 1781 seq_puts(s, "LOCK_INPUT,"); 1782 if (protect & DOC_PROTECT_STICKY_LOCK) 1783 seq_puts(s, "STICKY_LOCK,"); 1784 if (protect & DOC_PROTECT_PROTECTION_ENABLED) 1785 seq_puts(s, "PROTECTION ON,"); 1786 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK) 1787 seq_puts(s, "IPL_DOWNLOAD_LOCK,"); 1788 if (protect & DOC_PROTECT_PROTECTION_ERROR) 1789 seq_puts(s, "PROTECT_ERR,"); 1790 else 1791 seq_puts(s, "NO_PROTECT_ERR"); 1792 seq_puts(s, ")\n"); 1793 1794 seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 1795 dps0, dps0_low, dps0_high, 1796 !!(dps0 & DOC_DPS_OTP_PROTECTED), 1797 !!(dps0 & DOC_DPS_READ_PROTECTED), 1798 !!(dps0 & DOC_DPS_WRITE_PROTECTED), 1799 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED), 1800 !!(dps0 & DOC_DPS_KEY_OK)); 1801 seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 1802 dps1, dps1_low, dps1_high, 1803 !!(dps1 & DOC_DPS_OTP_PROTECTED), 1804 !!(dps1 & DOC_DPS_READ_PROTECTED), 1805 !!(dps1 & DOC_DPS_WRITE_PROTECTED), 1806 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED), 1807 !!(dps1 & DOC_DPS_KEY_OK)); 1808 return 0; 1809 } 1810 DEBUGFS_RO_ATTR(protection, dbg_protection_show); 1811 1812 static int __init doc_dbg_register(struct docg3 *docg3) 1813 { 1814 struct dentry *root, *entry; 1815 1816 root = debugfs_create_dir("docg3", NULL); 1817 if (!root) 1818 return -ENOMEM; 1819 1820 entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3, 1821 &flashcontrol_fops); 1822 if (entry) 1823 entry = debugfs_create_file("asic_mode", S_IRUSR, root, 1824 docg3, &asic_mode_fops); 1825 if (entry) 1826 entry = debugfs_create_file("device_id", S_IRUSR, root, 1827 docg3, &device_id_fops); 1828 if (entry) 1829 entry = debugfs_create_file("protection", S_IRUSR, root, 1830 docg3, &protection_fops); 1831 if (entry) { 1832 docg3->debugfs_root = root; 1833 return 0; 1834 } else { 1835 debugfs_remove_recursive(root); 1836 return -ENOMEM; 1837 } 1838 } 1839 1840 static void doc_dbg_unregister(struct docg3 *docg3) 1841 { 1842 debugfs_remove_recursive(docg3->debugfs_root); 1843 } 1844 1845 /** 1846 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure 1847 * @chip_id: The chip ID of the supported chip 1848 * @mtd: The structure to fill 1849 */ 1850 static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd) 1851 { 1852 struct docg3 *docg3 = mtd->priv; 1853 int cfg; 1854 1855 cfg = doc_register_readb(docg3, DOC_CONFIGURATION); 1856 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0); 1857 docg3->reliable = reliable_mode; 1858 1859 switch (chip_id) { 1860 case DOC_CHIPID_G3: 1861 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d", 1862 docg3->device_id); 1863 if (!mtd->name) 1864 return -ENOMEM; 1865 docg3->max_block = 2047; 1866 break; 1867 } 1868 mtd->type = MTD_NANDFLASH; 1869 mtd->flags = MTD_CAP_NANDFLASH; 1870 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE; 1871 if (docg3->reliable == 2) 1872 mtd->size /= 2; 1873 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; 1874 if (docg3->reliable == 2) 1875 mtd->erasesize /= 2; 1876 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE; 1877 mtd->oobsize = DOC_LAYOUT_OOB_SIZE; 1878 mtd->_erase = doc_erase; 1879 mtd->_read = doc_read; 1880 mtd->_write = doc_write; 1881 mtd->_read_oob = doc_read_oob; 1882 mtd->_write_oob = doc_write_oob; 1883 mtd->_block_isbad = doc_block_isbad; 1884 mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops); 1885 mtd->oobavail = 8; 1886 mtd->ecc_strength = DOC_ECC_BCH_T; 1887 1888 return 0; 1889 } 1890 1891 /** 1892 * doc_probe_device - Check if a device is available 1893 * @base: the io space where the device is probed 1894 * @floor: the floor of the probed device 1895 * @dev: the device 1896 * @cascade: the cascade of chips this devices will belong to 1897 * 1898 * Checks whether a device at the specified IO range, and floor is available. 1899 * 1900 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM 1901 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is 1902 * launched. 1903 */ 1904 static struct mtd_info * __init 1905 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev) 1906 { 1907 int ret, bbt_nbpages; 1908 u16 chip_id, chip_id_inv; 1909 struct docg3 *docg3; 1910 struct mtd_info *mtd; 1911 1912 ret = -ENOMEM; 1913 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL); 1914 if (!docg3) 1915 goto nomem1; 1916 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); 1917 if (!mtd) 1918 goto nomem2; 1919 mtd->priv = docg3; 1920 mtd->dev.parent = dev; 1921 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1, 1922 8 * DOC_LAYOUT_PAGE_SIZE); 1923 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL); 1924 if (!docg3->bbt) 1925 goto nomem3; 1926 1927 docg3->dev = dev; 1928 docg3->device_id = floor; 1929 docg3->cascade = cascade; 1930 doc_set_device_id(docg3, docg3->device_id); 1931 if (!floor) 1932 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); 1933 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL); 1934 1935 chip_id = doc_register_readw(docg3, DOC_CHIPID); 1936 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV); 1937 1938 ret = 0; 1939 if (chip_id != (u16)(~chip_id_inv)) { 1940 goto nomem4; 1941 } 1942 1943 switch (chip_id) { 1944 case DOC_CHIPID_G3: 1945 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n", 1946 docg3->cascade->base, floor); 1947 break; 1948 default: 1949 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); 1950 goto nomem4; 1951 } 1952 1953 ret = doc_set_driver_info(chip_id, mtd); 1954 if (ret) 1955 goto nomem4; 1956 1957 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ); 1958 doc_reload_bbt(docg3); 1959 return mtd; 1960 1961 nomem4: 1962 kfree(docg3->bbt); 1963 nomem3: 1964 kfree(mtd); 1965 nomem2: 1966 kfree(docg3); 1967 nomem1: 1968 return ERR_PTR(ret); 1969 } 1970 1971 /** 1972 * doc_release_device - Release a docg3 floor 1973 * @mtd: the device 1974 */ 1975 static void doc_release_device(struct mtd_info *mtd) 1976 { 1977 struct docg3 *docg3 = mtd->priv; 1978 1979 mtd_device_unregister(mtd); 1980 kfree(docg3->bbt); 1981 kfree(docg3); 1982 kfree(mtd->name); 1983 kfree(mtd); 1984 } 1985 1986 /** 1987 * docg3_resume - Awakens docg3 floor 1988 * @pdev: platfrom device 1989 * 1990 * Returns 0 (always successful) 1991 */ 1992 static int docg3_resume(struct platform_device *pdev) 1993 { 1994 int i; 1995 struct docg3_cascade *cascade; 1996 struct mtd_info **docg3_floors, *mtd; 1997 struct docg3 *docg3; 1998 1999 cascade = platform_get_drvdata(pdev); 2000 docg3_floors = cascade->floors; 2001 mtd = docg3_floors[0]; 2002 docg3 = mtd->priv; 2003 2004 doc_dbg("docg3_resume()\n"); 2005 for (i = 0; i < 12; i++) 2006 doc_readb(docg3, DOC_IOSPACE_IPL); 2007 return 0; 2008 } 2009 2010 /** 2011 * docg3_suspend - Put in low power mode the docg3 floor 2012 * @pdev: platform device 2013 * @state: power state 2014 * 2015 * Shuts off most of docg3 circuitery to lower power consumption. 2016 * 2017 * Returns 0 if suspend succeeded, -EIO if chip refused suspend 2018 */ 2019 static int docg3_suspend(struct platform_device *pdev, pm_message_t state) 2020 { 2021 int floor, i; 2022 struct docg3_cascade *cascade; 2023 struct mtd_info **docg3_floors, *mtd; 2024 struct docg3 *docg3; 2025 u8 ctrl, pwr_down; 2026 2027 cascade = platform_get_drvdata(pdev); 2028 docg3_floors = cascade->floors; 2029 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 2030 mtd = docg3_floors[floor]; 2031 if (!mtd) 2032 continue; 2033 docg3 = mtd->priv; 2034 2035 doc_writeb(docg3, floor, DOC_DEVICESELECT); 2036 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 2037 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE; 2038 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 2039 2040 for (i = 0; i < 10; i++) { 2041 usleep_range(3000, 4000); 2042 pwr_down = doc_register_readb(docg3, DOC_POWERMODE); 2043 if (pwr_down & DOC_POWERDOWN_READY) 2044 break; 2045 } 2046 if (pwr_down & DOC_POWERDOWN_READY) { 2047 doc_dbg("docg3_suspend(): floor %d powerdown ok\n", 2048 floor); 2049 } else { 2050 doc_err("docg3_suspend(): floor %d powerdown failed\n", 2051 floor); 2052 return -EIO; 2053 } 2054 } 2055 2056 mtd = docg3_floors[0]; 2057 docg3 = mtd->priv; 2058 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN); 2059 return 0; 2060 } 2061 2062 /** 2063 * doc_probe - Probe the IO space for a DiskOnChip G3 chip 2064 * @pdev: platform device 2065 * 2066 * Probes for a G3 chip at the specified IO space in the platform data 2067 * ressources. The floor 0 must be available. 2068 * 2069 * Returns 0 on success, -ENOMEM, -ENXIO on error 2070 */ 2071 static int __init docg3_probe(struct platform_device *pdev) 2072 { 2073 struct device *dev = &pdev->dev; 2074 struct mtd_info *mtd; 2075 struct resource *ress; 2076 void __iomem *base; 2077 int ret, floor; 2078 struct docg3_cascade *cascade; 2079 2080 ret = -ENXIO; 2081 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2082 if (!ress) { 2083 dev_err(dev, "No I/O memory resource defined\n"); 2084 return ret; 2085 } 2086 base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE); 2087 2088 ret = -ENOMEM; 2089 cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS, 2090 GFP_KERNEL); 2091 if (!cascade) 2092 return ret; 2093 cascade->base = base; 2094 mutex_init(&cascade->lock); 2095 cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T, 2096 DOC_ECC_BCH_PRIMPOLY); 2097 if (!cascade->bch) 2098 return ret; 2099 2100 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 2101 mtd = doc_probe_device(cascade, floor, dev); 2102 if (IS_ERR(mtd)) { 2103 ret = PTR_ERR(mtd); 2104 goto err_probe; 2105 } 2106 if (!mtd) { 2107 if (floor == 0) 2108 goto notfound; 2109 else 2110 continue; 2111 } 2112 cascade->floors[floor] = mtd; 2113 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 2114 0); 2115 if (ret) 2116 goto err_probe; 2117 } 2118 2119 ret = doc_register_sysfs(pdev, cascade); 2120 if (ret) 2121 goto err_probe; 2122 2123 platform_set_drvdata(pdev, cascade); 2124 doc_dbg_register(cascade->floors[0]->priv); 2125 return 0; 2126 2127 notfound: 2128 ret = -ENODEV; 2129 dev_info(dev, "No supported DiskOnChip found\n"); 2130 err_probe: 2131 free_bch(cascade->bch); 2132 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2133 if (cascade->floors[floor]) 2134 doc_release_device(cascade->floors[floor]); 2135 return ret; 2136 } 2137 2138 /** 2139 * docg3_release - Release the driver 2140 * @pdev: the platform device 2141 * 2142 * Returns 0 2143 */ 2144 static int docg3_release(struct platform_device *pdev) 2145 { 2146 struct docg3_cascade *cascade = platform_get_drvdata(pdev); 2147 struct docg3 *docg3 = cascade->floors[0]->priv; 2148 int floor; 2149 2150 doc_unregister_sysfs(pdev, cascade); 2151 doc_dbg_unregister(docg3); 2152 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2153 if (cascade->floors[floor]) 2154 doc_release_device(cascade->floors[floor]); 2155 2156 free_bch(docg3->cascade->bch); 2157 return 0; 2158 } 2159 2160 #ifdef CONFIG_OF 2161 static const struct of_device_id docg3_dt_ids[] = { 2162 { .compatible = "m-systems,diskonchip-g3" }, 2163 {} 2164 }; 2165 MODULE_DEVICE_TABLE(of, docg3_dt_ids); 2166 #endif 2167 2168 static struct platform_driver g3_driver = { 2169 .driver = { 2170 .name = "docg3", 2171 .of_match_table = of_match_ptr(docg3_dt_ids), 2172 }, 2173 .suspend = docg3_suspend, 2174 .resume = docg3_resume, 2175 .remove = docg3_release, 2176 }; 2177 2178 module_platform_driver_probe(g3_driver, docg3_probe); 2179 2180 MODULE_LICENSE("GPL"); 2181 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); 2182 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3"); 2183