1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/mtd/compatmac.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define MANUFACTURER_AMD	0x0001
47 #define MANUFACTURER_ATMEL	0x001F
48 #define MANUFACTURER_MACRONIX	0x00C2
49 #define MANUFACTURER_SST	0x00BF
50 #define SST49LF004B	        0x0060
51 #define SST49LF040B	        0x0050
52 #define SST49LF008A		0x005a
53 #define AT49BV6416		0x00d6
54 
55 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
59 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
60 static void cfi_amdstd_sync (struct mtd_info *);
61 static int cfi_amdstd_suspend (struct mtd_info *);
62 static void cfi_amdstd_resume (struct mtd_info *);
63 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
64 
65 static void cfi_amdstd_destroy(struct mtd_info *);
66 
67 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
69 
70 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72 #include "fwh_lock.h"
73 
74 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
75 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
76 
77 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 	.probe		= NULL, /* Not usable directly */
79 	.destroy	= cfi_amdstd_destroy,
80 	.name		= "cfi_cmdset_0002",
81 	.module		= THIS_MODULE
82 };
83 
84 
85 /* #define DEBUG_CFI_FEATURES */
86 
87 
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
90 {
91 	const char* erase_suspend[3] = {
92 		"Not supported", "Read only", "Read/write"
93 	};
94 	const char* top_bottom[6] = {
95 		"No WP", "8x8KiB sectors at top & bottom, no WP",
96 		"Bottom boot", "Top boot",
97 		"Uniform, Bottom WP", "Uniform, Top WP"
98 	};
99 
100 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
101 	printk("  Address sensitive unlock: %s\n",
102 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
103 
104 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 	else
107 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
108 
109 	if (extp->BlkProt == 0)
110 		printk("  Block protection: Not supported\n");
111 	else
112 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
113 
114 
115 	printk("  Temporary block unprotect: %s\n",
116 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 	printk("  Burst mode: %s\n",
120 	       extp->BurstMode ? "Supported" : "Not supported");
121 	if (extp->PageMode == 0)
122 		printk("  Page mode: Not supported\n");
123 	else
124 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
125 
126 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 	       extp->VppMin >> 4, extp->VppMin & 0xf);
128 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 	       extp->VppMax >> 4, extp->VppMax & 0xf);
130 
131 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 	else
134 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
135 }
136 #endif
137 
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
141 {
142 	struct map_info *map = mtd->priv;
143 	struct cfi_private *cfi = map->fldrv_priv;
144 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 	__u8 major = extp->MajorVersion;
146 	__u8 minor = extp->MinorVersion;
147 
148 	if (((major << 8) | minor) < 0x3131) {
149 		/* CFI version 1.0 => don't trust bootloc */
150 
151 		DEBUG(MTD_DEBUG_LEVEL1,
152 			"%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
153 			map->name, cfi->mfr, cfi->id);
154 
155 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
156 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
157 		 * These were badly detected as they have the 0x80 bit set
158 		 * so treat them as a special case.
159 		 */
160 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
161 
162 			/* Macronix added CFI to their 2nd generation
163 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
164 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
165 			 * has CFI.
166 			 *
167 			 * Therefore also check the manufacturer.
168 			 * This reduces the risk of false detection due to
169 			 * the 8-bit device ID.
170 			 */
171 			(cfi->mfr == MANUFACTURER_MACRONIX)) {
172 			DEBUG(MTD_DEBUG_LEVEL1,
173 				"%s: Macronix MX29LV400C with bottom boot block"
174 				" detected\n", map->name);
175 			extp->TopBottom = 2;	/* bottom boot */
176 		} else
177 		if (cfi->id & 0x80) {
178 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
179 			extp->TopBottom = 3;	/* top boot */
180 		} else {
181 			extp->TopBottom = 2;	/* bottom boot */
182 		}
183 
184 		DEBUG(MTD_DEBUG_LEVEL1,
185 			"%s: AMD CFI PRI V%c.%c has no boot block field;"
186 			" deduced %s from Device ID\n", map->name, major, minor,
187 			extp->TopBottom == 2 ? "bottom" : "top");
188 	}
189 }
190 #endif
191 
192 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
193 {
194 	struct map_info *map = mtd->priv;
195 	struct cfi_private *cfi = map->fldrv_priv;
196 	if (cfi->cfiq->BufWriteTimeoutTyp) {
197 		DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
198 		mtd->write = cfi_amdstd_write_buffers;
199 	}
200 }
201 
202 /* Atmel chips don't use the same PRI format as AMD chips */
203 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
204 {
205 	struct map_info *map = mtd->priv;
206 	struct cfi_private *cfi = map->fldrv_priv;
207 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
208 	struct cfi_pri_atmel atmel_pri;
209 
210 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
211 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
212 
213 	if (atmel_pri.Features & 0x02)
214 		extp->EraseSuspend = 2;
215 
216 	/* Some chips got it backwards... */
217 	if (cfi->id == AT49BV6416) {
218 		if (atmel_pri.BottomBoot)
219 			extp->TopBottom = 3;
220 		else
221 			extp->TopBottom = 2;
222 	} else {
223 		if (atmel_pri.BottomBoot)
224 			extp->TopBottom = 2;
225 		else
226 			extp->TopBottom = 3;
227 	}
228 
229 	/* burst write mode not supported */
230 	cfi->cfiq->BufWriteTimeoutTyp = 0;
231 	cfi->cfiq->BufWriteTimeoutMax = 0;
232 }
233 
234 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
235 {
236 	/* Setup for chips with a secsi area */
237 	mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
238 	mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
239 }
240 
241 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
242 {
243 	struct map_info *map = mtd->priv;
244 	struct cfi_private *cfi = map->fldrv_priv;
245 	if ((cfi->cfiq->NumEraseRegions == 1) &&
246 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
247 		mtd->erase = cfi_amdstd_erase_chip;
248 	}
249 
250 }
251 
252 /*
253  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
254  * locked by default.
255  */
256 static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
257 {
258 	mtd->lock = cfi_atmel_lock;
259 	mtd->unlock = cfi_atmel_unlock;
260 	mtd->flags |= MTD_POWERUP_LOCK;
261 }
262 
263 static void fixup_s29gl064n_sectors(struct mtd_info *mtd, void *param)
264 {
265 	struct map_info *map = mtd->priv;
266 	struct cfi_private *cfi = map->fldrv_priv;
267 
268 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
269 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
270 		pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
271 	}
272 }
273 
274 static void fixup_s29gl032n_sectors(struct mtd_info *mtd, void *param)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
280 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
281 		pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
282 	}
283 }
284 
285 static struct cfi_fixup cfi_fixup_table[] = {
286 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
287 #ifdef AMD_BOOTLOC_BUG
288 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
289 	{ MANUFACTURER_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock, NULL },
290 #endif
291 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
292 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
293 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
294 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
295 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
296 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
297 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors, NULL, },
298 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors, NULL, },
299 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors, NULL, },
300 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors, NULL, },
301 #if !FORCE_WORD_WRITE
302 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
303 #endif
304 	{ 0, 0, NULL, NULL }
305 };
306 static struct cfi_fixup jedec_fixup_table[] = {
307 	{ MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
308 	{ MANUFACTURER_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
309 	{ MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
310 	{ 0, 0, NULL, NULL }
311 };
312 
313 static struct cfi_fixup fixup_table[] = {
314 	/* The CFI vendor ids and the JEDEC vendor IDs appear
315 	 * to be common.  It is like the devices id's are as
316 	 * well.  This table is to pick all cases where
317 	 * we know that is the case.
318 	 */
319 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
320 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
321 	{ 0, 0, NULL, NULL }
322 };
323 
324 
325 static void cfi_fixup_major_minor(struct cfi_private *cfi,
326 				  struct cfi_pri_amdstd *extp)
327 {
328 	if (cfi->mfr == CFI_MFR_SAMSUNG && cfi->id == 0x257e &&
329 	    extp->MajorVersion == '0')
330 		extp->MajorVersion = '1';
331 }
332 
333 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
334 {
335 	struct cfi_private *cfi = map->fldrv_priv;
336 	struct mtd_info *mtd;
337 	int i;
338 
339 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
340 	if (!mtd) {
341 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
342 		return NULL;
343 	}
344 	mtd->priv = map;
345 	mtd->type = MTD_NORFLASH;
346 
347 	/* Fill in the default mtd operations */
348 	mtd->erase   = cfi_amdstd_erase_varsize;
349 	mtd->write   = cfi_amdstd_write_words;
350 	mtd->read    = cfi_amdstd_read;
351 	mtd->sync    = cfi_amdstd_sync;
352 	mtd->suspend = cfi_amdstd_suspend;
353 	mtd->resume  = cfi_amdstd_resume;
354 	mtd->flags   = MTD_CAP_NORFLASH;
355 	mtd->name    = map->name;
356 	mtd->writesize = 1;
357 
358 	if (cfi->cfi_mode==CFI_MODE_CFI){
359 		unsigned char bootloc;
360 		/*
361 		 * It's a real CFI chip, not one for which the probe
362 		 * routine faked a CFI structure. So we read the feature
363 		 * table from it.
364 		 */
365 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
366 		struct cfi_pri_amdstd *extp;
367 
368 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
369 		if (!extp) {
370 			kfree(mtd);
371 			return NULL;
372 		}
373 
374 		cfi_fixup_major_minor(cfi, extp);
375 
376 		if (extp->MajorVersion != '1' ||
377 		    (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
378 			printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
379 			       "version %c.%c.\n",  extp->MajorVersion,
380 			       extp->MinorVersion);
381 			kfree(extp);
382 			kfree(mtd);
383 			return NULL;
384 		}
385 
386 		/* Install our own private info structure */
387 		cfi->cmdset_priv = extp;
388 
389 		/* Apply cfi device specific fixups */
390 		cfi_fixup(mtd, cfi_fixup_table);
391 
392 #ifdef DEBUG_CFI_FEATURES
393 		/* Tell the user about it in lots of lovely detail */
394 		cfi_tell_features(extp);
395 #endif
396 
397 		bootloc = extp->TopBottom;
398 		if ((bootloc != 2) && (bootloc != 3)) {
399 			printk(KERN_WARNING "%s: CFI does not contain boot "
400 			       "bank location. Assuming top.\n", map->name);
401 			bootloc = 2;
402 		}
403 
404 		if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
405 			printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
406 
407 			for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
408 				int j = (cfi->cfiq->NumEraseRegions-1)-i;
409 				__u32 swap;
410 
411 				swap = cfi->cfiq->EraseRegionInfo[i];
412 				cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
413 				cfi->cfiq->EraseRegionInfo[j] = swap;
414 			}
415 		}
416 		/* Set the default CFI lock/unlock addresses */
417 		cfi->addr_unlock1 = 0x555;
418 		cfi->addr_unlock2 = 0x2aa;
419 
420 	} /* CFI mode */
421 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
422 		/* Apply jedec specific fixups */
423 		cfi_fixup(mtd, jedec_fixup_table);
424 	}
425 	/* Apply generic fixups */
426 	cfi_fixup(mtd, fixup_table);
427 
428 	for (i=0; i< cfi->numchips; i++) {
429 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
430 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
431 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
432 		cfi->chips[i].ref_point_counter = 0;
433 		init_waitqueue_head(&(cfi->chips[i].wq));
434 	}
435 
436 	map->fldrv = &cfi_amdstd_chipdrv;
437 
438 	return cfi_amdstd_setup(mtd);
439 }
440 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
441 
442 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
443 {
444 	struct map_info *map = mtd->priv;
445 	struct cfi_private *cfi = map->fldrv_priv;
446 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
447 	unsigned long offset = 0;
448 	int i,j;
449 
450 	printk(KERN_NOTICE "number of %s chips: %d\n",
451 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
452 	/* Select the correct geometry setup */
453 	mtd->size = devsize * cfi->numchips;
454 
455 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
456 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
457 				    * mtd->numeraseregions, GFP_KERNEL);
458 	if (!mtd->eraseregions) {
459 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
460 		goto setup_err;
461 	}
462 
463 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
464 		unsigned long ernum, ersize;
465 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
466 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
467 
468 		if (mtd->erasesize < ersize) {
469 			mtd->erasesize = ersize;
470 		}
471 		for (j=0; j<cfi->numchips; j++) {
472 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
473 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
474 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
475 		}
476 		offset += (ersize * ernum);
477 	}
478 	if (offset != devsize) {
479 		/* Argh */
480 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
481 		goto setup_err;
482 	}
483 #if 0
484 	// debug
485 	for (i=0; i<mtd->numeraseregions;i++){
486 		printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
487 		       i,mtd->eraseregions[i].offset,
488 		       mtd->eraseregions[i].erasesize,
489 		       mtd->eraseregions[i].numblocks);
490 	}
491 #endif
492 
493 	/* FIXME: erase-suspend-program is broken.  See
494 	   http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
495 	printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
496 
497 	__module_get(THIS_MODULE);
498 	return mtd;
499 
500  setup_err:
501 	if(mtd) {
502 		kfree(mtd->eraseregions);
503 		kfree(mtd);
504 	}
505 	kfree(cfi->cmdset_priv);
506 	kfree(cfi->cfiq);
507 	return NULL;
508 }
509 
510 /*
511  * Return true if the chip is ready.
512  *
513  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
514  * non-suspended sector) and is indicated by no toggle bits toggling.
515  *
516  * Note that anything more complicated than checking if no bits are toggling
517  * (including checking DQ5 for an error status) is tricky to get working
518  * correctly and is therefore not done	(particulary with interleaved chips
519  * as each chip must be checked independantly of the others).
520  */
521 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
522 {
523 	map_word d, t;
524 
525 	d = map_read(map, addr);
526 	t = map_read(map, addr);
527 
528 	return map_word_equal(map, d, t);
529 }
530 
531 /*
532  * Return true if the chip is ready and has the correct value.
533  *
534  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
535  * non-suspended sector) and it is indicated by no bits toggling.
536  *
537  * Error are indicated by toggling bits or bits held with the wrong value,
538  * or with bits toggling.
539  *
540  * Note that anything more complicated than checking if no bits are toggling
541  * (including checking DQ5 for an error status) is tricky to get working
542  * correctly and is therefore not done	(particulary with interleaved chips
543  * as each chip must be checked independantly of the others).
544  *
545  */
546 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
547 {
548 	map_word oldd, curd;
549 
550 	oldd = map_read(map, addr);
551 	curd = map_read(map, addr);
552 
553 	return	map_word_equal(map, oldd, curd) &&
554 		map_word_equal(map, curd, expected);
555 }
556 
557 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
558 {
559 	DECLARE_WAITQUEUE(wait, current);
560 	struct cfi_private *cfi = map->fldrv_priv;
561 	unsigned long timeo;
562 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
563 
564  resettime:
565 	timeo = jiffies + HZ;
566  retry:
567 	switch (chip->state) {
568 
569 	case FL_STATUS:
570 		for (;;) {
571 			if (chip_ready(map, adr))
572 				break;
573 
574 			if (time_after(jiffies, timeo)) {
575 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
576 				spin_unlock(chip->mutex);
577 				return -EIO;
578 			}
579 			spin_unlock(chip->mutex);
580 			cfi_udelay(1);
581 			spin_lock(chip->mutex);
582 			/* Someone else might have been playing with it. */
583 			goto retry;
584 		}
585 
586 	case FL_READY:
587 	case FL_CFI_QUERY:
588 	case FL_JEDEC_QUERY:
589 		return 0;
590 
591 	case FL_ERASING:
592 		if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
593 			goto sleep;
594 
595 		if (!(   mode == FL_READY
596 		      || mode == FL_POINT
597 		      || !cfip
598 		      || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
599 		      || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1)
600 		    )))
601 			goto sleep;
602 
603 		/* We could check to see if we're trying to access the sector
604 		 * that is currently being erased. However, no user will try
605 		 * anything like that so we just wait for the timeout. */
606 
607 		/* Erase suspend */
608 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
609 		 * commands when the erase algorithm isn't in progress. */
610 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
611 		chip->oldstate = FL_ERASING;
612 		chip->state = FL_ERASE_SUSPENDING;
613 		chip->erase_suspended = 1;
614 		for (;;) {
615 			if (chip_ready(map, adr))
616 				break;
617 
618 			if (time_after(jiffies, timeo)) {
619 				/* Should have suspended the erase by now.
620 				 * Send an Erase-Resume command as either
621 				 * there was an error (so leave the erase
622 				 * routine to recover from it) or we trying to
623 				 * use the erase-in-progress sector. */
624 				map_write(map, CMD(0x30), chip->in_progress_block_addr);
625 				chip->state = FL_ERASING;
626 				chip->oldstate = FL_READY;
627 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
628 				return -EIO;
629 			}
630 
631 			spin_unlock(chip->mutex);
632 			cfi_udelay(1);
633 			spin_lock(chip->mutex);
634 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
635 			   So we can just loop here. */
636 		}
637 		chip->state = FL_READY;
638 		return 0;
639 
640 	case FL_XIP_WHILE_ERASING:
641 		if (mode != FL_READY && mode != FL_POINT &&
642 		    (!cfip || !(cfip->EraseSuspend&2)))
643 			goto sleep;
644 		chip->oldstate = chip->state;
645 		chip->state = FL_READY;
646 		return 0;
647 
648 	case FL_POINT:
649 		/* Only if there's no operation suspended... */
650 		if (mode == FL_READY && chip->oldstate == FL_READY)
651 			return 0;
652 
653 	default:
654 	sleep:
655 		set_current_state(TASK_UNINTERRUPTIBLE);
656 		add_wait_queue(&chip->wq, &wait);
657 		spin_unlock(chip->mutex);
658 		schedule();
659 		remove_wait_queue(&chip->wq, &wait);
660 		spin_lock(chip->mutex);
661 		goto resettime;
662 	}
663 }
664 
665 
666 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
667 {
668 	struct cfi_private *cfi = map->fldrv_priv;
669 
670 	switch(chip->oldstate) {
671 	case FL_ERASING:
672 		chip->state = chip->oldstate;
673 		map_write(map, CMD(0x30), chip->in_progress_block_addr);
674 		chip->oldstate = FL_READY;
675 		chip->state = FL_ERASING;
676 		break;
677 
678 	case FL_XIP_WHILE_ERASING:
679 		chip->state = chip->oldstate;
680 		chip->oldstate = FL_READY;
681 		break;
682 
683 	case FL_READY:
684 	case FL_STATUS:
685 		/* We should really make set_vpp() count, rather than doing this */
686 		DISABLE_VPP(map);
687 		break;
688 	default:
689 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
690 	}
691 	wake_up(&chip->wq);
692 }
693 
694 #ifdef CONFIG_MTD_XIP
695 
696 /*
697  * No interrupt what so ever can be serviced while the flash isn't in array
698  * mode.  This is ensured by the xip_disable() and xip_enable() functions
699  * enclosing any code path where the flash is known not to be in array mode.
700  * And within a XIP disabled code path, only functions marked with __xipram
701  * may be called and nothing else (it's a good thing to inspect generated
702  * assembly to make sure inline functions were actually inlined and that gcc
703  * didn't emit calls to its own support functions). Also configuring MTD CFI
704  * support to a single buswidth and a single interleave is also recommended.
705  */
706 
707 static void xip_disable(struct map_info *map, struct flchip *chip,
708 			unsigned long adr)
709 {
710 	/* TODO: chips with no XIP use should ignore and return */
711 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
712 	local_irq_disable();
713 }
714 
715 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
716 				unsigned long adr)
717 {
718 	struct cfi_private *cfi = map->fldrv_priv;
719 
720 	if (chip->state != FL_POINT && chip->state != FL_READY) {
721 		map_write(map, CMD(0xf0), adr);
722 		chip->state = FL_READY;
723 	}
724 	(void) map_read(map, adr);
725 	xip_iprefetch();
726 	local_irq_enable();
727 }
728 
729 /*
730  * When a delay is required for the flash operation to complete, the
731  * xip_udelay() function is polling for both the given timeout and pending
732  * (but still masked) hardware interrupts.  Whenever there is an interrupt
733  * pending then the flash erase operation is suspended, array mode restored
734  * and interrupts unmasked.  Task scheduling might also happen at that
735  * point.  The CPU eventually returns from the interrupt or the call to
736  * schedule() and the suspended flash operation is resumed for the remaining
737  * of the delay period.
738  *
739  * Warning: this function _will_ fool interrupt latency tracing tools.
740  */
741 
742 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
743 				unsigned long adr, int usec)
744 {
745 	struct cfi_private *cfi = map->fldrv_priv;
746 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
747 	map_word status, OK = CMD(0x80);
748 	unsigned long suspended, start = xip_currtime();
749 	flstate_t oldstate;
750 
751 	do {
752 		cpu_relax();
753 		if (xip_irqpending() && extp &&
754 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
755 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
756 			/*
757 			 * Let's suspend the erase operation when supported.
758 			 * Note that we currently don't try to suspend
759 			 * interleaved chips if there is already another
760 			 * operation suspended (imagine what happens
761 			 * when one chip was already done with the current
762 			 * operation while another chip suspended it, then
763 			 * we resume the whole thing at once).  Yes, it
764 			 * can happen!
765 			 */
766 			map_write(map, CMD(0xb0), adr);
767 			usec -= xip_elapsed_since(start);
768 			suspended = xip_currtime();
769 			do {
770 				if (xip_elapsed_since(suspended) > 100000) {
771 					/*
772 					 * The chip doesn't want to suspend
773 					 * after waiting for 100 msecs.
774 					 * This is a critical error but there
775 					 * is not much we can do here.
776 					 */
777 					return;
778 				}
779 				status = map_read(map, adr);
780 			} while (!map_word_andequal(map, status, OK, OK));
781 
782 			/* Suspend succeeded */
783 			oldstate = chip->state;
784 			if (!map_word_bitsset(map, status, CMD(0x40)))
785 				break;
786 			chip->state = FL_XIP_WHILE_ERASING;
787 			chip->erase_suspended = 1;
788 			map_write(map, CMD(0xf0), adr);
789 			(void) map_read(map, adr);
790 			xip_iprefetch();
791 			local_irq_enable();
792 			spin_unlock(chip->mutex);
793 			xip_iprefetch();
794 			cond_resched();
795 
796 			/*
797 			 * We're back.  However someone else might have
798 			 * decided to go write to the chip if we are in
799 			 * a suspended erase state.  If so let's wait
800 			 * until it's done.
801 			 */
802 			spin_lock(chip->mutex);
803 			while (chip->state != FL_XIP_WHILE_ERASING) {
804 				DECLARE_WAITQUEUE(wait, current);
805 				set_current_state(TASK_UNINTERRUPTIBLE);
806 				add_wait_queue(&chip->wq, &wait);
807 				spin_unlock(chip->mutex);
808 				schedule();
809 				remove_wait_queue(&chip->wq, &wait);
810 				spin_lock(chip->mutex);
811 			}
812 			/* Disallow XIP again */
813 			local_irq_disable();
814 
815 			/* Resume the write or erase operation */
816 			map_write(map, CMD(0x30), adr);
817 			chip->state = oldstate;
818 			start = xip_currtime();
819 		} else if (usec >= 1000000/HZ) {
820 			/*
821 			 * Try to save on CPU power when waiting delay
822 			 * is at least a system timer tick period.
823 			 * No need to be extremely accurate here.
824 			 */
825 			xip_cpu_idle();
826 		}
827 		status = map_read(map, adr);
828 	} while (!map_word_andequal(map, status, OK, OK)
829 		 && xip_elapsed_since(start) < usec);
830 }
831 
832 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
833 
834 /*
835  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
836  * the flash is actively programming or erasing since we have to poll for
837  * the operation to complete anyway.  We can't do that in a generic way with
838  * a XIP setup so do it before the actual flash operation in this case
839  * and stub it out from INVALIDATE_CACHE_UDELAY.
840  */
841 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
842 	INVALIDATE_CACHED_RANGE(map, from, size)
843 
844 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
845 	UDELAY(map, chip, adr, usec)
846 
847 /*
848  * Extra notes:
849  *
850  * Activating this XIP support changes the way the code works a bit.  For
851  * example the code to suspend the current process when concurrent access
852  * happens is never executed because xip_udelay() will always return with the
853  * same chip state as it was entered with.  This is why there is no care for
854  * the presence of add_wait_queue() or schedule() calls from within a couple
855  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
856  * The queueing and scheduling are always happening within xip_udelay().
857  *
858  * Similarly, get_chip() and put_chip() just happen to always be executed
859  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
860  * is in array mode, therefore never executing many cases therein and not
861  * causing any problem with XIP.
862  */
863 
864 #else
865 
866 #define xip_disable(map, chip, adr)
867 #define xip_enable(map, chip, adr)
868 #define XIP_INVAL_CACHED_RANGE(x...)
869 
870 #define UDELAY(map, chip, adr, usec)  \
871 do {  \
872 	spin_unlock(chip->mutex);  \
873 	cfi_udelay(usec);  \
874 	spin_lock(chip->mutex);  \
875 } while (0)
876 
877 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
878 do {  \
879 	spin_unlock(chip->mutex);  \
880 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
881 	cfi_udelay(usec);  \
882 	spin_lock(chip->mutex);  \
883 } while (0)
884 
885 #endif
886 
887 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
888 {
889 	unsigned long cmd_addr;
890 	struct cfi_private *cfi = map->fldrv_priv;
891 	int ret;
892 
893 	adr += chip->start;
894 
895 	/* Ensure cmd read/writes are aligned. */
896 	cmd_addr = adr & ~(map_bankwidth(map)-1);
897 
898 	spin_lock(chip->mutex);
899 	ret = get_chip(map, chip, cmd_addr, FL_READY);
900 	if (ret) {
901 		spin_unlock(chip->mutex);
902 		return ret;
903 	}
904 
905 	if (chip->state != FL_POINT && chip->state != FL_READY) {
906 		map_write(map, CMD(0xf0), cmd_addr);
907 		chip->state = FL_READY;
908 	}
909 
910 	map_copy_from(map, buf, adr, len);
911 
912 	put_chip(map, chip, cmd_addr);
913 
914 	spin_unlock(chip->mutex);
915 	return 0;
916 }
917 
918 
919 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
920 {
921 	struct map_info *map = mtd->priv;
922 	struct cfi_private *cfi = map->fldrv_priv;
923 	unsigned long ofs;
924 	int chipnum;
925 	int ret = 0;
926 
927 	/* ofs: offset within the first chip that the first read should start */
928 
929 	chipnum = (from >> cfi->chipshift);
930 	ofs = from - (chipnum <<  cfi->chipshift);
931 
932 
933 	*retlen = 0;
934 
935 	while (len) {
936 		unsigned long thislen;
937 
938 		if (chipnum >= cfi->numchips)
939 			break;
940 
941 		if ((len + ofs -1) >> cfi->chipshift)
942 			thislen = (1<<cfi->chipshift) - ofs;
943 		else
944 			thislen = len;
945 
946 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
947 		if (ret)
948 			break;
949 
950 		*retlen += thislen;
951 		len -= thislen;
952 		buf += thislen;
953 
954 		ofs = 0;
955 		chipnum++;
956 	}
957 	return ret;
958 }
959 
960 
961 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
962 {
963 	DECLARE_WAITQUEUE(wait, current);
964 	unsigned long timeo = jiffies + HZ;
965 	struct cfi_private *cfi = map->fldrv_priv;
966 
967  retry:
968 	spin_lock(chip->mutex);
969 
970 	if (chip->state != FL_READY){
971 #if 0
972 		printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
973 #endif
974 		set_current_state(TASK_UNINTERRUPTIBLE);
975 		add_wait_queue(&chip->wq, &wait);
976 
977 		spin_unlock(chip->mutex);
978 
979 		schedule();
980 		remove_wait_queue(&chip->wq, &wait);
981 #if 0
982 		if(signal_pending(current))
983 			return -EINTR;
984 #endif
985 		timeo = jiffies + HZ;
986 
987 		goto retry;
988 	}
989 
990 	adr += chip->start;
991 
992 	chip->state = FL_READY;
993 
994 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
995 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
996 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
997 
998 	map_copy_from(map, buf, adr, len);
999 
1000 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1001 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1002 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1003 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1004 
1005 	wake_up(&chip->wq);
1006 	spin_unlock(chip->mutex);
1007 
1008 	return 0;
1009 }
1010 
1011 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1012 {
1013 	struct map_info *map = mtd->priv;
1014 	struct cfi_private *cfi = map->fldrv_priv;
1015 	unsigned long ofs;
1016 	int chipnum;
1017 	int ret = 0;
1018 
1019 
1020 	/* ofs: offset within the first chip that the first read should start */
1021 
1022 	/* 8 secsi bytes per chip */
1023 	chipnum=from>>3;
1024 	ofs=from & 7;
1025 
1026 
1027 	*retlen = 0;
1028 
1029 	while (len) {
1030 		unsigned long thislen;
1031 
1032 		if (chipnum >= cfi->numchips)
1033 			break;
1034 
1035 		if ((len + ofs -1) >> 3)
1036 			thislen = (1<<3) - ofs;
1037 		else
1038 			thislen = len;
1039 
1040 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1041 		if (ret)
1042 			break;
1043 
1044 		*retlen += thislen;
1045 		len -= thislen;
1046 		buf += thislen;
1047 
1048 		ofs = 0;
1049 		chipnum++;
1050 	}
1051 	return ret;
1052 }
1053 
1054 
1055 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1056 {
1057 	struct cfi_private *cfi = map->fldrv_priv;
1058 	unsigned long timeo = jiffies + HZ;
1059 	/*
1060 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1061 	 * have a max write time of a few hundreds usec). However, we should
1062 	 * use the maximum timeout value given by the chip at probe time
1063 	 * instead.  Unfortunately, struct flchip does have a field for
1064 	 * maximum timeout, only for typical which can be far too short
1065 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1066 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1067 	 */
1068 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1069 	int ret = 0;
1070 	map_word oldd;
1071 	int retry_cnt = 0;
1072 
1073 	adr += chip->start;
1074 
1075 	spin_lock(chip->mutex);
1076 	ret = get_chip(map, chip, adr, FL_WRITING);
1077 	if (ret) {
1078 		spin_unlock(chip->mutex);
1079 		return ret;
1080 	}
1081 
1082 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1083 	       __func__, adr, datum.x[0] );
1084 
1085 	/*
1086 	 * Check for a NOP for the case when the datum to write is already
1087 	 * present - it saves time and works around buggy chips that corrupt
1088 	 * data at other locations when 0xff is written to a location that
1089 	 * already contains 0xff.
1090 	 */
1091 	oldd = map_read(map, adr);
1092 	if (map_word_equal(map, oldd, datum)) {
1093 		DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1094 		       __func__);
1095 		goto op_done;
1096 	}
1097 
1098 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1099 	ENABLE_VPP(map);
1100 	xip_disable(map, chip, adr);
1101  retry:
1102 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1103 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1104 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1105 	map_write(map, datum, adr);
1106 	chip->state = FL_WRITING;
1107 
1108 	INVALIDATE_CACHE_UDELAY(map, chip,
1109 				adr, map_bankwidth(map),
1110 				chip->word_write_time);
1111 
1112 	/* See comment above for timeout value. */
1113 	timeo = jiffies + uWriteTimeout;
1114 	for (;;) {
1115 		if (chip->state != FL_WRITING) {
1116 			/* Someone's suspended the write. Sleep */
1117 			DECLARE_WAITQUEUE(wait, current);
1118 
1119 			set_current_state(TASK_UNINTERRUPTIBLE);
1120 			add_wait_queue(&chip->wq, &wait);
1121 			spin_unlock(chip->mutex);
1122 			schedule();
1123 			remove_wait_queue(&chip->wq, &wait);
1124 			timeo = jiffies + (HZ / 2); /* FIXME */
1125 			spin_lock(chip->mutex);
1126 			continue;
1127 		}
1128 
1129 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1130 			xip_enable(map, chip, adr);
1131 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1132 			xip_disable(map, chip, adr);
1133 			break;
1134 		}
1135 
1136 		if (chip_ready(map, adr))
1137 			break;
1138 
1139 		/* Latency issues. Drop the lock, wait a while and retry */
1140 		UDELAY(map, chip, adr, 1);
1141 	}
1142 	/* Did we succeed? */
1143 	if (!chip_good(map, adr, datum)) {
1144 		/* reset on all failures. */
1145 		map_write( map, CMD(0xF0), chip->start );
1146 		/* FIXME - should have reset delay before continuing */
1147 
1148 		if (++retry_cnt <= MAX_WORD_RETRIES)
1149 			goto retry;
1150 
1151 		ret = -EIO;
1152 	}
1153 	xip_enable(map, chip, adr);
1154  op_done:
1155 	chip->state = FL_READY;
1156 	put_chip(map, chip, adr);
1157 	spin_unlock(chip->mutex);
1158 
1159 	return ret;
1160 }
1161 
1162 
1163 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1164 				  size_t *retlen, const u_char *buf)
1165 {
1166 	struct map_info *map = mtd->priv;
1167 	struct cfi_private *cfi = map->fldrv_priv;
1168 	int ret = 0;
1169 	int chipnum;
1170 	unsigned long ofs, chipstart;
1171 	DECLARE_WAITQUEUE(wait, current);
1172 
1173 	*retlen = 0;
1174 	if (!len)
1175 		return 0;
1176 
1177 	chipnum = to >> cfi->chipshift;
1178 	ofs = to  - (chipnum << cfi->chipshift);
1179 	chipstart = cfi->chips[chipnum].start;
1180 
1181 	/* If it's not bus-aligned, do the first byte write */
1182 	if (ofs & (map_bankwidth(map)-1)) {
1183 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1184 		int i = ofs - bus_ofs;
1185 		int n = 0;
1186 		map_word tmp_buf;
1187 
1188  retry:
1189 		spin_lock(cfi->chips[chipnum].mutex);
1190 
1191 		if (cfi->chips[chipnum].state != FL_READY) {
1192 #if 0
1193 			printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1194 #endif
1195 			set_current_state(TASK_UNINTERRUPTIBLE);
1196 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1197 
1198 			spin_unlock(cfi->chips[chipnum].mutex);
1199 
1200 			schedule();
1201 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1202 #if 0
1203 			if(signal_pending(current))
1204 				return -EINTR;
1205 #endif
1206 			goto retry;
1207 		}
1208 
1209 		/* Load 'tmp_buf' with old contents of flash */
1210 		tmp_buf = map_read(map, bus_ofs+chipstart);
1211 
1212 		spin_unlock(cfi->chips[chipnum].mutex);
1213 
1214 		/* Number of bytes to copy from buffer */
1215 		n = min_t(int, len, map_bankwidth(map)-i);
1216 
1217 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1218 
1219 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1220 				       bus_ofs, tmp_buf);
1221 		if (ret)
1222 			return ret;
1223 
1224 		ofs += n;
1225 		buf += n;
1226 		(*retlen) += n;
1227 		len -= n;
1228 
1229 		if (ofs >> cfi->chipshift) {
1230 			chipnum ++;
1231 			ofs = 0;
1232 			if (chipnum == cfi->numchips)
1233 				return 0;
1234 		}
1235 	}
1236 
1237 	/* We are now aligned, write as much as possible */
1238 	while(len >= map_bankwidth(map)) {
1239 		map_word datum;
1240 
1241 		datum = map_word_load(map, buf);
1242 
1243 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1244 				       ofs, datum);
1245 		if (ret)
1246 			return ret;
1247 
1248 		ofs += map_bankwidth(map);
1249 		buf += map_bankwidth(map);
1250 		(*retlen) += map_bankwidth(map);
1251 		len -= map_bankwidth(map);
1252 
1253 		if (ofs >> cfi->chipshift) {
1254 			chipnum ++;
1255 			ofs = 0;
1256 			if (chipnum == cfi->numchips)
1257 				return 0;
1258 			chipstart = cfi->chips[chipnum].start;
1259 		}
1260 	}
1261 
1262 	/* Write the trailing bytes if any */
1263 	if (len & (map_bankwidth(map)-1)) {
1264 		map_word tmp_buf;
1265 
1266  retry1:
1267 		spin_lock(cfi->chips[chipnum].mutex);
1268 
1269 		if (cfi->chips[chipnum].state != FL_READY) {
1270 #if 0
1271 			printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1272 #endif
1273 			set_current_state(TASK_UNINTERRUPTIBLE);
1274 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1275 
1276 			spin_unlock(cfi->chips[chipnum].mutex);
1277 
1278 			schedule();
1279 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1280 #if 0
1281 			if(signal_pending(current))
1282 				return -EINTR;
1283 #endif
1284 			goto retry1;
1285 		}
1286 
1287 		tmp_buf = map_read(map, ofs + chipstart);
1288 
1289 		spin_unlock(cfi->chips[chipnum].mutex);
1290 
1291 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1292 
1293 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1294 				ofs, tmp_buf);
1295 		if (ret)
1296 			return ret;
1297 
1298 		(*retlen) += len;
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 
1305 /*
1306  * FIXME: interleaved mode not tested, and probably not supported!
1307  */
1308 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1309 				    unsigned long adr, const u_char *buf,
1310 				    int len)
1311 {
1312 	struct cfi_private *cfi = map->fldrv_priv;
1313 	unsigned long timeo = jiffies + HZ;
1314 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1315 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1316 	int ret = -EIO;
1317 	unsigned long cmd_adr;
1318 	int z, words;
1319 	map_word datum;
1320 
1321 	adr += chip->start;
1322 	cmd_adr = adr;
1323 
1324 	spin_lock(chip->mutex);
1325 	ret = get_chip(map, chip, adr, FL_WRITING);
1326 	if (ret) {
1327 		spin_unlock(chip->mutex);
1328 		return ret;
1329 	}
1330 
1331 	datum = map_word_load(map, buf);
1332 
1333 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1334 	       __func__, adr, datum.x[0] );
1335 
1336 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1337 	ENABLE_VPP(map);
1338 	xip_disable(map, chip, cmd_adr);
1339 
1340 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1341 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1342 	//cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1343 
1344 	/* Write Buffer Load */
1345 	map_write(map, CMD(0x25), cmd_adr);
1346 
1347 	chip->state = FL_WRITING_TO_BUFFER;
1348 
1349 	/* Write length of data to come */
1350 	words = len / map_bankwidth(map);
1351 	map_write(map, CMD(words - 1), cmd_adr);
1352 	/* Write data */
1353 	z = 0;
1354 	while(z < words * map_bankwidth(map)) {
1355 		datum = map_word_load(map, buf);
1356 		map_write(map, datum, adr + z);
1357 
1358 		z += map_bankwidth(map);
1359 		buf += map_bankwidth(map);
1360 	}
1361 	z -= map_bankwidth(map);
1362 
1363 	adr += z;
1364 
1365 	/* Write Buffer Program Confirm: GO GO GO */
1366 	map_write(map, CMD(0x29), cmd_adr);
1367 	chip->state = FL_WRITING;
1368 
1369 	INVALIDATE_CACHE_UDELAY(map, chip,
1370 				adr, map_bankwidth(map),
1371 				chip->word_write_time);
1372 
1373 	timeo = jiffies + uWriteTimeout;
1374 
1375 	for (;;) {
1376 		if (chip->state != FL_WRITING) {
1377 			/* Someone's suspended the write. Sleep */
1378 			DECLARE_WAITQUEUE(wait, current);
1379 
1380 			set_current_state(TASK_UNINTERRUPTIBLE);
1381 			add_wait_queue(&chip->wq, &wait);
1382 			spin_unlock(chip->mutex);
1383 			schedule();
1384 			remove_wait_queue(&chip->wq, &wait);
1385 			timeo = jiffies + (HZ / 2); /* FIXME */
1386 			spin_lock(chip->mutex);
1387 			continue;
1388 		}
1389 
1390 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1391 			break;
1392 
1393 		if (chip_ready(map, adr)) {
1394 			xip_enable(map, chip, adr);
1395 			goto op_done;
1396 		}
1397 
1398 		/* Latency issues. Drop the lock, wait a while and retry */
1399 		UDELAY(map, chip, adr, 1);
1400 	}
1401 
1402 	/* reset on all failures. */
1403 	map_write( map, CMD(0xF0), chip->start );
1404 	xip_enable(map, chip, adr);
1405 	/* FIXME - should have reset delay before continuing */
1406 
1407 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1408 	       __func__ );
1409 
1410 	ret = -EIO;
1411  op_done:
1412 	chip->state = FL_READY;
1413 	put_chip(map, chip, adr);
1414 	spin_unlock(chip->mutex);
1415 
1416 	return ret;
1417 }
1418 
1419 
1420 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1421 				    size_t *retlen, const u_char *buf)
1422 {
1423 	struct map_info *map = mtd->priv;
1424 	struct cfi_private *cfi = map->fldrv_priv;
1425 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1426 	int ret = 0;
1427 	int chipnum;
1428 	unsigned long ofs;
1429 
1430 	*retlen = 0;
1431 	if (!len)
1432 		return 0;
1433 
1434 	chipnum = to >> cfi->chipshift;
1435 	ofs = to  - (chipnum << cfi->chipshift);
1436 
1437 	/* If it's not bus-aligned, do the first word write */
1438 	if (ofs & (map_bankwidth(map)-1)) {
1439 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1440 		if (local_len > len)
1441 			local_len = len;
1442 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1443 					     local_len, retlen, buf);
1444 		if (ret)
1445 			return ret;
1446 		ofs += local_len;
1447 		buf += local_len;
1448 		len -= local_len;
1449 
1450 		if (ofs >> cfi->chipshift) {
1451 			chipnum ++;
1452 			ofs = 0;
1453 			if (chipnum == cfi->numchips)
1454 				return 0;
1455 		}
1456 	}
1457 
1458 	/* Write buffer is worth it only if more than one word to write... */
1459 	while (len >= map_bankwidth(map) * 2) {
1460 		/* We must not cross write block boundaries */
1461 		int size = wbufsize - (ofs & (wbufsize-1));
1462 
1463 		if (size > len)
1464 			size = len;
1465 		if (size % map_bankwidth(map))
1466 			size -= size % map_bankwidth(map);
1467 
1468 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1469 				      ofs, buf, size);
1470 		if (ret)
1471 			return ret;
1472 
1473 		ofs += size;
1474 		buf += size;
1475 		(*retlen) += size;
1476 		len -= size;
1477 
1478 		if (ofs >> cfi->chipshift) {
1479 			chipnum ++;
1480 			ofs = 0;
1481 			if (chipnum == cfi->numchips)
1482 				return 0;
1483 		}
1484 	}
1485 
1486 	if (len) {
1487 		size_t retlen_dregs = 0;
1488 
1489 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1490 					     len, &retlen_dregs, buf);
1491 
1492 		*retlen += retlen_dregs;
1493 		return ret;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 
1500 /*
1501  * Handle devices with one erase region, that only implement
1502  * the chip erase command.
1503  */
1504 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1505 {
1506 	struct cfi_private *cfi = map->fldrv_priv;
1507 	unsigned long timeo = jiffies + HZ;
1508 	unsigned long int adr;
1509 	DECLARE_WAITQUEUE(wait, current);
1510 	int ret = 0;
1511 
1512 	adr = cfi->addr_unlock1;
1513 
1514 	spin_lock(chip->mutex);
1515 	ret = get_chip(map, chip, adr, FL_WRITING);
1516 	if (ret) {
1517 		spin_unlock(chip->mutex);
1518 		return ret;
1519 	}
1520 
1521 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1522 	       __func__, chip->start );
1523 
1524 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1525 	ENABLE_VPP(map);
1526 	xip_disable(map, chip, adr);
1527 
1528 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1529 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1530 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1531 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1532 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1533 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1534 
1535 	chip->state = FL_ERASING;
1536 	chip->erase_suspended = 0;
1537 	chip->in_progress_block_addr = adr;
1538 
1539 	INVALIDATE_CACHE_UDELAY(map, chip,
1540 				adr, map->size,
1541 				chip->erase_time*500);
1542 
1543 	timeo = jiffies + (HZ*20);
1544 
1545 	for (;;) {
1546 		if (chip->state != FL_ERASING) {
1547 			/* Someone's suspended the erase. Sleep */
1548 			set_current_state(TASK_UNINTERRUPTIBLE);
1549 			add_wait_queue(&chip->wq, &wait);
1550 			spin_unlock(chip->mutex);
1551 			schedule();
1552 			remove_wait_queue(&chip->wq, &wait);
1553 			spin_lock(chip->mutex);
1554 			continue;
1555 		}
1556 		if (chip->erase_suspended) {
1557 			/* This erase was suspended and resumed.
1558 			   Adjust the timeout */
1559 			timeo = jiffies + (HZ*20); /* FIXME */
1560 			chip->erase_suspended = 0;
1561 		}
1562 
1563 		if (chip_ready(map, adr))
1564 			break;
1565 
1566 		if (time_after(jiffies, timeo)) {
1567 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1568 				__func__ );
1569 			break;
1570 		}
1571 
1572 		/* Latency issues. Drop the lock, wait a while and retry */
1573 		UDELAY(map, chip, adr, 1000000/HZ);
1574 	}
1575 	/* Did we succeed? */
1576 	if (!chip_good(map, adr, map_word_ff(map))) {
1577 		/* reset on all failures. */
1578 		map_write( map, CMD(0xF0), chip->start );
1579 		/* FIXME - should have reset delay before continuing */
1580 
1581 		ret = -EIO;
1582 	}
1583 
1584 	chip->state = FL_READY;
1585 	xip_enable(map, chip, adr);
1586 	put_chip(map, chip, adr);
1587 	spin_unlock(chip->mutex);
1588 
1589 	return ret;
1590 }
1591 
1592 
1593 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1594 {
1595 	struct cfi_private *cfi = map->fldrv_priv;
1596 	unsigned long timeo = jiffies + HZ;
1597 	DECLARE_WAITQUEUE(wait, current);
1598 	int ret = 0;
1599 
1600 	adr += chip->start;
1601 
1602 	spin_lock(chip->mutex);
1603 	ret = get_chip(map, chip, adr, FL_ERASING);
1604 	if (ret) {
1605 		spin_unlock(chip->mutex);
1606 		return ret;
1607 	}
1608 
1609 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1610 	       __func__, adr );
1611 
1612 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1613 	ENABLE_VPP(map);
1614 	xip_disable(map, chip, adr);
1615 
1616 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1617 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1618 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1619 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1620 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1621 	map_write(map, CMD(0x30), adr);
1622 
1623 	chip->state = FL_ERASING;
1624 	chip->erase_suspended = 0;
1625 	chip->in_progress_block_addr = adr;
1626 
1627 	INVALIDATE_CACHE_UDELAY(map, chip,
1628 				adr, len,
1629 				chip->erase_time*500);
1630 
1631 	timeo = jiffies + (HZ*20);
1632 
1633 	for (;;) {
1634 		if (chip->state != FL_ERASING) {
1635 			/* Someone's suspended the erase. Sleep */
1636 			set_current_state(TASK_UNINTERRUPTIBLE);
1637 			add_wait_queue(&chip->wq, &wait);
1638 			spin_unlock(chip->mutex);
1639 			schedule();
1640 			remove_wait_queue(&chip->wq, &wait);
1641 			spin_lock(chip->mutex);
1642 			continue;
1643 		}
1644 		if (chip->erase_suspended) {
1645 			/* This erase was suspended and resumed.
1646 			   Adjust the timeout */
1647 			timeo = jiffies + (HZ*20); /* FIXME */
1648 			chip->erase_suspended = 0;
1649 		}
1650 
1651 		if (chip_ready(map, adr)) {
1652 			xip_enable(map, chip, adr);
1653 			break;
1654 		}
1655 
1656 		if (time_after(jiffies, timeo)) {
1657 			xip_enable(map, chip, adr);
1658 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1659 				__func__ );
1660 			break;
1661 		}
1662 
1663 		/* Latency issues. Drop the lock, wait a while and retry */
1664 		UDELAY(map, chip, adr, 1000000/HZ);
1665 	}
1666 	/* Did we succeed? */
1667 	if (!chip_good(map, adr, map_word_ff(map))) {
1668 		/* reset on all failures. */
1669 		map_write( map, CMD(0xF0), chip->start );
1670 		/* FIXME - should have reset delay before continuing */
1671 
1672 		ret = -EIO;
1673 	}
1674 
1675 	chip->state = FL_READY;
1676 	put_chip(map, chip, adr);
1677 	spin_unlock(chip->mutex);
1678 	return ret;
1679 }
1680 
1681 
1682 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1683 {
1684 	unsigned long ofs, len;
1685 	int ret;
1686 
1687 	ofs = instr->addr;
1688 	len = instr->len;
1689 
1690 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1691 	if (ret)
1692 		return ret;
1693 
1694 	instr->state = MTD_ERASE_DONE;
1695 	mtd_erase_callback(instr);
1696 
1697 	return 0;
1698 }
1699 
1700 
1701 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1702 {
1703 	struct map_info *map = mtd->priv;
1704 	struct cfi_private *cfi = map->fldrv_priv;
1705 	int ret = 0;
1706 
1707 	if (instr->addr != 0)
1708 		return -EINVAL;
1709 
1710 	if (instr->len != mtd->size)
1711 		return -EINVAL;
1712 
1713 	ret = do_erase_chip(map, &cfi->chips[0]);
1714 	if (ret)
1715 		return ret;
1716 
1717 	instr->state = MTD_ERASE_DONE;
1718 	mtd_erase_callback(instr);
1719 
1720 	return 0;
1721 }
1722 
1723 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1724 			 unsigned long adr, int len, void *thunk)
1725 {
1726 	struct cfi_private *cfi = map->fldrv_priv;
1727 	int ret;
1728 
1729 	spin_lock(chip->mutex);
1730 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1731 	if (ret)
1732 		goto out_unlock;
1733 	chip->state = FL_LOCKING;
1734 
1735 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1736 	      __func__, adr, len);
1737 
1738 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1739 			 cfi->device_type, NULL);
1740 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1741 			 cfi->device_type, NULL);
1742 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1743 			 cfi->device_type, NULL);
1744 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1745 			 cfi->device_type, NULL);
1746 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1747 			 cfi->device_type, NULL);
1748 	map_write(map, CMD(0x40), chip->start + adr);
1749 
1750 	chip->state = FL_READY;
1751 	put_chip(map, chip, adr + chip->start);
1752 	ret = 0;
1753 
1754 out_unlock:
1755 	spin_unlock(chip->mutex);
1756 	return ret;
1757 }
1758 
1759 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1760 			   unsigned long adr, int len, void *thunk)
1761 {
1762 	struct cfi_private *cfi = map->fldrv_priv;
1763 	int ret;
1764 
1765 	spin_lock(chip->mutex);
1766 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1767 	if (ret)
1768 		goto out_unlock;
1769 	chip->state = FL_UNLOCKING;
1770 
1771 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1772 	      __func__, adr, len);
1773 
1774 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1775 			 cfi->device_type, NULL);
1776 	map_write(map, CMD(0x70), adr);
1777 
1778 	chip->state = FL_READY;
1779 	put_chip(map, chip, adr + chip->start);
1780 	ret = 0;
1781 
1782 out_unlock:
1783 	spin_unlock(chip->mutex);
1784 	return ret;
1785 }
1786 
1787 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1788 {
1789 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1790 }
1791 
1792 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1793 {
1794 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1795 }
1796 
1797 
1798 static void cfi_amdstd_sync (struct mtd_info *mtd)
1799 {
1800 	struct map_info *map = mtd->priv;
1801 	struct cfi_private *cfi = map->fldrv_priv;
1802 	int i;
1803 	struct flchip *chip;
1804 	int ret = 0;
1805 	DECLARE_WAITQUEUE(wait, current);
1806 
1807 	for (i=0; !ret && i<cfi->numchips; i++) {
1808 		chip = &cfi->chips[i];
1809 
1810 	retry:
1811 		spin_lock(chip->mutex);
1812 
1813 		switch(chip->state) {
1814 		case FL_READY:
1815 		case FL_STATUS:
1816 		case FL_CFI_QUERY:
1817 		case FL_JEDEC_QUERY:
1818 			chip->oldstate = chip->state;
1819 			chip->state = FL_SYNCING;
1820 			/* No need to wake_up() on this state change -
1821 			 * as the whole point is that nobody can do anything
1822 			 * with the chip now anyway.
1823 			 */
1824 		case FL_SYNCING:
1825 			spin_unlock(chip->mutex);
1826 			break;
1827 
1828 		default:
1829 			/* Not an idle state */
1830 			set_current_state(TASK_UNINTERRUPTIBLE);
1831 			add_wait_queue(&chip->wq, &wait);
1832 
1833 			spin_unlock(chip->mutex);
1834 
1835 			schedule();
1836 
1837 			remove_wait_queue(&chip->wq, &wait);
1838 
1839 			goto retry;
1840 		}
1841 	}
1842 
1843 	/* Unlock the chips again */
1844 
1845 	for (i--; i >=0; i--) {
1846 		chip = &cfi->chips[i];
1847 
1848 		spin_lock(chip->mutex);
1849 
1850 		if (chip->state == FL_SYNCING) {
1851 			chip->state = chip->oldstate;
1852 			wake_up(&chip->wq);
1853 		}
1854 		spin_unlock(chip->mutex);
1855 	}
1856 }
1857 
1858 
1859 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1860 {
1861 	struct map_info *map = mtd->priv;
1862 	struct cfi_private *cfi = map->fldrv_priv;
1863 	int i;
1864 	struct flchip *chip;
1865 	int ret = 0;
1866 
1867 	for (i=0; !ret && i<cfi->numchips; i++) {
1868 		chip = &cfi->chips[i];
1869 
1870 		spin_lock(chip->mutex);
1871 
1872 		switch(chip->state) {
1873 		case FL_READY:
1874 		case FL_STATUS:
1875 		case FL_CFI_QUERY:
1876 		case FL_JEDEC_QUERY:
1877 			chip->oldstate = chip->state;
1878 			chip->state = FL_PM_SUSPENDED;
1879 			/* No need to wake_up() on this state change -
1880 			 * as the whole point is that nobody can do anything
1881 			 * with the chip now anyway.
1882 			 */
1883 		case FL_PM_SUSPENDED:
1884 			break;
1885 
1886 		default:
1887 			ret = -EAGAIN;
1888 			break;
1889 		}
1890 		spin_unlock(chip->mutex);
1891 	}
1892 
1893 	/* Unlock the chips again */
1894 
1895 	if (ret) {
1896 		for (i--; i >=0; i--) {
1897 			chip = &cfi->chips[i];
1898 
1899 			spin_lock(chip->mutex);
1900 
1901 			if (chip->state == FL_PM_SUSPENDED) {
1902 				chip->state = chip->oldstate;
1903 				wake_up(&chip->wq);
1904 			}
1905 			spin_unlock(chip->mutex);
1906 		}
1907 	}
1908 
1909 	return ret;
1910 }
1911 
1912 
1913 static void cfi_amdstd_resume(struct mtd_info *mtd)
1914 {
1915 	struct map_info *map = mtd->priv;
1916 	struct cfi_private *cfi = map->fldrv_priv;
1917 	int i;
1918 	struct flchip *chip;
1919 
1920 	for (i=0; i<cfi->numchips; i++) {
1921 
1922 		chip = &cfi->chips[i];
1923 
1924 		spin_lock(chip->mutex);
1925 
1926 		if (chip->state == FL_PM_SUSPENDED) {
1927 			chip->state = FL_READY;
1928 			map_write(map, CMD(0xF0), chip->start);
1929 			wake_up(&chip->wq);
1930 		}
1931 		else
1932 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1933 
1934 		spin_unlock(chip->mutex);
1935 	}
1936 }
1937 
1938 static void cfi_amdstd_destroy(struct mtd_info *mtd)
1939 {
1940 	struct map_info *map = mtd->priv;
1941 	struct cfi_private *cfi = map->fldrv_priv;
1942 
1943 	kfree(cfi->cmdset_priv);
1944 	kfree(cfi->cfiq);
1945 	kfree(cfi);
1946 	kfree(mtd->eraseregions);
1947 }
1948 
1949 MODULE_LICENSE("GPL");
1950 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1951 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
1952