1 /* 2 * Common Flash Interface support: 3 * ST Advanced Architecture Command Set (ID 0x0020) 4 * 5 * (C) 2000 Red Hat. GPL'd 6 * 7 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net> 8 * - completely revamped method functions so they are aware and 9 * independent of the flash geometry (buswidth, interleave, etc.) 10 * - scalability vs code size is completely set at compile-time 11 * (see include/linux/mtd/cfi.h for selection) 12 * - optimized write buffer method 13 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others 14 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture 15 * (command set 0x0020) 16 * - added a writev function 17 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de> 18 * - Plugged memory leak in cfi_staa_writev(). 19 */ 20 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/kernel.h> 24 #include <linux/sched.h> 25 #include <linux/init.h> 26 #include <asm/io.h> 27 #include <asm/byteorder.h> 28 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/delay.h> 32 #include <linux/interrupt.h> 33 #include <linux/mtd/map.h> 34 #include <linux/mtd/cfi.h> 35 #include <linux/mtd/mtd.h> 36 37 38 static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); 39 static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); 40 static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, 41 unsigned long count, loff_t to, size_t *retlen); 42 static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *); 43 static void cfi_staa_sync (struct mtd_info *); 44 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 45 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 46 static int cfi_staa_suspend (struct mtd_info *); 47 static void cfi_staa_resume (struct mtd_info *); 48 49 static void cfi_staa_destroy(struct mtd_info *); 50 51 struct mtd_info *cfi_cmdset_0020(struct map_info *, int); 52 53 static struct mtd_info *cfi_staa_setup (struct map_info *); 54 55 static struct mtd_chip_driver cfi_staa_chipdrv = { 56 .probe = NULL, /* Not usable directly */ 57 .destroy = cfi_staa_destroy, 58 .name = "cfi_cmdset_0020", 59 .module = THIS_MODULE 60 }; 61 62 /* #define DEBUG_LOCK_BITS */ 63 //#define DEBUG_CFI_FEATURES 64 65 #ifdef DEBUG_CFI_FEATURES 66 static void cfi_tell_features(struct cfi_pri_intelext *extp) 67 { 68 int i; 69 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); 70 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); 71 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); 72 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); 73 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); 74 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); 75 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); 76 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); 77 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); 78 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); 79 for (i=9; i<32; i++) { 80 if (extp->FeatureSupport & (1<<i)) 81 printk(" - Unknown Bit %X: supported\n", i); 82 } 83 84 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); 85 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); 86 for (i=1; i<8; i++) { 87 if (extp->SuspendCmdSupport & (1<<i)) 88 printk(" - Unknown Bit %X: supported\n", i); 89 } 90 91 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); 92 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); 93 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); 94 for (i=2; i<16; i++) { 95 if (extp->BlkStatusRegMask & (1<<i)) 96 printk(" - Unknown Bit %X Active: yes\n",i); 97 } 98 99 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", 100 extp->VccOptimal >> 8, extp->VccOptimal & 0xf); 101 if (extp->VppOptimal) 102 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", 103 extp->VppOptimal >> 8, extp->VppOptimal & 0xf); 104 } 105 #endif 106 107 /* This routine is made available to other mtd code via 108 * inter_module_register. It must only be accessed through 109 * inter_module_get which will bump the use count of this module. The 110 * addresses passed back in cfi are valid as long as the use count of 111 * this module is non-zero, i.e. between inter_module_get and 112 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. 113 */ 114 struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary) 115 { 116 struct cfi_private *cfi = map->fldrv_priv; 117 int i; 118 119 if (cfi->cfi_mode) { 120 /* 121 * It's a real CFI chip, not one for which the probe 122 * routine faked a CFI structure. So we read the feature 123 * table from it. 124 */ 125 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; 126 struct cfi_pri_intelext *extp; 127 128 extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics"); 129 if (!extp) 130 return NULL; 131 132 if (extp->MajorVersion != '1' || 133 (extp->MinorVersion < '0' || extp->MinorVersion > '3')) { 134 printk(KERN_ERR " Unknown ST Microelectronics" 135 " Extended Query version %c.%c.\n", 136 extp->MajorVersion, extp->MinorVersion); 137 kfree(extp); 138 return NULL; 139 } 140 141 /* Do some byteswapping if necessary */ 142 extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport); 143 extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask); 144 145 #ifdef DEBUG_CFI_FEATURES 146 /* Tell the user about it in lots of lovely detail */ 147 cfi_tell_features(extp); 148 #endif 149 150 /* Install our own private info structure */ 151 cfi->cmdset_priv = extp; 152 } 153 154 for (i=0; i< cfi->numchips; i++) { 155 cfi->chips[i].word_write_time = 128; 156 cfi->chips[i].buffer_write_time = 128; 157 cfi->chips[i].erase_time = 1024; 158 cfi->chips[i].ref_point_counter = 0; 159 init_waitqueue_head(&(cfi->chips[i].wq)); 160 } 161 162 return cfi_staa_setup(map); 163 } 164 EXPORT_SYMBOL_GPL(cfi_cmdset_0020); 165 166 static struct mtd_info *cfi_staa_setup(struct map_info *map) 167 { 168 struct cfi_private *cfi = map->fldrv_priv; 169 struct mtd_info *mtd; 170 unsigned long offset = 0; 171 int i,j; 172 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; 173 174 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); 175 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); 176 177 if (!mtd) { 178 printk(KERN_ERR "Failed to allocate memory for MTD device\n"); 179 kfree(cfi->cmdset_priv); 180 return NULL; 181 } 182 183 mtd->priv = map; 184 mtd->type = MTD_NORFLASH; 185 mtd->size = devsize * cfi->numchips; 186 187 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; 188 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) 189 * mtd->numeraseregions, GFP_KERNEL); 190 if (!mtd->eraseregions) { 191 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); 192 kfree(cfi->cmdset_priv); 193 kfree(mtd); 194 return NULL; 195 } 196 197 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { 198 unsigned long ernum, ersize; 199 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; 200 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; 201 202 if (mtd->erasesize < ersize) { 203 mtd->erasesize = ersize; 204 } 205 for (j=0; j<cfi->numchips; j++) { 206 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; 207 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; 208 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; 209 } 210 offset += (ersize * ernum); 211 } 212 213 if (offset != devsize) { 214 /* Argh */ 215 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); 216 kfree(mtd->eraseregions); 217 kfree(cfi->cmdset_priv); 218 kfree(mtd); 219 return NULL; 220 } 221 222 for (i=0; i<mtd->numeraseregions;i++){ 223 printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n", 224 i, (unsigned long long)mtd->eraseregions[i].offset, 225 mtd->eraseregions[i].erasesize, 226 mtd->eraseregions[i].numblocks); 227 } 228 229 /* Also select the correct geometry setup too */ 230 mtd->erase = cfi_staa_erase_varsize; 231 mtd->read = cfi_staa_read; 232 mtd->write = cfi_staa_write_buffers; 233 mtd->writev = cfi_staa_writev; 234 mtd->sync = cfi_staa_sync; 235 mtd->lock = cfi_staa_lock; 236 mtd->unlock = cfi_staa_unlock; 237 mtd->suspend = cfi_staa_suspend; 238 mtd->resume = cfi_staa_resume; 239 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE; 240 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */ 241 mtd->writebufsize = 1 << cfi->cfiq->MaxBufWriteSize; 242 map->fldrv = &cfi_staa_chipdrv; 243 __module_get(THIS_MODULE); 244 mtd->name = map->name; 245 return mtd; 246 } 247 248 249 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) 250 { 251 map_word status, status_OK; 252 unsigned long timeo; 253 DECLARE_WAITQUEUE(wait, current); 254 int suspended = 0; 255 unsigned long cmd_addr; 256 struct cfi_private *cfi = map->fldrv_priv; 257 258 adr += chip->start; 259 260 /* Ensure cmd read/writes are aligned. */ 261 cmd_addr = adr & ~(map_bankwidth(map)-1); 262 263 /* Let's determine this according to the interleave only once */ 264 status_OK = CMD(0x80); 265 266 timeo = jiffies + HZ; 267 retry: 268 mutex_lock(&chip->mutex); 269 270 /* Check that the chip's ready to talk to us. 271 * If it's in FL_ERASING state, suspend it and make it talk now. 272 */ 273 switch (chip->state) { 274 case FL_ERASING: 275 if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2)) 276 goto sleep; /* We don't support erase suspend */ 277 278 map_write (map, CMD(0xb0), cmd_addr); 279 /* If the flash has finished erasing, then 'erase suspend' 280 * appears to make some (28F320) flash devices switch to 281 * 'read' mode. Make sure that we switch to 'read status' 282 * mode so we get the right data. --rmk 283 */ 284 map_write(map, CMD(0x70), cmd_addr); 285 chip->oldstate = FL_ERASING; 286 chip->state = FL_ERASE_SUSPENDING; 287 // printk("Erase suspending at 0x%lx\n", cmd_addr); 288 for (;;) { 289 status = map_read(map, cmd_addr); 290 if (map_word_andequal(map, status, status_OK, status_OK)) 291 break; 292 293 if (time_after(jiffies, timeo)) { 294 /* Urgh */ 295 map_write(map, CMD(0xd0), cmd_addr); 296 /* make sure we're in 'read status' mode */ 297 map_write(map, CMD(0x70), cmd_addr); 298 chip->state = FL_ERASING; 299 mutex_unlock(&chip->mutex); 300 printk(KERN_ERR "Chip not ready after erase " 301 "suspended: status = 0x%lx\n", status.x[0]); 302 return -EIO; 303 } 304 305 mutex_unlock(&chip->mutex); 306 cfi_udelay(1); 307 mutex_lock(&chip->mutex); 308 } 309 310 suspended = 1; 311 map_write(map, CMD(0xff), cmd_addr); 312 chip->state = FL_READY; 313 break; 314 315 #if 0 316 case FL_WRITING: 317 /* Not quite yet */ 318 #endif 319 320 case FL_READY: 321 break; 322 323 case FL_CFI_QUERY: 324 case FL_JEDEC_QUERY: 325 map_write(map, CMD(0x70), cmd_addr); 326 chip->state = FL_STATUS; 327 328 case FL_STATUS: 329 status = map_read(map, cmd_addr); 330 if (map_word_andequal(map, status, status_OK, status_OK)) { 331 map_write(map, CMD(0xff), cmd_addr); 332 chip->state = FL_READY; 333 break; 334 } 335 336 /* Urgh. Chip not yet ready to talk to us. */ 337 if (time_after(jiffies, timeo)) { 338 mutex_unlock(&chip->mutex); 339 printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]); 340 return -EIO; 341 } 342 343 /* Latency issues. Drop the lock, wait a while and retry */ 344 mutex_unlock(&chip->mutex); 345 cfi_udelay(1); 346 goto retry; 347 348 default: 349 sleep: 350 /* Stick ourselves on a wait queue to be woken when 351 someone changes the status */ 352 set_current_state(TASK_UNINTERRUPTIBLE); 353 add_wait_queue(&chip->wq, &wait); 354 mutex_unlock(&chip->mutex); 355 schedule(); 356 remove_wait_queue(&chip->wq, &wait); 357 timeo = jiffies + HZ; 358 goto retry; 359 } 360 361 map_copy_from(map, buf, adr, len); 362 363 if (suspended) { 364 chip->state = chip->oldstate; 365 /* What if one interleaved chip has finished and the 366 other hasn't? The old code would leave the finished 367 one in READY mode. That's bad, and caused -EROFS 368 errors to be returned from do_erase_oneblock because 369 that's the only bit it checked for at the time. 370 As the state machine appears to explicitly allow 371 sending the 0x70 (Read Status) command to an erasing 372 chip and expecting it to be ignored, that's what we 373 do. */ 374 map_write(map, CMD(0xd0), cmd_addr); 375 map_write(map, CMD(0x70), cmd_addr); 376 } 377 378 wake_up(&chip->wq); 379 mutex_unlock(&chip->mutex); 380 return 0; 381 } 382 383 static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) 384 { 385 struct map_info *map = mtd->priv; 386 struct cfi_private *cfi = map->fldrv_priv; 387 unsigned long ofs; 388 int chipnum; 389 int ret = 0; 390 391 /* ofs: offset within the first chip that the first read should start */ 392 chipnum = (from >> cfi->chipshift); 393 ofs = from - (chipnum << cfi->chipshift); 394 395 *retlen = 0; 396 397 while (len) { 398 unsigned long thislen; 399 400 if (chipnum >= cfi->numchips) 401 break; 402 403 if ((len + ofs -1) >> cfi->chipshift) 404 thislen = (1<<cfi->chipshift) - ofs; 405 else 406 thislen = len; 407 408 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); 409 if (ret) 410 break; 411 412 *retlen += thislen; 413 len -= thislen; 414 buf += thislen; 415 416 ofs = 0; 417 chipnum++; 418 } 419 return ret; 420 } 421 422 static inline int do_write_buffer(struct map_info *map, struct flchip *chip, 423 unsigned long adr, const u_char *buf, int len) 424 { 425 struct cfi_private *cfi = map->fldrv_priv; 426 map_word status, status_OK; 427 unsigned long cmd_adr, timeo; 428 DECLARE_WAITQUEUE(wait, current); 429 int wbufsize, z; 430 431 /* M58LW064A requires bus alignment for buffer wriets -- saw */ 432 if (adr & (map_bankwidth(map)-1)) 433 return -EINVAL; 434 435 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 436 adr += chip->start; 437 cmd_adr = adr & ~(wbufsize-1); 438 439 /* Let's determine this according to the interleave only once */ 440 status_OK = CMD(0x80); 441 442 timeo = jiffies + HZ; 443 retry: 444 445 #ifdef DEBUG_CFI_FEATURES 446 printk("%s: chip->state[%d]\n", __func__, chip->state); 447 #endif 448 mutex_lock(&chip->mutex); 449 450 /* Check that the chip's ready to talk to us. 451 * Later, we can actually think about interrupting it 452 * if it's in FL_ERASING state. 453 * Not just yet, though. 454 */ 455 switch (chip->state) { 456 case FL_READY: 457 break; 458 459 case FL_CFI_QUERY: 460 case FL_JEDEC_QUERY: 461 map_write(map, CMD(0x70), cmd_adr); 462 chip->state = FL_STATUS; 463 #ifdef DEBUG_CFI_FEATURES 464 printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr)); 465 #endif 466 467 case FL_STATUS: 468 status = map_read(map, cmd_adr); 469 if (map_word_andequal(map, status, status_OK, status_OK)) 470 break; 471 /* Urgh. Chip not yet ready to talk to us. */ 472 if (time_after(jiffies, timeo)) { 473 mutex_unlock(&chip->mutex); 474 printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n", 475 status.x[0], map_read(map, cmd_adr).x[0]); 476 return -EIO; 477 } 478 479 /* Latency issues. Drop the lock, wait a while and retry */ 480 mutex_unlock(&chip->mutex); 481 cfi_udelay(1); 482 goto retry; 483 484 default: 485 /* Stick ourselves on a wait queue to be woken when 486 someone changes the status */ 487 set_current_state(TASK_UNINTERRUPTIBLE); 488 add_wait_queue(&chip->wq, &wait); 489 mutex_unlock(&chip->mutex); 490 schedule(); 491 remove_wait_queue(&chip->wq, &wait); 492 timeo = jiffies + HZ; 493 goto retry; 494 } 495 496 ENABLE_VPP(map); 497 map_write(map, CMD(0xe8), cmd_adr); 498 chip->state = FL_WRITING_TO_BUFFER; 499 500 z = 0; 501 for (;;) { 502 status = map_read(map, cmd_adr); 503 if (map_word_andequal(map, status, status_OK, status_OK)) 504 break; 505 506 mutex_unlock(&chip->mutex); 507 cfi_udelay(1); 508 mutex_lock(&chip->mutex); 509 510 if (++z > 100) { 511 /* Argh. Not ready for write to buffer */ 512 DISABLE_VPP(map); 513 map_write(map, CMD(0x70), cmd_adr); 514 chip->state = FL_STATUS; 515 mutex_unlock(&chip->mutex); 516 printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]); 517 return -EIO; 518 } 519 } 520 521 /* Write length of data to come */ 522 map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr ); 523 524 /* Write data */ 525 for (z = 0; z < len; 526 z += map_bankwidth(map), buf += map_bankwidth(map)) { 527 map_word d; 528 d = map_word_load(map, buf); 529 map_write(map, d, adr+z); 530 } 531 /* GO GO GO */ 532 map_write(map, CMD(0xd0), cmd_adr); 533 chip->state = FL_WRITING; 534 535 mutex_unlock(&chip->mutex); 536 cfi_udelay(chip->buffer_write_time); 537 mutex_lock(&chip->mutex); 538 539 timeo = jiffies + (HZ/2); 540 z = 0; 541 for (;;) { 542 if (chip->state != FL_WRITING) { 543 /* Someone's suspended the write. Sleep */ 544 set_current_state(TASK_UNINTERRUPTIBLE); 545 add_wait_queue(&chip->wq, &wait); 546 mutex_unlock(&chip->mutex); 547 schedule(); 548 remove_wait_queue(&chip->wq, &wait); 549 timeo = jiffies + (HZ / 2); /* FIXME */ 550 mutex_lock(&chip->mutex); 551 continue; 552 } 553 554 status = map_read(map, cmd_adr); 555 if (map_word_andequal(map, status, status_OK, status_OK)) 556 break; 557 558 /* OK Still waiting */ 559 if (time_after(jiffies, timeo)) { 560 /* clear status */ 561 map_write(map, CMD(0x50), cmd_adr); 562 /* put back into read status register mode */ 563 map_write(map, CMD(0x70), adr); 564 chip->state = FL_STATUS; 565 DISABLE_VPP(map); 566 mutex_unlock(&chip->mutex); 567 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); 568 return -EIO; 569 } 570 571 /* Latency issues. Drop the lock, wait a while and retry */ 572 mutex_unlock(&chip->mutex); 573 cfi_udelay(1); 574 z++; 575 mutex_lock(&chip->mutex); 576 } 577 if (!z) { 578 chip->buffer_write_time--; 579 if (!chip->buffer_write_time) 580 chip->buffer_write_time++; 581 } 582 if (z > 1) 583 chip->buffer_write_time++; 584 585 /* Done and happy. */ 586 DISABLE_VPP(map); 587 chip->state = FL_STATUS; 588 589 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */ 590 if (map_word_bitsset(map, status, CMD(0x3a))) { 591 #ifdef DEBUG_CFI_FEATURES 592 printk("%s: 2 status[%lx]\n", __func__, status.x[0]); 593 #endif 594 /* clear status */ 595 map_write(map, CMD(0x50), cmd_adr); 596 /* put back into read status register mode */ 597 map_write(map, CMD(0x70), adr); 598 wake_up(&chip->wq); 599 mutex_unlock(&chip->mutex); 600 return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO; 601 } 602 wake_up(&chip->wq); 603 mutex_unlock(&chip->mutex); 604 605 return 0; 606 } 607 608 static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to, 609 size_t len, size_t *retlen, const u_char *buf) 610 { 611 struct map_info *map = mtd->priv; 612 struct cfi_private *cfi = map->fldrv_priv; 613 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 614 int ret = 0; 615 int chipnum; 616 unsigned long ofs; 617 618 *retlen = 0; 619 if (!len) 620 return 0; 621 622 chipnum = to >> cfi->chipshift; 623 ofs = to - (chipnum << cfi->chipshift); 624 625 #ifdef DEBUG_CFI_FEATURES 626 printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map)); 627 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize); 628 printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len); 629 #endif 630 631 /* Write buffer is worth it only if more than one word to write... */ 632 while (len > 0) { 633 /* We must not cross write block boundaries */ 634 int size = wbufsize - (ofs & (wbufsize-1)); 635 636 if (size > len) 637 size = len; 638 639 ret = do_write_buffer(map, &cfi->chips[chipnum], 640 ofs, buf, size); 641 if (ret) 642 return ret; 643 644 ofs += size; 645 buf += size; 646 (*retlen) += size; 647 len -= size; 648 649 if (ofs >> cfi->chipshift) { 650 chipnum ++; 651 ofs = 0; 652 if (chipnum == cfi->numchips) 653 return 0; 654 } 655 } 656 657 return 0; 658 } 659 660 /* 661 * Writev for ECC-Flashes is a little more complicated. We need to maintain 662 * a small buffer for this. 663 * XXX: If the buffer size is not a multiple of 2, this will break 664 */ 665 #define ECCBUF_SIZE (mtd->writesize) 666 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1)) 667 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1)) 668 static int 669 cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, 670 unsigned long count, loff_t to, size_t *retlen) 671 { 672 unsigned long i; 673 size_t totlen = 0, thislen; 674 int ret = 0; 675 size_t buflen = 0; 676 static char *buffer; 677 678 if (!ECCBUF_SIZE) { 679 /* We should fall back to a general writev implementation. 680 * Until that is written, just break. 681 */ 682 return -EIO; 683 } 684 buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL); 685 if (!buffer) 686 return -ENOMEM; 687 688 for (i=0; i<count; i++) { 689 size_t elem_len = vecs[i].iov_len; 690 void *elem_base = vecs[i].iov_base; 691 if (!elem_len) /* FIXME: Might be unnecessary. Check that */ 692 continue; 693 if (buflen) { /* cut off head */ 694 if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */ 695 memcpy(buffer+buflen, elem_base, elem_len); 696 buflen += elem_len; 697 continue; 698 } 699 memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen); 700 ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer); 701 totlen += thislen; 702 if (ret || thislen != ECCBUF_SIZE) 703 goto write_error; 704 elem_len -= thislen-buflen; 705 elem_base += thislen-buflen; 706 to += ECCBUF_SIZE; 707 } 708 if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */ 709 ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base); 710 totlen += thislen; 711 if (ret || thislen != ECCBUF_DIV(elem_len)) 712 goto write_error; 713 to += thislen; 714 } 715 buflen = ECCBUF_MOD(elem_len); /* cut off tail */ 716 if (buflen) { 717 memset(buffer, 0xff, ECCBUF_SIZE); 718 memcpy(buffer, elem_base + thislen, buflen); 719 } 720 } 721 if (buflen) { /* flush last page, even if not full */ 722 /* This is sometimes intended behaviour, really */ 723 ret = mtd->write(mtd, to, buflen, &thislen, buffer); 724 totlen += thislen; 725 if (ret || thislen != ECCBUF_SIZE) 726 goto write_error; 727 } 728 write_error: 729 if (retlen) 730 *retlen = totlen; 731 kfree(buffer); 732 return ret; 733 } 734 735 736 static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) 737 { 738 struct cfi_private *cfi = map->fldrv_priv; 739 map_word status, status_OK; 740 unsigned long timeo; 741 int retries = 3; 742 DECLARE_WAITQUEUE(wait, current); 743 int ret = 0; 744 745 adr += chip->start; 746 747 /* Let's determine this according to the interleave only once */ 748 status_OK = CMD(0x80); 749 750 timeo = jiffies + HZ; 751 retry: 752 mutex_lock(&chip->mutex); 753 754 /* Check that the chip's ready to talk to us. */ 755 switch (chip->state) { 756 case FL_CFI_QUERY: 757 case FL_JEDEC_QUERY: 758 case FL_READY: 759 map_write(map, CMD(0x70), adr); 760 chip->state = FL_STATUS; 761 762 case FL_STATUS: 763 status = map_read(map, adr); 764 if (map_word_andequal(map, status, status_OK, status_OK)) 765 break; 766 767 /* Urgh. Chip not yet ready to talk to us. */ 768 if (time_after(jiffies, timeo)) { 769 mutex_unlock(&chip->mutex); 770 printk(KERN_ERR "waiting for chip to be ready timed out in erase\n"); 771 return -EIO; 772 } 773 774 /* Latency issues. Drop the lock, wait a while and retry */ 775 mutex_unlock(&chip->mutex); 776 cfi_udelay(1); 777 goto retry; 778 779 default: 780 /* Stick ourselves on a wait queue to be woken when 781 someone changes the status */ 782 set_current_state(TASK_UNINTERRUPTIBLE); 783 add_wait_queue(&chip->wq, &wait); 784 mutex_unlock(&chip->mutex); 785 schedule(); 786 remove_wait_queue(&chip->wq, &wait); 787 timeo = jiffies + HZ; 788 goto retry; 789 } 790 791 ENABLE_VPP(map); 792 /* Clear the status register first */ 793 map_write(map, CMD(0x50), adr); 794 795 /* Now erase */ 796 map_write(map, CMD(0x20), adr); 797 map_write(map, CMD(0xD0), adr); 798 chip->state = FL_ERASING; 799 800 mutex_unlock(&chip->mutex); 801 msleep(1000); 802 mutex_lock(&chip->mutex); 803 804 /* FIXME. Use a timer to check this, and return immediately. */ 805 /* Once the state machine's known to be working I'll do that */ 806 807 timeo = jiffies + (HZ*20); 808 for (;;) { 809 if (chip->state != FL_ERASING) { 810 /* Someone's suspended the erase. Sleep */ 811 set_current_state(TASK_UNINTERRUPTIBLE); 812 add_wait_queue(&chip->wq, &wait); 813 mutex_unlock(&chip->mutex); 814 schedule(); 815 remove_wait_queue(&chip->wq, &wait); 816 timeo = jiffies + (HZ*20); /* FIXME */ 817 mutex_lock(&chip->mutex); 818 continue; 819 } 820 821 status = map_read(map, adr); 822 if (map_word_andequal(map, status, status_OK, status_OK)) 823 break; 824 825 /* OK Still waiting */ 826 if (time_after(jiffies, timeo)) { 827 map_write(map, CMD(0x70), adr); 828 chip->state = FL_STATUS; 829 printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); 830 DISABLE_VPP(map); 831 mutex_unlock(&chip->mutex); 832 return -EIO; 833 } 834 835 /* Latency issues. Drop the lock, wait a while and retry */ 836 mutex_unlock(&chip->mutex); 837 cfi_udelay(1); 838 mutex_lock(&chip->mutex); 839 } 840 841 DISABLE_VPP(map); 842 ret = 0; 843 844 /* We've broken this before. It doesn't hurt to be safe */ 845 map_write(map, CMD(0x70), adr); 846 chip->state = FL_STATUS; 847 status = map_read(map, adr); 848 849 /* check for lock bit */ 850 if (map_word_bitsset(map, status, CMD(0x3a))) { 851 unsigned char chipstatus = status.x[0]; 852 if (!map_word_equal(map, status, CMD(chipstatus))) { 853 int i, w; 854 for (w=0; w<map_words(map); w++) { 855 for (i = 0; i<cfi_interleave(cfi); i++) { 856 chipstatus |= status.x[w] >> (cfi->device_type * 8); 857 } 858 } 859 printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", 860 status.x[0], chipstatus); 861 } 862 /* Reset the error bits */ 863 map_write(map, CMD(0x50), adr); 864 map_write(map, CMD(0x70), adr); 865 866 if ((chipstatus & 0x30) == 0x30) { 867 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); 868 ret = -EIO; 869 } else if (chipstatus & 0x02) { 870 /* Protection bit set */ 871 ret = -EROFS; 872 } else if (chipstatus & 0x8) { 873 /* Voltage */ 874 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); 875 ret = -EIO; 876 } else if (chipstatus & 0x20) { 877 if (retries--) { 878 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); 879 timeo = jiffies + HZ; 880 chip->state = FL_STATUS; 881 mutex_unlock(&chip->mutex); 882 goto retry; 883 } 884 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); 885 ret = -EIO; 886 } 887 } 888 889 wake_up(&chip->wq); 890 mutex_unlock(&chip->mutex); 891 return ret; 892 } 893 894 static int cfi_staa_erase_varsize(struct mtd_info *mtd, 895 struct erase_info *instr) 896 { struct map_info *map = mtd->priv; 897 struct cfi_private *cfi = map->fldrv_priv; 898 unsigned long adr, len; 899 int chipnum, ret = 0; 900 int i, first; 901 struct mtd_erase_region_info *regions = mtd->eraseregions; 902 903 if (instr->addr > mtd->size) 904 return -EINVAL; 905 906 if ((instr->len + instr->addr) > mtd->size) 907 return -EINVAL; 908 909 /* Check that both start and end of the requested erase are 910 * aligned with the erasesize at the appropriate addresses. 911 */ 912 913 i = 0; 914 915 /* Skip all erase regions which are ended before the start of 916 the requested erase. Actually, to save on the calculations, 917 we skip to the first erase region which starts after the 918 start of the requested erase, and then go back one. 919 */ 920 921 while (i < mtd->numeraseregions && instr->addr >= regions[i].offset) 922 i++; 923 i--; 924 925 /* OK, now i is pointing at the erase region in which this 926 erase request starts. Check the start of the requested 927 erase range is aligned with the erase size which is in 928 effect here. 929 */ 930 931 if (instr->addr & (regions[i].erasesize-1)) 932 return -EINVAL; 933 934 /* Remember the erase region we start on */ 935 first = i; 936 937 /* Next, check that the end of the requested erase is aligned 938 * with the erase region at that address. 939 */ 940 941 while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset) 942 i++; 943 944 /* As before, drop back one to point at the region in which 945 the address actually falls 946 */ 947 i--; 948 949 if ((instr->addr + instr->len) & (regions[i].erasesize-1)) 950 return -EINVAL; 951 952 chipnum = instr->addr >> cfi->chipshift; 953 adr = instr->addr - (chipnum << cfi->chipshift); 954 len = instr->len; 955 956 i=first; 957 958 while(len) { 959 ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); 960 961 if (ret) 962 return ret; 963 964 adr += regions[i].erasesize; 965 len -= regions[i].erasesize; 966 967 if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift))) 968 i++; 969 970 if (adr >> cfi->chipshift) { 971 adr = 0; 972 chipnum++; 973 974 if (chipnum >= cfi->numchips) 975 break; 976 } 977 } 978 979 instr->state = MTD_ERASE_DONE; 980 mtd_erase_callback(instr); 981 982 return 0; 983 } 984 985 static void cfi_staa_sync (struct mtd_info *mtd) 986 { 987 struct map_info *map = mtd->priv; 988 struct cfi_private *cfi = map->fldrv_priv; 989 int i; 990 struct flchip *chip; 991 int ret = 0; 992 DECLARE_WAITQUEUE(wait, current); 993 994 for (i=0; !ret && i<cfi->numchips; i++) { 995 chip = &cfi->chips[i]; 996 997 retry: 998 mutex_lock(&chip->mutex); 999 1000 switch(chip->state) { 1001 case FL_READY: 1002 case FL_STATUS: 1003 case FL_CFI_QUERY: 1004 case FL_JEDEC_QUERY: 1005 chip->oldstate = chip->state; 1006 chip->state = FL_SYNCING; 1007 /* No need to wake_up() on this state change - 1008 * as the whole point is that nobody can do anything 1009 * with the chip now anyway. 1010 */ 1011 case FL_SYNCING: 1012 mutex_unlock(&chip->mutex); 1013 break; 1014 1015 default: 1016 /* Not an idle state */ 1017 set_current_state(TASK_UNINTERRUPTIBLE); 1018 add_wait_queue(&chip->wq, &wait); 1019 1020 mutex_unlock(&chip->mutex); 1021 schedule(); 1022 remove_wait_queue(&chip->wq, &wait); 1023 1024 goto retry; 1025 } 1026 } 1027 1028 /* Unlock the chips again */ 1029 1030 for (i--; i >=0; i--) { 1031 chip = &cfi->chips[i]; 1032 1033 mutex_lock(&chip->mutex); 1034 1035 if (chip->state == FL_SYNCING) { 1036 chip->state = chip->oldstate; 1037 wake_up(&chip->wq); 1038 } 1039 mutex_unlock(&chip->mutex); 1040 } 1041 } 1042 1043 static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) 1044 { 1045 struct cfi_private *cfi = map->fldrv_priv; 1046 map_word status, status_OK; 1047 unsigned long timeo = jiffies + HZ; 1048 DECLARE_WAITQUEUE(wait, current); 1049 1050 adr += chip->start; 1051 1052 /* Let's determine this according to the interleave only once */ 1053 status_OK = CMD(0x80); 1054 1055 timeo = jiffies + HZ; 1056 retry: 1057 mutex_lock(&chip->mutex); 1058 1059 /* Check that the chip's ready to talk to us. */ 1060 switch (chip->state) { 1061 case FL_CFI_QUERY: 1062 case FL_JEDEC_QUERY: 1063 case FL_READY: 1064 map_write(map, CMD(0x70), adr); 1065 chip->state = FL_STATUS; 1066 1067 case FL_STATUS: 1068 status = map_read(map, adr); 1069 if (map_word_andequal(map, status, status_OK, status_OK)) 1070 break; 1071 1072 /* Urgh. Chip not yet ready to talk to us. */ 1073 if (time_after(jiffies, timeo)) { 1074 mutex_unlock(&chip->mutex); 1075 printk(KERN_ERR "waiting for chip to be ready timed out in lock\n"); 1076 return -EIO; 1077 } 1078 1079 /* Latency issues. Drop the lock, wait a while and retry */ 1080 mutex_unlock(&chip->mutex); 1081 cfi_udelay(1); 1082 goto retry; 1083 1084 default: 1085 /* Stick ourselves on a wait queue to be woken when 1086 someone changes the status */ 1087 set_current_state(TASK_UNINTERRUPTIBLE); 1088 add_wait_queue(&chip->wq, &wait); 1089 mutex_unlock(&chip->mutex); 1090 schedule(); 1091 remove_wait_queue(&chip->wq, &wait); 1092 timeo = jiffies + HZ; 1093 goto retry; 1094 } 1095 1096 ENABLE_VPP(map); 1097 map_write(map, CMD(0x60), adr); 1098 map_write(map, CMD(0x01), adr); 1099 chip->state = FL_LOCKING; 1100 1101 mutex_unlock(&chip->mutex); 1102 msleep(1000); 1103 mutex_lock(&chip->mutex); 1104 1105 /* FIXME. Use a timer to check this, and return immediately. */ 1106 /* Once the state machine's known to be working I'll do that */ 1107 1108 timeo = jiffies + (HZ*2); 1109 for (;;) { 1110 1111 status = map_read(map, adr); 1112 if (map_word_andequal(map, status, status_OK, status_OK)) 1113 break; 1114 1115 /* OK Still waiting */ 1116 if (time_after(jiffies, timeo)) { 1117 map_write(map, CMD(0x70), adr); 1118 chip->state = FL_STATUS; 1119 printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); 1120 DISABLE_VPP(map); 1121 mutex_unlock(&chip->mutex); 1122 return -EIO; 1123 } 1124 1125 /* Latency issues. Drop the lock, wait a while and retry */ 1126 mutex_unlock(&chip->mutex); 1127 cfi_udelay(1); 1128 mutex_lock(&chip->mutex); 1129 } 1130 1131 /* Done and happy. */ 1132 chip->state = FL_STATUS; 1133 DISABLE_VPP(map); 1134 wake_up(&chip->wq); 1135 mutex_unlock(&chip->mutex); 1136 return 0; 1137 } 1138 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1139 { 1140 struct map_info *map = mtd->priv; 1141 struct cfi_private *cfi = map->fldrv_priv; 1142 unsigned long adr; 1143 int chipnum, ret = 0; 1144 #ifdef DEBUG_LOCK_BITS 1145 int ofs_factor = cfi->interleave * cfi->device_type; 1146 #endif 1147 1148 if (ofs & (mtd->erasesize - 1)) 1149 return -EINVAL; 1150 1151 if (len & (mtd->erasesize -1)) 1152 return -EINVAL; 1153 1154 if ((len + ofs) > mtd->size) 1155 return -EINVAL; 1156 1157 chipnum = ofs >> cfi->chipshift; 1158 adr = ofs - (chipnum << cfi->chipshift); 1159 1160 while(len) { 1161 1162 #ifdef DEBUG_LOCK_BITS 1163 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1164 printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); 1165 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1166 #endif 1167 1168 ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr); 1169 1170 #ifdef DEBUG_LOCK_BITS 1171 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1172 printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); 1173 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1174 #endif 1175 1176 if (ret) 1177 return ret; 1178 1179 adr += mtd->erasesize; 1180 len -= mtd->erasesize; 1181 1182 if (adr >> cfi->chipshift) { 1183 adr = 0; 1184 chipnum++; 1185 1186 if (chipnum >= cfi->numchips) 1187 break; 1188 } 1189 } 1190 return 0; 1191 } 1192 static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) 1193 { 1194 struct cfi_private *cfi = map->fldrv_priv; 1195 map_word status, status_OK; 1196 unsigned long timeo = jiffies + HZ; 1197 DECLARE_WAITQUEUE(wait, current); 1198 1199 adr += chip->start; 1200 1201 /* Let's determine this according to the interleave only once */ 1202 status_OK = CMD(0x80); 1203 1204 timeo = jiffies + HZ; 1205 retry: 1206 mutex_lock(&chip->mutex); 1207 1208 /* Check that the chip's ready to talk to us. */ 1209 switch (chip->state) { 1210 case FL_CFI_QUERY: 1211 case FL_JEDEC_QUERY: 1212 case FL_READY: 1213 map_write(map, CMD(0x70), adr); 1214 chip->state = FL_STATUS; 1215 1216 case FL_STATUS: 1217 status = map_read(map, adr); 1218 if (map_word_andequal(map, status, status_OK, status_OK)) 1219 break; 1220 1221 /* Urgh. Chip not yet ready to talk to us. */ 1222 if (time_after(jiffies, timeo)) { 1223 mutex_unlock(&chip->mutex); 1224 printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n"); 1225 return -EIO; 1226 } 1227 1228 /* Latency issues. Drop the lock, wait a while and retry */ 1229 mutex_unlock(&chip->mutex); 1230 cfi_udelay(1); 1231 goto retry; 1232 1233 default: 1234 /* Stick ourselves on a wait queue to be woken when 1235 someone changes the status */ 1236 set_current_state(TASK_UNINTERRUPTIBLE); 1237 add_wait_queue(&chip->wq, &wait); 1238 mutex_unlock(&chip->mutex); 1239 schedule(); 1240 remove_wait_queue(&chip->wq, &wait); 1241 timeo = jiffies + HZ; 1242 goto retry; 1243 } 1244 1245 ENABLE_VPP(map); 1246 map_write(map, CMD(0x60), adr); 1247 map_write(map, CMD(0xD0), adr); 1248 chip->state = FL_UNLOCKING; 1249 1250 mutex_unlock(&chip->mutex); 1251 msleep(1000); 1252 mutex_lock(&chip->mutex); 1253 1254 /* FIXME. Use a timer to check this, and return immediately. */ 1255 /* Once the state machine's known to be working I'll do that */ 1256 1257 timeo = jiffies + (HZ*2); 1258 for (;;) { 1259 1260 status = map_read(map, adr); 1261 if (map_word_andequal(map, status, status_OK, status_OK)) 1262 break; 1263 1264 /* OK Still waiting */ 1265 if (time_after(jiffies, timeo)) { 1266 map_write(map, CMD(0x70), adr); 1267 chip->state = FL_STATUS; 1268 printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); 1269 DISABLE_VPP(map); 1270 mutex_unlock(&chip->mutex); 1271 return -EIO; 1272 } 1273 1274 /* Latency issues. Drop the unlock, wait a while and retry */ 1275 mutex_unlock(&chip->mutex); 1276 cfi_udelay(1); 1277 mutex_lock(&chip->mutex); 1278 } 1279 1280 /* Done and happy. */ 1281 chip->state = FL_STATUS; 1282 DISABLE_VPP(map); 1283 wake_up(&chip->wq); 1284 mutex_unlock(&chip->mutex); 1285 return 0; 1286 } 1287 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1288 { 1289 struct map_info *map = mtd->priv; 1290 struct cfi_private *cfi = map->fldrv_priv; 1291 unsigned long adr; 1292 int chipnum, ret = 0; 1293 #ifdef DEBUG_LOCK_BITS 1294 int ofs_factor = cfi->interleave * cfi->device_type; 1295 #endif 1296 1297 chipnum = ofs >> cfi->chipshift; 1298 adr = ofs - (chipnum << cfi->chipshift); 1299 1300 #ifdef DEBUG_LOCK_BITS 1301 { 1302 unsigned long temp_adr = adr; 1303 unsigned long temp_len = len; 1304 1305 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1306 while (temp_len) { 1307 printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor))); 1308 temp_adr += mtd->erasesize; 1309 temp_len -= mtd->erasesize; 1310 } 1311 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1312 } 1313 #endif 1314 1315 ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr); 1316 1317 #ifdef DEBUG_LOCK_BITS 1318 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1319 printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); 1320 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1321 #endif 1322 1323 return ret; 1324 } 1325 1326 static int cfi_staa_suspend(struct mtd_info *mtd) 1327 { 1328 struct map_info *map = mtd->priv; 1329 struct cfi_private *cfi = map->fldrv_priv; 1330 int i; 1331 struct flchip *chip; 1332 int ret = 0; 1333 1334 for (i=0; !ret && i<cfi->numchips; i++) { 1335 chip = &cfi->chips[i]; 1336 1337 mutex_lock(&chip->mutex); 1338 1339 switch(chip->state) { 1340 case FL_READY: 1341 case FL_STATUS: 1342 case FL_CFI_QUERY: 1343 case FL_JEDEC_QUERY: 1344 chip->oldstate = chip->state; 1345 chip->state = FL_PM_SUSPENDED; 1346 /* No need to wake_up() on this state change - 1347 * as the whole point is that nobody can do anything 1348 * with the chip now anyway. 1349 */ 1350 case FL_PM_SUSPENDED: 1351 break; 1352 1353 default: 1354 ret = -EAGAIN; 1355 break; 1356 } 1357 mutex_unlock(&chip->mutex); 1358 } 1359 1360 /* Unlock the chips again */ 1361 1362 if (ret) { 1363 for (i--; i >=0; i--) { 1364 chip = &cfi->chips[i]; 1365 1366 mutex_lock(&chip->mutex); 1367 1368 if (chip->state == FL_PM_SUSPENDED) { 1369 /* No need to force it into a known state here, 1370 because we're returning failure, and it didn't 1371 get power cycled */ 1372 chip->state = chip->oldstate; 1373 wake_up(&chip->wq); 1374 } 1375 mutex_unlock(&chip->mutex); 1376 } 1377 } 1378 1379 return ret; 1380 } 1381 1382 static void cfi_staa_resume(struct mtd_info *mtd) 1383 { 1384 struct map_info *map = mtd->priv; 1385 struct cfi_private *cfi = map->fldrv_priv; 1386 int i; 1387 struct flchip *chip; 1388 1389 for (i=0; i<cfi->numchips; i++) { 1390 1391 chip = &cfi->chips[i]; 1392 1393 mutex_lock(&chip->mutex); 1394 1395 /* Go to known state. Chip may have been power cycled */ 1396 if (chip->state == FL_PM_SUSPENDED) { 1397 map_write(map, CMD(0xFF), 0); 1398 chip->state = FL_READY; 1399 wake_up(&chip->wq); 1400 } 1401 1402 mutex_unlock(&chip->mutex); 1403 } 1404 } 1405 1406 static void cfi_staa_destroy(struct mtd_info *mtd) 1407 { 1408 struct map_info *map = mtd->priv; 1409 struct cfi_private *cfi = map->fldrv_priv; 1410 kfree(cfi->cmdset_priv); 1411 kfree(cfi); 1412 } 1413 1414 MODULE_LICENSE("GPL"); 1415