1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/mtd/compatmac.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define MANUFACTURER_AMD	0x0001
47 #define MANUFACTURER_ATMEL	0x001F
48 #define MANUFACTURER_MACRONIX	0x00C2
49 #define MANUFACTURER_SST	0x00BF
50 #define SST49LF004B	        0x0060
51 #define SST49LF040B	        0x0050
52 #define SST49LF008A		0x005a
53 #define AT49BV6416		0x00d6
54 
55 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
59 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
60 static void cfi_amdstd_sync (struct mtd_info *);
61 static int cfi_amdstd_suspend (struct mtd_info *);
62 static void cfi_amdstd_resume (struct mtd_info *);
63 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
64 
65 static void cfi_amdstd_destroy(struct mtd_info *);
66 
67 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
69 
70 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72 #include "fwh_lock.h"
73 
74 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
75 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
76 
77 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 	.probe		= NULL, /* Not usable directly */
79 	.destroy	= cfi_amdstd_destroy,
80 	.name		= "cfi_cmdset_0002",
81 	.module		= THIS_MODULE
82 };
83 
84 
85 /* #define DEBUG_CFI_FEATURES */
86 
87 
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
90 {
91 	const char* erase_suspend[3] = {
92 		"Not supported", "Read only", "Read/write"
93 	};
94 	const char* top_bottom[6] = {
95 		"No WP", "8x8KiB sectors at top & bottom, no WP",
96 		"Bottom boot", "Top boot",
97 		"Uniform, Bottom WP", "Uniform, Top WP"
98 	};
99 
100 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
101 	printk("  Address sensitive unlock: %s\n",
102 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
103 
104 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 	else
107 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
108 
109 	if (extp->BlkProt == 0)
110 		printk("  Block protection: Not supported\n");
111 	else
112 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
113 
114 
115 	printk("  Temporary block unprotect: %s\n",
116 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 	printk("  Burst mode: %s\n",
120 	       extp->BurstMode ? "Supported" : "Not supported");
121 	if (extp->PageMode == 0)
122 		printk("  Page mode: Not supported\n");
123 	else
124 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
125 
126 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 	       extp->VppMin >> 4, extp->VppMin & 0xf);
128 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 	       extp->VppMax >> 4, extp->VppMax & 0xf);
130 
131 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 	else
134 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
135 }
136 #endif
137 
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
141 {
142 	struct map_info *map = mtd->priv;
143 	struct cfi_private *cfi = map->fldrv_priv;
144 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 	__u8 major = extp->MajorVersion;
146 	__u8 minor = extp->MinorVersion;
147 
148 	if (((major << 8) | minor) < 0x3131) {
149 		/* CFI version 1.0 => don't trust bootloc */
150 
151 		DEBUG(MTD_DEBUG_LEVEL1,
152 			"%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
153 			map->name, cfi->mfr, cfi->id);
154 
155 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
156 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
157 		 * These were badly detected as they have the 0x80 bit set
158 		 * so treat them as a special case.
159 		 */
160 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
161 
162 			/* Macronix added CFI to their 2nd generation
163 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
164 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
165 			 * has CFI.
166 			 *
167 			 * Therefore also check the manufacturer.
168 			 * This reduces the risk of false detection due to
169 			 * the 8-bit device ID.
170 			 */
171 			(cfi->mfr == MANUFACTURER_MACRONIX)) {
172 			DEBUG(MTD_DEBUG_LEVEL1,
173 				"%s: Macronix MX29LV400C with bottom boot block"
174 				" detected\n", map->name);
175 			extp->TopBottom = 2;	/* bottom boot */
176 		} else
177 		if (cfi->id & 0x80) {
178 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
179 			extp->TopBottom = 3;	/* top boot */
180 		} else {
181 			extp->TopBottom = 2;	/* bottom boot */
182 		}
183 
184 		DEBUG(MTD_DEBUG_LEVEL1,
185 			"%s: AMD CFI PRI V%c.%c has no boot block field;"
186 			" deduced %s from Device ID\n", map->name, major, minor,
187 			extp->TopBottom == 2 ? "bottom" : "top");
188 	}
189 }
190 #endif
191 
192 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
193 {
194 	struct map_info *map = mtd->priv;
195 	struct cfi_private *cfi = map->fldrv_priv;
196 	if (cfi->cfiq->BufWriteTimeoutTyp) {
197 		DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
198 		mtd->write = cfi_amdstd_write_buffers;
199 	}
200 }
201 
202 /* Atmel chips don't use the same PRI format as AMD chips */
203 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
204 {
205 	struct map_info *map = mtd->priv;
206 	struct cfi_private *cfi = map->fldrv_priv;
207 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
208 	struct cfi_pri_atmel atmel_pri;
209 
210 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
211 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
212 
213 	if (atmel_pri.Features & 0x02)
214 		extp->EraseSuspend = 2;
215 
216 	/* Some chips got it backwards... */
217 	if (cfi->id == AT49BV6416) {
218 		if (atmel_pri.BottomBoot)
219 			extp->TopBottom = 3;
220 		else
221 			extp->TopBottom = 2;
222 	} else {
223 		if (atmel_pri.BottomBoot)
224 			extp->TopBottom = 2;
225 		else
226 			extp->TopBottom = 3;
227 	}
228 
229 	/* burst write mode not supported */
230 	cfi->cfiq->BufWriteTimeoutTyp = 0;
231 	cfi->cfiq->BufWriteTimeoutMax = 0;
232 }
233 
234 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
235 {
236 	/* Setup for chips with a secsi area */
237 	mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
238 	mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
239 }
240 
241 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
242 {
243 	struct map_info *map = mtd->priv;
244 	struct cfi_private *cfi = map->fldrv_priv;
245 	if ((cfi->cfiq->NumEraseRegions == 1) &&
246 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
247 		mtd->erase = cfi_amdstd_erase_chip;
248 	}
249 
250 }
251 
252 /*
253  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
254  * locked by default.
255  */
256 static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
257 {
258 	mtd->lock = cfi_atmel_lock;
259 	mtd->unlock = cfi_atmel_unlock;
260 	mtd->flags |= MTD_POWERUP_LOCK;
261 }
262 
263 static void fixup_s29gl064n_sectors(struct mtd_info *mtd, void *param)
264 {
265 	struct map_info *map = mtd->priv;
266 	struct cfi_private *cfi = map->fldrv_priv;
267 
268 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
269 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
270 		pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
271 	}
272 }
273 
274 static void fixup_s29gl032n_sectors(struct mtd_info *mtd, void *param)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
280 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
281 		pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
282 	}
283 }
284 
285 static struct cfi_fixup cfi_fixup_table[] = {
286 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
287 #ifdef AMD_BOOTLOC_BUG
288 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
289 	{ MANUFACTURER_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock, NULL },
290 #endif
291 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
292 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
293 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
294 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
295 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
296 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
297 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors, NULL, },
298 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors, NULL, },
299 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors, NULL, },
300 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors, NULL, },
301 #if !FORCE_WORD_WRITE
302 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
303 #endif
304 	{ 0, 0, NULL, NULL }
305 };
306 static struct cfi_fixup jedec_fixup_table[] = {
307 	{ MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
308 	{ MANUFACTURER_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
309 	{ MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
310 	{ 0, 0, NULL, NULL }
311 };
312 
313 static struct cfi_fixup fixup_table[] = {
314 	/* The CFI vendor ids and the JEDEC vendor IDs appear
315 	 * to be common.  It is like the devices id's are as
316 	 * well.  This table is to pick all cases where
317 	 * we know that is the case.
318 	 */
319 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
320 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
321 	{ 0, 0, NULL, NULL }
322 };
323 
324 
325 static void cfi_fixup_major_minor(struct cfi_private *cfi,
326 				  struct cfi_pri_amdstd *extp)
327 {
328 	if (cfi->mfr == CFI_MFR_SAMSUNG && cfi->id == 0x257e &&
329 	    extp->MajorVersion == '0')
330 		extp->MajorVersion = '1';
331 }
332 
333 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
334 {
335 	struct cfi_private *cfi = map->fldrv_priv;
336 	struct mtd_info *mtd;
337 	int i;
338 
339 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
340 	if (!mtd) {
341 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
342 		return NULL;
343 	}
344 	mtd->priv = map;
345 	mtd->type = MTD_NORFLASH;
346 
347 	/* Fill in the default mtd operations */
348 	mtd->erase   = cfi_amdstd_erase_varsize;
349 	mtd->write   = cfi_amdstd_write_words;
350 	mtd->read    = cfi_amdstd_read;
351 	mtd->sync    = cfi_amdstd_sync;
352 	mtd->suspend = cfi_amdstd_suspend;
353 	mtd->resume  = cfi_amdstd_resume;
354 	mtd->flags   = MTD_CAP_NORFLASH;
355 	mtd->name    = map->name;
356 	mtd->writesize = 1;
357 
358 	if (cfi->cfi_mode==CFI_MODE_CFI){
359 		unsigned char bootloc;
360 		/*
361 		 * It's a real CFI chip, not one for which the probe
362 		 * routine faked a CFI structure. So we read the feature
363 		 * table from it.
364 		 */
365 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
366 		struct cfi_pri_amdstd *extp;
367 
368 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
369 		if (!extp) {
370 			kfree(mtd);
371 			return NULL;
372 		}
373 
374 		cfi_fixup_major_minor(cfi, extp);
375 
376 		if (extp->MajorVersion != '1' ||
377 		    (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
378 			printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
379 			       "version %c.%c.\n",  extp->MajorVersion,
380 			       extp->MinorVersion);
381 			kfree(extp);
382 			kfree(mtd);
383 			return NULL;
384 		}
385 
386 		/* Install our own private info structure */
387 		cfi->cmdset_priv = extp;
388 
389 		/* Apply cfi device specific fixups */
390 		cfi_fixup(mtd, cfi_fixup_table);
391 
392 #ifdef DEBUG_CFI_FEATURES
393 		/* Tell the user about it in lots of lovely detail */
394 		cfi_tell_features(extp);
395 #endif
396 
397 		bootloc = extp->TopBottom;
398 		if ((bootloc != 2) && (bootloc != 3)) {
399 			printk(KERN_WARNING "%s: CFI does not contain boot "
400 			       "bank location. Assuming top.\n", map->name);
401 			bootloc = 2;
402 		}
403 
404 		if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
405 			printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
406 
407 			for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
408 				int j = (cfi->cfiq->NumEraseRegions-1)-i;
409 				__u32 swap;
410 
411 				swap = cfi->cfiq->EraseRegionInfo[i];
412 				cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
413 				cfi->cfiq->EraseRegionInfo[j] = swap;
414 			}
415 		}
416 		/* Set the default CFI lock/unlock addresses */
417 		cfi->addr_unlock1 = 0x555;
418 		cfi->addr_unlock2 = 0x2aa;
419 
420 	} /* CFI mode */
421 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
422 		/* Apply jedec specific fixups */
423 		cfi_fixup(mtd, jedec_fixup_table);
424 	}
425 	/* Apply generic fixups */
426 	cfi_fixup(mtd, fixup_table);
427 
428 	for (i=0; i< cfi->numchips; i++) {
429 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
430 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
431 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
432 		cfi->chips[i].ref_point_counter = 0;
433 		init_waitqueue_head(&(cfi->chips[i].wq));
434 	}
435 
436 	map->fldrv = &cfi_amdstd_chipdrv;
437 
438 	return cfi_amdstd_setup(mtd);
439 }
440 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
441 
442 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
443 {
444 	struct map_info *map = mtd->priv;
445 	struct cfi_private *cfi = map->fldrv_priv;
446 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
447 	unsigned long offset = 0;
448 	int i,j;
449 
450 	printk(KERN_NOTICE "number of %s chips: %d\n",
451 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
452 	/* Select the correct geometry setup */
453 	mtd->size = devsize * cfi->numchips;
454 
455 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
456 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
457 				    * mtd->numeraseregions, GFP_KERNEL);
458 	if (!mtd->eraseregions) {
459 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
460 		goto setup_err;
461 	}
462 
463 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
464 		unsigned long ernum, ersize;
465 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
466 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
467 
468 		if (mtd->erasesize < ersize) {
469 			mtd->erasesize = ersize;
470 		}
471 		for (j=0; j<cfi->numchips; j++) {
472 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
473 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
474 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
475 		}
476 		offset += (ersize * ernum);
477 	}
478 	if (offset != devsize) {
479 		/* Argh */
480 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
481 		goto setup_err;
482 	}
483 #if 0
484 	// debug
485 	for (i=0; i<mtd->numeraseregions;i++){
486 		printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
487 		       i,mtd->eraseregions[i].offset,
488 		       mtd->eraseregions[i].erasesize,
489 		       mtd->eraseregions[i].numblocks);
490 	}
491 #endif
492 
493 	__module_get(THIS_MODULE);
494 	return mtd;
495 
496  setup_err:
497 	if(mtd) {
498 		kfree(mtd->eraseregions);
499 		kfree(mtd);
500 	}
501 	kfree(cfi->cmdset_priv);
502 	kfree(cfi->cfiq);
503 	return NULL;
504 }
505 
506 /*
507  * Return true if the chip is ready.
508  *
509  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
510  * non-suspended sector) and is indicated by no toggle bits toggling.
511  *
512  * Note that anything more complicated than checking if no bits are toggling
513  * (including checking DQ5 for an error status) is tricky to get working
514  * correctly and is therefore not done	(particulary with interleaved chips
515  * as each chip must be checked independantly of the others).
516  */
517 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
518 {
519 	map_word d, t;
520 
521 	d = map_read(map, addr);
522 	t = map_read(map, addr);
523 
524 	return map_word_equal(map, d, t);
525 }
526 
527 /*
528  * Return true if the chip is ready and has the correct value.
529  *
530  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
531  * non-suspended sector) and it is indicated by no bits toggling.
532  *
533  * Error are indicated by toggling bits or bits held with the wrong value,
534  * or with bits toggling.
535  *
536  * Note that anything more complicated than checking if no bits are toggling
537  * (including checking DQ5 for an error status) is tricky to get working
538  * correctly and is therefore not done	(particulary with interleaved chips
539  * as each chip must be checked independantly of the others).
540  *
541  */
542 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
543 {
544 	map_word oldd, curd;
545 
546 	oldd = map_read(map, addr);
547 	curd = map_read(map, addr);
548 
549 	return	map_word_equal(map, oldd, curd) &&
550 		map_word_equal(map, curd, expected);
551 }
552 
553 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
554 {
555 	DECLARE_WAITQUEUE(wait, current);
556 	struct cfi_private *cfi = map->fldrv_priv;
557 	unsigned long timeo;
558 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
559 
560  resettime:
561 	timeo = jiffies + HZ;
562  retry:
563 	switch (chip->state) {
564 
565 	case FL_STATUS:
566 		for (;;) {
567 			if (chip_ready(map, adr))
568 				break;
569 
570 			if (time_after(jiffies, timeo)) {
571 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
572 				return -EIO;
573 			}
574 			spin_unlock(chip->mutex);
575 			cfi_udelay(1);
576 			spin_lock(chip->mutex);
577 			/* Someone else might have been playing with it. */
578 			goto retry;
579 		}
580 
581 	case FL_READY:
582 	case FL_CFI_QUERY:
583 	case FL_JEDEC_QUERY:
584 		return 0;
585 
586 	case FL_ERASING:
587 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
588 		    !(mode == FL_READY || mode == FL_POINT ||
589 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
590 			goto sleep;
591 
592 		/* We could check to see if we're trying to access the sector
593 		 * that is currently being erased. However, no user will try
594 		 * anything like that so we just wait for the timeout. */
595 
596 		/* Erase suspend */
597 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
598 		 * commands when the erase algorithm isn't in progress. */
599 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
600 		chip->oldstate = FL_ERASING;
601 		chip->state = FL_ERASE_SUSPENDING;
602 		chip->erase_suspended = 1;
603 		for (;;) {
604 			if (chip_ready(map, adr))
605 				break;
606 
607 			if (time_after(jiffies, timeo)) {
608 				/* Should have suspended the erase by now.
609 				 * Send an Erase-Resume command as either
610 				 * there was an error (so leave the erase
611 				 * routine to recover from it) or we trying to
612 				 * use the erase-in-progress sector. */
613 				map_write(map, CMD(0x30), chip->in_progress_block_addr);
614 				chip->state = FL_ERASING;
615 				chip->oldstate = FL_READY;
616 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
617 				return -EIO;
618 			}
619 
620 			spin_unlock(chip->mutex);
621 			cfi_udelay(1);
622 			spin_lock(chip->mutex);
623 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
624 			   So we can just loop here. */
625 		}
626 		chip->state = FL_READY;
627 		return 0;
628 
629 	case FL_XIP_WHILE_ERASING:
630 		if (mode != FL_READY && mode != FL_POINT &&
631 		    (!cfip || !(cfip->EraseSuspend&2)))
632 			goto sleep;
633 		chip->oldstate = chip->state;
634 		chip->state = FL_READY;
635 		return 0;
636 
637 	case FL_POINT:
638 		/* Only if there's no operation suspended... */
639 		if (mode == FL_READY && chip->oldstate == FL_READY)
640 			return 0;
641 
642 	default:
643 	sleep:
644 		set_current_state(TASK_UNINTERRUPTIBLE);
645 		add_wait_queue(&chip->wq, &wait);
646 		spin_unlock(chip->mutex);
647 		schedule();
648 		remove_wait_queue(&chip->wq, &wait);
649 		spin_lock(chip->mutex);
650 		goto resettime;
651 	}
652 }
653 
654 
655 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
656 {
657 	struct cfi_private *cfi = map->fldrv_priv;
658 
659 	switch(chip->oldstate) {
660 	case FL_ERASING:
661 		chip->state = chip->oldstate;
662 		map_write(map, CMD(0x30), chip->in_progress_block_addr);
663 		chip->oldstate = FL_READY;
664 		chip->state = FL_ERASING;
665 		break;
666 
667 	case FL_XIP_WHILE_ERASING:
668 		chip->state = chip->oldstate;
669 		chip->oldstate = FL_READY;
670 		break;
671 
672 	case FL_READY:
673 	case FL_STATUS:
674 		/* We should really make set_vpp() count, rather than doing this */
675 		DISABLE_VPP(map);
676 		break;
677 	default:
678 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
679 	}
680 	wake_up(&chip->wq);
681 }
682 
683 #ifdef CONFIG_MTD_XIP
684 
685 /*
686  * No interrupt what so ever can be serviced while the flash isn't in array
687  * mode.  This is ensured by the xip_disable() and xip_enable() functions
688  * enclosing any code path where the flash is known not to be in array mode.
689  * And within a XIP disabled code path, only functions marked with __xipram
690  * may be called and nothing else (it's a good thing to inspect generated
691  * assembly to make sure inline functions were actually inlined and that gcc
692  * didn't emit calls to its own support functions). Also configuring MTD CFI
693  * support to a single buswidth and a single interleave is also recommended.
694  */
695 
696 static void xip_disable(struct map_info *map, struct flchip *chip,
697 			unsigned long adr)
698 {
699 	/* TODO: chips with no XIP use should ignore and return */
700 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
701 	local_irq_disable();
702 }
703 
704 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
705 				unsigned long adr)
706 {
707 	struct cfi_private *cfi = map->fldrv_priv;
708 
709 	if (chip->state != FL_POINT && chip->state != FL_READY) {
710 		map_write(map, CMD(0xf0), adr);
711 		chip->state = FL_READY;
712 	}
713 	(void) map_read(map, adr);
714 	xip_iprefetch();
715 	local_irq_enable();
716 }
717 
718 /*
719  * When a delay is required for the flash operation to complete, the
720  * xip_udelay() function is polling for both the given timeout and pending
721  * (but still masked) hardware interrupts.  Whenever there is an interrupt
722  * pending then the flash erase operation is suspended, array mode restored
723  * and interrupts unmasked.  Task scheduling might also happen at that
724  * point.  The CPU eventually returns from the interrupt or the call to
725  * schedule() and the suspended flash operation is resumed for the remaining
726  * of the delay period.
727  *
728  * Warning: this function _will_ fool interrupt latency tracing tools.
729  */
730 
731 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
732 				unsigned long adr, int usec)
733 {
734 	struct cfi_private *cfi = map->fldrv_priv;
735 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
736 	map_word status, OK = CMD(0x80);
737 	unsigned long suspended, start = xip_currtime();
738 	flstate_t oldstate;
739 
740 	do {
741 		cpu_relax();
742 		if (xip_irqpending() && extp &&
743 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
744 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
745 			/*
746 			 * Let's suspend the erase operation when supported.
747 			 * Note that we currently don't try to suspend
748 			 * interleaved chips if there is already another
749 			 * operation suspended (imagine what happens
750 			 * when one chip was already done with the current
751 			 * operation while another chip suspended it, then
752 			 * we resume the whole thing at once).  Yes, it
753 			 * can happen!
754 			 */
755 			map_write(map, CMD(0xb0), adr);
756 			usec -= xip_elapsed_since(start);
757 			suspended = xip_currtime();
758 			do {
759 				if (xip_elapsed_since(suspended) > 100000) {
760 					/*
761 					 * The chip doesn't want to suspend
762 					 * after waiting for 100 msecs.
763 					 * This is a critical error but there
764 					 * is not much we can do here.
765 					 */
766 					return;
767 				}
768 				status = map_read(map, adr);
769 			} while (!map_word_andequal(map, status, OK, OK));
770 
771 			/* Suspend succeeded */
772 			oldstate = chip->state;
773 			if (!map_word_bitsset(map, status, CMD(0x40)))
774 				break;
775 			chip->state = FL_XIP_WHILE_ERASING;
776 			chip->erase_suspended = 1;
777 			map_write(map, CMD(0xf0), adr);
778 			(void) map_read(map, adr);
779 			xip_iprefetch();
780 			local_irq_enable();
781 			spin_unlock(chip->mutex);
782 			xip_iprefetch();
783 			cond_resched();
784 
785 			/*
786 			 * We're back.  However someone else might have
787 			 * decided to go write to the chip if we are in
788 			 * a suspended erase state.  If so let's wait
789 			 * until it's done.
790 			 */
791 			spin_lock(chip->mutex);
792 			while (chip->state != FL_XIP_WHILE_ERASING) {
793 				DECLARE_WAITQUEUE(wait, current);
794 				set_current_state(TASK_UNINTERRUPTIBLE);
795 				add_wait_queue(&chip->wq, &wait);
796 				spin_unlock(chip->mutex);
797 				schedule();
798 				remove_wait_queue(&chip->wq, &wait);
799 				spin_lock(chip->mutex);
800 			}
801 			/* Disallow XIP again */
802 			local_irq_disable();
803 
804 			/* Resume the write or erase operation */
805 			map_write(map, CMD(0x30), adr);
806 			chip->state = oldstate;
807 			start = xip_currtime();
808 		} else if (usec >= 1000000/HZ) {
809 			/*
810 			 * Try to save on CPU power when waiting delay
811 			 * is at least a system timer tick period.
812 			 * No need to be extremely accurate here.
813 			 */
814 			xip_cpu_idle();
815 		}
816 		status = map_read(map, adr);
817 	} while (!map_word_andequal(map, status, OK, OK)
818 		 && xip_elapsed_since(start) < usec);
819 }
820 
821 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
822 
823 /*
824  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
825  * the flash is actively programming or erasing since we have to poll for
826  * the operation to complete anyway.  We can't do that in a generic way with
827  * a XIP setup so do it before the actual flash operation in this case
828  * and stub it out from INVALIDATE_CACHE_UDELAY.
829  */
830 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
831 	INVALIDATE_CACHED_RANGE(map, from, size)
832 
833 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
834 	UDELAY(map, chip, adr, usec)
835 
836 /*
837  * Extra notes:
838  *
839  * Activating this XIP support changes the way the code works a bit.  For
840  * example the code to suspend the current process when concurrent access
841  * happens is never executed because xip_udelay() will always return with the
842  * same chip state as it was entered with.  This is why there is no care for
843  * the presence of add_wait_queue() or schedule() calls from within a couple
844  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
845  * The queueing and scheduling are always happening within xip_udelay().
846  *
847  * Similarly, get_chip() and put_chip() just happen to always be executed
848  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
849  * is in array mode, therefore never executing many cases therein and not
850  * causing any problem with XIP.
851  */
852 
853 #else
854 
855 #define xip_disable(map, chip, adr)
856 #define xip_enable(map, chip, adr)
857 #define XIP_INVAL_CACHED_RANGE(x...)
858 
859 #define UDELAY(map, chip, adr, usec)  \
860 do {  \
861 	spin_unlock(chip->mutex);  \
862 	cfi_udelay(usec);  \
863 	spin_lock(chip->mutex);  \
864 } while (0)
865 
866 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
867 do {  \
868 	spin_unlock(chip->mutex);  \
869 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
870 	cfi_udelay(usec);  \
871 	spin_lock(chip->mutex);  \
872 } while (0)
873 
874 #endif
875 
876 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
877 {
878 	unsigned long cmd_addr;
879 	struct cfi_private *cfi = map->fldrv_priv;
880 	int ret;
881 
882 	adr += chip->start;
883 
884 	/* Ensure cmd read/writes are aligned. */
885 	cmd_addr = adr & ~(map_bankwidth(map)-1);
886 
887 	spin_lock(chip->mutex);
888 	ret = get_chip(map, chip, cmd_addr, FL_READY);
889 	if (ret) {
890 		spin_unlock(chip->mutex);
891 		return ret;
892 	}
893 
894 	if (chip->state != FL_POINT && chip->state != FL_READY) {
895 		map_write(map, CMD(0xf0), cmd_addr);
896 		chip->state = FL_READY;
897 	}
898 
899 	map_copy_from(map, buf, adr, len);
900 
901 	put_chip(map, chip, cmd_addr);
902 
903 	spin_unlock(chip->mutex);
904 	return 0;
905 }
906 
907 
908 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
909 {
910 	struct map_info *map = mtd->priv;
911 	struct cfi_private *cfi = map->fldrv_priv;
912 	unsigned long ofs;
913 	int chipnum;
914 	int ret = 0;
915 
916 	/* ofs: offset within the first chip that the first read should start */
917 
918 	chipnum = (from >> cfi->chipshift);
919 	ofs = from - (chipnum <<  cfi->chipshift);
920 
921 
922 	*retlen = 0;
923 
924 	while (len) {
925 		unsigned long thislen;
926 
927 		if (chipnum >= cfi->numchips)
928 			break;
929 
930 		if ((len + ofs -1) >> cfi->chipshift)
931 			thislen = (1<<cfi->chipshift) - ofs;
932 		else
933 			thislen = len;
934 
935 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
936 		if (ret)
937 			break;
938 
939 		*retlen += thislen;
940 		len -= thislen;
941 		buf += thislen;
942 
943 		ofs = 0;
944 		chipnum++;
945 	}
946 	return ret;
947 }
948 
949 
950 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
951 {
952 	DECLARE_WAITQUEUE(wait, current);
953 	unsigned long timeo = jiffies + HZ;
954 	struct cfi_private *cfi = map->fldrv_priv;
955 
956  retry:
957 	spin_lock(chip->mutex);
958 
959 	if (chip->state != FL_READY){
960 #if 0
961 		printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
962 #endif
963 		set_current_state(TASK_UNINTERRUPTIBLE);
964 		add_wait_queue(&chip->wq, &wait);
965 
966 		spin_unlock(chip->mutex);
967 
968 		schedule();
969 		remove_wait_queue(&chip->wq, &wait);
970 #if 0
971 		if(signal_pending(current))
972 			return -EINTR;
973 #endif
974 		timeo = jiffies + HZ;
975 
976 		goto retry;
977 	}
978 
979 	adr += chip->start;
980 
981 	chip->state = FL_READY;
982 
983 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
984 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
985 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
986 
987 	map_copy_from(map, buf, adr, len);
988 
989 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
990 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
991 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
992 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
993 
994 	wake_up(&chip->wq);
995 	spin_unlock(chip->mutex);
996 
997 	return 0;
998 }
999 
1000 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1001 {
1002 	struct map_info *map = mtd->priv;
1003 	struct cfi_private *cfi = map->fldrv_priv;
1004 	unsigned long ofs;
1005 	int chipnum;
1006 	int ret = 0;
1007 
1008 
1009 	/* ofs: offset within the first chip that the first read should start */
1010 
1011 	/* 8 secsi bytes per chip */
1012 	chipnum=from>>3;
1013 	ofs=from & 7;
1014 
1015 
1016 	*retlen = 0;
1017 
1018 	while (len) {
1019 		unsigned long thislen;
1020 
1021 		if (chipnum >= cfi->numchips)
1022 			break;
1023 
1024 		if ((len + ofs -1) >> 3)
1025 			thislen = (1<<3) - ofs;
1026 		else
1027 			thislen = len;
1028 
1029 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1030 		if (ret)
1031 			break;
1032 
1033 		*retlen += thislen;
1034 		len -= thislen;
1035 		buf += thislen;
1036 
1037 		ofs = 0;
1038 		chipnum++;
1039 	}
1040 	return ret;
1041 }
1042 
1043 
1044 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1045 {
1046 	struct cfi_private *cfi = map->fldrv_priv;
1047 	unsigned long timeo = jiffies + HZ;
1048 	/*
1049 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1050 	 * have a max write time of a few hundreds usec). However, we should
1051 	 * use the maximum timeout value given by the chip at probe time
1052 	 * instead.  Unfortunately, struct flchip does have a field for
1053 	 * maximum timeout, only for typical which can be far too short
1054 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1055 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1056 	 */
1057 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1058 	int ret = 0;
1059 	map_word oldd;
1060 	int retry_cnt = 0;
1061 
1062 	adr += chip->start;
1063 
1064 	spin_lock(chip->mutex);
1065 	ret = get_chip(map, chip, adr, FL_WRITING);
1066 	if (ret) {
1067 		spin_unlock(chip->mutex);
1068 		return ret;
1069 	}
1070 
1071 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1072 	       __func__, adr, datum.x[0] );
1073 
1074 	/*
1075 	 * Check for a NOP for the case when the datum to write is already
1076 	 * present - it saves time and works around buggy chips that corrupt
1077 	 * data at other locations when 0xff is written to a location that
1078 	 * already contains 0xff.
1079 	 */
1080 	oldd = map_read(map, adr);
1081 	if (map_word_equal(map, oldd, datum)) {
1082 		DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1083 		       __func__);
1084 		goto op_done;
1085 	}
1086 
1087 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1088 	ENABLE_VPP(map);
1089 	xip_disable(map, chip, adr);
1090  retry:
1091 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1092 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1093 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1094 	map_write(map, datum, adr);
1095 	chip->state = FL_WRITING;
1096 
1097 	INVALIDATE_CACHE_UDELAY(map, chip,
1098 				adr, map_bankwidth(map),
1099 				chip->word_write_time);
1100 
1101 	/* See comment above for timeout value. */
1102 	timeo = jiffies + uWriteTimeout;
1103 	for (;;) {
1104 		if (chip->state != FL_WRITING) {
1105 			/* Someone's suspended the write. Sleep */
1106 			DECLARE_WAITQUEUE(wait, current);
1107 
1108 			set_current_state(TASK_UNINTERRUPTIBLE);
1109 			add_wait_queue(&chip->wq, &wait);
1110 			spin_unlock(chip->mutex);
1111 			schedule();
1112 			remove_wait_queue(&chip->wq, &wait);
1113 			timeo = jiffies + (HZ / 2); /* FIXME */
1114 			spin_lock(chip->mutex);
1115 			continue;
1116 		}
1117 
1118 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1119 			xip_enable(map, chip, adr);
1120 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1121 			xip_disable(map, chip, adr);
1122 			break;
1123 		}
1124 
1125 		if (chip_ready(map, adr))
1126 			break;
1127 
1128 		/* Latency issues. Drop the lock, wait a while and retry */
1129 		UDELAY(map, chip, adr, 1);
1130 	}
1131 	/* Did we succeed? */
1132 	if (!chip_good(map, adr, datum)) {
1133 		/* reset on all failures. */
1134 		map_write( map, CMD(0xF0), chip->start );
1135 		/* FIXME - should have reset delay before continuing */
1136 
1137 		if (++retry_cnt <= MAX_WORD_RETRIES)
1138 			goto retry;
1139 
1140 		ret = -EIO;
1141 	}
1142 	xip_enable(map, chip, adr);
1143  op_done:
1144 	chip->state = FL_READY;
1145 	put_chip(map, chip, adr);
1146 	spin_unlock(chip->mutex);
1147 
1148 	return ret;
1149 }
1150 
1151 
1152 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1153 				  size_t *retlen, const u_char *buf)
1154 {
1155 	struct map_info *map = mtd->priv;
1156 	struct cfi_private *cfi = map->fldrv_priv;
1157 	int ret = 0;
1158 	int chipnum;
1159 	unsigned long ofs, chipstart;
1160 	DECLARE_WAITQUEUE(wait, current);
1161 
1162 	*retlen = 0;
1163 	if (!len)
1164 		return 0;
1165 
1166 	chipnum = to >> cfi->chipshift;
1167 	ofs = to  - (chipnum << cfi->chipshift);
1168 	chipstart = cfi->chips[chipnum].start;
1169 
1170 	/* If it's not bus-aligned, do the first byte write */
1171 	if (ofs & (map_bankwidth(map)-1)) {
1172 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1173 		int i = ofs - bus_ofs;
1174 		int n = 0;
1175 		map_word tmp_buf;
1176 
1177  retry:
1178 		spin_lock(cfi->chips[chipnum].mutex);
1179 
1180 		if (cfi->chips[chipnum].state != FL_READY) {
1181 #if 0
1182 			printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1183 #endif
1184 			set_current_state(TASK_UNINTERRUPTIBLE);
1185 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1186 
1187 			spin_unlock(cfi->chips[chipnum].mutex);
1188 
1189 			schedule();
1190 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1191 #if 0
1192 			if(signal_pending(current))
1193 				return -EINTR;
1194 #endif
1195 			goto retry;
1196 		}
1197 
1198 		/* Load 'tmp_buf' with old contents of flash */
1199 		tmp_buf = map_read(map, bus_ofs+chipstart);
1200 
1201 		spin_unlock(cfi->chips[chipnum].mutex);
1202 
1203 		/* Number of bytes to copy from buffer */
1204 		n = min_t(int, len, map_bankwidth(map)-i);
1205 
1206 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1207 
1208 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1209 				       bus_ofs, tmp_buf);
1210 		if (ret)
1211 			return ret;
1212 
1213 		ofs += n;
1214 		buf += n;
1215 		(*retlen) += n;
1216 		len -= n;
1217 
1218 		if (ofs >> cfi->chipshift) {
1219 			chipnum ++;
1220 			ofs = 0;
1221 			if (chipnum == cfi->numchips)
1222 				return 0;
1223 		}
1224 	}
1225 
1226 	/* We are now aligned, write as much as possible */
1227 	while(len >= map_bankwidth(map)) {
1228 		map_word datum;
1229 
1230 		datum = map_word_load(map, buf);
1231 
1232 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1233 				       ofs, datum);
1234 		if (ret)
1235 			return ret;
1236 
1237 		ofs += map_bankwidth(map);
1238 		buf += map_bankwidth(map);
1239 		(*retlen) += map_bankwidth(map);
1240 		len -= map_bankwidth(map);
1241 
1242 		if (ofs >> cfi->chipshift) {
1243 			chipnum ++;
1244 			ofs = 0;
1245 			if (chipnum == cfi->numchips)
1246 				return 0;
1247 			chipstart = cfi->chips[chipnum].start;
1248 		}
1249 	}
1250 
1251 	/* Write the trailing bytes if any */
1252 	if (len & (map_bankwidth(map)-1)) {
1253 		map_word tmp_buf;
1254 
1255  retry1:
1256 		spin_lock(cfi->chips[chipnum].mutex);
1257 
1258 		if (cfi->chips[chipnum].state != FL_READY) {
1259 #if 0
1260 			printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1261 #endif
1262 			set_current_state(TASK_UNINTERRUPTIBLE);
1263 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1264 
1265 			spin_unlock(cfi->chips[chipnum].mutex);
1266 
1267 			schedule();
1268 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1269 #if 0
1270 			if(signal_pending(current))
1271 				return -EINTR;
1272 #endif
1273 			goto retry1;
1274 		}
1275 
1276 		tmp_buf = map_read(map, ofs + chipstart);
1277 
1278 		spin_unlock(cfi->chips[chipnum].mutex);
1279 
1280 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1281 
1282 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1283 				ofs, tmp_buf);
1284 		if (ret)
1285 			return ret;
1286 
1287 		(*retlen) += len;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 
1294 /*
1295  * FIXME: interleaved mode not tested, and probably not supported!
1296  */
1297 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1298 				    unsigned long adr, const u_char *buf,
1299 				    int len)
1300 {
1301 	struct cfi_private *cfi = map->fldrv_priv;
1302 	unsigned long timeo = jiffies + HZ;
1303 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1304 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1305 	int ret = -EIO;
1306 	unsigned long cmd_adr;
1307 	int z, words;
1308 	map_word datum;
1309 
1310 	adr += chip->start;
1311 	cmd_adr = adr;
1312 
1313 	spin_lock(chip->mutex);
1314 	ret = get_chip(map, chip, adr, FL_WRITING);
1315 	if (ret) {
1316 		spin_unlock(chip->mutex);
1317 		return ret;
1318 	}
1319 
1320 	datum = map_word_load(map, buf);
1321 
1322 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1323 	       __func__, adr, datum.x[0] );
1324 
1325 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1326 	ENABLE_VPP(map);
1327 	xip_disable(map, chip, cmd_adr);
1328 
1329 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1330 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1331 	//cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1332 
1333 	/* Write Buffer Load */
1334 	map_write(map, CMD(0x25), cmd_adr);
1335 
1336 	chip->state = FL_WRITING_TO_BUFFER;
1337 
1338 	/* Write length of data to come */
1339 	words = len / map_bankwidth(map);
1340 	map_write(map, CMD(words - 1), cmd_adr);
1341 	/* Write data */
1342 	z = 0;
1343 	while(z < words * map_bankwidth(map)) {
1344 		datum = map_word_load(map, buf);
1345 		map_write(map, datum, adr + z);
1346 
1347 		z += map_bankwidth(map);
1348 		buf += map_bankwidth(map);
1349 	}
1350 	z -= map_bankwidth(map);
1351 
1352 	adr += z;
1353 
1354 	/* Write Buffer Program Confirm: GO GO GO */
1355 	map_write(map, CMD(0x29), cmd_adr);
1356 	chip->state = FL_WRITING;
1357 
1358 	INVALIDATE_CACHE_UDELAY(map, chip,
1359 				adr, map_bankwidth(map),
1360 				chip->word_write_time);
1361 
1362 	timeo = jiffies + uWriteTimeout;
1363 
1364 	for (;;) {
1365 		if (chip->state != FL_WRITING) {
1366 			/* Someone's suspended the write. Sleep */
1367 			DECLARE_WAITQUEUE(wait, current);
1368 
1369 			set_current_state(TASK_UNINTERRUPTIBLE);
1370 			add_wait_queue(&chip->wq, &wait);
1371 			spin_unlock(chip->mutex);
1372 			schedule();
1373 			remove_wait_queue(&chip->wq, &wait);
1374 			timeo = jiffies + (HZ / 2); /* FIXME */
1375 			spin_lock(chip->mutex);
1376 			continue;
1377 		}
1378 
1379 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1380 			break;
1381 
1382 		if (chip_ready(map, adr)) {
1383 			xip_enable(map, chip, adr);
1384 			goto op_done;
1385 		}
1386 
1387 		/* Latency issues. Drop the lock, wait a while and retry */
1388 		UDELAY(map, chip, adr, 1);
1389 	}
1390 
1391 	/* reset on all failures. */
1392 	map_write( map, CMD(0xF0), chip->start );
1393 	xip_enable(map, chip, adr);
1394 	/* FIXME - should have reset delay before continuing */
1395 
1396 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1397 	       __func__ );
1398 
1399 	ret = -EIO;
1400  op_done:
1401 	chip->state = FL_READY;
1402 	put_chip(map, chip, adr);
1403 	spin_unlock(chip->mutex);
1404 
1405 	return ret;
1406 }
1407 
1408 
1409 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1410 				    size_t *retlen, const u_char *buf)
1411 {
1412 	struct map_info *map = mtd->priv;
1413 	struct cfi_private *cfi = map->fldrv_priv;
1414 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1415 	int ret = 0;
1416 	int chipnum;
1417 	unsigned long ofs;
1418 
1419 	*retlen = 0;
1420 	if (!len)
1421 		return 0;
1422 
1423 	chipnum = to >> cfi->chipshift;
1424 	ofs = to  - (chipnum << cfi->chipshift);
1425 
1426 	/* If it's not bus-aligned, do the first word write */
1427 	if (ofs & (map_bankwidth(map)-1)) {
1428 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1429 		if (local_len > len)
1430 			local_len = len;
1431 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1432 					     local_len, retlen, buf);
1433 		if (ret)
1434 			return ret;
1435 		ofs += local_len;
1436 		buf += local_len;
1437 		len -= local_len;
1438 
1439 		if (ofs >> cfi->chipshift) {
1440 			chipnum ++;
1441 			ofs = 0;
1442 			if (chipnum == cfi->numchips)
1443 				return 0;
1444 		}
1445 	}
1446 
1447 	/* Write buffer is worth it only if more than one word to write... */
1448 	while (len >= map_bankwidth(map) * 2) {
1449 		/* We must not cross write block boundaries */
1450 		int size = wbufsize - (ofs & (wbufsize-1));
1451 
1452 		if (size > len)
1453 			size = len;
1454 		if (size % map_bankwidth(map))
1455 			size -= size % map_bankwidth(map);
1456 
1457 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1458 				      ofs, buf, size);
1459 		if (ret)
1460 			return ret;
1461 
1462 		ofs += size;
1463 		buf += size;
1464 		(*retlen) += size;
1465 		len -= size;
1466 
1467 		if (ofs >> cfi->chipshift) {
1468 			chipnum ++;
1469 			ofs = 0;
1470 			if (chipnum == cfi->numchips)
1471 				return 0;
1472 		}
1473 	}
1474 
1475 	if (len) {
1476 		size_t retlen_dregs = 0;
1477 
1478 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1479 					     len, &retlen_dregs, buf);
1480 
1481 		*retlen += retlen_dregs;
1482 		return ret;
1483 	}
1484 
1485 	return 0;
1486 }
1487 
1488 
1489 /*
1490  * Handle devices with one erase region, that only implement
1491  * the chip erase command.
1492  */
1493 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1494 {
1495 	struct cfi_private *cfi = map->fldrv_priv;
1496 	unsigned long timeo = jiffies + HZ;
1497 	unsigned long int adr;
1498 	DECLARE_WAITQUEUE(wait, current);
1499 	int ret = 0;
1500 
1501 	adr = cfi->addr_unlock1;
1502 
1503 	spin_lock(chip->mutex);
1504 	ret = get_chip(map, chip, adr, FL_WRITING);
1505 	if (ret) {
1506 		spin_unlock(chip->mutex);
1507 		return ret;
1508 	}
1509 
1510 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1511 	       __func__, chip->start );
1512 
1513 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1514 	ENABLE_VPP(map);
1515 	xip_disable(map, chip, adr);
1516 
1517 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1518 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1519 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1520 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1521 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1522 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1523 
1524 	chip->state = FL_ERASING;
1525 	chip->erase_suspended = 0;
1526 	chip->in_progress_block_addr = adr;
1527 
1528 	INVALIDATE_CACHE_UDELAY(map, chip,
1529 				adr, map->size,
1530 				chip->erase_time*500);
1531 
1532 	timeo = jiffies + (HZ*20);
1533 
1534 	for (;;) {
1535 		if (chip->state != FL_ERASING) {
1536 			/* Someone's suspended the erase. Sleep */
1537 			set_current_state(TASK_UNINTERRUPTIBLE);
1538 			add_wait_queue(&chip->wq, &wait);
1539 			spin_unlock(chip->mutex);
1540 			schedule();
1541 			remove_wait_queue(&chip->wq, &wait);
1542 			spin_lock(chip->mutex);
1543 			continue;
1544 		}
1545 		if (chip->erase_suspended) {
1546 			/* This erase was suspended and resumed.
1547 			   Adjust the timeout */
1548 			timeo = jiffies + (HZ*20); /* FIXME */
1549 			chip->erase_suspended = 0;
1550 		}
1551 
1552 		if (chip_ready(map, adr))
1553 			break;
1554 
1555 		if (time_after(jiffies, timeo)) {
1556 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1557 				__func__ );
1558 			break;
1559 		}
1560 
1561 		/* Latency issues. Drop the lock, wait a while and retry */
1562 		UDELAY(map, chip, adr, 1000000/HZ);
1563 	}
1564 	/* Did we succeed? */
1565 	if (!chip_good(map, adr, map_word_ff(map))) {
1566 		/* reset on all failures. */
1567 		map_write( map, CMD(0xF0), chip->start );
1568 		/* FIXME - should have reset delay before continuing */
1569 
1570 		ret = -EIO;
1571 	}
1572 
1573 	chip->state = FL_READY;
1574 	xip_enable(map, chip, adr);
1575 	put_chip(map, chip, adr);
1576 	spin_unlock(chip->mutex);
1577 
1578 	return ret;
1579 }
1580 
1581 
1582 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1583 {
1584 	struct cfi_private *cfi = map->fldrv_priv;
1585 	unsigned long timeo = jiffies + HZ;
1586 	DECLARE_WAITQUEUE(wait, current);
1587 	int ret = 0;
1588 
1589 	adr += chip->start;
1590 
1591 	spin_lock(chip->mutex);
1592 	ret = get_chip(map, chip, adr, FL_ERASING);
1593 	if (ret) {
1594 		spin_unlock(chip->mutex);
1595 		return ret;
1596 	}
1597 
1598 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1599 	       __func__, adr );
1600 
1601 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1602 	ENABLE_VPP(map);
1603 	xip_disable(map, chip, adr);
1604 
1605 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1606 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1607 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1608 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1609 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1610 	map_write(map, CMD(0x30), adr);
1611 
1612 	chip->state = FL_ERASING;
1613 	chip->erase_suspended = 0;
1614 	chip->in_progress_block_addr = adr;
1615 
1616 	INVALIDATE_CACHE_UDELAY(map, chip,
1617 				adr, len,
1618 				chip->erase_time*500);
1619 
1620 	timeo = jiffies + (HZ*20);
1621 
1622 	for (;;) {
1623 		if (chip->state != FL_ERASING) {
1624 			/* Someone's suspended the erase. Sleep */
1625 			set_current_state(TASK_UNINTERRUPTIBLE);
1626 			add_wait_queue(&chip->wq, &wait);
1627 			spin_unlock(chip->mutex);
1628 			schedule();
1629 			remove_wait_queue(&chip->wq, &wait);
1630 			spin_lock(chip->mutex);
1631 			continue;
1632 		}
1633 		if (chip->erase_suspended) {
1634 			/* This erase was suspended and resumed.
1635 			   Adjust the timeout */
1636 			timeo = jiffies + (HZ*20); /* FIXME */
1637 			chip->erase_suspended = 0;
1638 		}
1639 
1640 		if (chip_ready(map, adr)) {
1641 			xip_enable(map, chip, adr);
1642 			break;
1643 		}
1644 
1645 		if (time_after(jiffies, timeo)) {
1646 			xip_enable(map, chip, adr);
1647 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1648 				__func__ );
1649 			break;
1650 		}
1651 
1652 		/* Latency issues. Drop the lock, wait a while and retry */
1653 		UDELAY(map, chip, adr, 1000000/HZ);
1654 	}
1655 	/* Did we succeed? */
1656 	if (!chip_good(map, adr, map_word_ff(map))) {
1657 		/* reset on all failures. */
1658 		map_write( map, CMD(0xF0), chip->start );
1659 		/* FIXME - should have reset delay before continuing */
1660 
1661 		ret = -EIO;
1662 	}
1663 
1664 	chip->state = FL_READY;
1665 	put_chip(map, chip, adr);
1666 	spin_unlock(chip->mutex);
1667 	return ret;
1668 }
1669 
1670 
1671 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1672 {
1673 	unsigned long ofs, len;
1674 	int ret;
1675 
1676 	ofs = instr->addr;
1677 	len = instr->len;
1678 
1679 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1680 	if (ret)
1681 		return ret;
1682 
1683 	instr->state = MTD_ERASE_DONE;
1684 	mtd_erase_callback(instr);
1685 
1686 	return 0;
1687 }
1688 
1689 
1690 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1691 {
1692 	struct map_info *map = mtd->priv;
1693 	struct cfi_private *cfi = map->fldrv_priv;
1694 	int ret = 0;
1695 
1696 	if (instr->addr != 0)
1697 		return -EINVAL;
1698 
1699 	if (instr->len != mtd->size)
1700 		return -EINVAL;
1701 
1702 	ret = do_erase_chip(map, &cfi->chips[0]);
1703 	if (ret)
1704 		return ret;
1705 
1706 	instr->state = MTD_ERASE_DONE;
1707 	mtd_erase_callback(instr);
1708 
1709 	return 0;
1710 }
1711 
1712 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1713 			 unsigned long adr, int len, void *thunk)
1714 {
1715 	struct cfi_private *cfi = map->fldrv_priv;
1716 	int ret;
1717 
1718 	spin_lock(chip->mutex);
1719 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1720 	if (ret)
1721 		goto out_unlock;
1722 	chip->state = FL_LOCKING;
1723 
1724 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1725 	      __func__, adr, len);
1726 
1727 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1728 			 cfi->device_type, NULL);
1729 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1730 			 cfi->device_type, NULL);
1731 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1732 			 cfi->device_type, NULL);
1733 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1734 			 cfi->device_type, NULL);
1735 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1736 			 cfi->device_type, NULL);
1737 	map_write(map, CMD(0x40), chip->start + adr);
1738 
1739 	chip->state = FL_READY;
1740 	put_chip(map, chip, adr + chip->start);
1741 	ret = 0;
1742 
1743 out_unlock:
1744 	spin_unlock(chip->mutex);
1745 	return ret;
1746 }
1747 
1748 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1749 			   unsigned long adr, int len, void *thunk)
1750 {
1751 	struct cfi_private *cfi = map->fldrv_priv;
1752 	int ret;
1753 
1754 	spin_lock(chip->mutex);
1755 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1756 	if (ret)
1757 		goto out_unlock;
1758 	chip->state = FL_UNLOCKING;
1759 
1760 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1761 	      __func__, adr, len);
1762 
1763 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1764 			 cfi->device_type, NULL);
1765 	map_write(map, CMD(0x70), adr);
1766 
1767 	chip->state = FL_READY;
1768 	put_chip(map, chip, adr + chip->start);
1769 	ret = 0;
1770 
1771 out_unlock:
1772 	spin_unlock(chip->mutex);
1773 	return ret;
1774 }
1775 
1776 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1777 {
1778 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1779 }
1780 
1781 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1782 {
1783 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1784 }
1785 
1786 
1787 static void cfi_amdstd_sync (struct mtd_info *mtd)
1788 {
1789 	struct map_info *map = mtd->priv;
1790 	struct cfi_private *cfi = map->fldrv_priv;
1791 	int i;
1792 	struct flchip *chip;
1793 	int ret = 0;
1794 	DECLARE_WAITQUEUE(wait, current);
1795 
1796 	for (i=0; !ret && i<cfi->numchips; i++) {
1797 		chip = &cfi->chips[i];
1798 
1799 	retry:
1800 		spin_lock(chip->mutex);
1801 
1802 		switch(chip->state) {
1803 		case FL_READY:
1804 		case FL_STATUS:
1805 		case FL_CFI_QUERY:
1806 		case FL_JEDEC_QUERY:
1807 			chip->oldstate = chip->state;
1808 			chip->state = FL_SYNCING;
1809 			/* No need to wake_up() on this state change -
1810 			 * as the whole point is that nobody can do anything
1811 			 * with the chip now anyway.
1812 			 */
1813 		case FL_SYNCING:
1814 			spin_unlock(chip->mutex);
1815 			break;
1816 
1817 		default:
1818 			/* Not an idle state */
1819 			set_current_state(TASK_UNINTERRUPTIBLE);
1820 			add_wait_queue(&chip->wq, &wait);
1821 
1822 			spin_unlock(chip->mutex);
1823 
1824 			schedule();
1825 
1826 			remove_wait_queue(&chip->wq, &wait);
1827 
1828 			goto retry;
1829 		}
1830 	}
1831 
1832 	/* Unlock the chips again */
1833 
1834 	for (i--; i >=0; i--) {
1835 		chip = &cfi->chips[i];
1836 
1837 		spin_lock(chip->mutex);
1838 
1839 		if (chip->state == FL_SYNCING) {
1840 			chip->state = chip->oldstate;
1841 			wake_up(&chip->wq);
1842 		}
1843 		spin_unlock(chip->mutex);
1844 	}
1845 }
1846 
1847 
1848 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1849 {
1850 	struct map_info *map = mtd->priv;
1851 	struct cfi_private *cfi = map->fldrv_priv;
1852 	int i;
1853 	struct flchip *chip;
1854 	int ret = 0;
1855 
1856 	for (i=0; !ret && i<cfi->numchips; i++) {
1857 		chip = &cfi->chips[i];
1858 
1859 		spin_lock(chip->mutex);
1860 
1861 		switch(chip->state) {
1862 		case FL_READY:
1863 		case FL_STATUS:
1864 		case FL_CFI_QUERY:
1865 		case FL_JEDEC_QUERY:
1866 			chip->oldstate = chip->state;
1867 			chip->state = FL_PM_SUSPENDED;
1868 			/* No need to wake_up() on this state change -
1869 			 * as the whole point is that nobody can do anything
1870 			 * with the chip now anyway.
1871 			 */
1872 		case FL_PM_SUSPENDED:
1873 			break;
1874 
1875 		default:
1876 			ret = -EAGAIN;
1877 			break;
1878 		}
1879 		spin_unlock(chip->mutex);
1880 	}
1881 
1882 	/* Unlock the chips again */
1883 
1884 	if (ret) {
1885 		for (i--; i >=0; i--) {
1886 			chip = &cfi->chips[i];
1887 
1888 			spin_lock(chip->mutex);
1889 
1890 			if (chip->state == FL_PM_SUSPENDED) {
1891 				chip->state = chip->oldstate;
1892 				wake_up(&chip->wq);
1893 			}
1894 			spin_unlock(chip->mutex);
1895 		}
1896 	}
1897 
1898 	return ret;
1899 }
1900 
1901 
1902 static void cfi_amdstd_resume(struct mtd_info *mtd)
1903 {
1904 	struct map_info *map = mtd->priv;
1905 	struct cfi_private *cfi = map->fldrv_priv;
1906 	int i;
1907 	struct flchip *chip;
1908 
1909 	for (i=0; i<cfi->numchips; i++) {
1910 
1911 		chip = &cfi->chips[i];
1912 
1913 		spin_lock(chip->mutex);
1914 
1915 		if (chip->state == FL_PM_SUSPENDED) {
1916 			chip->state = FL_READY;
1917 			map_write(map, CMD(0xF0), chip->start);
1918 			wake_up(&chip->wq);
1919 		}
1920 		else
1921 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1922 
1923 		spin_unlock(chip->mutex);
1924 	}
1925 }
1926 
1927 static void cfi_amdstd_destroy(struct mtd_info *mtd)
1928 {
1929 	struct map_info *map = mtd->priv;
1930 	struct cfi_private *cfi = map->fldrv_priv;
1931 
1932 	kfree(cfi->cmdset_priv);
1933 	kfree(cfi->cfiq);
1934 	kfree(cfi);
1935 	kfree(mtd->eraseregions);
1936 }
1937 
1938 MODULE_LICENSE("GPL");
1939 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1940 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
1941