xref: /openbmc/linux/drivers/mtd/chips/cfi_cmdset_0002.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define SST49LF004B	        0x0060
47 #define SST49LF040B	        0x0050
48 #define SST49LF008A		0x005a
49 #define AT49BV6416		0x00d6
50 
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 
62 static void cfi_amdstd_destroy(struct mtd_info *);
63 
64 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66 
67 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69 #include "fwh_lock.h"
70 
71 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
73 
74 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 	.probe		= NULL, /* Not usable directly */
76 	.destroy	= cfi_amdstd_destroy,
77 	.name		= "cfi_cmdset_0002",
78 	.module		= THIS_MODULE
79 };
80 
81 
82 /* #define DEBUG_CFI_FEATURES */
83 
84 
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87 {
88 	const char* erase_suspend[3] = {
89 		"Not supported", "Read only", "Read/write"
90 	};
91 	const char* top_bottom[6] = {
92 		"No WP", "8x8KiB sectors at top & bottom, no WP",
93 		"Bottom boot", "Top boot",
94 		"Uniform, Bottom WP", "Uniform, Top WP"
95 	};
96 
97 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
98 	printk("  Address sensitive unlock: %s\n",
99 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
100 
101 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 	else
104 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105 
106 	if (extp->BlkProt == 0)
107 		printk("  Block protection: Not supported\n");
108 	else
109 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
110 
111 
112 	printk("  Temporary block unprotect: %s\n",
113 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 	printk("  Burst mode: %s\n",
117 	       extp->BurstMode ? "Supported" : "Not supported");
118 	if (extp->PageMode == 0)
119 		printk("  Page mode: Not supported\n");
120 	else
121 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
122 
123 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 	       extp->VppMin >> 4, extp->VppMin & 0xf);
125 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 	       extp->VppMax >> 4, extp->VppMax & 0xf);
127 
128 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 	else
131 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132 }
133 #endif
134 
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
138 {
139 	struct map_info *map = mtd->priv;
140 	struct cfi_private *cfi = map->fldrv_priv;
141 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 	__u8 major = extp->MajorVersion;
143 	__u8 minor = extp->MinorVersion;
144 
145 	if (((major << 8) | minor) < 0x3131) {
146 		/* CFI version 1.0 => don't trust bootloc */
147 
148 		DEBUG(MTD_DEBUG_LEVEL1,
149 			"%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
150 			map->name, cfi->mfr, cfi->id);
151 
152 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
153 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
154 		 * These were badly detected as they have the 0x80 bit set
155 		 * so treat them as a special case.
156 		 */
157 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
158 
159 			/* Macronix added CFI to their 2nd generation
160 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
161 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
162 			 * has CFI.
163 			 *
164 			 * Therefore also check the manufacturer.
165 			 * This reduces the risk of false detection due to
166 			 * the 8-bit device ID.
167 			 */
168 			(cfi->mfr == CFI_MFR_MACRONIX)) {
169 			DEBUG(MTD_DEBUG_LEVEL1,
170 				"%s: Macronix MX29LV400C with bottom boot block"
171 				" detected\n", map->name);
172 			extp->TopBottom = 2;	/* bottom boot */
173 		} else
174 		if (cfi->id & 0x80) {
175 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
176 			extp->TopBottom = 3;	/* top boot */
177 		} else {
178 			extp->TopBottom = 2;	/* bottom boot */
179 		}
180 
181 		DEBUG(MTD_DEBUG_LEVEL1,
182 			"%s: AMD CFI PRI V%c.%c has no boot block field;"
183 			" deduced %s from Device ID\n", map->name, major, minor,
184 			extp->TopBottom == 2 ? "bottom" : "top");
185 	}
186 }
187 #endif
188 
189 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
190 {
191 	struct map_info *map = mtd->priv;
192 	struct cfi_private *cfi = map->fldrv_priv;
193 	if (cfi->cfiq->BufWriteTimeoutTyp) {
194 		DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
195 		mtd->write = cfi_amdstd_write_buffers;
196 	}
197 }
198 
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
201 {
202 	struct map_info *map = mtd->priv;
203 	struct cfi_private *cfi = map->fldrv_priv;
204 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 	struct cfi_pri_atmel atmel_pri;
206 
207 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209 
210 	if (atmel_pri.Features & 0x02)
211 		extp->EraseSuspend = 2;
212 
213 	/* Some chips got it backwards... */
214 	if (cfi->id == AT49BV6416) {
215 		if (atmel_pri.BottomBoot)
216 			extp->TopBottom = 3;
217 		else
218 			extp->TopBottom = 2;
219 	} else {
220 		if (atmel_pri.BottomBoot)
221 			extp->TopBottom = 2;
222 		else
223 			extp->TopBottom = 3;
224 	}
225 
226 	/* burst write mode not supported */
227 	cfi->cfiq->BufWriteTimeoutTyp = 0;
228 	cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230 
231 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
232 {
233 	/* Setup for chips with a secsi area */
234 	mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
235 	mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237 
238 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
239 {
240 	struct map_info *map = mtd->priv;
241 	struct cfi_private *cfi = map->fldrv_priv;
242 	if ((cfi->cfiq->NumEraseRegions == 1) &&
243 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 		mtd->erase = cfi_amdstd_erase_chip;
245 	}
246 
247 }
248 
249 /*
250  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251  * locked by default.
252  */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
254 {
255 	mtd->lock = cfi_atmel_lock;
256 	mtd->unlock = cfi_atmel_unlock;
257 	mtd->flags |= MTD_POWERUP_LOCK;
258 }
259 
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 	struct map_info *map = mtd->priv;
263 	struct cfi_private *cfi = map->fldrv_priv;
264 
265 	/*
266 	 * These flashes report two seperate eraseblock regions based on the
267 	 * sector_erase-size and block_erase-size, although they both operate on the
268 	 * same memory. This is not allowed according to CFI, so we just pick the
269 	 * sector_erase-size.
270 	 */
271 	cfi->cfiq->NumEraseRegions = 1;
272 }
273 
274 static void fixup_sst39vf(struct mtd_info *mtd, void *param)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	fixup_old_sst_eraseregion(mtd);
280 
281 	cfi->addr_unlock1 = 0x5555;
282 	cfi->addr_unlock2 = 0x2AAA;
283 }
284 
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd, void *param)
286 {
287 	struct map_info *map = mtd->priv;
288 	struct cfi_private *cfi = map->fldrv_priv;
289 
290 	fixup_old_sst_eraseregion(mtd);
291 
292 	cfi->addr_unlock1 = 0x555;
293 	cfi->addr_unlock2 = 0x2AA;
294 
295 	cfi->sector_erase_cmd = CMD(0x50);
296 }
297 
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd, void *param)
299 {
300 	struct map_info *map = mtd->priv;
301 	struct cfi_private *cfi = map->fldrv_priv;
302 
303 	fixup_sst39vf_rev_b(mtd, param);
304 
305 	/*
306 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 	 * it should report a size of 8KBytes (0x0020*256).
308 	 */
309 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 	pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312 
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd, void *param)
314 {
315 	struct map_info *map = mtd->priv;
316 	struct cfi_private *cfi = map->fldrv_priv;
317 
318 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 		pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
321 	}
322 }
323 
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd, void *param)
325 {
326 	struct map_info *map = mtd->priv;
327 	struct cfi_private *cfi = map->fldrv_priv;
328 
329 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 		pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
332 	}
333 }
334 
335 /* Used to fix CFI-Tables of chips without Extended Query Tables */
336 static struct cfi_fixup cfi_nopri_fixup_table[] = {
337 	{ CFI_MFR_SST, 0x234A, fixup_sst39vf, NULL, }, /* SST39VF1602 */
338 	{ CFI_MFR_SST, 0x234B, fixup_sst39vf, NULL, }, /* SST39VF1601 */
339 	{ CFI_MFR_SST, 0x235A, fixup_sst39vf, NULL, }, /* SST39VF3202 */
340 	{ CFI_MFR_SST, 0x235B, fixup_sst39vf, NULL, }, /* SST39VF3201 */
341 	{ CFI_MFR_SST, 0x235C, fixup_sst39vf_rev_b, NULL, }, /* SST39VF3202B */
342 	{ CFI_MFR_SST, 0x235D, fixup_sst39vf_rev_b, NULL, }, /* SST39VF3201B */
343 	{ CFI_MFR_SST, 0x236C, fixup_sst39vf_rev_b, NULL, }, /* SST39VF6402B */
344 	{ CFI_MFR_SST, 0x236D, fixup_sst39vf_rev_b, NULL, }, /* SST39VF6401B */
345 	{ 0, 0, NULL, NULL }
346 };
347 
348 static struct cfi_fixup cfi_fixup_table[] = {
349 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
350 #ifdef AMD_BOOTLOC_BUG
351 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
352 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock, NULL },
353 #endif
354 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
355 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
356 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
357 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
358 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
359 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
360 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors, NULL, },
361 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors, NULL, },
362 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors, NULL, },
363 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors, NULL, },
364 	{ CFI_MFR_SST, 0x536A, fixup_sst38vf640x_sectorsize, NULL, }, /* SST38VF6402 */
365 	{ CFI_MFR_SST, 0x536B, fixup_sst38vf640x_sectorsize, NULL, }, /* SST38VF6401 */
366 	{ CFI_MFR_SST, 0x536C, fixup_sst38vf640x_sectorsize, NULL, }, /* SST38VF6404 */
367 	{ CFI_MFR_SST, 0x536D, fixup_sst38vf640x_sectorsize, NULL, }, /* SST38VF6403 */
368 #if !FORCE_WORD_WRITE
369 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
370 #endif
371 	{ 0, 0, NULL, NULL }
372 };
373 static struct cfi_fixup jedec_fixup_table[] = {
374 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
375 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
376 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
377 	{ 0, 0, NULL, NULL }
378 };
379 
380 static struct cfi_fixup fixup_table[] = {
381 	/* The CFI vendor ids and the JEDEC vendor IDs appear
382 	 * to be common.  It is like the devices id's are as
383 	 * well.  This table is to pick all cases where
384 	 * we know that is the case.
385 	 */
386 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
387 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
388 	{ 0, 0, NULL, NULL }
389 };
390 
391 
392 static void cfi_fixup_major_minor(struct cfi_private *cfi,
393 				  struct cfi_pri_amdstd *extp)
394 {
395 	if (cfi->mfr == CFI_MFR_SAMSUNG && cfi->id == 0x257e &&
396 	    extp->MajorVersion == '0')
397 		extp->MajorVersion = '1';
398 	/*
399 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
400 	 */
401 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
402 		extp->MajorVersion = '1';
403 		extp->MinorVersion = '0';
404 	}
405 }
406 
407 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
408 {
409 	struct cfi_private *cfi = map->fldrv_priv;
410 	struct mtd_info *mtd;
411 	int i;
412 
413 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
414 	if (!mtd) {
415 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
416 		return NULL;
417 	}
418 	mtd->priv = map;
419 	mtd->type = MTD_NORFLASH;
420 
421 	/* Fill in the default mtd operations */
422 	mtd->erase   = cfi_amdstd_erase_varsize;
423 	mtd->write   = cfi_amdstd_write_words;
424 	mtd->read    = cfi_amdstd_read;
425 	mtd->sync    = cfi_amdstd_sync;
426 	mtd->suspend = cfi_amdstd_suspend;
427 	mtd->resume  = cfi_amdstd_resume;
428 	mtd->flags   = MTD_CAP_NORFLASH;
429 	mtd->name    = map->name;
430 	mtd->writesize = 1;
431 
432 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
433 
434 	if (cfi->cfi_mode==CFI_MODE_CFI){
435 		unsigned char bootloc;
436 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
437 		struct cfi_pri_amdstd *extp;
438 
439 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
440 		if (extp) {
441 			/*
442 			 * It's a real CFI chip, not one for which the probe
443 			 * routine faked a CFI structure.
444 			 */
445 			cfi_fixup_major_minor(cfi, extp);
446 
447 			/*
448 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4
449 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
450 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
451 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
452 			 */
453 			if (extp->MajorVersion != '1' ||
454 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '4'))) {
455 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
456 				       "version %c.%c (%#02x/%#02x).\n",
457 				       extp->MajorVersion, extp->MinorVersion,
458 				       extp->MajorVersion, extp->MinorVersion);
459 				kfree(extp);
460 				kfree(mtd);
461 				return NULL;
462 			}
463 
464 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
465 			       extp->MajorVersion, extp->MinorVersion);
466 
467 			/* Install our own private info structure */
468 			cfi->cmdset_priv = extp;
469 
470 			/* Apply cfi device specific fixups */
471 			cfi_fixup(mtd, cfi_fixup_table);
472 
473 #ifdef DEBUG_CFI_FEATURES
474 			/* Tell the user about it in lots of lovely detail */
475 			cfi_tell_features(extp);
476 #endif
477 
478 			bootloc = extp->TopBottom;
479 			if ((bootloc < 2) || (bootloc > 5)) {
480 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
481 				       "bank location (%d). Assuming bottom.\n",
482 				       map->name, bootloc);
483 				bootloc = 2;
484 			}
485 
486 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
487 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
488 
489 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
490 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
491 					__u32 swap;
492 
493 					swap = cfi->cfiq->EraseRegionInfo[i];
494 					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
495 					cfi->cfiq->EraseRegionInfo[j] = swap;
496 				}
497 			}
498 			/* Set the default CFI lock/unlock addresses */
499 			cfi->addr_unlock1 = 0x555;
500 			cfi->addr_unlock2 = 0x2aa;
501 		}
502 		cfi_fixup(mtd, cfi_nopri_fixup_table);
503 
504 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
505 			kfree(mtd);
506 			return NULL;
507 		}
508 
509 	} /* CFI mode */
510 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
511 		/* Apply jedec specific fixups */
512 		cfi_fixup(mtd, jedec_fixup_table);
513 	}
514 	/* Apply generic fixups */
515 	cfi_fixup(mtd, fixup_table);
516 
517 	for (i=0; i< cfi->numchips; i++) {
518 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
519 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
520 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
521 		cfi->chips[i].ref_point_counter = 0;
522 		init_waitqueue_head(&(cfi->chips[i].wq));
523 	}
524 
525 	map->fldrv = &cfi_amdstd_chipdrv;
526 
527 	return cfi_amdstd_setup(mtd);
528 }
529 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
530 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
531 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
532 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
533 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
534 
535 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
536 {
537 	struct map_info *map = mtd->priv;
538 	struct cfi_private *cfi = map->fldrv_priv;
539 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
540 	unsigned long offset = 0;
541 	int i,j;
542 
543 	printk(KERN_NOTICE "number of %s chips: %d\n",
544 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
545 	/* Select the correct geometry setup */
546 	mtd->size = devsize * cfi->numchips;
547 
548 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
549 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
550 				    * mtd->numeraseregions, GFP_KERNEL);
551 	if (!mtd->eraseregions) {
552 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
553 		goto setup_err;
554 	}
555 
556 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
557 		unsigned long ernum, ersize;
558 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
559 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
560 
561 		if (mtd->erasesize < ersize) {
562 			mtd->erasesize = ersize;
563 		}
564 		for (j=0; j<cfi->numchips; j++) {
565 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
566 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
567 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
568 		}
569 		offset += (ersize * ernum);
570 	}
571 	if (offset != devsize) {
572 		/* Argh */
573 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
574 		goto setup_err;
575 	}
576 
577 	__module_get(THIS_MODULE);
578 	register_reboot_notifier(&mtd->reboot_notifier);
579 	return mtd;
580 
581  setup_err:
582 	kfree(mtd->eraseregions);
583 	kfree(mtd);
584 	kfree(cfi->cmdset_priv);
585 	kfree(cfi->cfiq);
586 	return NULL;
587 }
588 
589 /*
590  * Return true if the chip is ready.
591  *
592  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
593  * non-suspended sector) and is indicated by no toggle bits toggling.
594  *
595  * Note that anything more complicated than checking if no bits are toggling
596  * (including checking DQ5 for an error status) is tricky to get working
597  * correctly and is therefore not done	(particulary with interleaved chips
598  * as each chip must be checked independantly of the others).
599  */
600 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
601 {
602 	map_word d, t;
603 
604 	d = map_read(map, addr);
605 	t = map_read(map, addr);
606 
607 	return map_word_equal(map, d, t);
608 }
609 
610 /*
611  * Return true if the chip is ready and has the correct value.
612  *
613  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
614  * non-suspended sector) and it is indicated by no bits toggling.
615  *
616  * Error are indicated by toggling bits or bits held with the wrong value,
617  * or with bits toggling.
618  *
619  * Note that anything more complicated than checking if no bits are toggling
620  * (including checking DQ5 for an error status) is tricky to get working
621  * correctly and is therefore not done	(particulary with interleaved chips
622  * as each chip must be checked independantly of the others).
623  *
624  */
625 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
626 {
627 	map_word oldd, curd;
628 
629 	oldd = map_read(map, addr);
630 	curd = map_read(map, addr);
631 
632 	return	map_word_equal(map, oldd, curd) &&
633 		map_word_equal(map, curd, expected);
634 }
635 
636 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
637 {
638 	DECLARE_WAITQUEUE(wait, current);
639 	struct cfi_private *cfi = map->fldrv_priv;
640 	unsigned long timeo;
641 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
642 
643  resettime:
644 	timeo = jiffies + HZ;
645  retry:
646 	switch (chip->state) {
647 
648 	case FL_STATUS:
649 		for (;;) {
650 			if (chip_ready(map, adr))
651 				break;
652 
653 			if (time_after(jiffies, timeo)) {
654 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
655 				return -EIO;
656 			}
657 			mutex_unlock(&chip->mutex);
658 			cfi_udelay(1);
659 			mutex_lock(&chip->mutex);
660 			/* Someone else might have been playing with it. */
661 			goto retry;
662 		}
663 
664 	case FL_READY:
665 	case FL_CFI_QUERY:
666 	case FL_JEDEC_QUERY:
667 		return 0;
668 
669 	case FL_ERASING:
670 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
671 		    !(mode == FL_READY || mode == FL_POINT ||
672 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
673 			goto sleep;
674 
675 		/* We could check to see if we're trying to access the sector
676 		 * that is currently being erased. However, no user will try
677 		 * anything like that so we just wait for the timeout. */
678 
679 		/* Erase suspend */
680 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
681 		 * commands when the erase algorithm isn't in progress. */
682 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
683 		chip->oldstate = FL_ERASING;
684 		chip->state = FL_ERASE_SUSPENDING;
685 		chip->erase_suspended = 1;
686 		for (;;) {
687 			if (chip_ready(map, adr))
688 				break;
689 
690 			if (time_after(jiffies, timeo)) {
691 				/* Should have suspended the erase by now.
692 				 * Send an Erase-Resume command as either
693 				 * there was an error (so leave the erase
694 				 * routine to recover from it) or we trying to
695 				 * use the erase-in-progress sector. */
696 				map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
697 				chip->state = FL_ERASING;
698 				chip->oldstate = FL_READY;
699 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
700 				return -EIO;
701 			}
702 
703 			mutex_unlock(&chip->mutex);
704 			cfi_udelay(1);
705 			mutex_lock(&chip->mutex);
706 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
707 			   So we can just loop here. */
708 		}
709 		chip->state = FL_READY;
710 		return 0;
711 
712 	case FL_XIP_WHILE_ERASING:
713 		if (mode != FL_READY && mode != FL_POINT &&
714 		    (!cfip || !(cfip->EraseSuspend&2)))
715 			goto sleep;
716 		chip->oldstate = chip->state;
717 		chip->state = FL_READY;
718 		return 0;
719 
720 	case FL_SHUTDOWN:
721 		/* The machine is rebooting */
722 		return -EIO;
723 
724 	case FL_POINT:
725 		/* Only if there's no operation suspended... */
726 		if (mode == FL_READY && chip->oldstate == FL_READY)
727 			return 0;
728 
729 	default:
730 	sleep:
731 		set_current_state(TASK_UNINTERRUPTIBLE);
732 		add_wait_queue(&chip->wq, &wait);
733 		mutex_unlock(&chip->mutex);
734 		schedule();
735 		remove_wait_queue(&chip->wq, &wait);
736 		mutex_lock(&chip->mutex);
737 		goto resettime;
738 	}
739 }
740 
741 
742 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
743 {
744 	struct cfi_private *cfi = map->fldrv_priv;
745 
746 	switch(chip->oldstate) {
747 	case FL_ERASING:
748 		chip->state = chip->oldstate;
749 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
750 		chip->oldstate = FL_READY;
751 		chip->state = FL_ERASING;
752 		break;
753 
754 	case FL_XIP_WHILE_ERASING:
755 		chip->state = chip->oldstate;
756 		chip->oldstate = FL_READY;
757 		break;
758 
759 	case FL_READY:
760 	case FL_STATUS:
761 		/* We should really make set_vpp() count, rather than doing this */
762 		DISABLE_VPP(map);
763 		break;
764 	default:
765 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
766 	}
767 	wake_up(&chip->wq);
768 }
769 
770 #ifdef CONFIG_MTD_XIP
771 
772 /*
773  * No interrupt what so ever can be serviced while the flash isn't in array
774  * mode.  This is ensured by the xip_disable() and xip_enable() functions
775  * enclosing any code path where the flash is known not to be in array mode.
776  * And within a XIP disabled code path, only functions marked with __xipram
777  * may be called and nothing else (it's a good thing to inspect generated
778  * assembly to make sure inline functions were actually inlined and that gcc
779  * didn't emit calls to its own support functions). Also configuring MTD CFI
780  * support to a single buswidth and a single interleave is also recommended.
781  */
782 
783 static void xip_disable(struct map_info *map, struct flchip *chip,
784 			unsigned long adr)
785 {
786 	/* TODO: chips with no XIP use should ignore and return */
787 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
788 	local_irq_disable();
789 }
790 
791 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
792 				unsigned long adr)
793 {
794 	struct cfi_private *cfi = map->fldrv_priv;
795 
796 	if (chip->state != FL_POINT && chip->state != FL_READY) {
797 		map_write(map, CMD(0xf0), adr);
798 		chip->state = FL_READY;
799 	}
800 	(void) map_read(map, adr);
801 	xip_iprefetch();
802 	local_irq_enable();
803 }
804 
805 /*
806  * When a delay is required for the flash operation to complete, the
807  * xip_udelay() function is polling for both the given timeout and pending
808  * (but still masked) hardware interrupts.  Whenever there is an interrupt
809  * pending then the flash erase operation is suspended, array mode restored
810  * and interrupts unmasked.  Task scheduling might also happen at that
811  * point.  The CPU eventually returns from the interrupt or the call to
812  * schedule() and the suspended flash operation is resumed for the remaining
813  * of the delay period.
814  *
815  * Warning: this function _will_ fool interrupt latency tracing tools.
816  */
817 
818 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
819 				unsigned long adr, int usec)
820 {
821 	struct cfi_private *cfi = map->fldrv_priv;
822 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
823 	map_word status, OK = CMD(0x80);
824 	unsigned long suspended, start = xip_currtime();
825 	flstate_t oldstate;
826 
827 	do {
828 		cpu_relax();
829 		if (xip_irqpending() && extp &&
830 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
831 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
832 			/*
833 			 * Let's suspend the erase operation when supported.
834 			 * Note that we currently don't try to suspend
835 			 * interleaved chips if there is already another
836 			 * operation suspended (imagine what happens
837 			 * when one chip was already done with the current
838 			 * operation while another chip suspended it, then
839 			 * we resume the whole thing at once).  Yes, it
840 			 * can happen!
841 			 */
842 			map_write(map, CMD(0xb0), adr);
843 			usec -= xip_elapsed_since(start);
844 			suspended = xip_currtime();
845 			do {
846 				if (xip_elapsed_since(suspended) > 100000) {
847 					/*
848 					 * The chip doesn't want to suspend
849 					 * after waiting for 100 msecs.
850 					 * This is a critical error but there
851 					 * is not much we can do here.
852 					 */
853 					return;
854 				}
855 				status = map_read(map, adr);
856 			} while (!map_word_andequal(map, status, OK, OK));
857 
858 			/* Suspend succeeded */
859 			oldstate = chip->state;
860 			if (!map_word_bitsset(map, status, CMD(0x40)))
861 				break;
862 			chip->state = FL_XIP_WHILE_ERASING;
863 			chip->erase_suspended = 1;
864 			map_write(map, CMD(0xf0), adr);
865 			(void) map_read(map, adr);
866 			xip_iprefetch();
867 			local_irq_enable();
868 			mutex_unlock(&chip->mutex);
869 			xip_iprefetch();
870 			cond_resched();
871 
872 			/*
873 			 * We're back.  However someone else might have
874 			 * decided to go write to the chip if we are in
875 			 * a suspended erase state.  If so let's wait
876 			 * until it's done.
877 			 */
878 			mutex_lock(&chip->mutex);
879 			while (chip->state != FL_XIP_WHILE_ERASING) {
880 				DECLARE_WAITQUEUE(wait, current);
881 				set_current_state(TASK_UNINTERRUPTIBLE);
882 				add_wait_queue(&chip->wq, &wait);
883 				mutex_unlock(&chip->mutex);
884 				schedule();
885 				remove_wait_queue(&chip->wq, &wait);
886 				mutex_lock(&chip->mutex);
887 			}
888 			/* Disallow XIP again */
889 			local_irq_disable();
890 
891 			/* Resume the write or erase operation */
892 			map_write(map, cfi->sector_erase_cmd, adr);
893 			chip->state = oldstate;
894 			start = xip_currtime();
895 		} else if (usec >= 1000000/HZ) {
896 			/*
897 			 * Try to save on CPU power when waiting delay
898 			 * is at least a system timer tick period.
899 			 * No need to be extremely accurate here.
900 			 */
901 			xip_cpu_idle();
902 		}
903 		status = map_read(map, adr);
904 	} while (!map_word_andequal(map, status, OK, OK)
905 		 && xip_elapsed_since(start) < usec);
906 }
907 
908 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
909 
910 /*
911  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
912  * the flash is actively programming or erasing since we have to poll for
913  * the operation to complete anyway.  We can't do that in a generic way with
914  * a XIP setup so do it before the actual flash operation in this case
915  * and stub it out from INVALIDATE_CACHE_UDELAY.
916  */
917 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
918 	INVALIDATE_CACHED_RANGE(map, from, size)
919 
920 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
921 	UDELAY(map, chip, adr, usec)
922 
923 /*
924  * Extra notes:
925  *
926  * Activating this XIP support changes the way the code works a bit.  For
927  * example the code to suspend the current process when concurrent access
928  * happens is never executed because xip_udelay() will always return with the
929  * same chip state as it was entered with.  This is why there is no care for
930  * the presence of add_wait_queue() or schedule() calls from within a couple
931  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
932  * The queueing and scheduling are always happening within xip_udelay().
933  *
934  * Similarly, get_chip() and put_chip() just happen to always be executed
935  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
936  * is in array mode, therefore never executing many cases therein and not
937  * causing any problem with XIP.
938  */
939 
940 #else
941 
942 #define xip_disable(map, chip, adr)
943 #define xip_enable(map, chip, adr)
944 #define XIP_INVAL_CACHED_RANGE(x...)
945 
946 #define UDELAY(map, chip, adr, usec)  \
947 do {  \
948 	mutex_unlock(&chip->mutex);  \
949 	cfi_udelay(usec);  \
950 	mutex_lock(&chip->mutex);  \
951 } while (0)
952 
953 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
954 do {  \
955 	mutex_unlock(&chip->mutex);  \
956 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
957 	cfi_udelay(usec);  \
958 	mutex_lock(&chip->mutex);  \
959 } while (0)
960 
961 #endif
962 
963 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
964 {
965 	unsigned long cmd_addr;
966 	struct cfi_private *cfi = map->fldrv_priv;
967 	int ret;
968 
969 	adr += chip->start;
970 
971 	/* Ensure cmd read/writes are aligned. */
972 	cmd_addr = adr & ~(map_bankwidth(map)-1);
973 
974 	mutex_lock(&chip->mutex);
975 	ret = get_chip(map, chip, cmd_addr, FL_READY);
976 	if (ret) {
977 		mutex_unlock(&chip->mutex);
978 		return ret;
979 	}
980 
981 	if (chip->state != FL_POINT && chip->state != FL_READY) {
982 		map_write(map, CMD(0xf0), cmd_addr);
983 		chip->state = FL_READY;
984 	}
985 
986 	map_copy_from(map, buf, adr, len);
987 
988 	put_chip(map, chip, cmd_addr);
989 
990 	mutex_unlock(&chip->mutex);
991 	return 0;
992 }
993 
994 
995 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
996 {
997 	struct map_info *map = mtd->priv;
998 	struct cfi_private *cfi = map->fldrv_priv;
999 	unsigned long ofs;
1000 	int chipnum;
1001 	int ret = 0;
1002 
1003 	/* ofs: offset within the first chip that the first read should start */
1004 
1005 	chipnum = (from >> cfi->chipshift);
1006 	ofs = from - (chipnum <<  cfi->chipshift);
1007 
1008 
1009 	*retlen = 0;
1010 
1011 	while (len) {
1012 		unsigned long thislen;
1013 
1014 		if (chipnum >= cfi->numchips)
1015 			break;
1016 
1017 		if ((len + ofs -1) >> cfi->chipshift)
1018 			thislen = (1<<cfi->chipshift) - ofs;
1019 		else
1020 			thislen = len;
1021 
1022 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1023 		if (ret)
1024 			break;
1025 
1026 		*retlen += thislen;
1027 		len -= thislen;
1028 		buf += thislen;
1029 
1030 		ofs = 0;
1031 		chipnum++;
1032 	}
1033 	return ret;
1034 }
1035 
1036 
1037 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1038 {
1039 	DECLARE_WAITQUEUE(wait, current);
1040 	unsigned long timeo = jiffies + HZ;
1041 	struct cfi_private *cfi = map->fldrv_priv;
1042 
1043  retry:
1044 	mutex_lock(&chip->mutex);
1045 
1046 	if (chip->state != FL_READY){
1047 		set_current_state(TASK_UNINTERRUPTIBLE);
1048 		add_wait_queue(&chip->wq, &wait);
1049 
1050 		mutex_unlock(&chip->mutex);
1051 
1052 		schedule();
1053 		remove_wait_queue(&chip->wq, &wait);
1054 		timeo = jiffies + HZ;
1055 
1056 		goto retry;
1057 	}
1058 
1059 	adr += chip->start;
1060 
1061 	chip->state = FL_READY;
1062 
1063 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1064 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1065 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1066 
1067 	map_copy_from(map, buf, adr, len);
1068 
1069 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1070 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1071 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1072 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1073 
1074 	wake_up(&chip->wq);
1075 	mutex_unlock(&chip->mutex);
1076 
1077 	return 0;
1078 }
1079 
1080 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1081 {
1082 	struct map_info *map = mtd->priv;
1083 	struct cfi_private *cfi = map->fldrv_priv;
1084 	unsigned long ofs;
1085 	int chipnum;
1086 	int ret = 0;
1087 
1088 
1089 	/* ofs: offset within the first chip that the first read should start */
1090 
1091 	/* 8 secsi bytes per chip */
1092 	chipnum=from>>3;
1093 	ofs=from & 7;
1094 
1095 
1096 	*retlen = 0;
1097 
1098 	while (len) {
1099 		unsigned long thislen;
1100 
1101 		if (chipnum >= cfi->numchips)
1102 			break;
1103 
1104 		if ((len + ofs -1) >> 3)
1105 			thislen = (1<<3) - ofs;
1106 		else
1107 			thislen = len;
1108 
1109 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1110 		if (ret)
1111 			break;
1112 
1113 		*retlen += thislen;
1114 		len -= thislen;
1115 		buf += thislen;
1116 
1117 		ofs = 0;
1118 		chipnum++;
1119 	}
1120 	return ret;
1121 }
1122 
1123 
1124 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1125 {
1126 	struct cfi_private *cfi = map->fldrv_priv;
1127 	unsigned long timeo = jiffies + HZ;
1128 	/*
1129 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1130 	 * have a max write time of a few hundreds usec). However, we should
1131 	 * use the maximum timeout value given by the chip at probe time
1132 	 * instead.  Unfortunately, struct flchip does have a field for
1133 	 * maximum timeout, only for typical which can be far too short
1134 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1135 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1136 	 */
1137 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1138 	int ret = 0;
1139 	map_word oldd;
1140 	int retry_cnt = 0;
1141 
1142 	adr += chip->start;
1143 
1144 	mutex_lock(&chip->mutex);
1145 	ret = get_chip(map, chip, adr, FL_WRITING);
1146 	if (ret) {
1147 		mutex_unlock(&chip->mutex);
1148 		return ret;
1149 	}
1150 
1151 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1152 	       __func__, adr, datum.x[0] );
1153 
1154 	/*
1155 	 * Check for a NOP for the case when the datum to write is already
1156 	 * present - it saves time and works around buggy chips that corrupt
1157 	 * data at other locations when 0xff is written to a location that
1158 	 * already contains 0xff.
1159 	 */
1160 	oldd = map_read(map, adr);
1161 	if (map_word_equal(map, oldd, datum)) {
1162 		DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1163 		       __func__);
1164 		goto op_done;
1165 	}
1166 
1167 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1168 	ENABLE_VPP(map);
1169 	xip_disable(map, chip, adr);
1170  retry:
1171 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1172 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1173 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1174 	map_write(map, datum, adr);
1175 	chip->state = FL_WRITING;
1176 
1177 	INVALIDATE_CACHE_UDELAY(map, chip,
1178 				adr, map_bankwidth(map),
1179 				chip->word_write_time);
1180 
1181 	/* See comment above for timeout value. */
1182 	timeo = jiffies + uWriteTimeout;
1183 	for (;;) {
1184 		if (chip->state != FL_WRITING) {
1185 			/* Someone's suspended the write. Sleep */
1186 			DECLARE_WAITQUEUE(wait, current);
1187 
1188 			set_current_state(TASK_UNINTERRUPTIBLE);
1189 			add_wait_queue(&chip->wq, &wait);
1190 			mutex_unlock(&chip->mutex);
1191 			schedule();
1192 			remove_wait_queue(&chip->wq, &wait);
1193 			timeo = jiffies + (HZ / 2); /* FIXME */
1194 			mutex_lock(&chip->mutex);
1195 			continue;
1196 		}
1197 
1198 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1199 			xip_enable(map, chip, adr);
1200 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1201 			xip_disable(map, chip, adr);
1202 			break;
1203 		}
1204 
1205 		if (chip_ready(map, adr))
1206 			break;
1207 
1208 		/* Latency issues. Drop the lock, wait a while and retry */
1209 		UDELAY(map, chip, adr, 1);
1210 	}
1211 	/* Did we succeed? */
1212 	if (!chip_good(map, adr, datum)) {
1213 		/* reset on all failures. */
1214 		map_write( map, CMD(0xF0), chip->start );
1215 		/* FIXME - should have reset delay before continuing */
1216 
1217 		if (++retry_cnt <= MAX_WORD_RETRIES)
1218 			goto retry;
1219 
1220 		ret = -EIO;
1221 	}
1222 	xip_enable(map, chip, adr);
1223  op_done:
1224 	chip->state = FL_READY;
1225 	put_chip(map, chip, adr);
1226 	mutex_unlock(&chip->mutex);
1227 
1228 	return ret;
1229 }
1230 
1231 
1232 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1233 				  size_t *retlen, const u_char *buf)
1234 {
1235 	struct map_info *map = mtd->priv;
1236 	struct cfi_private *cfi = map->fldrv_priv;
1237 	int ret = 0;
1238 	int chipnum;
1239 	unsigned long ofs, chipstart;
1240 	DECLARE_WAITQUEUE(wait, current);
1241 
1242 	*retlen = 0;
1243 	if (!len)
1244 		return 0;
1245 
1246 	chipnum = to >> cfi->chipshift;
1247 	ofs = to  - (chipnum << cfi->chipshift);
1248 	chipstart = cfi->chips[chipnum].start;
1249 
1250 	/* If it's not bus-aligned, do the first byte write */
1251 	if (ofs & (map_bankwidth(map)-1)) {
1252 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1253 		int i = ofs - bus_ofs;
1254 		int n = 0;
1255 		map_word tmp_buf;
1256 
1257  retry:
1258 		mutex_lock(&cfi->chips[chipnum].mutex);
1259 
1260 		if (cfi->chips[chipnum].state != FL_READY) {
1261 			set_current_state(TASK_UNINTERRUPTIBLE);
1262 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1263 
1264 			mutex_unlock(&cfi->chips[chipnum].mutex);
1265 
1266 			schedule();
1267 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1268 			goto retry;
1269 		}
1270 
1271 		/* Load 'tmp_buf' with old contents of flash */
1272 		tmp_buf = map_read(map, bus_ofs+chipstart);
1273 
1274 		mutex_unlock(&cfi->chips[chipnum].mutex);
1275 
1276 		/* Number of bytes to copy from buffer */
1277 		n = min_t(int, len, map_bankwidth(map)-i);
1278 
1279 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1280 
1281 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1282 				       bus_ofs, tmp_buf);
1283 		if (ret)
1284 			return ret;
1285 
1286 		ofs += n;
1287 		buf += n;
1288 		(*retlen) += n;
1289 		len -= n;
1290 
1291 		if (ofs >> cfi->chipshift) {
1292 			chipnum ++;
1293 			ofs = 0;
1294 			if (chipnum == cfi->numchips)
1295 				return 0;
1296 		}
1297 	}
1298 
1299 	/* We are now aligned, write as much as possible */
1300 	while(len >= map_bankwidth(map)) {
1301 		map_word datum;
1302 
1303 		datum = map_word_load(map, buf);
1304 
1305 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1306 				       ofs, datum);
1307 		if (ret)
1308 			return ret;
1309 
1310 		ofs += map_bankwidth(map);
1311 		buf += map_bankwidth(map);
1312 		(*retlen) += map_bankwidth(map);
1313 		len -= map_bankwidth(map);
1314 
1315 		if (ofs >> cfi->chipshift) {
1316 			chipnum ++;
1317 			ofs = 0;
1318 			if (chipnum == cfi->numchips)
1319 				return 0;
1320 			chipstart = cfi->chips[chipnum].start;
1321 		}
1322 	}
1323 
1324 	/* Write the trailing bytes if any */
1325 	if (len & (map_bankwidth(map)-1)) {
1326 		map_word tmp_buf;
1327 
1328  retry1:
1329 		mutex_lock(&cfi->chips[chipnum].mutex);
1330 
1331 		if (cfi->chips[chipnum].state != FL_READY) {
1332 			set_current_state(TASK_UNINTERRUPTIBLE);
1333 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1334 
1335 			mutex_unlock(&cfi->chips[chipnum].mutex);
1336 
1337 			schedule();
1338 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1339 			goto retry1;
1340 		}
1341 
1342 		tmp_buf = map_read(map, ofs + chipstart);
1343 
1344 		mutex_unlock(&cfi->chips[chipnum].mutex);
1345 
1346 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1347 
1348 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1349 				ofs, tmp_buf);
1350 		if (ret)
1351 			return ret;
1352 
1353 		(*retlen) += len;
1354 	}
1355 
1356 	return 0;
1357 }
1358 
1359 
1360 /*
1361  * FIXME: interleaved mode not tested, and probably not supported!
1362  */
1363 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1364 				    unsigned long adr, const u_char *buf,
1365 				    int len)
1366 {
1367 	struct cfi_private *cfi = map->fldrv_priv;
1368 	unsigned long timeo = jiffies + HZ;
1369 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1370 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1371 	int ret = -EIO;
1372 	unsigned long cmd_adr;
1373 	int z, words;
1374 	map_word datum;
1375 
1376 	adr += chip->start;
1377 	cmd_adr = adr;
1378 
1379 	mutex_lock(&chip->mutex);
1380 	ret = get_chip(map, chip, adr, FL_WRITING);
1381 	if (ret) {
1382 		mutex_unlock(&chip->mutex);
1383 		return ret;
1384 	}
1385 
1386 	datum = map_word_load(map, buf);
1387 
1388 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1389 	       __func__, adr, datum.x[0] );
1390 
1391 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1392 	ENABLE_VPP(map);
1393 	xip_disable(map, chip, cmd_adr);
1394 
1395 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1396 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1397 
1398 	/* Write Buffer Load */
1399 	map_write(map, CMD(0x25), cmd_adr);
1400 
1401 	chip->state = FL_WRITING_TO_BUFFER;
1402 
1403 	/* Write length of data to come */
1404 	words = len / map_bankwidth(map);
1405 	map_write(map, CMD(words - 1), cmd_adr);
1406 	/* Write data */
1407 	z = 0;
1408 	while(z < words * map_bankwidth(map)) {
1409 		datum = map_word_load(map, buf);
1410 		map_write(map, datum, adr + z);
1411 
1412 		z += map_bankwidth(map);
1413 		buf += map_bankwidth(map);
1414 	}
1415 	z -= map_bankwidth(map);
1416 
1417 	adr += z;
1418 
1419 	/* Write Buffer Program Confirm: GO GO GO */
1420 	map_write(map, CMD(0x29), cmd_adr);
1421 	chip->state = FL_WRITING;
1422 
1423 	INVALIDATE_CACHE_UDELAY(map, chip,
1424 				adr, map_bankwidth(map),
1425 				chip->word_write_time);
1426 
1427 	timeo = jiffies + uWriteTimeout;
1428 
1429 	for (;;) {
1430 		if (chip->state != FL_WRITING) {
1431 			/* Someone's suspended the write. Sleep */
1432 			DECLARE_WAITQUEUE(wait, current);
1433 
1434 			set_current_state(TASK_UNINTERRUPTIBLE);
1435 			add_wait_queue(&chip->wq, &wait);
1436 			mutex_unlock(&chip->mutex);
1437 			schedule();
1438 			remove_wait_queue(&chip->wq, &wait);
1439 			timeo = jiffies + (HZ / 2); /* FIXME */
1440 			mutex_lock(&chip->mutex);
1441 			continue;
1442 		}
1443 
1444 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1445 			break;
1446 
1447 		if (chip_ready(map, adr)) {
1448 			xip_enable(map, chip, adr);
1449 			goto op_done;
1450 		}
1451 
1452 		/* Latency issues. Drop the lock, wait a while and retry */
1453 		UDELAY(map, chip, adr, 1);
1454 	}
1455 
1456 	/* reset on all failures. */
1457 	map_write( map, CMD(0xF0), chip->start );
1458 	xip_enable(map, chip, adr);
1459 	/* FIXME - should have reset delay before continuing */
1460 
1461 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1462 	       __func__ );
1463 
1464 	ret = -EIO;
1465  op_done:
1466 	chip->state = FL_READY;
1467 	put_chip(map, chip, adr);
1468 	mutex_unlock(&chip->mutex);
1469 
1470 	return ret;
1471 }
1472 
1473 
1474 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1475 				    size_t *retlen, const u_char *buf)
1476 {
1477 	struct map_info *map = mtd->priv;
1478 	struct cfi_private *cfi = map->fldrv_priv;
1479 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1480 	int ret = 0;
1481 	int chipnum;
1482 	unsigned long ofs;
1483 
1484 	*retlen = 0;
1485 	if (!len)
1486 		return 0;
1487 
1488 	chipnum = to >> cfi->chipshift;
1489 	ofs = to  - (chipnum << cfi->chipshift);
1490 
1491 	/* If it's not bus-aligned, do the first word write */
1492 	if (ofs & (map_bankwidth(map)-1)) {
1493 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1494 		if (local_len > len)
1495 			local_len = len;
1496 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1497 					     local_len, retlen, buf);
1498 		if (ret)
1499 			return ret;
1500 		ofs += local_len;
1501 		buf += local_len;
1502 		len -= local_len;
1503 
1504 		if (ofs >> cfi->chipshift) {
1505 			chipnum ++;
1506 			ofs = 0;
1507 			if (chipnum == cfi->numchips)
1508 				return 0;
1509 		}
1510 	}
1511 
1512 	/* Write buffer is worth it only if more than one word to write... */
1513 	while (len >= map_bankwidth(map) * 2) {
1514 		/* We must not cross write block boundaries */
1515 		int size = wbufsize - (ofs & (wbufsize-1));
1516 
1517 		if (size > len)
1518 			size = len;
1519 		if (size % map_bankwidth(map))
1520 			size -= size % map_bankwidth(map);
1521 
1522 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1523 				      ofs, buf, size);
1524 		if (ret)
1525 			return ret;
1526 
1527 		ofs += size;
1528 		buf += size;
1529 		(*retlen) += size;
1530 		len -= size;
1531 
1532 		if (ofs >> cfi->chipshift) {
1533 			chipnum ++;
1534 			ofs = 0;
1535 			if (chipnum == cfi->numchips)
1536 				return 0;
1537 		}
1538 	}
1539 
1540 	if (len) {
1541 		size_t retlen_dregs = 0;
1542 
1543 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1544 					     len, &retlen_dregs, buf);
1545 
1546 		*retlen += retlen_dregs;
1547 		return ret;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 
1554 /*
1555  * Handle devices with one erase region, that only implement
1556  * the chip erase command.
1557  */
1558 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1559 {
1560 	struct cfi_private *cfi = map->fldrv_priv;
1561 	unsigned long timeo = jiffies + HZ;
1562 	unsigned long int adr;
1563 	DECLARE_WAITQUEUE(wait, current);
1564 	int ret = 0;
1565 
1566 	adr = cfi->addr_unlock1;
1567 
1568 	mutex_lock(&chip->mutex);
1569 	ret = get_chip(map, chip, adr, FL_WRITING);
1570 	if (ret) {
1571 		mutex_unlock(&chip->mutex);
1572 		return ret;
1573 	}
1574 
1575 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1576 	       __func__, chip->start );
1577 
1578 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1579 	ENABLE_VPP(map);
1580 	xip_disable(map, chip, adr);
1581 
1582 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1583 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1584 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1585 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1586 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1587 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1588 
1589 	chip->state = FL_ERASING;
1590 	chip->erase_suspended = 0;
1591 	chip->in_progress_block_addr = adr;
1592 
1593 	INVALIDATE_CACHE_UDELAY(map, chip,
1594 				adr, map->size,
1595 				chip->erase_time*500);
1596 
1597 	timeo = jiffies + (HZ*20);
1598 
1599 	for (;;) {
1600 		if (chip->state != FL_ERASING) {
1601 			/* Someone's suspended the erase. Sleep */
1602 			set_current_state(TASK_UNINTERRUPTIBLE);
1603 			add_wait_queue(&chip->wq, &wait);
1604 			mutex_unlock(&chip->mutex);
1605 			schedule();
1606 			remove_wait_queue(&chip->wq, &wait);
1607 			mutex_lock(&chip->mutex);
1608 			continue;
1609 		}
1610 		if (chip->erase_suspended) {
1611 			/* This erase was suspended and resumed.
1612 			   Adjust the timeout */
1613 			timeo = jiffies + (HZ*20); /* FIXME */
1614 			chip->erase_suspended = 0;
1615 		}
1616 
1617 		if (chip_ready(map, adr))
1618 			break;
1619 
1620 		if (time_after(jiffies, timeo)) {
1621 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1622 				__func__ );
1623 			break;
1624 		}
1625 
1626 		/* Latency issues. Drop the lock, wait a while and retry */
1627 		UDELAY(map, chip, adr, 1000000/HZ);
1628 	}
1629 	/* Did we succeed? */
1630 	if (!chip_good(map, adr, map_word_ff(map))) {
1631 		/* reset on all failures. */
1632 		map_write( map, CMD(0xF0), chip->start );
1633 		/* FIXME - should have reset delay before continuing */
1634 
1635 		ret = -EIO;
1636 	}
1637 
1638 	chip->state = FL_READY;
1639 	xip_enable(map, chip, adr);
1640 	put_chip(map, chip, adr);
1641 	mutex_unlock(&chip->mutex);
1642 
1643 	return ret;
1644 }
1645 
1646 
1647 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1648 {
1649 	struct cfi_private *cfi = map->fldrv_priv;
1650 	unsigned long timeo = jiffies + HZ;
1651 	DECLARE_WAITQUEUE(wait, current);
1652 	int ret = 0;
1653 
1654 	adr += chip->start;
1655 
1656 	mutex_lock(&chip->mutex);
1657 	ret = get_chip(map, chip, adr, FL_ERASING);
1658 	if (ret) {
1659 		mutex_unlock(&chip->mutex);
1660 		return ret;
1661 	}
1662 
1663 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1664 	       __func__, adr );
1665 
1666 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1667 	ENABLE_VPP(map);
1668 	xip_disable(map, chip, adr);
1669 
1670 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1671 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1672 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1673 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1674 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1675 	map_write(map, cfi->sector_erase_cmd, adr);
1676 
1677 	chip->state = FL_ERASING;
1678 	chip->erase_suspended = 0;
1679 	chip->in_progress_block_addr = adr;
1680 
1681 	INVALIDATE_CACHE_UDELAY(map, chip,
1682 				adr, len,
1683 				chip->erase_time*500);
1684 
1685 	timeo = jiffies + (HZ*20);
1686 
1687 	for (;;) {
1688 		if (chip->state != FL_ERASING) {
1689 			/* Someone's suspended the erase. Sleep */
1690 			set_current_state(TASK_UNINTERRUPTIBLE);
1691 			add_wait_queue(&chip->wq, &wait);
1692 			mutex_unlock(&chip->mutex);
1693 			schedule();
1694 			remove_wait_queue(&chip->wq, &wait);
1695 			mutex_lock(&chip->mutex);
1696 			continue;
1697 		}
1698 		if (chip->erase_suspended) {
1699 			/* This erase was suspended and resumed.
1700 			   Adjust the timeout */
1701 			timeo = jiffies + (HZ*20); /* FIXME */
1702 			chip->erase_suspended = 0;
1703 		}
1704 
1705 		if (chip_ready(map, adr)) {
1706 			xip_enable(map, chip, adr);
1707 			break;
1708 		}
1709 
1710 		if (time_after(jiffies, timeo)) {
1711 			xip_enable(map, chip, adr);
1712 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1713 				__func__ );
1714 			break;
1715 		}
1716 
1717 		/* Latency issues. Drop the lock, wait a while and retry */
1718 		UDELAY(map, chip, adr, 1000000/HZ);
1719 	}
1720 	/* Did we succeed? */
1721 	if (!chip_good(map, adr, map_word_ff(map))) {
1722 		/* reset on all failures. */
1723 		map_write( map, CMD(0xF0), chip->start );
1724 		/* FIXME - should have reset delay before continuing */
1725 
1726 		ret = -EIO;
1727 	}
1728 
1729 	chip->state = FL_READY;
1730 	put_chip(map, chip, adr);
1731 	mutex_unlock(&chip->mutex);
1732 	return ret;
1733 }
1734 
1735 
1736 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1737 {
1738 	unsigned long ofs, len;
1739 	int ret;
1740 
1741 	ofs = instr->addr;
1742 	len = instr->len;
1743 
1744 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1745 	if (ret)
1746 		return ret;
1747 
1748 	instr->state = MTD_ERASE_DONE;
1749 	mtd_erase_callback(instr);
1750 
1751 	return 0;
1752 }
1753 
1754 
1755 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1756 {
1757 	struct map_info *map = mtd->priv;
1758 	struct cfi_private *cfi = map->fldrv_priv;
1759 	int ret = 0;
1760 
1761 	if (instr->addr != 0)
1762 		return -EINVAL;
1763 
1764 	if (instr->len != mtd->size)
1765 		return -EINVAL;
1766 
1767 	ret = do_erase_chip(map, &cfi->chips[0]);
1768 	if (ret)
1769 		return ret;
1770 
1771 	instr->state = MTD_ERASE_DONE;
1772 	mtd_erase_callback(instr);
1773 
1774 	return 0;
1775 }
1776 
1777 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1778 			 unsigned long adr, int len, void *thunk)
1779 {
1780 	struct cfi_private *cfi = map->fldrv_priv;
1781 	int ret;
1782 
1783 	mutex_lock(&chip->mutex);
1784 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1785 	if (ret)
1786 		goto out_unlock;
1787 	chip->state = FL_LOCKING;
1788 
1789 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1790 	      __func__, adr, len);
1791 
1792 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1793 			 cfi->device_type, NULL);
1794 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1795 			 cfi->device_type, NULL);
1796 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1797 			 cfi->device_type, NULL);
1798 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1799 			 cfi->device_type, NULL);
1800 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1801 			 cfi->device_type, NULL);
1802 	map_write(map, CMD(0x40), chip->start + adr);
1803 
1804 	chip->state = FL_READY;
1805 	put_chip(map, chip, adr + chip->start);
1806 	ret = 0;
1807 
1808 out_unlock:
1809 	mutex_unlock(&chip->mutex);
1810 	return ret;
1811 }
1812 
1813 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1814 			   unsigned long adr, int len, void *thunk)
1815 {
1816 	struct cfi_private *cfi = map->fldrv_priv;
1817 	int ret;
1818 
1819 	mutex_lock(&chip->mutex);
1820 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1821 	if (ret)
1822 		goto out_unlock;
1823 	chip->state = FL_UNLOCKING;
1824 
1825 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1826 	      __func__, adr, len);
1827 
1828 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1829 			 cfi->device_type, NULL);
1830 	map_write(map, CMD(0x70), adr);
1831 
1832 	chip->state = FL_READY;
1833 	put_chip(map, chip, adr + chip->start);
1834 	ret = 0;
1835 
1836 out_unlock:
1837 	mutex_unlock(&chip->mutex);
1838 	return ret;
1839 }
1840 
1841 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1842 {
1843 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1844 }
1845 
1846 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1847 {
1848 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1849 }
1850 
1851 
1852 static void cfi_amdstd_sync (struct mtd_info *mtd)
1853 {
1854 	struct map_info *map = mtd->priv;
1855 	struct cfi_private *cfi = map->fldrv_priv;
1856 	int i;
1857 	struct flchip *chip;
1858 	int ret = 0;
1859 	DECLARE_WAITQUEUE(wait, current);
1860 
1861 	for (i=0; !ret && i<cfi->numchips; i++) {
1862 		chip = &cfi->chips[i];
1863 
1864 	retry:
1865 		mutex_lock(&chip->mutex);
1866 
1867 		switch(chip->state) {
1868 		case FL_READY:
1869 		case FL_STATUS:
1870 		case FL_CFI_QUERY:
1871 		case FL_JEDEC_QUERY:
1872 			chip->oldstate = chip->state;
1873 			chip->state = FL_SYNCING;
1874 			/* No need to wake_up() on this state change -
1875 			 * as the whole point is that nobody can do anything
1876 			 * with the chip now anyway.
1877 			 */
1878 		case FL_SYNCING:
1879 			mutex_unlock(&chip->mutex);
1880 			break;
1881 
1882 		default:
1883 			/* Not an idle state */
1884 			set_current_state(TASK_UNINTERRUPTIBLE);
1885 			add_wait_queue(&chip->wq, &wait);
1886 
1887 			mutex_unlock(&chip->mutex);
1888 
1889 			schedule();
1890 
1891 			remove_wait_queue(&chip->wq, &wait);
1892 
1893 			goto retry;
1894 		}
1895 	}
1896 
1897 	/* Unlock the chips again */
1898 
1899 	for (i--; i >=0; i--) {
1900 		chip = &cfi->chips[i];
1901 
1902 		mutex_lock(&chip->mutex);
1903 
1904 		if (chip->state == FL_SYNCING) {
1905 			chip->state = chip->oldstate;
1906 			wake_up(&chip->wq);
1907 		}
1908 		mutex_unlock(&chip->mutex);
1909 	}
1910 }
1911 
1912 
1913 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1914 {
1915 	struct map_info *map = mtd->priv;
1916 	struct cfi_private *cfi = map->fldrv_priv;
1917 	int i;
1918 	struct flchip *chip;
1919 	int ret = 0;
1920 
1921 	for (i=0; !ret && i<cfi->numchips; i++) {
1922 		chip = &cfi->chips[i];
1923 
1924 		mutex_lock(&chip->mutex);
1925 
1926 		switch(chip->state) {
1927 		case FL_READY:
1928 		case FL_STATUS:
1929 		case FL_CFI_QUERY:
1930 		case FL_JEDEC_QUERY:
1931 			chip->oldstate = chip->state;
1932 			chip->state = FL_PM_SUSPENDED;
1933 			/* No need to wake_up() on this state change -
1934 			 * as the whole point is that nobody can do anything
1935 			 * with the chip now anyway.
1936 			 */
1937 		case FL_PM_SUSPENDED:
1938 			break;
1939 
1940 		default:
1941 			ret = -EAGAIN;
1942 			break;
1943 		}
1944 		mutex_unlock(&chip->mutex);
1945 	}
1946 
1947 	/* Unlock the chips again */
1948 
1949 	if (ret) {
1950 		for (i--; i >=0; i--) {
1951 			chip = &cfi->chips[i];
1952 
1953 			mutex_lock(&chip->mutex);
1954 
1955 			if (chip->state == FL_PM_SUSPENDED) {
1956 				chip->state = chip->oldstate;
1957 				wake_up(&chip->wq);
1958 			}
1959 			mutex_unlock(&chip->mutex);
1960 		}
1961 	}
1962 
1963 	return ret;
1964 }
1965 
1966 
1967 static void cfi_amdstd_resume(struct mtd_info *mtd)
1968 {
1969 	struct map_info *map = mtd->priv;
1970 	struct cfi_private *cfi = map->fldrv_priv;
1971 	int i;
1972 	struct flchip *chip;
1973 
1974 	for (i=0; i<cfi->numchips; i++) {
1975 
1976 		chip = &cfi->chips[i];
1977 
1978 		mutex_lock(&chip->mutex);
1979 
1980 		if (chip->state == FL_PM_SUSPENDED) {
1981 			chip->state = FL_READY;
1982 			map_write(map, CMD(0xF0), chip->start);
1983 			wake_up(&chip->wq);
1984 		}
1985 		else
1986 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1987 
1988 		mutex_unlock(&chip->mutex);
1989 	}
1990 }
1991 
1992 
1993 /*
1994  * Ensure that the flash device is put back into read array mode before
1995  * unloading the driver or rebooting.  On some systems, rebooting while
1996  * the flash is in query/program/erase mode will prevent the CPU from
1997  * fetching the bootloader code, requiring a hard reset or power cycle.
1998  */
1999 static int cfi_amdstd_reset(struct mtd_info *mtd)
2000 {
2001 	struct map_info *map = mtd->priv;
2002 	struct cfi_private *cfi = map->fldrv_priv;
2003 	int i, ret;
2004 	struct flchip *chip;
2005 
2006 	for (i = 0; i < cfi->numchips; i++) {
2007 
2008 		chip = &cfi->chips[i];
2009 
2010 		mutex_lock(&chip->mutex);
2011 
2012 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2013 		if (!ret) {
2014 			map_write(map, CMD(0xF0), chip->start);
2015 			chip->state = FL_SHUTDOWN;
2016 			put_chip(map, chip, chip->start);
2017 		}
2018 
2019 		mutex_unlock(&chip->mutex);
2020 	}
2021 
2022 	return 0;
2023 }
2024 
2025 
2026 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2027 			       void *v)
2028 {
2029 	struct mtd_info *mtd;
2030 
2031 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2032 	cfi_amdstd_reset(mtd);
2033 	return NOTIFY_DONE;
2034 }
2035 
2036 
2037 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2038 {
2039 	struct map_info *map = mtd->priv;
2040 	struct cfi_private *cfi = map->fldrv_priv;
2041 
2042 	cfi_amdstd_reset(mtd);
2043 	unregister_reboot_notifier(&mtd->reboot_notifier);
2044 	kfree(cfi->cmdset_priv);
2045 	kfree(cfi->cfiq);
2046 	kfree(cfi);
2047 	kfree(mtd->eraseregions);
2048 }
2049 
2050 MODULE_LICENSE("GPL");
2051 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2052 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2053 MODULE_ALIAS("cfi_cmdset_0006");
2054 MODULE_ALIAS("cfi_cmdset_0701");
2055