1 /* 2 * Common Flash Interface support: 3 * ST Advanced Architecture Command Set (ID 0x0020) 4 * 5 * (C) 2000 Red Hat. GPL'd 6 * 7 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net> 8 * - completely revamped method functions so they are aware and 9 * independent of the flash geometry (buswidth, interleave, etc.) 10 * - scalability vs code size is completely set at compile-time 11 * (see include/linux/mtd/cfi.h for selection) 12 * - optimized write buffer method 13 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others 14 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture 15 * (command set 0x0020) 16 * - added a writev function 17 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de> 18 * - Plugged memory leak in cfi_staa_writev(). 19 */ 20 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/kernel.h> 24 #include <linux/sched.h> 25 #include <asm/io.h> 26 #include <asm/byteorder.h> 27 28 #include <linux/errno.h> 29 #include <linux/slab.h> 30 #include <linux/delay.h> 31 #include <linux/interrupt.h> 32 #include <linux/mtd/map.h> 33 #include <linux/mtd/cfi.h> 34 #include <linux/mtd/mtd.h> 35 36 37 static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); 38 static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); 39 static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, 40 unsigned long count, loff_t to, size_t *retlen); 41 static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *); 42 static void cfi_staa_sync (struct mtd_info *); 43 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 44 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 45 static int cfi_staa_suspend (struct mtd_info *); 46 static void cfi_staa_resume (struct mtd_info *); 47 48 static void cfi_staa_destroy(struct mtd_info *); 49 50 struct mtd_info *cfi_cmdset_0020(struct map_info *, int); 51 52 static struct mtd_info *cfi_staa_setup (struct map_info *); 53 54 static struct mtd_chip_driver cfi_staa_chipdrv = { 55 .probe = NULL, /* Not usable directly */ 56 .destroy = cfi_staa_destroy, 57 .name = "cfi_cmdset_0020", 58 .module = THIS_MODULE 59 }; 60 61 /* #define DEBUG_LOCK_BITS */ 62 //#define DEBUG_CFI_FEATURES 63 64 #ifdef DEBUG_CFI_FEATURES 65 static void cfi_tell_features(struct cfi_pri_intelext *extp) 66 { 67 int i; 68 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); 69 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); 70 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); 71 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); 72 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); 73 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); 74 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); 75 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); 76 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); 77 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); 78 for (i=9; i<32; i++) { 79 if (extp->FeatureSupport & (1<<i)) 80 printk(" - Unknown Bit %X: supported\n", i); 81 } 82 83 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); 84 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); 85 for (i=1; i<8; i++) { 86 if (extp->SuspendCmdSupport & (1<<i)) 87 printk(" - Unknown Bit %X: supported\n", i); 88 } 89 90 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); 91 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); 92 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); 93 for (i=2; i<16; i++) { 94 if (extp->BlkStatusRegMask & (1<<i)) 95 printk(" - Unknown Bit %X Active: yes\n",i); 96 } 97 98 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", 99 extp->VccOptimal >> 8, extp->VccOptimal & 0xf); 100 if (extp->VppOptimal) 101 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", 102 extp->VppOptimal >> 8, extp->VppOptimal & 0xf); 103 } 104 #endif 105 106 /* This routine is made available to other mtd code via 107 * inter_module_register. It must only be accessed through 108 * inter_module_get which will bump the use count of this module. The 109 * addresses passed back in cfi are valid as long as the use count of 110 * this module is non-zero, i.e. between inter_module_get and 111 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. 112 */ 113 struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary) 114 { 115 struct cfi_private *cfi = map->fldrv_priv; 116 int i; 117 118 if (cfi->cfi_mode) { 119 /* 120 * It's a real CFI chip, not one for which the probe 121 * routine faked a CFI structure. So we read the feature 122 * table from it. 123 */ 124 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; 125 struct cfi_pri_intelext *extp; 126 127 extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics"); 128 if (!extp) 129 return NULL; 130 131 if (extp->MajorVersion != '1' || 132 (extp->MinorVersion < '0' || extp->MinorVersion > '3')) { 133 printk(KERN_ERR " Unknown ST Microelectronics" 134 " Extended Query version %c.%c.\n", 135 extp->MajorVersion, extp->MinorVersion); 136 kfree(extp); 137 return NULL; 138 } 139 140 /* Do some byteswapping if necessary */ 141 extp->FeatureSupport = cfi32_to_cpu(map, extp->FeatureSupport); 142 extp->BlkStatusRegMask = cfi32_to_cpu(map, 143 extp->BlkStatusRegMask); 144 145 #ifdef DEBUG_CFI_FEATURES 146 /* Tell the user about it in lots of lovely detail */ 147 cfi_tell_features(extp); 148 #endif 149 150 /* Install our own private info structure */ 151 cfi->cmdset_priv = extp; 152 } 153 154 for (i=0; i< cfi->numchips; i++) { 155 cfi->chips[i].word_write_time = 128; 156 cfi->chips[i].buffer_write_time = 128; 157 cfi->chips[i].erase_time = 1024; 158 cfi->chips[i].ref_point_counter = 0; 159 init_waitqueue_head(&(cfi->chips[i].wq)); 160 } 161 162 return cfi_staa_setup(map); 163 } 164 EXPORT_SYMBOL_GPL(cfi_cmdset_0020); 165 166 static struct mtd_info *cfi_staa_setup(struct map_info *map) 167 { 168 struct cfi_private *cfi = map->fldrv_priv; 169 struct mtd_info *mtd; 170 unsigned long offset = 0; 171 int i,j; 172 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; 173 174 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); 175 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); 176 177 if (!mtd) { 178 kfree(cfi->cmdset_priv); 179 return NULL; 180 } 181 182 mtd->priv = map; 183 mtd->type = MTD_NORFLASH; 184 mtd->size = devsize * cfi->numchips; 185 186 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; 187 mtd->eraseregions = kmalloc_array(mtd->numeraseregions, 188 sizeof(struct mtd_erase_region_info), 189 GFP_KERNEL); 190 if (!mtd->eraseregions) { 191 kfree(cfi->cmdset_priv); 192 kfree(mtd); 193 return NULL; 194 } 195 196 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { 197 unsigned long ernum, ersize; 198 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; 199 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; 200 201 if (mtd->erasesize < ersize) { 202 mtd->erasesize = ersize; 203 } 204 for (j=0; j<cfi->numchips; j++) { 205 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; 206 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; 207 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; 208 } 209 offset += (ersize * ernum); 210 } 211 212 if (offset != devsize) { 213 /* Argh */ 214 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); 215 kfree(mtd->eraseregions); 216 kfree(cfi->cmdset_priv); 217 kfree(mtd); 218 return NULL; 219 } 220 221 for (i=0; i<mtd->numeraseregions;i++){ 222 printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n", 223 i, (unsigned long long)mtd->eraseregions[i].offset, 224 mtd->eraseregions[i].erasesize, 225 mtd->eraseregions[i].numblocks); 226 } 227 228 /* Also select the correct geometry setup too */ 229 mtd->_erase = cfi_staa_erase_varsize; 230 mtd->_read = cfi_staa_read; 231 mtd->_write = cfi_staa_write_buffers; 232 mtd->_writev = cfi_staa_writev; 233 mtd->_sync = cfi_staa_sync; 234 mtd->_lock = cfi_staa_lock; 235 mtd->_unlock = cfi_staa_unlock; 236 mtd->_suspend = cfi_staa_suspend; 237 mtd->_resume = cfi_staa_resume; 238 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE; 239 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */ 240 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 241 map->fldrv = &cfi_staa_chipdrv; 242 __module_get(THIS_MODULE); 243 mtd->name = map->name; 244 return mtd; 245 } 246 247 248 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) 249 { 250 map_word status, status_OK; 251 unsigned long timeo; 252 DECLARE_WAITQUEUE(wait, current); 253 int suspended = 0; 254 unsigned long cmd_addr; 255 struct cfi_private *cfi = map->fldrv_priv; 256 257 adr += chip->start; 258 259 /* Ensure cmd read/writes are aligned. */ 260 cmd_addr = adr & ~(map_bankwidth(map)-1); 261 262 /* Let's determine this according to the interleave only once */ 263 status_OK = CMD(0x80); 264 265 timeo = jiffies + HZ; 266 retry: 267 mutex_lock(&chip->mutex); 268 269 /* Check that the chip's ready to talk to us. 270 * If it's in FL_ERASING state, suspend it and make it talk now. 271 */ 272 switch (chip->state) { 273 case FL_ERASING: 274 if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2)) 275 goto sleep; /* We don't support erase suspend */ 276 277 map_write (map, CMD(0xb0), cmd_addr); 278 /* If the flash has finished erasing, then 'erase suspend' 279 * appears to make some (28F320) flash devices switch to 280 * 'read' mode. Make sure that we switch to 'read status' 281 * mode so we get the right data. --rmk 282 */ 283 map_write(map, CMD(0x70), cmd_addr); 284 chip->oldstate = FL_ERASING; 285 chip->state = FL_ERASE_SUSPENDING; 286 // printk("Erase suspending at 0x%lx\n", cmd_addr); 287 for (;;) { 288 status = map_read(map, cmd_addr); 289 if (map_word_andequal(map, status, status_OK, status_OK)) 290 break; 291 292 if (time_after(jiffies, timeo)) { 293 /* Urgh */ 294 map_write(map, CMD(0xd0), cmd_addr); 295 /* make sure we're in 'read status' mode */ 296 map_write(map, CMD(0x70), cmd_addr); 297 chip->state = FL_ERASING; 298 wake_up(&chip->wq); 299 mutex_unlock(&chip->mutex); 300 printk(KERN_ERR "Chip not ready after erase " 301 "suspended: status = 0x%lx\n", status.x[0]); 302 return -EIO; 303 } 304 305 mutex_unlock(&chip->mutex); 306 cfi_udelay(1); 307 mutex_lock(&chip->mutex); 308 } 309 310 suspended = 1; 311 map_write(map, CMD(0xff), cmd_addr); 312 chip->state = FL_READY; 313 break; 314 315 #if 0 316 case FL_WRITING: 317 /* Not quite yet */ 318 #endif 319 320 case FL_READY: 321 break; 322 323 case FL_CFI_QUERY: 324 case FL_JEDEC_QUERY: 325 map_write(map, CMD(0x70), cmd_addr); 326 chip->state = FL_STATUS; 327 328 case FL_STATUS: 329 status = map_read(map, cmd_addr); 330 if (map_word_andequal(map, status, status_OK, status_OK)) { 331 map_write(map, CMD(0xff), cmd_addr); 332 chip->state = FL_READY; 333 break; 334 } 335 336 /* Urgh. Chip not yet ready to talk to us. */ 337 if (time_after(jiffies, timeo)) { 338 mutex_unlock(&chip->mutex); 339 printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]); 340 return -EIO; 341 } 342 343 /* Latency issues. Drop the lock, wait a while and retry */ 344 mutex_unlock(&chip->mutex); 345 cfi_udelay(1); 346 goto retry; 347 348 default: 349 sleep: 350 /* Stick ourselves on a wait queue to be woken when 351 someone changes the status */ 352 set_current_state(TASK_UNINTERRUPTIBLE); 353 add_wait_queue(&chip->wq, &wait); 354 mutex_unlock(&chip->mutex); 355 schedule(); 356 remove_wait_queue(&chip->wq, &wait); 357 timeo = jiffies + HZ; 358 goto retry; 359 } 360 361 map_copy_from(map, buf, adr, len); 362 363 if (suspended) { 364 chip->state = chip->oldstate; 365 /* What if one interleaved chip has finished and the 366 other hasn't? The old code would leave the finished 367 one in READY mode. That's bad, and caused -EROFS 368 errors to be returned from do_erase_oneblock because 369 that's the only bit it checked for at the time. 370 As the state machine appears to explicitly allow 371 sending the 0x70 (Read Status) command to an erasing 372 chip and expecting it to be ignored, that's what we 373 do. */ 374 map_write(map, CMD(0xd0), cmd_addr); 375 map_write(map, CMD(0x70), cmd_addr); 376 } 377 378 wake_up(&chip->wq); 379 mutex_unlock(&chip->mutex); 380 return 0; 381 } 382 383 static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) 384 { 385 struct map_info *map = mtd->priv; 386 struct cfi_private *cfi = map->fldrv_priv; 387 unsigned long ofs; 388 int chipnum; 389 int ret = 0; 390 391 /* ofs: offset within the first chip that the first read should start */ 392 chipnum = (from >> cfi->chipshift); 393 ofs = from - (chipnum << cfi->chipshift); 394 395 while (len) { 396 unsigned long thislen; 397 398 if (chipnum >= cfi->numchips) 399 break; 400 401 if ((len + ofs -1) >> cfi->chipshift) 402 thislen = (1<<cfi->chipshift) - ofs; 403 else 404 thislen = len; 405 406 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); 407 if (ret) 408 break; 409 410 *retlen += thislen; 411 len -= thislen; 412 buf += thislen; 413 414 ofs = 0; 415 chipnum++; 416 } 417 return ret; 418 } 419 420 static int do_write_buffer(struct map_info *map, struct flchip *chip, 421 unsigned long adr, const u_char *buf, int len) 422 { 423 struct cfi_private *cfi = map->fldrv_priv; 424 map_word status, status_OK; 425 unsigned long cmd_adr, timeo; 426 DECLARE_WAITQUEUE(wait, current); 427 int wbufsize, z; 428 429 /* M58LW064A requires bus alignment for buffer wriets -- saw */ 430 if (adr & (map_bankwidth(map)-1)) 431 return -EINVAL; 432 433 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 434 adr += chip->start; 435 cmd_adr = adr & ~(wbufsize-1); 436 437 /* Let's determine this according to the interleave only once */ 438 status_OK = CMD(0x80); 439 440 timeo = jiffies + HZ; 441 retry: 442 443 #ifdef DEBUG_CFI_FEATURES 444 printk("%s: chip->state[%d]\n", __func__, chip->state); 445 #endif 446 mutex_lock(&chip->mutex); 447 448 /* Check that the chip's ready to talk to us. 449 * Later, we can actually think about interrupting it 450 * if it's in FL_ERASING state. 451 * Not just yet, though. 452 */ 453 switch (chip->state) { 454 case FL_READY: 455 break; 456 457 case FL_CFI_QUERY: 458 case FL_JEDEC_QUERY: 459 map_write(map, CMD(0x70), cmd_adr); 460 chip->state = FL_STATUS; 461 #ifdef DEBUG_CFI_FEATURES 462 printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr)); 463 #endif 464 465 case FL_STATUS: 466 status = map_read(map, cmd_adr); 467 if (map_word_andequal(map, status, status_OK, status_OK)) 468 break; 469 /* Urgh. Chip not yet ready to talk to us. */ 470 if (time_after(jiffies, timeo)) { 471 mutex_unlock(&chip->mutex); 472 printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n", 473 status.x[0], map_read(map, cmd_adr).x[0]); 474 return -EIO; 475 } 476 477 /* Latency issues. Drop the lock, wait a while and retry */ 478 mutex_unlock(&chip->mutex); 479 cfi_udelay(1); 480 goto retry; 481 482 default: 483 /* Stick ourselves on a wait queue to be woken when 484 someone changes the status */ 485 set_current_state(TASK_UNINTERRUPTIBLE); 486 add_wait_queue(&chip->wq, &wait); 487 mutex_unlock(&chip->mutex); 488 schedule(); 489 remove_wait_queue(&chip->wq, &wait); 490 timeo = jiffies + HZ; 491 goto retry; 492 } 493 494 ENABLE_VPP(map); 495 map_write(map, CMD(0xe8), cmd_adr); 496 chip->state = FL_WRITING_TO_BUFFER; 497 498 z = 0; 499 for (;;) { 500 status = map_read(map, cmd_adr); 501 if (map_word_andequal(map, status, status_OK, status_OK)) 502 break; 503 504 mutex_unlock(&chip->mutex); 505 cfi_udelay(1); 506 mutex_lock(&chip->mutex); 507 508 if (++z > 100) { 509 /* Argh. Not ready for write to buffer */ 510 DISABLE_VPP(map); 511 map_write(map, CMD(0x70), cmd_adr); 512 chip->state = FL_STATUS; 513 mutex_unlock(&chip->mutex); 514 printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]); 515 return -EIO; 516 } 517 } 518 519 /* Write length of data to come */ 520 map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr ); 521 522 /* Write data */ 523 for (z = 0; z < len; 524 z += map_bankwidth(map), buf += map_bankwidth(map)) { 525 map_word d; 526 d = map_word_load(map, buf); 527 map_write(map, d, adr+z); 528 } 529 /* GO GO GO */ 530 map_write(map, CMD(0xd0), cmd_adr); 531 chip->state = FL_WRITING; 532 533 mutex_unlock(&chip->mutex); 534 cfi_udelay(chip->buffer_write_time); 535 mutex_lock(&chip->mutex); 536 537 timeo = jiffies + (HZ/2); 538 z = 0; 539 for (;;) { 540 if (chip->state != FL_WRITING) { 541 /* Someone's suspended the write. Sleep */ 542 set_current_state(TASK_UNINTERRUPTIBLE); 543 add_wait_queue(&chip->wq, &wait); 544 mutex_unlock(&chip->mutex); 545 schedule(); 546 remove_wait_queue(&chip->wq, &wait); 547 timeo = jiffies + (HZ / 2); /* FIXME */ 548 mutex_lock(&chip->mutex); 549 continue; 550 } 551 552 status = map_read(map, cmd_adr); 553 if (map_word_andequal(map, status, status_OK, status_OK)) 554 break; 555 556 /* OK Still waiting */ 557 if (time_after(jiffies, timeo)) { 558 /* clear status */ 559 map_write(map, CMD(0x50), cmd_adr); 560 /* put back into read status register mode */ 561 map_write(map, CMD(0x70), adr); 562 chip->state = FL_STATUS; 563 DISABLE_VPP(map); 564 mutex_unlock(&chip->mutex); 565 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); 566 return -EIO; 567 } 568 569 /* Latency issues. Drop the lock, wait a while and retry */ 570 mutex_unlock(&chip->mutex); 571 cfi_udelay(1); 572 z++; 573 mutex_lock(&chip->mutex); 574 } 575 if (!z) { 576 chip->buffer_write_time--; 577 if (!chip->buffer_write_time) 578 chip->buffer_write_time++; 579 } 580 if (z > 1) 581 chip->buffer_write_time++; 582 583 /* Done and happy. */ 584 DISABLE_VPP(map); 585 chip->state = FL_STATUS; 586 587 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */ 588 if (map_word_bitsset(map, status, CMD(0x3a))) { 589 #ifdef DEBUG_CFI_FEATURES 590 printk("%s: 2 status[%lx]\n", __func__, status.x[0]); 591 #endif 592 /* clear status */ 593 map_write(map, CMD(0x50), cmd_adr); 594 /* put back into read status register mode */ 595 map_write(map, CMD(0x70), adr); 596 wake_up(&chip->wq); 597 mutex_unlock(&chip->mutex); 598 return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO; 599 } 600 wake_up(&chip->wq); 601 mutex_unlock(&chip->mutex); 602 603 return 0; 604 } 605 606 static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to, 607 size_t len, size_t *retlen, const u_char *buf) 608 { 609 struct map_info *map = mtd->priv; 610 struct cfi_private *cfi = map->fldrv_priv; 611 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 612 int ret = 0; 613 int chipnum; 614 unsigned long ofs; 615 616 chipnum = to >> cfi->chipshift; 617 ofs = to - (chipnum << cfi->chipshift); 618 619 #ifdef DEBUG_CFI_FEATURES 620 printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map)); 621 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize); 622 printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len); 623 #endif 624 625 /* Write buffer is worth it only if more than one word to write... */ 626 while (len > 0) { 627 /* We must not cross write block boundaries */ 628 int size = wbufsize - (ofs & (wbufsize-1)); 629 630 if (size > len) 631 size = len; 632 633 ret = do_write_buffer(map, &cfi->chips[chipnum], 634 ofs, buf, size); 635 if (ret) 636 return ret; 637 638 ofs += size; 639 buf += size; 640 (*retlen) += size; 641 len -= size; 642 643 if (ofs >> cfi->chipshift) { 644 chipnum ++; 645 ofs = 0; 646 if (chipnum == cfi->numchips) 647 return 0; 648 } 649 } 650 651 return 0; 652 } 653 654 /* 655 * Writev for ECC-Flashes is a little more complicated. We need to maintain 656 * a small buffer for this. 657 * XXX: If the buffer size is not a multiple of 2, this will break 658 */ 659 #define ECCBUF_SIZE (mtd->writesize) 660 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1)) 661 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1)) 662 static int 663 cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, 664 unsigned long count, loff_t to, size_t *retlen) 665 { 666 unsigned long i; 667 size_t totlen = 0, thislen; 668 int ret = 0; 669 size_t buflen = 0; 670 char *buffer; 671 672 if (!ECCBUF_SIZE) { 673 /* We should fall back to a general writev implementation. 674 * Until that is written, just break. 675 */ 676 return -EIO; 677 } 678 buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL); 679 if (!buffer) 680 return -ENOMEM; 681 682 for (i=0; i<count; i++) { 683 size_t elem_len = vecs[i].iov_len; 684 void *elem_base = vecs[i].iov_base; 685 if (!elem_len) /* FIXME: Might be unnecessary. Check that */ 686 continue; 687 if (buflen) { /* cut off head */ 688 if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */ 689 memcpy(buffer+buflen, elem_base, elem_len); 690 buflen += elem_len; 691 continue; 692 } 693 memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen); 694 ret = mtd_write(mtd, to, ECCBUF_SIZE, &thislen, 695 buffer); 696 totlen += thislen; 697 if (ret || thislen != ECCBUF_SIZE) 698 goto write_error; 699 elem_len -= thislen-buflen; 700 elem_base += thislen-buflen; 701 to += ECCBUF_SIZE; 702 } 703 if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */ 704 ret = mtd_write(mtd, to, ECCBUF_DIV(elem_len), 705 &thislen, elem_base); 706 totlen += thislen; 707 if (ret || thislen != ECCBUF_DIV(elem_len)) 708 goto write_error; 709 to += thislen; 710 } 711 buflen = ECCBUF_MOD(elem_len); /* cut off tail */ 712 if (buflen) { 713 memset(buffer, 0xff, ECCBUF_SIZE); 714 memcpy(buffer, elem_base + thislen, buflen); 715 } 716 } 717 if (buflen) { /* flush last page, even if not full */ 718 /* This is sometimes intended behaviour, really */ 719 ret = mtd_write(mtd, to, buflen, &thislen, buffer); 720 totlen += thislen; 721 if (ret || thislen != ECCBUF_SIZE) 722 goto write_error; 723 } 724 write_error: 725 if (retlen) 726 *retlen = totlen; 727 kfree(buffer); 728 return ret; 729 } 730 731 732 static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) 733 { 734 struct cfi_private *cfi = map->fldrv_priv; 735 map_word status, status_OK; 736 unsigned long timeo; 737 int retries = 3; 738 DECLARE_WAITQUEUE(wait, current); 739 int ret = 0; 740 741 adr += chip->start; 742 743 /* Let's determine this according to the interleave only once */ 744 status_OK = CMD(0x80); 745 746 timeo = jiffies + HZ; 747 retry: 748 mutex_lock(&chip->mutex); 749 750 /* Check that the chip's ready to talk to us. */ 751 switch (chip->state) { 752 case FL_CFI_QUERY: 753 case FL_JEDEC_QUERY: 754 case FL_READY: 755 map_write(map, CMD(0x70), adr); 756 chip->state = FL_STATUS; 757 758 case FL_STATUS: 759 status = map_read(map, adr); 760 if (map_word_andequal(map, status, status_OK, status_OK)) 761 break; 762 763 /* Urgh. Chip not yet ready to talk to us. */ 764 if (time_after(jiffies, timeo)) { 765 mutex_unlock(&chip->mutex); 766 printk(KERN_ERR "waiting for chip to be ready timed out in erase\n"); 767 return -EIO; 768 } 769 770 /* Latency issues. Drop the lock, wait a while and retry */ 771 mutex_unlock(&chip->mutex); 772 cfi_udelay(1); 773 goto retry; 774 775 default: 776 /* Stick ourselves on a wait queue to be woken when 777 someone changes the status */ 778 set_current_state(TASK_UNINTERRUPTIBLE); 779 add_wait_queue(&chip->wq, &wait); 780 mutex_unlock(&chip->mutex); 781 schedule(); 782 remove_wait_queue(&chip->wq, &wait); 783 timeo = jiffies + HZ; 784 goto retry; 785 } 786 787 ENABLE_VPP(map); 788 /* Clear the status register first */ 789 map_write(map, CMD(0x50), adr); 790 791 /* Now erase */ 792 map_write(map, CMD(0x20), adr); 793 map_write(map, CMD(0xD0), adr); 794 chip->state = FL_ERASING; 795 796 mutex_unlock(&chip->mutex); 797 msleep(1000); 798 mutex_lock(&chip->mutex); 799 800 /* FIXME. Use a timer to check this, and return immediately. */ 801 /* Once the state machine's known to be working I'll do that */ 802 803 timeo = jiffies + (HZ*20); 804 for (;;) { 805 if (chip->state != FL_ERASING) { 806 /* Someone's suspended the erase. Sleep */ 807 set_current_state(TASK_UNINTERRUPTIBLE); 808 add_wait_queue(&chip->wq, &wait); 809 mutex_unlock(&chip->mutex); 810 schedule(); 811 remove_wait_queue(&chip->wq, &wait); 812 timeo = jiffies + (HZ*20); /* FIXME */ 813 mutex_lock(&chip->mutex); 814 continue; 815 } 816 817 status = map_read(map, adr); 818 if (map_word_andequal(map, status, status_OK, status_OK)) 819 break; 820 821 /* OK Still waiting */ 822 if (time_after(jiffies, timeo)) { 823 map_write(map, CMD(0x70), adr); 824 chip->state = FL_STATUS; 825 printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); 826 DISABLE_VPP(map); 827 mutex_unlock(&chip->mutex); 828 return -EIO; 829 } 830 831 /* Latency issues. Drop the lock, wait a while and retry */ 832 mutex_unlock(&chip->mutex); 833 cfi_udelay(1); 834 mutex_lock(&chip->mutex); 835 } 836 837 DISABLE_VPP(map); 838 ret = 0; 839 840 /* We've broken this before. It doesn't hurt to be safe */ 841 map_write(map, CMD(0x70), adr); 842 chip->state = FL_STATUS; 843 status = map_read(map, adr); 844 845 /* check for lock bit */ 846 if (map_word_bitsset(map, status, CMD(0x3a))) { 847 unsigned char chipstatus = status.x[0]; 848 if (!map_word_equal(map, status, CMD(chipstatus))) { 849 int i, w; 850 for (w=0; w<map_words(map); w++) { 851 for (i = 0; i<cfi_interleave(cfi); i++) { 852 chipstatus |= status.x[w] >> (cfi->device_type * 8); 853 } 854 } 855 printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", 856 status.x[0], chipstatus); 857 } 858 /* Reset the error bits */ 859 map_write(map, CMD(0x50), adr); 860 map_write(map, CMD(0x70), adr); 861 862 if ((chipstatus & 0x30) == 0x30) { 863 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); 864 ret = -EIO; 865 } else if (chipstatus & 0x02) { 866 /* Protection bit set */ 867 ret = -EROFS; 868 } else if (chipstatus & 0x8) { 869 /* Voltage */ 870 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); 871 ret = -EIO; 872 } else if (chipstatus & 0x20) { 873 if (retries--) { 874 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); 875 timeo = jiffies + HZ; 876 chip->state = FL_STATUS; 877 mutex_unlock(&chip->mutex); 878 goto retry; 879 } 880 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); 881 ret = -EIO; 882 } 883 } 884 885 wake_up(&chip->wq); 886 mutex_unlock(&chip->mutex); 887 return ret; 888 } 889 890 static int cfi_staa_erase_varsize(struct mtd_info *mtd, 891 struct erase_info *instr) 892 { struct map_info *map = mtd->priv; 893 struct cfi_private *cfi = map->fldrv_priv; 894 unsigned long adr, len; 895 int chipnum, ret = 0; 896 int i, first; 897 struct mtd_erase_region_info *regions = mtd->eraseregions; 898 899 /* Check that both start and end of the requested erase are 900 * aligned with the erasesize at the appropriate addresses. 901 */ 902 903 i = 0; 904 905 /* Skip all erase regions which are ended before the start of 906 the requested erase. Actually, to save on the calculations, 907 we skip to the first erase region which starts after the 908 start of the requested erase, and then go back one. 909 */ 910 911 while (i < mtd->numeraseregions && instr->addr >= regions[i].offset) 912 i++; 913 i--; 914 915 /* OK, now i is pointing at the erase region in which this 916 erase request starts. Check the start of the requested 917 erase range is aligned with the erase size which is in 918 effect here. 919 */ 920 921 if (instr->addr & (regions[i].erasesize-1)) 922 return -EINVAL; 923 924 /* Remember the erase region we start on */ 925 first = i; 926 927 /* Next, check that the end of the requested erase is aligned 928 * with the erase region at that address. 929 */ 930 931 while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset) 932 i++; 933 934 /* As before, drop back one to point at the region in which 935 the address actually falls 936 */ 937 i--; 938 939 if ((instr->addr + instr->len) & (regions[i].erasesize-1)) 940 return -EINVAL; 941 942 chipnum = instr->addr >> cfi->chipshift; 943 adr = instr->addr - (chipnum << cfi->chipshift); 944 len = instr->len; 945 946 i=first; 947 948 while(len) { 949 ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); 950 951 if (ret) 952 return ret; 953 954 adr += regions[i].erasesize; 955 len -= regions[i].erasesize; 956 957 if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift))) 958 i++; 959 960 if (adr >> cfi->chipshift) { 961 adr = 0; 962 chipnum++; 963 964 if (chipnum >= cfi->numchips) 965 break; 966 } 967 } 968 969 return 0; 970 } 971 972 static void cfi_staa_sync (struct mtd_info *mtd) 973 { 974 struct map_info *map = mtd->priv; 975 struct cfi_private *cfi = map->fldrv_priv; 976 int i; 977 struct flchip *chip; 978 int ret = 0; 979 DECLARE_WAITQUEUE(wait, current); 980 981 for (i=0; !ret && i<cfi->numchips; i++) { 982 chip = &cfi->chips[i]; 983 984 retry: 985 mutex_lock(&chip->mutex); 986 987 switch(chip->state) { 988 case FL_READY: 989 case FL_STATUS: 990 case FL_CFI_QUERY: 991 case FL_JEDEC_QUERY: 992 chip->oldstate = chip->state; 993 chip->state = FL_SYNCING; 994 /* No need to wake_up() on this state change - 995 * as the whole point is that nobody can do anything 996 * with the chip now anyway. 997 */ 998 case FL_SYNCING: 999 mutex_unlock(&chip->mutex); 1000 break; 1001 1002 default: 1003 /* Not an idle state */ 1004 set_current_state(TASK_UNINTERRUPTIBLE); 1005 add_wait_queue(&chip->wq, &wait); 1006 1007 mutex_unlock(&chip->mutex); 1008 schedule(); 1009 remove_wait_queue(&chip->wq, &wait); 1010 1011 goto retry; 1012 } 1013 } 1014 1015 /* Unlock the chips again */ 1016 1017 for (i--; i >=0; i--) { 1018 chip = &cfi->chips[i]; 1019 1020 mutex_lock(&chip->mutex); 1021 1022 if (chip->state == FL_SYNCING) { 1023 chip->state = chip->oldstate; 1024 wake_up(&chip->wq); 1025 } 1026 mutex_unlock(&chip->mutex); 1027 } 1028 } 1029 1030 static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) 1031 { 1032 struct cfi_private *cfi = map->fldrv_priv; 1033 map_word status, status_OK; 1034 unsigned long timeo = jiffies + HZ; 1035 DECLARE_WAITQUEUE(wait, current); 1036 1037 adr += chip->start; 1038 1039 /* Let's determine this according to the interleave only once */ 1040 status_OK = CMD(0x80); 1041 1042 timeo = jiffies + HZ; 1043 retry: 1044 mutex_lock(&chip->mutex); 1045 1046 /* Check that the chip's ready to talk to us. */ 1047 switch (chip->state) { 1048 case FL_CFI_QUERY: 1049 case FL_JEDEC_QUERY: 1050 case FL_READY: 1051 map_write(map, CMD(0x70), adr); 1052 chip->state = FL_STATUS; 1053 1054 case FL_STATUS: 1055 status = map_read(map, adr); 1056 if (map_word_andequal(map, status, status_OK, status_OK)) 1057 break; 1058 1059 /* Urgh. Chip not yet ready to talk to us. */ 1060 if (time_after(jiffies, timeo)) { 1061 mutex_unlock(&chip->mutex); 1062 printk(KERN_ERR "waiting for chip to be ready timed out in lock\n"); 1063 return -EIO; 1064 } 1065 1066 /* Latency issues. Drop the lock, wait a while and retry */ 1067 mutex_unlock(&chip->mutex); 1068 cfi_udelay(1); 1069 goto retry; 1070 1071 default: 1072 /* Stick ourselves on a wait queue to be woken when 1073 someone changes the status */ 1074 set_current_state(TASK_UNINTERRUPTIBLE); 1075 add_wait_queue(&chip->wq, &wait); 1076 mutex_unlock(&chip->mutex); 1077 schedule(); 1078 remove_wait_queue(&chip->wq, &wait); 1079 timeo = jiffies + HZ; 1080 goto retry; 1081 } 1082 1083 ENABLE_VPP(map); 1084 map_write(map, CMD(0x60), adr); 1085 map_write(map, CMD(0x01), adr); 1086 chip->state = FL_LOCKING; 1087 1088 mutex_unlock(&chip->mutex); 1089 msleep(1000); 1090 mutex_lock(&chip->mutex); 1091 1092 /* FIXME. Use a timer to check this, and return immediately. */ 1093 /* Once the state machine's known to be working I'll do that */ 1094 1095 timeo = jiffies + (HZ*2); 1096 for (;;) { 1097 1098 status = map_read(map, adr); 1099 if (map_word_andequal(map, status, status_OK, status_OK)) 1100 break; 1101 1102 /* OK Still waiting */ 1103 if (time_after(jiffies, timeo)) { 1104 map_write(map, CMD(0x70), adr); 1105 chip->state = FL_STATUS; 1106 printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); 1107 DISABLE_VPP(map); 1108 mutex_unlock(&chip->mutex); 1109 return -EIO; 1110 } 1111 1112 /* Latency issues. Drop the lock, wait a while and retry */ 1113 mutex_unlock(&chip->mutex); 1114 cfi_udelay(1); 1115 mutex_lock(&chip->mutex); 1116 } 1117 1118 /* Done and happy. */ 1119 chip->state = FL_STATUS; 1120 DISABLE_VPP(map); 1121 wake_up(&chip->wq); 1122 mutex_unlock(&chip->mutex); 1123 return 0; 1124 } 1125 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1126 { 1127 struct map_info *map = mtd->priv; 1128 struct cfi_private *cfi = map->fldrv_priv; 1129 unsigned long adr; 1130 int chipnum, ret = 0; 1131 #ifdef DEBUG_LOCK_BITS 1132 int ofs_factor = cfi->interleave * cfi->device_type; 1133 #endif 1134 1135 if (ofs & (mtd->erasesize - 1)) 1136 return -EINVAL; 1137 1138 if (len & (mtd->erasesize -1)) 1139 return -EINVAL; 1140 1141 chipnum = ofs >> cfi->chipshift; 1142 adr = ofs - (chipnum << cfi->chipshift); 1143 1144 while(len) { 1145 1146 #ifdef DEBUG_LOCK_BITS 1147 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1148 printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); 1149 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1150 #endif 1151 1152 ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr); 1153 1154 #ifdef DEBUG_LOCK_BITS 1155 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1156 printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); 1157 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1158 #endif 1159 1160 if (ret) 1161 return ret; 1162 1163 adr += mtd->erasesize; 1164 len -= mtd->erasesize; 1165 1166 if (adr >> cfi->chipshift) { 1167 adr = 0; 1168 chipnum++; 1169 1170 if (chipnum >= cfi->numchips) 1171 break; 1172 } 1173 } 1174 return 0; 1175 } 1176 static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) 1177 { 1178 struct cfi_private *cfi = map->fldrv_priv; 1179 map_word status, status_OK; 1180 unsigned long timeo = jiffies + HZ; 1181 DECLARE_WAITQUEUE(wait, current); 1182 1183 adr += chip->start; 1184 1185 /* Let's determine this according to the interleave only once */ 1186 status_OK = CMD(0x80); 1187 1188 timeo = jiffies + HZ; 1189 retry: 1190 mutex_lock(&chip->mutex); 1191 1192 /* Check that the chip's ready to talk to us. */ 1193 switch (chip->state) { 1194 case FL_CFI_QUERY: 1195 case FL_JEDEC_QUERY: 1196 case FL_READY: 1197 map_write(map, CMD(0x70), adr); 1198 chip->state = FL_STATUS; 1199 1200 case FL_STATUS: 1201 status = map_read(map, adr); 1202 if (map_word_andequal(map, status, status_OK, status_OK)) 1203 break; 1204 1205 /* Urgh. Chip not yet ready to talk to us. */ 1206 if (time_after(jiffies, timeo)) { 1207 mutex_unlock(&chip->mutex); 1208 printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n"); 1209 return -EIO; 1210 } 1211 1212 /* Latency issues. Drop the lock, wait a while and retry */ 1213 mutex_unlock(&chip->mutex); 1214 cfi_udelay(1); 1215 goto retry; 1216 1217 default: 1218 /* Stick ourselves on a wait queue to be woken when 1219 someone changes the status */ 1220 set_current_state(TASK_UNINTERRUPTIBLE); 1221 add_wait_queue(&chip->wq, &wait); 1222 mutex_unlock(&chip->mutex); 1223 schedule(); 1224 remove_wait_queue(&chip->wq, &wait); 1225 timeo = jiffies + HZ; 1226 goto retry; 1227 } 1228 1229 ENABLE_VPP(map); 1230 map_write(map, CMD(0x60), adr); 1231 map_write(map, CMD(0xD0), adr); 1232 chip->state = FL_UNLOCKING; 1233 1234 mutex_unlock(&chip->mutex); 1235 msleep(1000); 1236 mutex_lock(&chip->mutex); 1237 1238 /* FIXME. Use a timer to check this, and return immediately. */ 1239 /* Once the state machine's known to be working I'll do that */ 1240 1241 timeo = jiffies + (HZ*2); 1242 for (;;) { 1243 1244 status = map_read(map, adr); 1245 if (map_word_andequal(map, status, status_OK, status_OK)) 1246 break; 1247 1248 /* OK Still waiting */ 1249 if (time_after(jiffies, timeo)) { 1250 map_write(map, CMD(0x70), adr); 1251 chip->state = FL_STATUS; 1252 printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); 1253 DISABLE_VPP(map); 1254 mutex_unlock(&chip->mutex); 1255 return -EIO; 1256 } 1257 1258 /* Latency issues. Drop the unlock, wait a while and retry */ 1259 mutex_unlock(&chip->mutex); 1260 cfi_udelay(1); 1261 mutex_lock(&chip->mutex); 1262 } 1263 1264 /* Done and happy. */ 1265 chip->state = FL_STATUS; 1266 DISABLE_VPP(map); 1267 wake_up(&chip->wq); 1268 mutex_unlock(&chip->mutex); 1269 return 0; 1270 } 1271 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1272 { 1273 struct map_info *map = mtd->priv; 1274 struct cfi_private *cfi = map->fldrv_priv; 1275 unsigned long adr; 1276 int chipnum, ret = 0; 1277 #ifdef DEBUG_LOCK_BITS 1278 int ofs_factor = cfi->interleave * cfi->device_type; 1279 #endif 1280 1281 chipnum = ofs >> cfi->chipshift; 1282 adr = ofs - (chipnum << cfi->chipshift); 1283 1284 #ifdef DEBUG_LOCK_BITS 1285 { 1286 unsigned long temp_adr = adr; 1287 unsigned long temp_len = len; 1288 1289 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1290 while (temp_len) { 1291 printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor))); 1292 temp_adr += mtd->erasesize; 1293 temp_len -= mtd->erasesize; 1294 } 1295 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1296 } 1297 #endif 1298 1299 ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr); 1300 1301 #ifdef DEBUG_LOCK_BITS 1302 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1303 printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); 1304 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1305 #endif 1306 1307 return ret; 1308 } 1309 1310 static int cfi_staa_suspend(struct mtd_info *mtd) 1311 { 1312 struct map_info *map = mtd->priv; 1313 struct cfi_private *cfi = map->fldrv_priv; 1314 int i; 1315 struct flchip *chip; 1316 int ret = 0; 1317 1318 for (i=0; !ret && i<cfi->numchips; i++) { 1319 chip = &cfi->chips[i]; 1320 1321 mutex_lock(&chip->mutex); 1322 1323 switch(chip->state) { 1324 case FL_READY: 1325 case FL_STATUS: 1326 case FL_CFI_QUERY: 1327 case FL_JEDEC_QUERY: 1328 chip->oldstate = chip->state; 1329 chip->state = FL_PM_SUSPENDED; 1330 /* No need to wake_up() on this state change - 1331 * as the whole point is that nobody can do anything 1332 * with the chip now anyway. 1333 */ 1334 case FL_PM_SUSPENDED: 1335 break; 1336 1337 default: 1338 ret = -EAGAIN; 1339 break; 1340 } 1341 mutex_unlock(&chip->mutex); 1342 } 1343 1344 /* Unlock the chips again */ 1345 1346 if (ret) { 1347 for (i--; i >=0; i--) { 1348 chip = &cfi->chips[i]; 1349 1350 mutex_lock(&chip->mutex); 1351 1352 if (chip->state == FL_PM_SUSPENDED) { 1353 /* No need to force it into a known state here, 1354 because we're returning failure, and it didn't 1355 get power cycled */ 1356 chip->state = chip->oldstate; 1357 wake_up(&chip->wq); 1358 } 1359 mutex_unlock(&chip->mutex); 1360 } 1361 } 1362 1363 return ret; 1364 } 1365 1366 static void cfi_staa_resume(struct mtd_info *mtd) 1367 { 1368 struct map_info *map = mtd->priv; 1369 struct cfi_private *cfi = map->fldrv_priv; 1370 int i; 1371 struct flchip *chip; 1372 1373 for (i=0; i<cfi->numchips; i++) { 1374 1375 chip = &cfi->chips[i]; 1376 1377 mutex_lock(&chip->mutex); 1378 1379 /* Go to known state. Chip may have been power cycled */ 1380 if (chip->state == FL_PM_SUSPENDED) { 1381 map_write(map, CMD(0xFF), 0); 1382 chip->state = FL_READY; 1383 wake_up(&chip->wq); 1384 } 1385 1386 mutex_unlock(&chip->mutex); 1387 } 1388 } 1389 1390 static void cfi_staa_destroy(struct mtd_info *mtd) 1391 { 1392 struct map_info *map = mtd->priv; 1393 struct cfi_private *cfi = map->fldrv_priv; 1394 kfree(cfi->cmdset_priv); 1395 kfree(cfi); 1396 } 1397 1398 MODULE_LICENSE("GPL"); 1399