xref: /openbmc/linux/drivers/mtd/chips/cfi_cmdset_0020.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * Common Flash Interface support:
3  *   ST Advanced Architecture Command Set (ID 0x0020)
4  *
5  * (C) 2000 Red Hat. GPL'd
6  *
7  * 10/10/2000	Nicolas Pitre <nico@fluxnic.net>
8  * 	- completely revamped method functions so they are aware and
9  * 	  independent of the flash geometry (buswidth, interleave, etc.)
10  * 	- scalability vs code size is completely set at compile-time
11  * 	  (see include/linux/mtd/cfi.h for selection)
12  *	- optimized write buffer method
13  * 06/21/2002	Joern Engel <joern@wh.fh-wedel.de> and others
14  *	- modified Intel Command Set 0x0001 to support ST Advanced Architecture
15  *	  (command set 0x0020)
16  *	- added a writev function
17  * 07/13/2005	Joern Engel <joern@wh.fh-wedel.de>
18  * 	- Plugged memory leak in cfi_staa_writev().
19  */
20 
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
27 
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/mtd/map.h>
33 #include <linux/mtd/cfi.h>
34 #include <linux/mtd/mtd.h>
35 
36 
37 static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
38 static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
39 static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
40 		unsigned long count, loff_t to, size_t *retlen);
41 static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
42 static void cfi_staa_sync (struct mtd_info *);
43 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
44 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
45 static int cfi_staa_suspend (struct mtd_info *);
46 static void cfi_staa_resume (struct mtd_info *);
47 
48 static void cfi_staa_destroy(struct mtd_info *);
49 
50 struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
51 
52 static struct mtd_info *cfi_staa_setup (struct map_info *);
53 
54 static struct mtd_chip_driver cfi_staa_chipdrv = {
55 	.probe		= NULL, /* Not usable directly */
56 	.destroy	= cfi_staa_destroy,
57 	.name		= "cfi_cmdset_0020",
58 	.module		= THIS_MODULE
59 };
60 
61 /* #define DEBUG_LOCK_BITS */
62 //#define DEBUG_CFI_FEATURES
63 
64 #ifdef DEBUG_CFI_FEATURES
65 static void cfi_tell_features(struct cfi_pri_intelext *extp)
66 {
67         int i;
68         printk("  Feature/Command Support: %4.4X\n", extp->FeatureSupport);
69 	printk("     - Chip Erase:         %s\n", extp->FeatureSupport&1?"supported":"unsupported");
70 	printk("     - Suspend Erase:      %s\n", extp->FeatureSupport&2?"supported":"unsupported");
71 	printk("     - Suspend Program:    %s\n", extp->FeatureSupport&4?"supported":"unsupported");
72 	printk("     - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
73 	printk("     - Queued Erase:       %s\n", extp->FeatureSupport&16?"supported":"unsupported");
74 	printk("     - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
75 	printk("     - Protection Bits:    %s\n", extp->FeatureSupport&64?"supported":"unsupported");
76 	printk("     - Page-mode read:     %s\n", extp->FeatureSupport&128?"supported":"unsupported");
77 	printk("     - Synchronous read:   %s\n", extp->FeatureSupport&256?"supported":"unsupported");
78 	for (i=9; i<32; i++) {
79 		if (extp->FeatureSupport & (1<<i))
80 			printk("     - Unknown Bit %X:      supported\n", i);
81 	}
82 
83 	printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
84 	printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
85 	for (i=1; i<8; i++) {
86 		if (extp->SuspendCmdSupport & (1<<i))
87 			printk("     - Unknown Bit %X:               supported\n", i);
88 	}
89 
90 	printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
91 	printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
92 	printk("     - Valid Bit Active:     %s\n", extp->BlkStatusRegMask&2?"yes":"no");
93 	for (i=2; i<16; i++) {
94 		if (extp->BlkStatusRegMask & (1<<i))
95 			printk("     - Unknown Bit %X Active: yes\n",i);
96 	}
97 
98 	printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
99 	       extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
100 	if (extp->VppOptimal)
101 		printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
102 		       extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
103 }
104 #endif
105 
106 /* This routine is made available to other mtd code via
107  * inter_module_register.  It must only be accessed through
108  * inter_module_get which will bump the use count of this module.  The
109  * addresses passed back in cfi are valid as long as the use count of
110  * this module is non-zero, i.e. between inter_module_get and
111  * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
112  */
113 struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
114 {
115 	struct cfi_private *cfi = map->fldrv_priv;
116 	int i;
117 
118 	if (cfi->cfi_mode) {
119 		/*
120 		 * It's a real CFI chip, not one for which the probe
121 		 * routine faked a CFI structure. So we read the feature
122 		 * table from it.
123 		 */
124 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
125 		struct cfi_pri_intelext *extp;
126 
127 		extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
128 		if (!extp)
129 			return NULL;
130 
131 		if (extp->MajorVersion != '1' ||
132 		    (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
133 			printk(KERN_ERR "  Unknown ST Microelectronics"
134 			       " Extended Query version %c.%c.\n",
135 			       extp->MajorVersion, extp->MinorVersion);
136 			kfree(extp);
137 			return NULL;
138 		}
139 
140 		/* Do some byteswapping if necessary */
141 		extp->FeatureSupport = cfi32_to_cpu(map, extp->FeatureSupport);
142 		extp->BlkStatusRegMask = cfi32_to_cpu(map,
143 						extp->BlkStatusRegMask);
144 
145 #ifdef DEBUG_CFI_FEATURES
146 		/* Tell the user about it in lots of lovely detail */
147 		cfi_tell_features(extp);
148 #endif
149 
150 		/* Install our own private info structure */
151 		cfi->cmdset_priv = extp;
152 	}
153 
154 	for (i=0; i< cfi->numchips; i++) {
155 		cfi->chips[i].word_write_time = 128;
156 		cfi->chips[i].buffer_write_time = 128;
157 		cfi->chips[i].erase_time = 1024;
158 		cfi->chips[i].ref_point_counter = 0;
159 		init_waitqueue_head(&(cfi->chips[i].wq));
160 	}
161 
162 	return cfi_staa_setup(map);
163 }
164 EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
165 
166 static struct mtd_info *cfi_staa_setup(struct map_info *map)
167 {
168 	struct cfi_private *cfi = map->fldrv_priv;
169 	struct mtd_info *mtd;
170 	unsigned long offset = 0;
171 	int i,j;
172 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
173 
174 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
175 	//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
176 
177 	if (!mtd) {
178 		kfree(cfi->cmdset_priv);
179 		return NULL;
180 	}
181 
182 	mtd->priv = map;
183 	mtd->type = MTD_NORFLASH;
184 	mtd->size = devsize * cfi->numchips;
185 
186 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
187 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
188 			* mtd->numeraseregions, GFP_KERNEL);
189 	if (!mtd->eraseregions) {
190 		kfree(cfi->cmdset_priv);
191 		kfree(mtd);
192 		return NULL;
193 	}
194 
195 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
196 		unsigned long ernum, ersize;
197 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
198 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
199 
200 		if (mtd->erasesize < ersize) {
201 			mtd->erasesize = ersize;
202 		}
203 		for (j=0; j<cfi->numchips; j++) {
204 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
205 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
206 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
207 		}
208 		offset += (ersize * ernum);
209 	}
210 
211 	if (offset != devsize) {
212 		/* Argh */
213 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
214 		kfree(mtd->eraseregions);
215 		kfree(cfi->cmdset_priv);
216 		kfree(mtd);
217 		return NULL;
218 	}
219 
220 	for (i=0; i<mtd->numeraseregions;i++){
221 		printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n",
222 		       i, (unsigned long long)mtd->eraseregions[i].offset,
223 		       mtd->eraseregions[i].erasesize,
224 		       mtd->eraseregions[i].numblocks);
225 	}
226 
227 	/* Also select the correct geometry setup too */
228 	mtd->_erase = cfi_staa_erase_varsize;
229 	mtd->_read = cfi_staa_read;
230 	mtd->_write = cfi_staa_write_buffers;
231 	mtd->_writev = cfi_staa_writev;
232 	mtd->_sync = cfi_staa_sync;
233 	mtd->_lock = cfi_staa_lock;
234 	mtd->_unlock = cfi_staa_unlock;
235 	mtd->_suspend = cfi_staa_suspend;
236 	mtd->_resume = cfi_staa_resume;
237 	mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
238 	mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
239 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
240 	map->fldrv = &cfi_staa_chipdrv;
241 	__module_get(THIS_MODULE);
242 	mtd->name = map->name;
243 	return mtd;
244 }
245 
246 
247 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
248 {
249 	map_word status, status_OK;
250 	unsigned long timeo;
251 	DECLARE_WAITQUEUE(wait, current);
252 	int suspended = 0;
253 	unsigned long cmd_addr;
254 	struct cfi_private *cfi = map->fldrv_priv;
255 
256 	adr += chip->start;
257 
258 	/* Ensure cmd read/writes are aligned. */
259 	cmd_addr = adr & ~(map_bankwidth(map)-1);
260 
261 	/* Let's determine this according to the interleave only once */
262 	status_OK = CMD(0x80);
263 
264 	timeo = jiffies + HZ;
265  retry:
266 	mutex_lock(&chip->mutex);
267 
268 	/* Check that the chip's ready to talk to us.
269 	 * If it's in FL_ERASING state, suspend it and make it talk now.
270 	 */
271 	switch (chip->state) {
272 	case FL_ERASING:
273 		if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
274 			goto sleep; /* We don't support erase suspend */
275 
276 		map_write (map, CMD(0xb0), cmd_addr);
277 		/* If the flash has finished erasing, then 'erase suspend'
278 		 * appears to make some (28F320) flash devices switch to
279 		 * 'read' mode.  Make sure that we switch to 'read status'
280 		 * mode so we get the right data. --rmk
281 		 */
282 		map_write(map, CMD(0x70), cmd_addr);
283 		chip->oldstate = FL_ERASING;
284 		chip->state = FL_ERASE_SUSPENDING;
285 		//		printk("Erase suspending at 0x%lx\n", cmd_addr);
286 		for (;;) {
287 			status = map_read(map, cmd_addr);
288 			if (map_word_andequal(map, status, status_OK, status_OK))
289 				break;
290 
291 			if (time_after(jiffies, timeo)) {
292 				/* Urgh */
293 				map_write(map, CMD(0xd0), cmd_addr);
294 				/* make sure we're in 'read status' mode */
295 				map_write(map, CMD(0x70), cmd_addr);
296 				chip->state = FL_ERASING;
297 				wake_up(&chip->wq);
298 				mutex_unlock(&chip->mutex);
299 				printk(KERN_ERR "Chip not ready after erase "
300 				       "suspended: status = 0x%lx\n", status.x[0]);
301 				return -EIO;
302 			}
303 
304 			mutex_unlock(&chip->mutex);
305 			cfi_udelay(1);
306 			mutex_lock(&chip->mutex);
307 		}
308 
309 		suspended = 1;
310 		map_write(map, CMD(0xff), cmd_addr);
311 		chip->state = FL_READY;
312 		break;
313 
314 #if 0
315 	case FL_WRITING:
316 		/* Not quite yet */
317 #endif
318 
319 	case FL_READY:
320 		break;
321 
322 	case FL_CFI_QUERY:
323 	case FL_JEDEC_QUERY:
324 		map_write(map, CMD(0x70), cmd_addr);
325 		chip->state = FL_STATUS;
326 
327 	case FL_STATUS:
328 		status = map_read(map, cmd_addr);
329 		if (map_word_andequal(map, status, status_OK, status_OK)) {
330 			map_write(map, CMD(0xff), cmd_addr);
331 			chip->state = FL_READY;
332 			break;
333 		}
334 
335 		/* Urgh. Chip not yet ready to talk to us. */
336 		if (time_after(jiffies, timeo)) {
337 			mutex_unlock(&chip->mutex);
338 			printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
339 			return -EIO;
340 		}
341 
342 		/* Latency issues. Drop the lock, wait a while and retry */
343 		mutex_unlock(&chip->mutex);
344 		cfi_udelay(1);
345 		goto retry;
346 
347 	default:
348 	sleep:
349 		/* Stick ourselves on a wait queue to be woken when
350 		   someone changes the status */
351 		set_current_state(TASK_UNINTERRUPTIBLE);
352 		add_wait_queue(&chip->wq, &wait);
353 		mutex_unlock(&chip->mutex);
354 		schedule();
355 		remove_wait_queue(&chip->wq, &wait);
356 		timeo = jiffies + HZ;
357 		goto retry;
358 	}
359 
360 	map_copy_from(map, buf, adr, len);
361 
362 	if (suspended) {
363 		chip->state = chip->oldstate;
364 		/* What if one interleaved chip has finished and the
365 		   other hasn't? The old code would leave the finished
366 		   one in READY mode. That's bad, and caused -EROFS
367 		   errors to be returned from do_erase_oneblock because
368 		   that's the only bit it checked for at the time.
369 		   As the state machine appears to explicitly allow
370 		   sending the 0x70 (Read Status) command to an erasing
371 		   chip and expecting it to be ignored, that's what we
372 		   do. */
373 		map_write(map, CMD(0xd0), cmd_addr);
374 		map_write(map, CMD(0x70), cmd_addr);
375 	}
376 
377 	wake_up(&chip->wq);
378 	mutex_unlock(&chip->mutex);
379 	return 0;
380 }
381 
382 static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
383 {
384 	struct map_info *map = mtd->priv;
385 	struct cfi_private *cfi = map->fldrv_priv;
386 	unsigned long ofs;
387 	int chipnum;
388 	int ret = 0;
389 
390 	/* ofs: offset within the first chip that the first read should start */
391 	chipnum = (from >> cfi->chipshift);
392 	ofs = from - (chipnum <<  cfi->chipshift);
393 
394 	while (len) {
395 		unsigned long thislen;
396 
397 		if (chipnum >= cfi->numchips)
398 			break;
399 
400 		if ((len + ofs -1) >> cfi->chipshift)
401 			thislen = (1<<cfi->chipshift) - ofs;
402 		else
403 			thislen = len;
404 
405 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
406 		if (ret)
407 			break;
408 
409 		*retlen += thislen;
410 		len -= thislen;
411 		buf += thislen;
412 
413 		ofs = 0;
414 		chipnum++;
415 	}
416 	return ret;
417 }
418 
419 static int do_write_buffer(struct map_info *map, struct flchip *chip,
420 				  unsigned long adr, const u_char *buf, int len)
421 {
422 	struct cfi_private *cfi = map->fldrv_priv;
423 	map_word status, status_OK;
424 	unsigned long cmd_adr, timeo;
425 	DECLARE_WAITQUEUE(wait, current);
426 	int wbufsize, z;
427 
428         /* M58LW064A requires bus alignment for buffer wriets -- saw */
429         if (adr & (map_bankwidth(map)-1))
430             return -EINVAL;
431 
432         wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
433         adr += chip->start;
434 	cmd_adr = adr & ~(wbufsize-1);
435 
436 	/* Let's determine this according to the interleave only once */
437         status_OK = CMD(0x80);
438 
439 	timeo = jiffies + HZ;
440  retry:
441 
442 #ifdef DEBUG_CFI_FEATURES
443        printk("%s: chip->state[%d]\n", __func__, chip->state);
444 #endif
445 	mutex_lock(&chip->mutex);
446 
447 	/* Check that the chip's ready to talk to us.
448 	 * Later, we can actually think about interrupting it
449 	 * if it's in FL_ERASING state.
450 	 * Not just yet, though.
451 	 */
452 	switch (chip->state) {
453 	case FL_READY:
454 		break;
455 
456 	case FL_CFI_QUERY:
457 	case FL_JEDEC_QUERY:
458 		map_write(map, CMD(0x70), cmd_adr);
459                 chip->state = FL_STATUS;
460 #ifdef DEBUG_CFI_FEATURES
461 	printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
462 #endif
463 
464 	case FL_STATUS:
465 		status = map_read(map, cmd_adr);
466 		if (map_word_andequal(map, status, status_OK, status_OK))
467 			break;
468 		/* Urgh. Chip not yet ready to talk to us. */
469 		if (time_after(jiffies, timeo)) {
470 			mutex_unlock(&chip->mutex);
471                         printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
472                                status.x[0], map_read(map, cmd_adr).x[0]);
473 			return -EIO;
474 		}
475 
476 		/* Latency issues. Drop the lock, wait a while and retry */
477 		mutex_unlock(&chip->mutex);
478 		cfi_udelay(1);
479 		goto retry;
480 
481 	default:
482 		/* Stick ourselves on a wait queue to be woken when
483 		   someone changes the status */
484 		set_current_state(TASK_UNINTERRUPTIBLE);
485 		add_wait_queue(&chip->wq, &wait);
486 		mutex_unlock(&chip->mutex);
487 		schedule();
488 		remove_wait_queue(&chip->wq, &wait);
489 		timeo = jiffies + HZ;
490 		goto retry;
491 	}
492 
493 	ENABLE_VPP(map);
494 	map_write(map, CMD(0xe8), cmd_adr);
495 	chip->state = FL_WRITING_TO_BUFFER;
496 
497 	z = 0;
498 	for (;;) {
499 		status = map_read(map, cmd_adr);
500 		if (map_word_andequal(map, status, status_OK, status_OK))
501 			break;
502 
503 		mutex_unlock(&chip->mutex);
504 		cfi_udelay(1);
505 		mutex_lock(&chip->mutex);
506 
507 		if (++z > 100) {
508 			/* Argh. Not ready for write to buffer */
509 			DISABLE_VPP(map);
510                         map_write(map, CMD(0x70), cmd_adr);
511 			chip->state = FL_STATUS;
512 			mutex_unlock(&chip->mutex);
513 			printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
514 			return -EIO;
515 		}
516 	}
517 
518 	/* Write length of data to come */
519 	map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
520 
521 	/* Write data */
522 	for (z = 0; z < len;
523 	     z += map_bankwidth(map), buf += map_bankwidth(map)) {
524 		map_word d;
525 		d = map_word_load(map, buf);
526 		map_write(map, d, adr+z);
527 	}
528 	/* GO GO GO */
529 	map_write(map, CMD(0xd0), cmd_adr);
530 	chip->state = FL_WRITING;
531 
532 	mutex_unlock(&chip->mutex);
533 	cfi_udelay(chip->buffer_write_time);
534 	mutex_lock(&chip->mutex);
535 
536 	timeo = jiffies + (HZ/2);
537 	z = 0;
538 	for (;;) {
539 		if (chip->state != FL_WRITING) {
540 			/* Someone's suspended the write. Sleep */
541 			set_current_state(TASK_UNINTERRUPTIBLE);
542 			add_wait_queue(&chip->wq, &wait);
543 			mutex_unlock(&chip->mutex);
544 			schedule();
545 			remove_wait_queue(&chip->wq, &wait);
546 			timeo = jiffies + (HZ / 2); /* FIXME */
547 			mutex_lock(&chip->mutex);
548 			continue;
549 		}
550 
551 		status = map_read(map, cmd_adr);
552 		if (map_word_andequal(map, status, status_OK, status_OK))
553 			break;
554 
555 		/* OK Still waiting */
556 		if (time_after(jiffies, timeo)) {
557                         /* clear status */
558                         map_write(map, CMD(0x50), cmd_adr);
559                         /* put back into read status register mode */
560                         map_write(map, CMD(0x70), adr);
561 			chip->state = FL_STATUS;
562 			DISABLE_VPP(map);
563 			mutex_unlock(&chip->mutex);
564 			printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
565 			return -EIO;
566 		}
567 
568 		/* Latency issues. Drop the lock, wait a while and retry */
569 		mutex_unlock(&chip->mutex);
570 		cfi_udelay(1);
571 		z++;
572 		mutex_lock(&chip->mutex);
573 	}
574 	if (!z) {
575 		chip->buffer_write_time--;
576 		if (!chip->buffer_write_time)
577 			chip->buffer_write_time++;
578 	}
579 	if (z > 1)
580 		chip->buffer_write_time++;
581 
582 	/* Done and happy. */
583 	DISABLE_VPP(map);
584 	chip->state = FL_STATUS;
585 
586         /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
587         if (map_word_bitsset(map, status, CMD(0x3a))) {
588 #ifdef DEBUG_CFI_FEATURES
589 		printk("%s: 2 status[%lx]\n", __func__, status.x[0]);
590 #endif
591 		/* clear status */
592 		map_write(map, CMD(0x50), cmd_adr);
593 		/* put back into read status register mode */
594 		map_write(map, CMD(0x70), adr);
595 		wake_up(&chip->wq);
596 		mutex_unlock(&chip->mutex);
597 		return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
598 	}
599 	wake_up(&chip->wq);
600 	mutex_unlock(&chip->mutex);
601 
602         return 0;
603 }
604 
605 static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
606 				       size_t len, size_t *retlen, const u_char *buf)
607 {
608 	struct map_info *map = mtd->priv;
609 	struct cfi_private *cfi = map->fldrv_priv;
610 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
611 	int ret = 0;
612 	int chipnum;
613 	unsigned long ofs;
614 
615 	chipnum = to >> cfi->chipshift;
616 	ofs = to  - (chipnum << cfi->chipshift);
617 
618 #ifdef DEBUG_CFI_FEATURES
619 	printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map));
620 	printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize);
621 	printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len);
622 #endif
623 
624         /* Write buffer is worth it only if more than one word to write... */
625         while (len > 0) {
626 		/* We must not cross write block boundaries */
627 		int size = wbufsize - (ofs & (wbufsize-1));
628 
629                 if (size > len)
630                     size = len;
631 
632                 ret = do_write_buffer(map, &cfi->chips[chipnum],
633 				      ofs, buf, size);
634 		if (ret)
635 			return ret;
636 
637 		ofs += size;
638 		buf += size;
639 		(*retlen) += size;
640 		len -= size;
641 
642 		if (ofs >> cfi->chipshift) {
643 			chipnum ++;
644 			ofs = 0;
645 			if (chipnum == cfi->numchips)
646 				return 0;
647 		}
648 	}
649 
650 	return 0;
651 }
652 
653 /*
654  * Writev for ECC-Flashes is a little more complicated. We need to maintain
655  * a small buffer for this.
656  * XXX: If the buffer size is not a multiple of 2, this will break
657  */
658 #define ECCBUF_SIZE (mtd->writesize)
659 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
660 #define ECCBUF_MOD(x) ((x) &  (ECCBUF_SIZE - 1))
661 static int
662 cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
663 		unsigned long count, loff_t to, size_t *retlen)
664 {
665 	unsigned long i;
666 	size_t	 totlen = 0, thislen;
667 	int	 ret = 0;
668 	size_t	 buflen = 0;
669 	char *buffer;
670 
671 	if (!ECCBUF_SIZE) {
672 		/* We should fall back to a general writev implementation.
673 		 * Until that is written, just break.
674 		 */
675 		return -EIO;
676 	}
677 	buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
678 	if (!buffer)
679 		return -ENOMEM;
680 
681 	for (i=0; i<count; i++) {
682 		size_t elem_len = vecs[i].iov_len;
683 		void *elem_base = vecs[i].iov_base;
684 		if (!elem_len) /* FIXME: Might be unnecessary. Check that */
685 			continue;
686 		if (buflen) { /* cut off head */
687 			if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
688 				memcpy(buffer+buflen, elem_base, elem_len);
689 				buflen += elem_len;
690 				continue;
691 			}
692 			memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
693 			ret = mtd_write(mtd, to, ECCBUF_SIZE, &thislen,
694 					buffer);
695 			totlen += thislen;
696 			if (ret || thislen != ECCBUF_SIZE)
697 				goto write_error;
698 			elem_len -= thislen-buflen;
699 			elem_base += thislen-buflen;
700 			to += ECCBUF_SIZE;
701 		}
702 		if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
703 			ret = mtd_write(mtd, to, ECCBUF_DIV(elem_len),
704 					&thislen, elem_base);
705 			totlen += thislen;
706 			if (ret || thislen != ECCBUF_DIV(elem_len))
707 				goto write_error;
708 			to += thislen;
709 		}
710 		buflen = ECCBUF_MOD(elem_len); /* cut off tail */
711 		if (buflen) {
712 			memset(buffer, 0xff, ECCBUF_SIZE);
713 			memcpy(buffer, elem_base + thislen, buflen);
714 		}
715 	}
716 	if (buflen) { /* flush last page, even if not full */
717 		/* This is sometimes intended behaviour, really */
718 		ret = mtd_write(mtd, to, buflen, &thislen, buffer);
719 		totlen += thislen;
720 		if (ret || thislen != ECCBUF_SIZE)
721 			goto write_error;
722 	}
723 write_error:
724 	if (retlen)
725 		*retlen = totlen;
726 	kfree(buffer);
727 	return ret;
728 }
729 
730 
731 static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
732 {
733 	struct cfi_private *cfi = map->fldrv_priv;
734 	map_word status, status_OK;
735 	unsigned long timeo;
736 	int retries = 3;
737 	DECLARE_WAITQUEUE(wait, current);
738 	int ret = 0;
739 
740 	adr += chip->start;
741 
742 	/* Let's determine this according to the interleave only once */
743 	status_OK = CMD(0x80);
744 
745 	timeo = jiffies + HZ;
746 retry:
747 	mutex_lock(&chip->mutex);
748 
749 	/* Check that the chip's ready to talk to us. */
750 	switch (chip->state) {
751 	case FL_CFI_QUERY:
752 	case FL_JEDEC_QUERY:
753 	case FL_READY:
754 		map_write(map, CMD(0x70), adr);
755 		chip->state = FL_STATUS;
756 
757 	case FL_STATUS:
758 		status = map_read(map, adr);
759 		if (map_word_andequal(map, status, status_OK, status_OK))
760 			break;
761 
762 		/* Urgh. Chip not yet ready to talk to us. */
763 		if (time_after(jiffies, timeo)) {
764 			mutex_unlock(&chip->mutex);
765 			printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
766 			return -EIO;
767 		}
768 
769 		/* Latency issues. Drop the lock, wait a while and retry */
770 		mutex_unlock(&chip->mutex);
771 		cfi_udelay(1);
772 		goto retry;
773 
774 	default:
775 		/* Stick ourselves on a wait queue to be woken when
776 		   someone changes the status */
777 		set_current_state(TASK_UNINTERRUPTIBLE);
778 		add_wait_queue(&chip->wq, &wait);
779 		mutex_unlock(&chip->mutex);
780 		schedule();
781 		remove_wait_queue(&chip->wq, &wait);
782 		timeo = jiffies + HZ;
783 		goto retry;
784 	}
785 
786 	ENABLE_VPP(map);
787 	/* Clear the status register first */
788 	map_write(map, CMD(0x50), adr);
789 
790 	/* Now erase */
791 	map_write(map, CMD(0x20), adr);
792 	map_write(map, CMD(0xD0), adr);
793 	chip->state = FL_ERASING;
794 
795 	mutex_unlock(&chip->mutex);
796 	msleep(1000);
797 	mutex_lock(&chip->mutex);
798 
799 	/* FIXME. Use a timer to check this, and return immediately. */
800 	/* Once the state machine's known to be working I'll do that */
801 
802 	timeo = jiffies + (HZ*20);
803 	for (;;) {
804 		if (chip->state != FL_ERASING) {
805 			/* Someone's suspended the erase. Sleep */
806 			set_current_state(TASK_UNINTERRUPTIBLE);
807 			add_wait_queue(&chip->wq, &wait);
808 			mutex_unlock(&chip->mutex);
809 			schedule();
810 			remove_wait_queue(&chip->wq, &wait);
811 			timeo = jiffies + (HZ*20); /* FIXME */
812 			mutex_lock(&chip->mutex);
813 			continue;
814 		}
815 
816 		status = map_read(map, adr);
817 		if (map_word_andequal(map, status, status_OK, status_OK))
818 			break;
819 
820 		/* OK Still waiting */
821 		if (time_after(jiffies, timeo)) {
822 			map_write(map, CMD(0x70), adr);
823 			chip->state = FL_STATUS;
824 			printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
825 			DISABLE_VPP(map);
826 			mutex_unlock(&chip->mutex);
827 			return -EIO;
828 		}
829 
830 		/* Latency issues. Drop the lock, wait a while and retry */
831 		mutex_unlock(&chip->mutex);
832 		cfi_udelay(1);
833 		mutex_lock(&chip->mutex);
834 	}
835 
836 	DISABLE_VPP(map);
837 	ret = 0;
838 
839 	/* We've broken this before. It doesn't hurt to be safe */
840 	map_write(map, CMD(0x70), adr);
841 	chip->state = FL_STATUS;
842 	status = map_read(map, adr);
843 
844 	/* check for lock bit */
845 	if (map_word_bitsset(map, status, CMD(0x3a))) {
846 		unsigned char chipstatus = status.x[0];
847 		if (!map_word_equal(map, status, CMD(chipstatus))) {
848 			int i, w;
849 			for (w=0; w<map_words(map); w++) {
850 				for (i = 0; i<cfi_interleave(cfi); i++) {
851 					chipstatus |= status.x[w] >> (cfi->device_type * 8);
852 				}
853 			}
854 			printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
855 			       status.x[0], chipstatus);
856 		}
857 		/* Reset the error bits */
858 		map_write(map, CMD(0x50), adr);
859 		map_write(map, CMD(0x70), adr);
860 
861 		if ((chipstatus & 0x30) == 0x30) {
862 			printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
863 			ret = -EIO;
864 		} else if (chipstatus & 0x02) {
865 			/* Protection bit set */
866 			ret = -EROFS;
867 		} else if (chipstatus & 0x8) {
868 			/* Voltage */
869 			printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
870 			ret = -EIO;
871 		} else if (chipstatus & 0x20) {
872 			if (retries--) {
873 				printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
874 				timeo = jiffies + HZ;
875 				chip->state = FL_STATUS;
876 				mutex_unlock(&chip->mutex);
877 				goto retry;
878 			}
879 			printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
880 			ret = -EIO;
881 		}
882 	}
883 
884 	wake_up(&chip->wq);
885 	mutex_unlock(&chip->mutex);
886 	return ret;
887 }
888 
889 static int cfi_staa_erase_varsize(struct mtd_info *mtd,
890 				  struct erase_info *instr)
891 {	struct map_info *map = mtd->priv;
892 	struct cfi_private *cfi = map->fldrv_priv;
893 	unsigned long adr, len;
894 	int chipnum, ret = 0;
895 	int i, first;
896 	struct mtd_erase_region_info *regions = mtd->eraseregions;
897 
898 	/* Check that both start and end of the requested erase are
899 	 * aligned with the erasesize at the appropriate addresses.
900 	 */
901 
902 	i = 0;
903 
904 	/* Skip all erase regions which are ended before the start of
905 	   the requested erase. Actually, to save on the calculations,
906 	   we skip to the first erase region which starts after the
907 	   start of the requested erase, and then go back one.
908 	*/
909 
910 	while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
911 	       i++;
912 	i--;
913 
914 	/* OK, now i is pointing at the erase region in which this
915 	   erase request starts. Check the start of the requested
916 	   erase range is aligned with the erase size which is in
917 	   effect here.
918 	*/
919 
920 	if (instr->addr & (regions[i].erasesize-1))
921 		return -EINVAL;
922 
923 	/* Remember the erase region we start on */
924 	first = i;
925 
926 	/* Next, check that the end of the requested erase is aligned
927 	 * with the erase region at that address.
928 	 */
929 
930 	while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
931 		i++;
932 
933 	/* As before, drop back one to point at the region in which
934 	   the address actually falls
935 	*/
936 	i--;
937 
938 	if ((instr->addr + instr->len) & (regions[i].erasesize-1))
939 		return -EINVAL;
940 
941 	chipnum = instr->addr >> cfi->chipshift;
942 	adr = instr->addr - (chipnum << cfi->chipshift);
943 	len = instr->len;
944 
945 	i=first;
946 
947 	while(len) {
948 		ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
949 
950 		if (ret)
951 			return ret;
952 
953 		adr += regions[i].erasesize;
954 		len -= regions[i].erasesize;
955 
956 		if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
957 			i++;
958 
959 		if (adr >> cfi->chipshift) {
960 			adr = 0;
961 			chipnum++;
962 
963 			if (chipnum >= cfi->numchips)
964 				break;
965 		}
966 	}
967 
968 	return 0;
969 }
970 
971 static void cfi_staa_sync (struct mtd_info *mtd)
972 {
973 	struct map_info *map = mtd->priv;
974 	struct cfi_private *cfi = map->fldrv_priv;
975 	int i;
976 	struct flchip *chip;
977 	int ret = 0;
978 	DECLARE_WAITQUEUE(wait, current);
979 
980 	for (i=0; !ret && i<cfi->numchips; i++) {
981 		chip = &cfi->chips[i];
982 
983 	retry:
984 		mutex_lock(&chip->mutex);
985 
986 		switch(chip->state) {
987 		case FL_READY:
988 		case FL_STATUS:
989 		case FL_CFI_QUERY:
990 		case FL_JEDEC_QUERY:
991 			chip->oldstate = chip->state;
992 			chip->state = FL_SYNCING;
993 			/* No need to wake_up() on this state change -
994 			 * as the whole point is that nobody can do anything
995 			 * with the chip now anyway.
996 			 */
997 		case FL_SYNCING:
998 			mutex_unlock(&chip->mutex);
999 			break;
1000 
1001 		default:
1002 			/* Not an idle state */
1003 			set_current_state(TASK_UNINTERRUPTIBLE);
1004 			add_wait_queue(&chip->wq, &wait);
1005 
1006 			mutex_unlock(&chip->mutex);
1007 			schedule();
1008 		        remove_wait_queue(&chip->wq, &wait);
1009 
1010 			goto retry;
1011 		}
1012 	}
1013 
1014 	/* Unlock the chips again */
1015 
1016 	for (i--; i >=0; i--) {
1017 		chip = &cfi->chips[i];
1018 
1019 		mutex_lock(&chip->mutex);
1020 
1021 		if (chip->state == FL_SYNCING) {
1022 			chip->state = chip->oldstate;
1023 			wake_up(&chip->wq);
1024 		}
1025 		mutex_unlock(&chip->mutex);
1026 	}
1027 }
1028 
1029 static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1030 {
1031 	struct cfi_private *cfi = map->fldrv_priv;
1032 	map_word status, status_OK;
1033 	unsigned long timeo = jiffies + HZ;
1034 	DECLARE_WAITQUEUE(wait, current);
1035 
1036 	adr += chip->start;
1037 
1038 	/* Let's determine this according to the interleave only once */
1039 	status_OK = CMD(0x80);
1040 
1041 	timeo = jiffies + HZ;
1042 retry:
1043 	mutex_lock(&chip->mutex);
1044 
1045 	/* Check that the chip's ready to talk to us. */
1046 	switch (chip->state) {
1047 	case FL_CFI_QUERY:
1048 	case FL_JEDEC_QUERY:
1049 	case FL_READY:
1050 		map_write(map, CMD(0x70), adr);
1051 		chip->state = FL_STATUS;
1052 
1053 	case FL_STATUS:
1054 		status = map_read(map, adr);
1055 		if (map_word_andequal(map, status, status_OK, status_OK))
1056 			break;
1057 
1058 		/* Urgh. Chip not yet ready to talk to us. */
1059 		if (time_after(jiffies, timeo)) {
1060 			mutex_unlock(&chip->mutex);
1061 			printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
1062 			return -EIO;
1063 		}
1064 
1065 		/* Latency issues. Drop the lock, wait a while and retry */
1066 		mutex_unlock(&chip->mutex);
1067 		cfi_udelay(1);
1068 		goto retry;
1069 
1070 	default:
1071 		/* Stick ourselves on a wait queue to be woken when
1072 		   someone changes the status */
1073 		set_current_state(TASK_UNINTERRUPTIBLE);
1074 		add_wait_queue(&chip->wq, &wait);
1075 		mutex_unlock(&chip->mutex);
1076 		schedule();
1077 		remove_wait_queue(&chip->wq, &wait);
1078 		timeo = jiffies + HZ;
1079 		goto retry;
1080 	}
1081 
1082 	ENABLE_VPP(map);
1083 	map_write(map, CMD(0x60), adr);
1084 	map_write(map, CMD(0x01), adr);
1085 	chip->state = FL_LOCKING;
1086 
1087 	mutex_unlock(&chip->mutex);
1088 	msleep(1000);
1089 	mutex_lock(&chip->mutex);
1090 
1091 	/* FIXME. Use a timer to check this, and return immediately. */
1092 	/* Once the state machine's known to be working I'll do that */
1093 
1094 	timeo = jiffies + (HZ*2);
1095 	for (;;) {
1096 
1097 		status = map_read(map, adr);
1098 		if (map_word_andequal(map, status, status_OK, status_OK))
1099 			break;
1100 
1101 		/* OK Still waiting */
1102 		if (time_after(jiffies, timeo)) {
1103 			map_write(map, CMD(0x70), adr);
1104 			chip->state = FL_STATUS;
1105 			printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1106 			DISABLE_VPP(map);
1107 			mutex_unlock(&chip->mutex);
1108 			return -EIO;
1109 		}
1110 
1111 		/* Latency issues. Drop the lock, wait a while and retry */
1112 		mutex_unlock(&chip->mutex);
1113 		cfi_udelay(1);
1114 		mutex_lock(&chip->mutex);
1115 	}
1116 
1117 	/* Done and happy. */
1118 	chip->state = FL_STATUS;
1119 	DISABLE_VPP(map);
1120 	wake_up(&chip->wq);
1121 	mutex_unlock(&chip->mutex);
1122 	return 0;
1123 }
1124 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1125 {
1126 	struct map_info *map = mtd->priv;
1127 	struct cfi_private *cfi = map->fldrv_priv;
1128 	unsigned long adr;
1129 	int chipnum, ret = 0;
1130 #ifdef DEBUG_LOCK_BITS
1131 	int ofs_factor = cfi->interleave * cfi->device_type;
1132 #endif
1133 
1134 	if (ofs & (mtd->erasesize - 1))
1135 		return -EINVAL;
1136 
1137 	if (len & (mtd->erasesize -1))
1138 		return -EINVAL;
1139 
1140 	chipnum = ofs >> cfi->chipshift;
1141 	adr = ofs - (chipnum << cfi->chipshift);
1142 
1143 	while(len) {
1144 
1145 #ifdef DEBUG_LOCK_BITS
1146 		cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1147 		printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1148 		cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1149 #endif
1150 
1151 		ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
1152 
1153 #ifdef DEBUG_LOCK_BITS
1154 		cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1155 		printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1156 		cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1157 #endif
1158 
1159 		if (ret)
1160 			return ret;
1161 
1162 		adr += mtd->erasesize;
1163 		len -= mtd->erasesize;
1164 
1165 		if (adr >> cfi->chipshift) {
1166 			adr = 0;
1167 			chipnum++;
1168 
1169 			if (chipnum >= cfi->numchips)
1170 				break;
1171 		}
1172 	}
1173 	return 0;
1174 }
1175 static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1176 {
1177 	struct cfi_private *cfi = map->fldrv_priv;
1178 	map_word status, status_OK;
1179 	unsigned long timeo = jiffies + HZ;
1180 	DECLARE_WAITQUEUE(wait, current);
1181 
1182 	adr += chip->start;
1183 
1184 	/* Let's determine this according to the interleave only once */
1185 	status_OK = CMD(0x80);
1186 
1187 	timeo = jiffies + HZ;
1188 retry:
1189 	mutex_lock(&chip->mutex);
1190 
1191 	/* Check that the chip's ready to talk to us. */
1192 	switch (chip->state) {
1193 	case FL_CFI_QUERY:
1194 	case FL_JEDEC_QUERY:
1195 	case FL_READY:
1196 		map_write(map, CMD(0x70), adr);
1197 		chip->state = FL_STATUS;
1198 
1199 	case FL_STATUS:
1200 		status = map_read(map, adr);
1201 		if (map_word_andequal(map, status, status_OK, status_OK))
1202 			break;
1203 
1204 		/* Urgh. Chip not yet ready to talk to us. */
1205 		if (time_after(jiffies, timeo)) {
1206 			mutex_unlock(&chip->mutex);
1207 			printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
1208 			return -EIO;
1209 		}
1210 
1211 		/* Latency issues. Drop the lock, wait a while and retry */
1212 		mutex_unlock(&chip->mutex);
1213 		cfi_udelay(1);
1214 		goto retry;
1215 
1216 	default:
1217 		/* Stick ourselves on a wait queue to be woken when
1218 		   someone changes the status */
1219 		set_current_state(TASK_UNINTERRUPTIBLE);
1220 		add_wait_queue(&chip->wq, &wait);
1221 		mutex_unlock(&chip->mutex);
1222 		schedule();
1223 		remove_wait_queue(&chip->wq, &wait);
1224 		timeo = jiffies + HZ;
1225 		goto retry;
1226 	}
1227 
1228 	ENABLE_VPP(map);
1229 	map_write(map, CMD(0x60), adr);
1230 	map_write(map, CMD(0xD0), adr);
1231 	chip->state = FL_UNLOCKING;
1232 
1233 	mutex_unlock(&chip->mutex);
1234 	msleep(1000);
1235 	mutex_lock(&chip->mutex);
1236 
1237 	/* FIXME. Use a timer to check this, and return immediately. */
1238 	/* Once the state machine's known to be working I'll do that */
1239 
1240 	timeo = jiffies + (HZ*2);
1241 	for (;;) {
1242 
1243 		status = map_read(map, adr);
1244 		if (map_word_andequal(map, status, status_OK, status_OK))
1245 			break;
1246 
1247 		/* OK Still waiting */
1248 		if (time_after(jiffies, timeo)) {
1249 			map_write(map, CMD(0x70), adr);
1250 			chip->state = FL_STATUS;
1251 			printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1252 			DISABLE_VPP(map);
1253 			mutex_unlock(&chip->mutex);
1254 			return -EIO;
1255 		}
1256 
1257 		/* Latency issues. Drop the unlock, wait a while and retry */
1258 		mutex_unlock(&chip->mutex);
1259 		cfi_udelay(1);
1260 		mutex_lock(&chip->mutex);
1261 	}
1262 
1263 	/* Done and happy. */
1264 	chip->state = FL_STATUS;
1265 	DISABLE_VPP(map);
1266 	wake_up(&chip->wq);
1267 	mutex_unlock(&chip->mutex);
1268 	return 0;
1269 }
1270 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1271 {
1272 	struct map_info *map = mtd->priv;
1273 	struct cfi_private *cfi = map->fldrv_priv;
1274 	unsigned long adr;
1275 	int chipnum, ret = 0;
1276 #ifdef DEBUG_LOCK_BITS
1277 	int ofs_factor = cfi->interleave * cfi->device_type;
1278 #endif
1279 
1280 	chipnum = ofs >> cfi->chipshift;
1281 	adr = ofs - (chipnum << cfi->chipshift);
1282 
1283 #ifdef DEBUG_LOCK_BITS
1284 	{
1285 		unsigned long temp_adr = adr;
1286 		unsigned long temp_len = len;
1287 
1288 		cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1289                 while (temp_len) {
1290 			printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
1291 			temp_adr += mtd->erasesize;
1292 			temp_len -= mtd->erasesize;
1293 		}
1294 		cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1295 	}
1296 #endif
1297 
1298 	ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
1299 
1300 #ifdef DEBUG_LOCK_BITS
1301 	cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1302 	printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1303 	cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1304 #endif
1305 
1306 	return ret;
1307 }
1308 
1309 static int cfi_staa_suspend(struct mtd_info *mtd)
1310 {
1311 	struct map_info *map = mtd->priv;
1312 	struct cfi_private *cfi = map->fldrv_priv;
1313 	int i;
1314 	struct flchip *chip;
1315 	int ret = 0;
1316 
1317 	for (i=0; !ret && i<cfi->numchips; i++) {
1318 		chip = &cfi->chips[i];
1319 
1320 		mutex_lock(&chip->mutex);
1321 
1322 		switch(chip->state) {
1323 		case FL_READY:
1324 		case FL_STATUS:
1325 		case FL_CFI_QUERY:
1326 		case FL_JEDEC_QUERY:
1327 			chip->oldstate = chip->state;
1328 			chip->state = FL_PM_SUSPENDED;
1329 			/* No need to wake_up() on this state change -
1330 			 * as the whole point is that nobody can do anything
1331 			 * with the chip now anyway.
1332 			 */
1333 		case FL_PM_SUSPENDED:
1334 			break;
1335 
1336 		default:
1337 			ret = -EAGAIN;
1338 			break;
1339 		}
1340 		mutex_unlock(&chip->mutex);
1341 	}
1342 
1343 	/* Unlock the chips again */
1344 
1345 	if (ret) {
1346 		for (i--; i >=0; i--) {
1347 			chip = &cfi->chips[i];
1348 
1349 			mutex_lock(&chip->mutex);
1350 
1351 			if (chip->state == FL_PM_SUSPENDED) {
1352 				/* No need to force it into a known state here,
1353 				   because we're returning failure, and it didn't
1354 				   get power cycled */
1355 				chip->state = chip->oldstate;
1356 				wake_up(&chip->wq);
1357 			}
1358 			mutex_unlock(&chip->mutex);
1359 		}
1360 	}
1361 
1362 	return ret;
1363 }
1364 
1365 static void cfi_staa_resume(struct mtd_info *mtd)
1366 {
1367 	struct map_info *map = mtd->priv;
1368 	struct cfi_private *cfi = map->fldrv_priv;
1369 	int i;
1370 	struct flchip *chip;
1371 
1372 	for (i=0; i<cfi->numchips; i++) {
1373 
1374 		chip = &cfi->chips[i];
1375 
1376 		mutex_lock(&chip->mutex);
1377 
1378 		/* Go to known state. Chip may have been power cycled */
1379 		if (chip->state == FL_PM_SUSPENDED) {
1380 			map_write(map, CMD(0xFF), 0);
1381 			chip->state = FL_READY;
1382 			wake_up(&chip->wq);
1383 		}
1384 
1385 		mutex_unlock(&chip->mutex);
1386 	}
1387 }
1388 
1389 static void cfi_staa_destroy(struct mtd_info *mtd)
1390 {
1391 	struct map_info *map = mtd->priv;
1392 	struct cfi_private *cfi = map->fldrv_priv;
1393 	kfree(cfi->cmdset_priv);
1394 	kfree(cfi);
1395 }
1396 
1397 MODULE_LICENSE("GPL");
1398