1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29 
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41 
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44 
45 #define MAX_RETRIES 3
46 
47 #define SST49LF004B		0x0060
48 #define SST49LF040B		0x0050
49 #define SST49LF008A		0x005a
50 #define AT49BV6416		0x00d6
51 
52 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
53 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
56 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
57 static void cfi_amdstd_sync (struct mtd_info *);
58 static int cfi_amdstd_suspend (struct mtd_info *);
59 static void cfi_amdstd_resume (struct mtd_info *);
60 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
61 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
62 					 size_t *, struct otp_info *);
63 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
64 					 size_t *, struct otp_info *);
65 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
67 					 size_t *, u_char *);
68 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
69 					 size_t *, u_char *);
70 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
71 					  size_t *, u_char *);
72 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
73 
74 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
75 				  size_t *retlen, const u_char *buf);
76 
77 static void cfi_amdstd_destroy(struct mtd_info *);
78 
79 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
80 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
81 
82 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
83 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
84 #include "fwh_lock.h"
85 
86 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
87 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
88 
89 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
90 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
91 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
92 
93 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
94 	.probe		= NULL, /* Not usable directly */
95 	.destroy	= cfi_amdstd_destroy,
96 	.name		= "cfi_cmdset_0002",
97 	.module		= THIS_MODULE
98 };
99 
100 
101 /* #define DEBUG_CFI_FEATURES */
102 
103 
104 #ifdef DEBUG_CFI_FEATURES
105 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
106 {
107 	const char* erase_suspend[3] = {
108 		"Not supported", "Read only", "Read/write"
109 	};
110 	const char* top_bottom[6] = {
111 		"No WP", "8x8KiB sectors at top & bottom, no WP",
112 		"Bottom boot", "Top boot",
113 		"Uniform, Bottom WP", "Uniform, Top WP"
114 	};
115 
116 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
117 	printk("  Address sensitive unlock: %s\n",
118 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
119 
120 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
121 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
122 	else
123 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
124 
125 	if (extp->BlkProt == 0)
126 		printk("  Block protection: Not supported\n");
127 	else
128 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
129 
130 
131 	printk("  Temporary block unprotect: %s\n",
132 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
133 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
134 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
135 	printk("  Burst mode: %s\n",
136 	       extp->BurstMode ? "Supported" : "Not supported");
137 	if (extp->PageMode == 0)
138 		printk("  Page mode: Not supported\n");
139 	else
140 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
141 
142 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
143 	       extp->VppMin >> 4, extp->VppMin & 0xf);
144 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
145 	       extp->VppMax >> 4, extp->VppMax & 0xf);
146 
147 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
148 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
149 	else
150 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
151 }
152 #endif
153 
154 #ifdef AMD_BOOTLOC_BUG
155 /* Wheee. Bring me the head of someone at AMD. */
156 static void fixup_amd_bootblock(struct mtd_info *mtd)
157 {
158 	struct map_info *map = mtd->priv;
159 	struct cfi_private *cfi = map->fldrv_priv;
160 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
161 	__u8 major = extp->MajorVersion;
162 	__u8 minor = extp->MinorVersion;
163 
164 	if (((major << 8) | minor) < 0x3131) {
165 		/* CFI version 1.0 => don't trust bootloc */
166 
167 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
168 			map->name, cfi->mfr, cfi->id);
169 
170 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
171 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172 		 * These were badly detected as they have the 0x80 bit set
173 		 * so treat them as a special case.
174 		 */
175 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
176 
177 			/* Macronix added CFI to their 2nd generation
178 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
180 			 * has CFI.
181 			 *
182 			 * Therefore also check the manufacturer.
183 			 * This reduces the risk of false detection due to
184 			 * the 8-bit device ID.
185 			 */
186 			(cfi->mfr == CFI_MFR_MACRONIX)) {
187 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
188 				" detected\n", map->name);
189 			extp->TopBottom = 2;	/* bottom boot */
190 		} else
191 		if (cfi->id & 0x80) {
192 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
193 			extp->TopBottom = 3;	/* top boot */
194 		} else {
195 			extp->TopBottom = 2;	/* bottom boot */
196 		}
197 
198 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
199 			" deduced %s from Device ID\n", map->name, major, minor,
200 			extp->TopBottom == 2 ? "bottom" : "top");
201 	}
202 }
203 #endif
204 
205 static void fixup_use_write_buffers(struct mtd_info *mtd)
206 {
207 	struct map_info *map = mtd->priv;
208 	struct cfi_private *cfi = map->fldrv_priv;
209 	if (cfi->cfiq->BufWriteTimeoutTyp) {
210 		pr_debug("Using buffer write method\n");
211 		mtd->_write = cfi_amdstd_write_buffers;
212 	}
213 }
214 
215 /* Atmel chips don't use the same PRI format as AMD chips */
216 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
217 {
218 	struct map_info *map = mtd->priv;
219 	struct cfi_private *cfi = map->fldrv_priv;
220 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
221 	struct cfi_pri_atmel atmel_pri;
222 
223 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
224 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
225 
226 	if (atmel_pri.Features & 0x02)
227 		extp->EraseSuspend = 2;
228 
229 	/* Some chips got it backwards... */
230 	if (cfi->id == AT49BV6416) {
231 		if (atmel_pri.BottomBoot)
232 			extp->TopBottom = 3;
233 		else
234 			extp->TopBottom = 2;
235 	} else {
236 		if (atmel_pri.BottomBoot)
237 			extp->TopBottom = 2;
238 		else
239 			extp->TopBottom = 3;
240 	}
241 
242 	/* burst write mode not supported */
243 	cfi->cfiq->BufWriteTimeoutTyp = 0;
244 	cfi->cfiq->BufWriteTimeoutMax = 0;
245 }
246 
247 static void fixup_use_secsi(struct mtd_info *mtd)
248 {
249 	/* Setup for chips with a secsi area */
250 	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
251 	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
252 }
253 
254 static void fixup_use_erase_chip(struct mtd_info *mtd)
255 {
256 	struct map_info *map = mtd->priv;
257 	struct cfi_private *cfi = map->fldrv_priv;
258 	if ((cfi->cfiq->NumEraseRegions == 1) &&
259 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
260 		mtd->_erase = cfi_amdstd_erase_chip;
261 	}
262 
263 }
264 
265 /*
266  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
267  * locked by default.
268  */
269 static void fixup_use_atmel_lock(struct mtd_info *mtd)
270 {
271 	mtd->_lock = cfi_atmel_lock;
272 	mtd->_unlock = cfi_atmel_unlock;
273 	mtd->flags |= MTD_POWERUP_LOCK;
274 }
275 
276 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
277 {
278 	struct map_info *map = mtd->priv;
279 	struct cfi_private *cfi = map->fldrv_priv;
280 
281 	/*
282 	 * These flashes report two separate eraseblock regions based on the
283 	 * sector_erase-size and block_erase-size, although they both operate on the
284 	 * same memory. This is not allowed according to CFI, so we just pick the
285 	 * sector_erase-size.
286 	 */
287 	cfi->cfiq->NumEraseRegions = 1;
288 }
289 
290 static void fixup_sst39vf(struct mtd_info *mtd)
291 {
292 	struct map_info *map = mtd->priv;
293 	struct cfi_private *cfi = map->fldrv_priv;
294 
295 	fixup_old_sst_eraseregion(mtd);
296 
297 	cfi->addr_unlock1 = 0x5555;
298 	cfi->addr_unlock2 = 0x2AAA;
299 }
300 
301 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
302 {
303 	struct map_info *map = mtd->priv;
304 	struct cfi_private *cfi = map->fldrv_priv;
305 
306 	fixup_old_sst_eraseregion(mtd);
307 
308 	cfi->addr_unlock1 = 0x555;
309 	cfi->addr_unlock2 = 0x2AA;
310 
311 	cfi->sector_erase_cmd = CMD(0x50);
312 }
313 
314 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
315 {
316 	struct map_info *map = mtd->priv;
317 	struct cfi_private *cfi = map->fldrv_priv;
318 
319 	fixup_sst39vf_rev_b(mtd);
320 
321 	/*
322 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323 	 * it should report a size of 8KBytes (0x0020*256).
324 	 */
325 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
326 	pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
327 		mtd->name);
328 }
329 
330 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
331 {
332 	struct map_info *map = mtd->priv;
333 	struct cfi_private *cfi = map->fldrv_priv;
334 
335 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
336 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
337 		pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
338 			mtd->name);
339 	}
340 }
341 
342 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
343 {
344 	struct map_info *map = mtd->priv;
345 	struct cfi_private *cfi = map->fldrv_priv;
346 
347 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
348 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
349 		pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
350 			mtd->name);
351 	}
352 }
353 
354 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
355 {
356 	struct map_info *map = mtd->priv;
357 	struct cfi_private *cfi = map->fldrv_priv;
358 
359 	/*
360 	 *  S29NS512P flash uses more than 8bits to report number of sectors,
361 	 * which is not permitted by CFI.
362 	 */
363 	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
364 	pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
365 		mtd->name);
366 }
367 
368 /* Used to fix CFI-Tables of chips without Extended Query Tables */
369 static struct cfi_fixup cfi_nopri_fixup_table[] = {
370 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
371 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
372 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
373 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
374 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
375 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
376 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
377 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
378 	{ 0, 0, NULL }
379 };
380 
381 static struct cfi_fixup cfi_fixup_table[] = {
382 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
383 #ifdef AMD_BOOTLOC_BUG
384 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
385 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
386 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
387 #endif
388 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
389 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
390 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
391 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
392 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
393 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
394 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
395 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
396 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
397 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
398 	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
399 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
400 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
401 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
402 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
403 #if !FORCE_WORD_WRITE
404 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
405 #endif
406 	{ 0, 0, NULL }
407 };
408 static struct cfi_fixup jedec_fixup_table[] = {
409 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
410 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
411 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
412 	{ 0, 0, NULL }
413 };
414 
415 static struct cfi_fixup fixup_table[] = {
416 	/* The CFI vendor ids and the JEDEC vendor IDs appear
417 	 * to be common.  It is like the devices id's are as
418 	 * well.  This table is to pick all cases where
419 	 * we know that is the case.
420 	 */
421 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
422 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
423 	{ 0, 0, NULL }
424 };
425 
426 
427 static void cfi_fixup_major_minor(struct cfi_private *cfi,
428 				  struct cfi_pri_amdstd *extp)
429 {
430 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
431 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
432 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
433 			/*
434 			 * Samsung K8P2815UQB and K8D6x16UxM chips
435 			 * report major=0 / minor=0.
436 			 * K8D3x16UxC chips report major=3 / minor=3.
437 			 */
438 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
439 			       " Extended Query version to 1.%c\n",
440 			       extp->MinorVersion);
441 			extp->MajorVersion = '1';
442 		}
443 	}
444 
445 	/*
446 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
447 	 */
448 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
449 		extp->MajorVersion = '1';
450 		extp->MinorVersion = '0';
451 	}
452 }
453 
454 static int is_m29ew(struct cfi_private *cfi)
455 {
456 	if (cfi->mfr == CFI_MFR_INTEL &&
457 	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
458 	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
459 		return 1;
460 	return 0;
461 }
462 
463 /*
464  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
465  * Some revisions of the M29EW suffer from erase suspend hang ups. In
466  * particular, it can occur when the sequence
467  * Erase Confirm -> Suspend -> Program -> Resume
468  * causes a lockup due to internal timing issues. The consequence is that the
469  * erase cannot be resumed without inserting a dummy command after programming
470  * and prior to resuming. [...] The work-around is to issue a dummy write cycle
471  * that writes an F0 command code before the RESUME command.
472  */
473 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
474 					  unsigned long adr)
475 {
476 	struct cfi_private *cfi = map->fldrv_priv;
477 	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
478 	if (is_m29ew(cfi))
479 		map_write(map, CMD(0xF0), adr);
480 }
481 
482 /*
483  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
484  *
485  * Some revisions of the M29EW (for example, A1 and A2 step revisions)
486  * are affected by a problem that could cause a hang up when an ERASE SUSPEND
487  * command is issued after an ERASE RESUME operation without waiting for a
488  * minimum delay.  The result is that once the ERASE seems to be completed
489  * (no bits are toggling), the contents of the Flash memory block on which
490  * the erase was ongoing could be inconsistent with the expected values
491  * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
492  * values), causing a consequent failure of the ERASE operation.
493  * The occurrence of this issue could be high, especially when file system
494  * operations on the Flash are intensive.  As a result, it is recommended
495  * that a patch be applied.  Intensive file system operations can cause many
496  * calls to the garbage routine to free Flash space (also by erasing physical
497  * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
498  * commands can occur.  The problem disappears when a delay is inserted after
499  * the RESUME command by using the udelay() function available in Linux.
500  * The DELAY value must be tuned based on the customer's platform.
501  * The maximum value that fixes the problem in all cases is 500us.
502  * But, in our experience, a delay of 30 µs to 50 µs is sufficient
503  * in most cases.
504  * We have chosen 500µs because this latency is acceptable.
505  */
506 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
507 {
508 	/*
509 	 * Resolving the Delay After Resume Issue see Micron TN-13-07
510 	 * Worst case delay must be 500µs but 30-50µs should be ok as well
511 	 */
512 	if (is_m29ew(cfi))
513 		cfi_udelay(500);
514 }
515 
516 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
517 {
518 	struct cfi_private *cfi = map->fldrv_priv;
519 	struct device_node __maybe_unused *np = map->device_node;
520 	struct mtd_info *mtd;
521 	int i;
522 
523 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
524 	if (!mtd)
525 		return NULL;
526 	mtd->priv = map;
527 	mtd->type = MTD_NORFLASH;
528 
529 	/* Fill in the default mtd operations */
530 	mtd->_erase   = cfi_amdstd_erase_varsize;
531 	mtd->_write   = cfi_amdstd_write_words;
532 	mtd->_read    = cfi_amdstd_read;
533 	mtd->_sync    = cfi_amdstd_sync;
534 	mtd->_suspend = cfi_amdstd_suspend;
535 	mtd->_resume  = cfi_amdstd_resume;
536 	mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
537 	mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
538 	mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
539 	mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
540 	mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
541 	mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
542 	mtd->flags   = MTD_CAP_NORFLASH;
543 	mtd->name    = map->name;
544 	mtd->writesize = 1;
545 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
546 
547 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
548 			mtd->writebufsize);
549 
550 	mtd->_panic_write = cfi_amdstd_panic_write;
551 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
552 
553 	if (cfi->cfi_mode==CFI_MODE_CFI){
554 		unsigned char bootloc;
555 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
556 		struct cfi_pri_amdstd *extp;
557 
558 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
559 		if (extp) {
560 			/*
561 			 * It's a real CFI chip, not one for which the probe
562 			 * routine faked a CFI structure.
563 			 */
564 			cfi_fixup_major_minor(cfi, extp);
565 
566 			/*
567 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
568 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
569 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
570 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
571 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
572 			 */
573 			if (extp->MajorVersion != '1' ||
574 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
575 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
576 				       "version %c.%c (%#02x/%#02x).\n",
577 				       extp->MajorVersion, extp->MinorVersion,
578 				       extp->MajorVersion, extp->MinorVersion);
579 				kfree(extp);
580 				kfree(mtd);
581 				return NULL;
582 			}
583 
584 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
585 			       extp->MajorVersion, extp->MinorVersion);
586 
587 			/* Install our own private info structure */
588 			cfi->cmdset_priv = extp;
589 
590 			/* Apply cfi device specific fixups */
591 			cfi_fixup(mtd, cfi_fixup_table);
592 
593 #ifdef DEBUG_CFI_FEATURES
594 			/* Tell the user about it in lots of lovely detail */
595 			cfi_tell_features(extp);
596 #endif
597 
598 #ifdef CONFIG_OF
599 			if (np && of_property_read_bool(
600 				    np, "use-advanced-sector-protection")
601 			    && extp->BlkProtUnprot == 8) {
602 				printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
603 				mtd->_lock = cfi_ppb_lock;
604 				mtd->_unlock = cfi_ppb_unlock;
605 				mtd->_is_locked = cfi_ppb_is_locked;
606 			}
607 #endif
608 
609 			bootloc = extp->TopBottom;
610 			if ((bootloc < 2) || (bootloc > 5)) {
611 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
612 				       "bank location (%d). Assuming bottom.\n",
613 				       map->name, bootloc);
614 				bootloc = 2;
615 			}
616 
617 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
618 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
619 
620 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
621 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
622 
623 					swap(cfi->cfiq->EraseRegionInfo[i],
624 					     cfi->cfiq->EraseRegionInfo[j]);
625 				}
626 			}
627 			/* Set the default CFI lock/unlock addresses */
628 			cfi->addr_unlock1 = 0x555;
629 			cfi->addr_unlock2 = 0x2aa;
630 		}
631 		cfi_fixup(mtd, cfi_nopri_fixup_table);
632 
633 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
634 			kfree(mtd);
635 			return NULL;
636 		}
637 
638 	} /* CFI mode */
639 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
640 		/* Apply jedec specific fixups */
641 		cfi_fixup(mtd, jedec_fixup_table);
642 	}
643 	/* Apply generic fixups */
644 	cfi_fixup(mtd, fixup_table);
645 
646 	for (i=0; i< cfi->numchips; i++) {
647 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
648 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
649 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
650 		/*
651 		 * First calculate the timeout max according to timeout field
652 		 * of struct cfi_ident that probed from chip's CFI aera, if
653 		 * available. Specify a minimum of 2000us, in case the CFI data
654 		 * is wrong.
655 		 */
656 		if (cfi->cfiq->BufWriteTimeoutTyp &&
657 		    cfi->cfiq->BufWriteTimeoutMax)
658 			cfi->chips[i].buffer_write_time_max =
659 				1 << (cfi->cfiq->BufWriteTimeoutTyp +
660 				      cfi->cfiq->BufWriteTimeoutMax);
661 		else
662 			cfi->chips[i].buffer_write_time_max = 0;
663 
664 		cfi->chips[i].buffer_write_time_max =
665 			max(cfi->chips[i].buffer_write_time_max, 2000);
666 
667 		cfi->chips[i].ref_point_counter = 0;
668 		init_waitqueue_head(&(cfi->chips[i].wq));
669 	}
670 
671 	map->fldrv = &cfi_amdstd_chipdrv;
672 
673 	return cfi_amdstd_setup(mtd);
674 }
675 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
676 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
677 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
678 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
679 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
680 
681 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
682 {
683 	struct map_info *map = mtd->priv;
684 	struct cfi_private *cfi = map->fldrv_priv;
685 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
686 	unsigned long offset = 0;
687 	int i,j;
688 
689 	printk(KERN_NOTICE "number of %s chips: %d\n",
690 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
691 	/* Select the correct geometry setup */
692 	mtd->size = devsize * cfi->numchips;
693 
694 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
695 	mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
696 					  sizeof(struct mtd_erase_region_info),
697 					  GFP_KERNEL);
698 	if (!mtd->eraseregions)
699 		goto setup_err;
700 
701 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
702 		unsigned long ernum, ersize;
703 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
704 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
705 
706 		if (mtd->erasesize < ersize) {
707 			mtd->erasesize = ersize;
708 		}
709 		for (j=0; j<cfi->numchips; j++) {
710 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
711 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
712 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
713 		}
714 		offset += (ersize * ernum);
715 	}
716 	if (offset != devsize) {
717 		/* Argh */
718 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
719 		goto setup_err;
720 	}
721 
722 	__module_get(THIS_MODULE);
723 	register_reboot_notifier(&mtd->reboot_notifier);
724 	return mtd;
725 
726  setup_err:
727 	kfree(mtd->eraseregions);
728 	kfree(mtd);
729 	kfree(cfi->cmdset_priv);
730 	kfree(cfi->cfiq);
731 	return NULL;
732 }
733 
734 /*
735  * Return true if the chip is ready.
736  *
737  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
738  * non-suspended sector) and is indicated by no toggle bits toggling.
739  *
740  * Note that anything more complicated than checking if no bits are toggling
741  * (including checking DQ5 for an error status) is tricky to get working
742  * correctly and is therefore not done	(particularly with interleaved chips
743  * as each chip must be checked independently of the others).
744  */
745 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
746 {
747 	map_word d, t;
748 
749 	d = map_read(map, addr);
750 	t = map_read(map, addr);
751 
752 	return map_word_equal(map, d, t);
753 }
754 
755 /*
756  * Return true if the chip is ready and has the correct value.
757  *
758  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
759  * non-suspended sector) and it is indicated by no bits toggling.
760  *
761  * Error are indicated by toggling bits or bits held with the wrong value,
762  * or with bits toggling.
763  *
764  * Note that anything more complicated than checking if no bits are toggling
765  * (including checking DQ5 for an error status) is tricky to get working
766  * correctly and is therefore not done	(particularly with interleaved chips
767  * as each chip must be checked independently of the others).
768  *
769  */
770 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
771 {
772 	map_word oldd, curd;
773 
774 	oldd = map_read(map, addr);
775 	curd = map_read(map, addr);
776 
777 	return	map_word_equal(map, oldd, curd) &&
778 		map_word_equal(map, curd, expected);
779 }
780 
781 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
782 {
783 	DECLARE_WAITQUEUE(wait, current);
784 	struct cfi_private *cfi = map->fldrv_priv;
785 	unsigned long timeo;
786 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
787 
788  resettime:
789 	timeo = jiffies + HZ;
790  retry:
791 	switch (chip->state) {
792 
793 	case FL_STATUS:
794 		for (;;) {
795 			if (chip_ready(map, adr))
796 				break;
797 
798 			if (time_after(jiffies, timeo)) {
799 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
800 				return -EIO;
801 			}
802 			mutex_unlock(&chip->mutex);
803 			cfi_udelay(1);
804 			mutex_lock(&chip->mutex);
805 			/* Someone else might have been playing with it. */
806 			goto retry;
807 		}
808 
809 	case FL_READY:
810 	case FL_CFI_QUERY:
811 	case FL_JEDEC_QUERY:
812 		return 0;
813 
814 	case FL_ERASING:
815 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
816 		    !(mode == FL_READY || mode == FL_POINT ||
817 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
818 			goto sleep;
819 
820 		/* Do not allow suspend iff read/write to EB address */
821 		if ((adr & chip->in_progress_block_mask) ==
822 		    chip->in_progress_block_addr)
823 			goto sleep;
824 
825 		/* Erase suspend */
826 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
827 		 * commands when the erase algorithm isn't in progress. */
828 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
829 		chip->oldstate = FL_ERASING;
830 		chip->state = FL_ERASE_SUSPENDING;
831 		chip->erase_suspended = 1;
832 		for (;;) {
833 			if (chip_ready(map, adr))
834 				break;
835 
836 			if (time_after(jiffies, timeo)) {
837 				/* Should have suspended the erase by now.
838 				 * Send an Erase-Resume command as either
839 				 * there was an error (so leave the erase
840 				 * routine to recover from it) or we trying to
841 				 * use the erase-in-progress sector. */
842 				put_chip(map, chip, adr);
843 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
844 				return -EIO;
845 			}
846 
847 			mutex_unlock(&chip->mutex);
848 			cfi_udelay(1);
849 			mutex_lock(&chip->mutex);
850 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
851 			   So we can just loop here. */
852 		}
853 		chip->state = FL_READY;
854 		return 0;
855 
856 	case FL_XIP_WHILE_ERASING:
857 		if (mode != FL_READY && mode != FL_POINT &&
858 		    (!cfip || !(cfip->EraseSuspend&2)))
859 			goto sleep;
860 		chip->oldstate = chip->state;
861 		chip->state = FL_READY;
862 		return 0;
863 
864 	case FL_SHUTDOWN:
865 		/* The machine is rebooting */
866 		return -EIO;
867 
868 	case FL_POINT:
869 		/* Only if there's no operation suspended... */
870 		if (mode == FL_READY && chip->oldstate == FL_READY)
871 			return 0;
872 
873 	default:
874 	sleep:
875 		set_current_state(TASK_UNINTERRUPTIBLE);
876 		add_wait_queue(&chip->wq, &wait);
877 		mutex_unlock(&chip->mutex);
878 		schedule();
879 		remove_wait_queue(&chip->wq, &wait);
880 		mutex_lock(&chip->mutex);
881 		goto resettime;
882 	}
883 }
884 
885 
886 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
887 {
888 	struct cfi_private *cfi = map->fldrv_priv;
889 
890 	switch(chip->oldstate) {
891 	case FL_ERASING:
892 		cfi_fixup_m29ew_erase_suspend(map,
893 			chip->in_progress_block_addr);
894 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
895 		cfi_fixup_m29ew_delay_after_resume(cfi);
896 		chip->oldstate = FL_READY;
897 		chip->state = FL_ERASING;
898 		break;
899 
900 	case FL_XIP_WHILE_ERASING:
901 		chip->state = chip->oldstate;
902 		chip->oldstate = FL_READY;
903 		break;
904 
905 	case FL_READY:
906 	case FL_STATUS:
907 		break;
908 	default:
909 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
910 	}
911 	wake_up(&chip->wq);
912 }
913 
914 #ifdef CONFIG_MTD_XIP
915 
916 /*
917  * No interrupt what so ever can be serviced while the flash isn't in array
918  * mode.  This is ensured by the xip_disable() and xip_enable() functions
919  * enclosing any code path where the flash is known not to be in array mode.
920  * And within a XIP disabled code path, only functions marked with __xipram
921  * may be called and nothing else (it's a good thing to inspect generated
922  * assembly to make sure inline functions were actually inlined and that gcc
923  * didn't emit calls to its own support functions). Also configuring MTD CFI
924  * support to a single buswidth and a single interleave is also recommended.
925  */
926 
927 static void xip_disable(struct map_info *map, struct flchip *chip,
928 			unsigned long adr)
929 {
930 	/* TODO: chips with no XIP use should ignore and return */
931 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
932 	local_irq_disable();
933 }
934 
935 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
936 				unsigned long adr)
937 {
938 	struct cfi_private *cfi = map->fldrv_priv;
939 
940 	if (chip->state != FL_POINT && chip->state != FL_READY) {
941 		map_write(map, CMD(0xf0), adr);
942 		chip->state = FL_READY;
943 	}
944 	(void) map_read(map, adr);
945 	xip_iprefetch();
946 	local_irq_enable();
947 }
948 
949 /*
950  * When a delay is required for the flash operation to complete, the
951  * xip_udelay() function is polling for both the given timeout and pending
952  * (but still masked) hardware interrupts.  Whenever there is an interrupt
953  * pending then the flash erase operation is suspended, array mode restored
954  * and interrupts unmasked.  Task scheduling might also happen at that
955  * point.  The CPU eventually returns from the interrupt or the call to
956  * schedule() and the suspended flash operation is resumed for the remaining
957  * of the delay period.
958  *
959  * Warning: this function _will_ fool interrupt latency tracing tools.
960  */
961 
962 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
963 				unsigned long adr, int usec)
964 {
965 	struct cfi_private *cfi = map->fldrv_priv;
966 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
967 	map_word status, OK = CMD(0x80);
968 	unsigned long suspended, start = xip_currtime();
969 	flstate_t oldstate;
970 
971 	do {
972 		cpu_relax();
973 		if (xip_irqpending() && extp &&
974 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
975 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
976 			/*
977 			 * Let's suspend the erase operation when supported.
978 			 * Note that we currently don't try to suspend
979 			 * interleaved chips if there is already another
980 			 * operation suspended (imagine what happens
981 			 * when one chip was already done with the current
982 			 * operation while another chip suspended it, then
983 			 * we resume the whole thing at once).  Yes, it
984 			 * can happen!
985 			 */
986 			map_write(map, CMD(0xb0), adr);
987 			usec -= xip_elapsed_since(start);
988 			suspended = xip_currtime();
989 			do {
990 				if (xip_elapsed_since(suspended) > 100000) {
991 					/*
992 					 * The chip doesn't want to suspend
993 					 * after waiting for 100 msecs.
994 					 * This is a critical error but there
995 					 * is not much we can do here.
996 					 */
997 					return;
998 				}
999 				status = map_read(map, adr);
1000 			} while (!map_word_andequal(map, status, OK, OK));
1001 
1002 			/* Suspend succeeded */
1003 			oldstate = chip->state;
1004 			if (!map_word_bitsset(map, status, CMD(0x40)))
1005 				break;
1006 			chip->state = FL_XIP_WHILE_ERASING;
1007 			chip->erase_suspended = 1;
1008 			map_write(map, CMD(0xf0), adr);
1009 			(void) map_read(map, adr);
1010 			xip_iprefetch();
1011 			local_irq_enable();
1012 			mutex_unlock(&chip->mutex);
1013 			xip_iprefetch();
1014 			cond_resched();
1015 
1016 			/*
1017 			 * We're back.  However someone else might have
1018 			 * decided to go write to the chip if we are in
1019 			 * a suspended erase state.  If so let's wait
1020 			 * until it's done.
1021 			 */
1022 			mutex_lock(&chip->mutex);
1023 			while (chip->state != FL_XIP_WHILE_ERASING) {
1024 				DECLARE_WAITQUEUE(wait, current);
1025 				set_current_state(TASK_UNINTERRUPTIBLE);
1026 				add_wait_queue(&chip->wq, &wait);
1027 				mutex_unlock(&chip->mutex);
1028 				schedule();
1029 				remove_wait_queue(&chip->wq, &wait);
1030 				mutex_lock(&chip->mutex);
1031 			}
1032 			/* Disallow XIP again */
1033 			local_irq_disable();
1034 
1035 			/* Correct Erase Suspend Hangups for M29EW */
1036 			cfi_fixup_m29ew_erase_suspend(map, adr);
1037 			/* Resume the write or erase operation */
1038 			map_write(map, cfi->sector_erase_cmd, adr);
1039 			chip->state = oldstate;
1040 			start = xip_currtime();
1041 		} else if (usec >= 1000000/HZ) {
1042 			/*
1043 			 * Try to save on CPU power when waiting delay
1044 			 * is at least a system timer tick period.
1045 			 * No need to be extremely accurate here.
1046 			 */
1047 			xip_cpu_idle();
1048 		}
1049 		status = map_read(map, adr);
1050 	} while (!map_word_andequal(map, status, OK, OK)
1051 		 && xip_elapsed_since(start) < usec);
1052 }
1053 
1054 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1055 
1056 /*
1057  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1058  * the flash is actively programming or erasing since we have to poll for
1059  * the operation to complete anyway.  We can't do that in a generic way with
1060  * a XIP setup so do it before the actual flash operation in this case
1061  * and stub it out from INVALIDATE_CACHE_UDELAY.
1062  */
1063 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1064 	INVALIDATE_CACHED_RANGE(map, from, size)
1065 
1066 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1067 	UDELAY(map, chip, adr, usec)
1068 
1069 /*
1070  * Extra notes:
1071  *
1072  * Activating this XIP support changes the way the code works a bit.  For
1073  * example the code to suspend the current process when concurrent access
1074  * happens is never executed because xip_udelay() will always return with the
1075  * same chip state as it was entered with.  This is why there is no care for
1076  * the presence of add_wait_queue() or schedule() calls from within a couple
1077  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1078  * The queueing and scheduling are always happening within xip_udelay().
1079  *
1080  * Similarly, get_chip() and put_chip() just happen to always be executed
1081  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1082  * is in array mode, therefore never executing many cases therein and not
1083  * causing any problem with XIP.
1084  */
1085 
1086 #else
1087 
1088 #define xip_disable(map, chip, adr)
1089 #define xip_enable(map, chip, adr)
1090 #define XIP_INVAL_CACHED_RANGE(x...)
1091 
1092 #define UDELAY(map, chip, adr, usec)  \
1093 do {  \
1094 	mutex_unlock(&chip->mutex);  \
1095 	cfi_udelay(usec);  \
1096 	mutex_lock(&chip->mutex);  \
1097 } while (0)
1098 
1099 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1100 do {  \
1101 	mutex_unlock(&chip->mutex);  \
1102 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
1103 	cfi_udelay(usec);  \
1104 	mutex_lock(&chip->mutex);  \
1105 } while (0)
1106 
1107 #endif
1108 
1109 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1110 {
1111 	unsigned long cmd_addr;
1112 	struct cfi_private *cfi = map->fldrv_priv;
1113 	int ret;
1114 
1115 	adr += chip->start;
1116 
1117 	/* Ensure cmd read/writes are aligned. */
1118 	cmd_addr = adr & ~(map_bankwidth(map)-1);
1119 
1120 	mutex_lock(&chip->mutex);
1121 	ret = get_chip(map, chip, cmd_addr, FL_READY);
1122 	if (ret) {
1123 		mutex_unlock(&chip->mutex);
1124 		return ret;
1125 	}
1126 
1127 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1128 		map_write(map, CMD(0xf0), cmd_addr);
1129 		chip->state = FL_READY;
1130 	}
1131 
1132 	map_copy_from(map, buf, adr, len);
1133 
1134 	put_chip(map, chip, cmd_addr);
1135 
1136 	mutex_unlock(&chip->mutex);
1137 	return 0;
1138 }
1139 
1140 
1141 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1142 {
1143 	struct map_info *map = mtd->priv;
1144 	struct cfi_private *cfi = map->fldrv_priv;
1145 	unsigned long ofs;
1146 	int chipnum;
1147 	int ret = 0;
1148 
1149 	/* ofs: offset within the first chip that the first read should start */
1150 	chipnum = (from >> cfi->chipshift);
1151 	ofs = from - (chipnum <<  cfi->chipshift);
1152 
1153 	while (len) {
1154 		unsigned long thislen;
1155 
1156 		if (chipnum >= cfi->numchips)
1157 			break;
1158 
1159 		if ((len + ofs -1) >> cfi->chipshift)
1160 			thislen = (1<<cfi->chipshift) - ofs;
1161 		else
1162 			thislen = len;
1163 
1164 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1165 		if (ret)
1166 			break;
1167 
1168 		*retlen += thislen;
1169 		len -= thislen;
1170 		buf += thislen;
1171 
1172 		ofs = 0;
1173 		chipnum++;
1174 	}
1175 	return ret;
1176 }
1177 
1178 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1179 			loff_t adr, size_t len, u_char *buf, size_t grouplen);
1180 
1181 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1182 			     loff_t adr, size_t len)
1183 {
1184 	struct cfi_private *cfi = map->fldrv_priv;
1185 
1186 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1187 			 cfi->device_type, NULL);
1188 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1189 			 cfi->device_type, NULL);
1190 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1191 			 cfi->device_type, NULL);
1192 
1193 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1194 }
1195 
1196 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1197 			    loff_t adr, size_t len)
1198 {
1199 	struct cfi_private *cfi = map->fldrv_priv;
1200 
1201 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1202 			 cfi->device_type, NULL);
1203 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1204 			 cfi->device_type, NULL);
1205 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1206 			 cfi->device_type, NULL);
1207 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1208 			 cfi->device_type, NULL);
1209 
1210 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1211 }
1212 
1213 static inline int do_read_secsi_onechip(struct map_info *map,
1214 					struct flchip *chip, loff_t adr,
1215 					size_t len, u_char *buf,
1216 					size_t grouplen)
1217 {
1218 	DECLARE_WAITQUEUE(wait, current);
1219 
1220  retry:
1221 	mutex_lock(&chip->mutex);
1222 
1223 	if (chip->state != FL_READY){
1224 		set_current_state(TASK_UNINTERRUPTIBLE);
1225 		add_wait_queue(&chip->wq, &wait);
1226 
1227 		mutex_unlock(&chip->mutex);
1228 
1229 		schedule();
1230 		remove_wait_queue(&chip->wq, &wait);
1231 
1232 		goto retry;
1233 	}
1234 
1235 	adr += chip->start;
1236 
1237 	chip->state = FL_READY;
1238 
1239 	otp_enter(map, chip, adr, len);
1240 	map_copy_from(map, buf, adr, len);
1241 	otp_exit(map, chip, adr, len);
1242 
1243 	wake_up(&chip->wq);
1244 	mutex_unlock(&chip->mutex);
1245 
1246 	return 0;
1247 }
1248 
1249 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1250 {
1251 	struct map_info *map = mtd->priv;
1252 	struct cfi_private *cfi = map->fldrv_priv;
1253 	unsigned long ofs;
1254 	int chipnum;
1255 	int ret = 0;
1256 
1257 	/* ofs: offset within the first chip that the first read should start */
1258 	/* 8 secsi bytes per chip */
1259 	chipnum=from>>3;
1260 	ofs=from & 7;
1261 
1262 	while (len) {
1263 		unsigned long thislen;
1264 
1265 		if (chipnum >= cfi->numchips)
1266 			break;
1267 
1268 		if ((len + ofs -1) >> 3)
1269 			thislen = (1<<3) - ofs;
1270 		else
1271 			thislen = len;
1272 
1273 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1274 					    thislen, buf, 0);
1275 		if (ret)
1276 			break;
1277 
1278 		*retlen += thislen;
1279 		len -= thislen;
1280 		buf += thislen;
1281 
1282 		ofs = 0;
1283 		chipnum++;
1284 	}
1285 	return ret;
1286 }
1287 
1288 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1289 				     unsigned long adr, map_word datum,
1290 				     int mode);
1291 
1292 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1293 			size_t len, u_char *buf, size_t grouplen)
1294 {
1295 	int ret;
1296 	while (len) {
1297 		unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1298 		int gap = adr - bus_ofs;
1299 		int n = min_t(int, len, map_bankwidth(map) - gap);
1300 		map_word datum = map_word_ff(map);
1301 
1302 		if (n != map_bankwidth(map)) {
1303 			/* partial write of a word, load old contents */
1304 			otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1305 			datum = map_read(map, bus_ofs);
1306 			otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1307 		}
1308 
1309 		datum = map_word_load_partial(map, datum, buf, gap, n);
1310 		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1311 		if (ret)
1312 			return ret;
1313 
1314 		adr += n;
1315 		buf += n;
1316 		len -= n;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1323 		       size_t len, u_char *buf, size_t grouplen)
1324 {
1325 	struct cfi_private *cfi = map->fldrv_priv;
1326 	uint8_t lockreg;
1327 	unsigned long timeo;
1328 	int ret;
1329 
1330 	/* make sure area matches group boundaries */
1331 	if ((adr != 0) || (len != grouplen))
1332 		return -EINVAL;
1333 
1334 	mutex_lock(&chip->mutex);
1335 	ret = get_chip(map, chip, chip->start, FL_LOCKING);
1336 	if (ret) {
1337 		mutex_unlock(&chip->mutex);
1338 		return ret;
1339 	}
1340 	chip->state = FL_LOCKING;
1341 
1342 	/* Enter lock register command */
1343 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1344 			 cfi->device_type, NULL);
1345 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1346 			 cfi->device_type, NULL);
1347 	cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1348 			 cfi->device_type, NULL);
1349 
1350 	/* read lock register */
1351 	lockreg = cfi_read_query(map, 0);
1352 
1353 	/* set bit 0 to protect extended memory block */
1354 	lockreg &= ~0x01;
1355 
1356 	/* set bit 0 to protect extended memory block */
1357 	/* write lock register */
1358 	map_write(map, CMD(0xA0), chip->start);
1359 	map_write(map, CMD(lockreg), chip->start);
1360 
1361 	/* wait for chip to become ready */
1362 	timeo = jiffies + msecs_to_jiffies(2);
1363 	for (;;) {
1364 		if (chip_ready(map, adr))
1365 			break;
1366 
1367 		if (time_after(jiffies, timeo)) {
1368 			pr_err("Waiting for chip to be ready timed out.\n");
1369 			ret = -EIO;
1370 			break;
1371 		}
1372 		UDELAY(map, chip, 0, 1);
1373 	}
1374 
1375 	/* exit protection commands */
1376 	map_write(map, CMD(0x90), chip->start);
1377 	map_write(map, CMD(0x00), chip->start);
1378 
1379 	chip->state = FL_READY;
1380 	put_chip(map, chip, chip->start);
1381 	mutex_unlock(&chip->mutex);
1382 
1383 	return ret;
1384 }
1385 
1386 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1387 			       size_t *retlen, u_char *buf,
1388 			       otp_op_t action, int user_regs)
1389 {
1390 	struct map_info *map = mtd->priv;
1391 	struct cfi_private *cfi = map->fldrv_priv;
1392 	int ofs_factor = cfi->interleave * cfi->device_type;
1393 	unsigned long base;
1394 	int chipnum;
1395 	struct flchip *chip;
1396 	uint8_t otp, lockreg;
1397 	int ret;
1398 
1399 	size_t user_size, factory_size, otpsize;
1400 	loff_t user_offset, factory_offset, otpoffset;
1401 	int user_locked = 0, otplocked;
1402 
1403 	*retlen = 0;
1404 
1405 	for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1406 		chip = &cfi->chips[chipnum];
1407 		factory_size = 0;
1408 		user_size = 0;
1409 
1410 		/* Micron M29EW family */
1411 		if (is_m29ew(cfi)) {
1412 			base = chip->start;
1413 
1414 			/* check whether secsi area is factory locked
1415 			   or user lockable */
1416 			mutex_lock(&chip->mutex);
1417 			ret = get_chip(map, chip, base, FL_CFI_QUERY);
1418 			if (ret) {
1419 				mutex_unlock(&chip->mutex);
1420 				return ret;
1421 			}
1422 			cfi_qry_mode_on(base, map, cfi);
1423 			otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1424 			cfi_qry_mode_off(base, map, cfi);
1425 			put_chip(map, chip, base);
1426 			mutex_unlock(&chip->mutex);
1427 
1428 			if (otp & 0x80) {
1429 				/* factory locked */
1430 				factory_offset = 0;
1431 				factory_size = 0x100;
1432 			} else {
1433 				/* customer lockable */
1434 				user_offset = 0;
1435 				user_size = 0x100;
1436 
1437 				mutex_lock(&chip->mutex);
1438 				ret = get_chip(map, chip, base, FL_LOCKING);
1439 				if (ret) {
1440 					mutex_unlock(&chip->mutex);
1441 					return ret;
1442 				}
1443 
1444 				/* Enter lock register command */
1445 				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1446 						 chip->start, map, cfi,
1447 						 cfi->device_type, NULL);
1448 				cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1449 						 chip->start, map, cfi,
1450 						 cfi->device_type, NULL);
1451 				cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1452 						 chip->start, map, cfi,
1453 						 cfi->device_type, NULL);
1454 				/* read lock register */
1455 				lockreg = cfi_read_query(map, 0);
1456 				/* exit protection commands */
1457 				map_write(map, CMD(0x90), chip->start);
1458 				map_write(map, CMD(0x00), chip->start);
1459 				put_chip(map, chip, chip->start);
1460 				mutex_unlock(&chip->mutex);
1461 
1462 				user_locked = ((lockreg & 0x01) == 0x00);
1463 			}
1464 		}
1465 
1466 		otpsize = user_regs ? user_size : factory_size;
1467 		if (!otpsize)
1468 			continue;
1469 		otpoffset = user_regs ? user_offset : factory_offset;
1470 		otplocked = user_regs ? user_locked : 1;
1471 
1472 		if (!action) {
1473 			/* return otpinfo */
1474 			struct otp_info *otpinfo;
1475 			len -= sizeof(*otpinfo);
1476 			if (len <= 0)
1477 				return -ENOSPC;
1478 			otpinfo = (struct otp_info *)buf;
1479 			otpinfo->start = from;
1480 			otpinfo->length = otpsize;
1481 			otpinfo->locked = otplocked;
1482 			buf += sizeof(*otpinfo);
1483 			*retlen += sizeof(*otpinfo);
1484 			from += otpsize;
1485 		} else if ((from < otpsize) && (len > 0)) {
1486 			size_t size;
1487 			size = (len < otpsize - from) ? len : otpsize - from;
1488 			ret = action(map, chip, otpoffset + from, size, buf,
1489 				     otpsize);
1490 			if (ret < 0)
1491 				return ret;
1492 
1493 			buf += size;
1494 			len -= size;
1495 			*retlen += size;
1496 			from = 0;
1497 		} else {
1498 			from -= otpsize;
1499 		}
1500 	}
1501 	return 0;
1502 }
1503 
1504 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1505 					 size_t *retlen, struct otp_info *buf)
1506 {
1507 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1508 				   NULL, 0);
1509 }
1510 
1511 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1512 					 size_t *retlen, struct otp_info *buf)
1513 {
1514 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1515 				   NULL, 1);
1516 }
1517 
1518 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1519 					 size_t len, size_t *retlen,
1520 					 u_char *buf)
1521 {
1522 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1523 				   buf, do_read_secsi_onechip, 0);
1524 }
1525 
1526 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1527 					 size_t len, size_t *retlen,
1528 					 u_char *buf)
1529 {
1530 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1531 				   buf, do_read_secsi_onechip, 1);
1532 }
1533 
1534 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1535 					  size_t len, size_t *retlen,
1536 					  u_char *buf)
1537 {
1538 	return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1539 				   do_otp_write, 1);
1540 }
1541 
1542 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1543 					 size_t len)
1544 {
1545 	size_t retlen;
1546 	return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1547 				   do_otp_lock, 1);
1548 }
1549 
1550 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1551 				     unsigned long adr, map_word datum,
1552 				     int mode)
1553 {
1554 	struct cfi_private *cfi = map->fldrv_priv;
1555 	unsigned long timeo = jiffies + HZ;
1556 	/*
1557 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1558 	 * have a max write time of a few hundreds usec). However, we should
1559 	 * use the maximum timeout value given by the chip at probe time
1560 	 * instead.  Unfortunately, struct flchip does have a field for
1561 	 * maximum timeout, only for typical which can be far too short
1562 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1563 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1564 	 */
1565 	unsigned long uWriteTimeout = (HZ / 1000) + 1;
1566 	int ret = 0;
1567 	map_word oldd;
1568 	int retry_cnt = 0;
1569 
1570 	adr += chip->start;
1571 
1572 	mutex_lock(&chip->mutex);
1573 	ret = get_chip(map, chip, adr, mode);
1574 	if (ret) {
1575 		mutex_unlock(&chip->mutex);
1576 		return ret;
1577 	}
1578 
1579 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1580 		 __func__, adr, datum.x[0]);
1581 
1582 	if (mode == FL_OTP_WRITE)
1583 		otp_enter(map, chip, adr, map_bankwidth(map));
1584 
1585 	/*
1586 	 * Check for a NOP for the case when the datum to write is already
1587 	 * present - it saves time and works around buggy chips that corrupt
1588 	 * data at other locations when 0xff is written to a location that
1589 	 * already contains 0xff.
1590 	 */
1591 	oldd = map_read(map, adr);
1592 	if (map_word_equal(map, oldd, datum)) {
1593 		pr_debug("MTD %s(): NOP\n",
1594 		       __func__);
1595 		goto op_done;
1596 	}
1597 
1598 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1599 	ENABLE_VPP(map);
1600 	xip_disable(map, chip, adr);
1601 
1602  retry:
1603 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1604 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1605 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1606 	map_write(map, datum, adr);
1607 	chip->state = mode;
1608 
1609 	INVALIDATE_CACHE_UDELAY(map, chip,
1610 				adr, map_bankwidth(map),
1611 				chip->word_write_time);
1612 
1613 	/* See comment above for timeout value. */
1614 	timeo = jiffies + uWriteTimeout;
1615 	for (;;) {
1616 		if (chip->state != mode) {
1617 			/* Someone's suspended the write. Sleep */
1618 			DECLARE_WAITQUEUE(wait, current);
1619 
1620 			set_current_state(TASK_UNINTERRUPTIBLE);
1621 			add_wait_queue(&chip->wq, &wait);
1622 			mutex_unlock(&chip->mutex);
1623 			schedule();
1624 			remove_wait_queue(&chip->wq, &wait);
1625 			timeo = jiffies + (HZ / 2); /* FIXME */
1626 			mutex_lock(&chip->mutex);
1627 			continue;
1628 		}
1629 
1630 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1631 			xip_enable(map, chip, adr);
1632 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1633 			xip_disable(map, chip, adr);
1634 			break;
1635 		}
1636 
1637 		if (chip_ready(map, adr))
1638 			break;
1639 
1640 		/* Latency issues. Drop the lock, wait a while and retry */
1641 		UDELAY(map, chip, adr, 1);
1642 	}
1643 	/* Did we succeed? */
1644 	if (!chip_good(map, adr, datum)) {
1645 		/* reset on all failures. */
1646 		map_write(map, CMD(0xF0), chip->start);
1647 		/* FIXME - should have reset delay before continuing */
1648 
1649 		if (++retry_cnt <= MAX_RETRIES)
1650 			goto retry;
1651 
1652 		ret = -EIO;
1653 	}
1654 	xip_enable(map, chip, adr);
1655  op_done:
1656 	if (mode == FL_OTP_WRITE)
1657 		otp_exit(map, chip, adr, map_bankwidth(map));
1658 	chip->state = FL_READY;
1659 	DISABLE_VPP(map);
1660 	put_chip(map, chip, adr);
1661 	mutex_unlock(&chip->mutex);
1662 
1663 	return ret;
1664 }
1665 
1666 
1667 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1668 				  size_t *retlen, const u_char *buf)
1669 {
1670 	struct map_info *map = mtd->priv;
1671 	struct cfi_private *cfi = map->fldrv_priv;
1672 	int ret = 0;
1673 	int chipnum;
1674 	unsigned long ofs, chipstart;
1675 	DECLARE_WAITQUEUE(wait, current);
1676 
1677 	chipnum = to >> cfi->chipshift;
1678 	ofs = to  - (chipnum << cfi->chipshift);
1679 	chipstart = cfi->chips[chipnum].start;
1680 
1681 	/* If it's not bus-aligned, do the first byte write */
1682 	if (ofs & (map_bankwidth(map)-1)) {
1683 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1684 		int i = ofs - bus_ofs;
1685 		int n = 0;
1686 		map_word tmp_buf;
1687 
1688  retry:
1689 		mutex_lock(&cfi->chips[chipnum].mutex);
1690 
1691 		if (cfi->chips[chipnum].state != FL_READY) {
1692 			set_current_state(TASK_UNINTERRUPTIBLE);
1693 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1694 
1695 			mutex_unlock(&cfi->chips[chipnum].mutex);
1696 
1697 			schedule();
1698 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1699 			goto retry;
1700 		}
1701 
1702 		/* Load 'tmp_buf' with old contents of flash */
1703 		tmp_buf = map_read(map, bus_ofs+chipstart);
1704 
1705 		mutex_unlock(&cfi->chips[chipnum].mutex);
1706 
1707 		/* Number of bytes to copy from buffer */
1708 		n = min_t(int, len, map_bankwidth(map)-i);
1709 
1710 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1711 
1712 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1713 				       bus_ofs, tmp_buf, FL_WRITING);
1714 		if (ret)
1715 			return ret;
1716 
1717 		ofs += n;
1718 		buf += n;
1719 		(*retlen) += n;
1720 		len -= n;
1721 
1722 		if (ofs >> cfi->chipshift) {
1723 			chipnum ++;
1724 			ofs = 0;
1725 			if (chipnum == cfi->numchips)
1726 				return 0;
1727 		}
1728 	}
1729 
1730 	/* We are now aligned, write as much as possible */
1731 	while(len >= map_bankwidth(map)) {
1732 		map_word datum;
1733 
1734 		datum = map_word_load(map, buf);
1735 
1736 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1737 				       ofs, datum, FL_WRITING);
1738 		if (ret)
1739 			return ret;
1740 
1741 		ofs += map_bankwidth(map);
1742 		buf += map_bankwidth(map);
1743 		(*retlen) += map_bankwidth(map);
1744 		len -= map_bankwidth(map);
1745 
1746 		if (ofs >> cfi->chipshift) {
1747 			chipnum ++;
1748 			ofs = 0;
1749 			if (chipnum == cfi->numchips)
1750 				return 0;
1751 			chipstart = cfi->chips[chipnum].start;
1752 		}
1753 	}
1754 
1755 	/* Write the trailing bytes if any */
1756 	if (len & (map_bankwidth(map)-1)) {
1757 		map_word tmp_buf;
1758 
1759  retry1:
1760 		mutex_lock(&cfi->chips[chipnum].mutex);
1761 
1762 		if (cfi->chips[chipnum].state != FL_READY) {
1763 			set_current_state(TASK_UNINTERRUPTIBLE);
1764 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1765 
1766 			mutex_unlock(&cfi->chips[chipnum].mutex);
1767 
1768 			schedule();
1769 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1770 			goto retry1;
1771 		}
1772 
1773 		tmp_buf = map_read(map, ofs + chipstart);
1774 
1775 		mutex_unlock(&cfi->chips[chipnum].mutex);
1776 
1777 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1778 
1779 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1780 				       ofs, tmp_buf, FL_WRITING);
1781 		if (ret)
1782 			return ret;
1783 
1784 		(*retlen) += len;
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 
1791 /*
1792  * FIXME: interleaved mode not tested, and probably not supported!
1793  */
1794 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1795 				    unsigned long adr, const u_char *buf,
1796 				    int len)
1797 {
1798 	struct cfi_private *cfi = map->fldrv_priv;
1799 	unsigned long timeo = jiffies + HZ;
1800 	/*
1801 	 * Timeout is calculated according to CFI data, if available.
1802 	 * See more comments in cfi_cmdset_0002().
1803 	 */
1804 	unsigned long uWriteTimeout =
1805 				usecs_to_jiffies(chip->buffer_write_time_max);
1806 	int ret = -EIO;
1807 	unsigned long cmd_adr;
1808 	int z, words;
1809 	map_word datum;
1810 
1811 	adr += chip->start;
1812 	cmd_adr = adr;
1813 
1814 	mutex_lock(&chip->mutex);
1815 	ret = get_chip(map, chip, adr, FL_WRITING);
1816 	if (ret) {
1817 		mutex_unlock(&chip->mutex);
1818 		return ret;
1819 	}
1820 
1821 	datum = map_word_load(map, buf);
1822 
1823 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1824 		 __func__, adr, datum.x[0]);
1825 
1826 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1827 	ENABLE_VPP(map);
1828 	xip_disable(map, chip, cmd_adr);
1829 
1830 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1831 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1832 
1833 	/* Write Buffer Load */
1834 	map_write(map, CMD(0x25), cmd_adr);
1835 
1836 	chip->state = FL_WRITING_TO_BUFFER;
1837 
1838 	/* Write length of data to come */
1839 	words = len / map_bankwidth(map);
1840 	map_write(map, CMD(words - 1), cmd_adr);
1841 	/* Write data */
1842 	z = 0;
1843 	while(z < words * map_bankwidth(map)) {
1844 		datum = map_word_load(map, buf);
1845 		map_write(map, datum, adr + z);
1846 
1847 		z += map_bankwidth(map);
1848 		buf += map_bankwidth(map);
1849 	}
1850 	z -= map_bankwidth(map);
1851 
1852 	adr += z;
1853 
1854 	/* Write Buffer Program Confirm: GO GO GO */
1855 	map_write(map, CMD(0x29), cmd_adr);
1856 	chip->state = FL_WRITING;
1857 
1858 	INVALIDATE_CACHE_UDELAY(map, chip,
1859 				adr, map_bankwidth(map),
1860 				chip->word_write_time);
1861 
1862 	timeo = jiffies + uWriteTimeout;
1863 
1864 	for (;;) {
1865 		if (chip->state != FL_WRITING) {
1866 			/* Someone's suspended the write. Sleep */
1867 			DECLARE_WAITQUEUE(wait, current);
1868 
1869 			set_current_state(TASK_UNINTERRUPTIBLE);
1870 			add_wait_queue(&chip->wq, &wait);
1871 			mutex_unlock(&chip->mutex);
1872 			schedule();
1873 			remove_wait_queue(&chip->wq, &wait);
1874 			timeo = jiffies + (HZ / 2); /* FIXME */
1875 			mutex_lock(&chip->mutex);
1876 			continue;
1877 		}
1878 
1879 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1880 			break;
1881 
1882 		if (chip_good(map, adr, datum)) {
1883 			xip_enable(map, chip, adr);
1884 			goto op_done;
1885 		}
1886 
1887 		/* Latency issues. Drop the lock, wait a while and retry */
1888 		UDELAY(map, chip, adr, 1);
1889 	}
1890 
1891 	/*
1892 	 * Recovery from write-buffer programming failures requires
1893 	 * the write-to-buffer-reset sequence.  Since the last part
1894 	 * of the sequence also works as a normal reset, we can run
1895 	 * the same commands regardless of why we are here.
1896 	 * See e.g.
1897 	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1898 	 */
1899 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1900 			 cfi->device_type, NULL);
1901 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1902 			 cfi->device_type, NULL);
1903 	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1904 			 cfi->device_type, NULL);
1905 	xip_enable(map, chip, adr);
1906 	/* FIXME - should have reset delay before continuing */
1907 
1908 	printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1909 	       __func__, adr);
1910 
1911 	ret = -EIO;
1912  op_done:
1913 	chip->state = FL_READY;
1914 	DISABLE_VPP(map);
1915 	put_chip(map, chip, adr);
1916 	mutex_unlock(&chip->mutex);
1917 
1918 	return ret;
1919 }
1920 
1921 
1922 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1923 				    size_t *retlen, const u_char *buf)
1924 {
1925 	struct map_info *map = mtd->priv;
1926 	struct cfi_private *cfi = map->fldrv_priv;
1927 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1928 	int ret = 0;
1929 	int chipnum;
1930 	unsigned long ofs;
1931 
1932 	chipnum = to >> cfi->chipshift;
1933 	ofs = to  - (chipnum << cfi->chipshift);
1934 
1935 	/* If it's not bus-aligned, do the first word write */
1936 	if (ofs & (map_bankwidth(map)-1)) {
1937 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1938 		if (local_len > len)
1939 			local_len = len;
1940 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1941 					     local_len, retlen, buf);
1942 		if (ret)
1943 			return ret;
1944 		ofs += local_len;
1945 		buf += local_len;
1946 		len -= local_len;
1947 
1948 		if (ofs >> cfi->chipshift) {
1949 			chipnum ++;
1950 			ofs = 0;
1951 			if (chipnum == cfi->numchips)
1952 				return 0;
1953 		}
1954 	}
1955 
1956 	/* Write buffer is worth it only if more than one word to write... */
1957 	while (len >= map_bankwidth(map) * 2) {
1958 		/* We must not cross write block boundaries */
1959 		int size = wbufsize - (ofs & (wbufsize-1));
1960 
1961 		if (size > len)
1962 			size = len;
1963 		if (size % map_bankwidth(map))
1964 			size -= size % map_bankwidth(map);
1965 
1966 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1967 				      ofs, buf, size);
1968 		if (ret)
1969 			return ret;
1970 
1971 		ofs += size;
1972 		buf += size;
1973 		(*retlen) += size;
1974 		len -= size;
1975 
1976 		if (ofs >> cfi->chipshift) {
1977 			chipnum ++;
1978 			ofs = 0;
1979 			if (chipnum == cfi->numchips)
1980 				return 0;
1981 		}
1982 	}
1983 
1984 	if (len) {
1985 		size_t retlen_dregs = 0;
1986 
1987 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1988 					     len, &retlen_dregs, buf);
1989 
1990 		*retlen += retlen_dregs;
1991 		return ret;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 /*
1998  * Wait for the flash chip to become ready to write data
1999  *
2000  * This is only called during the panic_write() path. When panic_write()
2001  * is called, the kernel is in the process of a panic, and will soon be
2002  * dead. Therefore we don't take any locks, and attempt to get access
2003  * to the chip as soon as possible.
2004  */
2005 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2006 				 unsigned long adr)
2007 {
2008 	struct cfi_private *cfi = map->fldrv_priv;
2009 	int retries = 10;
2010 	int i;
2011 
2012 	/*
2013 	 * If the driver thinks the chip is idle, and no toggle bits
2014 	 * are changing, then the chip is actually idle for sure.
2015 	 */
2016 	if (chip->state == FL_READY && chip_ready(map, adr))
2017 		return 0;
2018 
2019 	/*
2020 	 * Try several times to reset the chip and then wait for it
2021 	 * to become idle. The upper limit of a few milliseconds of
2022 	 * delay isn't a big problem: the kernel is dying anyway. It
2023 	 * is more important to save the messages.
2024 	 */
2025 	while (retries > 0) {
2026 		const unsigned long timeo = (HZ / 1000) + 1;
2027 
2028 		/* send the reset command */
2029 		map_write(map, CMD(0xF0), chip->start);
2030 
2031 		/* wait for the chip to become ready */
2032 		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2033 			if (chip_ready(map, adr))
2034 				return 0;
2035 
2036 			udelay(1);
2037 		}
2038 
2039 		retries--;
2040 	}
2041 
2042 	/* the chip never became ready */
2043 	return -EBUSY;
2044 }
2045 
2046 /*
2047  * Write out one word of data to a single flash chip during a kernel panic
2048  *
2049  * This is only called during the panic_write() path. When panic_write()
2050  * is called, the kernel is in the process of a panic, and will soon be
2051  * dead. Therefore we don't take any locks, and attempt to get access
2052  * to the chip as soon as possible.
2053  *
2054  * The implementation of this routine is intentionally similar to
2055  * do_write_oneword(), in order to ease code maintenance.
2056  */
2057 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2058 				  unsigned long adr, map_word datum)
2059 {
2060 	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2061 	struct cfi_private *cfi = map->fldrv_priv;
2062 	int retry_cnt = 0;
2063 	map_word oldd;
2064 	int ret = 0;
2065 	int i;
2066 
2067 	adr += chip->start;
2068 
2069 	ret = cfi_amdstd_panic_wait(map, chip, adr);
2070 	if (ret)
2071 		return ret;
2072 
2073 	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2074 			__func__, adr, datum.x[0]);
2075 
2076 	/*
2077 	 * Check for a NOP for the case when the datum to write is already
2078 	 * present - it saves time and works around buggy chips that corrupt
2079 	 * data at other locations when 0xff is written to a location that
2080 	 * already contains 0xff.
2081 	 */
2082 	oldd = map_read(map, adr);
2083 	if (map_word_equal(map, oldd, datum)) {
2084 		pr_debug("MTD %s(): NOP\n", __func__);
2085 		goto op_done;
2086 	}
2087 
2088 	ENABLE_VPP(map);
2089 
2090 retry:
2091 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2092 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2093 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2094 	map_write(map, datum, adr);
2095 
2096 	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2097 		if (chip_ready(map, adr))
2098 			break;
2099 
2100 		udelay(1);
2101 	}
2102 
2103 	if (!chip_good(map, adr, datum)) {
2104 		/* reset on all failures. */
2105 		map_write(map, CMD(0xF0), chip->start);
2106 		/* FIXME - should have reset delay before continuing */
2107 
2108 		if (++retry_cnt <= MAX_RETRIES)
2109 			goto retry;
2110 
2111 		ret = -EIO;
2112 	}
2113 
2114 op_done:
2115 	DISABLE_VPP(map);
2116 	return ret;
2117 }
2118 
2119 /*
2120  * Write out some data during a kernel panic
2121  *
2122  * This is used by the mtdoops driver to save the dying messages from a
2123  * kernel which has panic'd.
2124  *
2125  * This routine ignores all of the locking used throughout the rest of the
2126  * driver, in order to ensure that the data gets written out no matter what
2127  * state this driver (and the flash chip itself) was in when the kernel crashed.
2128  *
2129  * The implementation of this routine is intentionally similar to
2130  * cfi_amdstd_write_words(), in order to ease code maintenance.
2131  */
2132 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2133 				  size_t *retlen, const u_char *buf)
2134 {
2135 	struct map_info *map = mtd->priv;
2136 	struct cfi_private *cfi = map->fldrv_priv;
2137 	unsigned long ofs, chipstart;
2138 	int ret = 0;
2139 	int chipnum;
2140 
2141 	chipnum = to >> cfi->chipshift;
2142 	ofs = to - (chipnum << cfi->chipshift);
2143 	chipstart = cfi->chips[chipnum].start;
2144 
2145 	/* If it's not bus aligned, do the first byte write */
2146 	if (ofs & (map_bankwidth(map) - 1)) {
2147 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2148 		int i = ofs - bus_ofs;
2149 		int n = 0;
2150 		map_word tmp_buf;
2151 
2152 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2153 		if (ret)
2154 			return ret;
2155 
2156 		/* Load 'tmp_buf' with old contents of flash */
2157 		tmp_buf = map_read(map, bus_ofs + chipstart);
2158 
2159 		/* Number of bytes to copy from buffer */
2160 		n = min_t(int, len, map_bankwidth(map) - i);
2161 
2162 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2163 
2164 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2165 					     bus_ofs, tmp_buf);
2166 		if (ret)
2167 			return ret;
2168 
2169 		ofs += n;
2170 		buf += n;
2171 		(*retlen) += n;
2172 		len -= n;
2173 
2174 		if (ofs >> cfi->chipshift) {
2175 			chipnum++;
2176 			ofs = 0;
2177 			if (chipnum == cfi->numchips)
2178 				return 0;
2179 		}
2180 	}
2181 
2182 	/* We are now aligned, write as much as possible */
2183 	while (len >= map_bankwidth(map)) {
2184 		map_word datum;
2185 
2186 		datum = map_word_load(map, buf);
2187 
2188 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2189 					     ofs, datum);
2190 		if (ret)
2191 			return ret;
2192 
2193 		ofs += map_bankwidth(map);
2194 		buf += map_bankwidth(map);
2195 		(*retlen) += map_bankwidth(map);
2196 		len -= map_bankwidth(map);
2197 
2198 		if (ofs >> cfi->chipshift) {
2199 			chipnum++;
2200 			ofs = 0;
2201 			if (chipnum == cfi->numchips)
2202 				return 0;
2203 
2204 			chipstart = cfi->chips[chipnum].start;
2205 		}
2206 	}
2207 
2208 	/* Write the trailing bytes if any */
2209 	if (len & (map_bankwidth(map) - 1)) {
2210 		map_word tmp_buf;
2211 
2212 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2213 		if (ret)
2214 			return ret;
2215 
2216 		tmp_buf = map_read(map, ofs + chipstart);
2217 
2218 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2219 
2220 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2221 					     ofs, tmp_buf);
2222 		if (ret)
2223 			return ret;
2224 
2225 		(*retlen) += len;
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 
2232 /*
2233  * Handle devices with one erase region, that only implement
2234  * the chip erase command.
2235  */
2236 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2237 {
2238 	struct cfi_private *cfi = map->fldrv_priv;
2239 	unsigned long timeo = jiffies + HZ;
2240 	unsigned long int adr;
2241 	DECLARE_WAITQUEUE(wait, current);
2242 	int ret = 0;
2243 	int retry_cnt = 0;
2244 
2245 	adr = cfi->addr_unlock1;
2246 
2247 	mutex_lock(&chip->mutex);
2248 	ret = get_chip(map, chip, adr, FL_WRITING);
2249 	if (ret) {
2250 		mutex_unlock(&chip->mutex);
2251 		return ret;
2252 	}
2253 
2254 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2255 	       __func__, chip->start);
2256 
2257 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2258 	ENABLE_VPP(map);
2259 	xip_disable(map, chip, adr);
2260 
2261  retry:
2262 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2263 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2264 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2265 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2266 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2267 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2268 
2269 	chip->state = FL_ERASING;
2270 	chip->erase_suspended = 0;
2271 	chip->in_progress_block_addr = adr;
2272 	chip->in_progress_block_mask = ~(map->size - 1);
2273 
2274 	INVALIDATE_CACHE_UDELAY(map, chip,
2275 				adr, map->size,
2276 				chip->erase_time*500);
2277 
2278 	timeo = jiffies + (HZ*20);
2279 
2280 	for (;;) {
2281 		if (chip->state != FL_ERASING) {
2282 			/* Someone's suspended the erase. Sleep */
2283 			set_current_state(TASK_UNINTERRUPTIBLE);
2284 			add_wait_queue(&chip->wq, &wait);
2285 			mutex_unlock(&chip->mutex);
2286 			schedule();
2287 			remove_wait_queue(&chip->wq, &wait);
2288 			mutex_lock(&chip->mutex);
2289 			continue;
2290 		}
2291 		if (chip->erase_suspended) {
2292 			/* This erase was suspended and resumed.
2293 			   Adjust the timeout */
2294 			timeo = jiffies + (HZ*20); /* FIXME */
2295 			chip->erase_suspended = 0;
2296 		}
2297 
2298 		if (chip_good(map, adr, map_word_ff(map)))
2299 			break;
2300 
2301 		if (time_after(jiffies, timeo)) {
2302 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2303 			       __func__);
2304 			ret = -EIO;
2305 			break;
2306 		}
2307 
2308 		/* Latency issues. Drop the lock, wait a while and retry */
2309 		UDELAY(map, chip, adr, 1000000/HZ);
2310 	}
2311 	/* Did we succeed? */
2312 	if (ret) {
2313 		/* reset on all failures. */
2314 		map_write(map, CMD(0xF0), chip->start);
2315 		/* FIXME - should have reset delay before continuing */
2316 
2317 		if (++retry_cnt <= MAX_RETRIES) {
2318 			ret = 0;
2319 			goto retry;
2320 		}
2321 	}
2322 
2323 	chip->state = FL_READY;
2324 	xip_enable(map, chip, adr);
2325 	DISABLE_VPP(map);
2326 	put_chip(map, chip, adr);
2327 	mutex_unlock(&chip->mutex);
2328 
2329 	return ret;
2330 }
2331 
2332 
2333 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2334 {
2335 	struct cfi_private *cfi = map->fldrv_priv;
2336 	unsigned long timeo = jiffies + HZ;
2337 	DECLARE_WAITQUEUE(wait, current);
2338 	int ret = 0;
2339 	int retry_cnt = 0;
2340 
2341 	adr += chip->start;
2342 
2343 	mutex_lock(&chip->mutex);
2344 	ret = get_chip(map, chip, adr, FL_ERASING);
2345 	if (ret) {
2346 		mutex_unlock(&chip->mutex);
2347 		return ret;
2348 	}
2349 
2350 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2351 		 __func__, adr);
2352 
2353 	XIP_INVAL_CACHED_RANGE(map, adr, len);
2354 	ENABLE_VPP(map);
2355 	xip_disable(map, chip, adr);
2356 
2357  retry:
2358 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2359 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2360 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2361 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2362 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2363 	map_write(map, cfi->sector_erase_cmd, adr);
2364 
2365 	chip->state = FL_ERASING;
2366 	chip->erase_suspended = 0;
2367 	chip->in_progress_block_addr = adr;
2368 	chip->in_progress_block_mask = ~(len - 1);
2369 
2370 	INVALIDATE_CACHE_UDELAY(map, chip,
2371 				adr, len,
2372 				chip->erase_time*500);
2373 
2374 	timeo = jiffies + (HZ*20);
2375 
2376 	for (;;) {
2377 		if (chip->state != FL_ERASING) {
2378 			/* Someone's suspended the erase. Sleep */
2379 			set_current_state(TASK_UNINTERRUPTIBLE);
2380 			add_wait_queue(&chip->wq, &wait);
2381 			mutex_unlock(&chip->mutex);
2382 			schedule();
2383 			remove_wait_queue(&chip->wq, &wait);
2384 			mutex_lock(&chip->mutex);
2385 			continue;
2386 		}
2387 		if (chip->erase_suspended) {
2388 			/* This erase was suspended and resumed.
2389 			   Adjust the timeout */
2390 			timeo = jiffies + (HZ*20); /* FIXME */
2391 			chip->erase_suspended = 0;
2392 		}
2393 
2394 		if (chip_good(map, adr, map_word_ff(map)))
2395 			break;
2396 
2397 		if (time_after(jiffies, timeo)) {
2398 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2399 			       __func__);
2400 			ret = -EIO;
2401 			break;
2402 		}
2403 
2404 		/* Latency issues. Drop the lock, wait a while and retry */
2405 		UDELAY(map, chip, adr, 1000000/HZ);
2406 	}
2407 	/* Did we succeed? */
2408 	if (ret) {
2409 		/* reset on all failures. */
2410 		map_write(map, CMD(0xF0), chip->start);
2411 		/* FIXME - should have reset delay before continuing */
2412 
2413 		if (++retry_cnt <= MAX_RETRIES) {
2414 			ret = 0;
2415 			goto retry;
2416 		}
2417 	}
2418 
2419 	chip->state = FL_READY;
2420 	xip_enable(map, chip, adr);
2421 	DISABLE_VPP(map);
2422 	put_chip(map, chip, adr);
2423 	mutex_unlock(&chip->mutex);
2424 	return ret;
2425 }
2426 
2427 
2428 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2429 {
2430 	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2431 				instr->len, NULL);
2432 }
2433 
2434 
2435 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2436 {
2437 	struct map_info *map = mtd->priv;
2438 	struct cfi_private *cfi = map->fldrv_priv;
2439 
2440 	if (instr->addr != 0)
2441 		return -EINVAL;
2442 
2443 	if (instr->len != mtd->size)
2444 		return -EINVAL;
2445 
2446 	return do_erase_chip(map, &cfi->chips[0]);
2447 }
2448 
2449 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2450 			 unsigned long adr, int len, void *thunk)
2451 {
2452 	struct cfi_private *cfi = map->fldrv_priv;
2453 	int ret;
2454 
2455 	mutex_lock(&chip->mutex);
2456 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2457 	if (ret)
2458 		goto out_unlock;
2459 	chip->state = FL_LOCKING;
2460 
2461 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2462 
2463 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2464 			 cfi->device_type, NULL);
2465 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2466 			 cfi->device_type, NULL);
2467 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2468 			 cfi->device_type, NULL);
2469 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2470 			 cfi->device_type, NULL);
2471 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2472 			 cfi->device_type, NULL);
2473 	map_write(map, CMD(0x40), chip->start + adr);
2474 
2475 	chip->state = FL_READY;
2476 	put_chip(map, chip, adr + chip->start);
2477 	ret = 0;
2478 
2479 out_unlock:
2480 	mutex_unlock(&chip->mutex);
2481 	return ret;
2482 }
2483 
2484 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2485 			   unsigned long adr, int len, void *thunk)
2486 {
2487 	struct cfi_private *cfi = map->fldrv_priv;
2488 	int ret;
2489 
2490 	mutex_lock(&chip->mutex);
2491 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2492 	if (ret)
2493 		goto out_unlock;
2494 	chip->state = FL_UNLOCKING;
2495 
2496 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2497 
2498 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2499 			 cfi->device_type, NULL);
2500 	map_write(map, CMD(0x70), adr);
2501 
2502 	chip->state = FL_READY;
2503 	put_chip(map, chip, adr + chip->start);
2504 	ret = 0;
2505 
2506 out_unlock:
2507 	mutex_unlock(&chip->mutex);
2508 	return ret;
2509 }
2510 
2511 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2512 {
2513 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2514 }
2515 
2516 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2517 {
2518 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2519 }
2520 
2521 /*
2522  * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2523  */
2524 
2525 struct ppb_lock {
2526 	struct flchip *chip;
2527 	unsigned long adr;
2528 	int locked;
2529 };
2530 
2531 #define MAX_SECTORS			512
2532 
2533 #define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1)
2534 #define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2)
2535 #define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3)
2536 
2537 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2538 					struct flchip *chip,
2539 					unsigned long adr, int len, void *thunk)
2540 {
2541 	struct cfi_private *cfi = map->fldrv_priv;
2542 	unsigned long timeo;
2543 	int ret;
2544 
2545 	adr += chip->start;
2546 	mutex_lock(&chip->mutex);
2547 	ret = get_chip(map, chip, adr, FL_LOCKING);
2548 	if (ret) {
2549 		mutex_unlock(&chip->mutex);
2550 		return ret;
2551 	}
2552 
2553 	pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2554 
2555 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2556 			 cfi->device_type, NULL);
2557 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2558 			 cfi->device_type, NULL);
2559 	/* PPB entry command */
2560 	cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2561 			 cfi->device_type, NULL);
2562 
2563 	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2564 		chip->state = FL_LOCKING;
2565 		map_write(map, CMD(0xA0), adr);
2566 		map_write(map, CMD(0x00), adr);
2567 	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2568 		/*
2569 		 * Unlocking of one specific sector is not supported, so we
2570 		 * have to unlock all sectors of this device instead
2571 		 */
2572 		chip->state = FL_UNLOCKING;
2573 		map_write(map, CMD(0x80), chip->start);
2574 		map_write(map, CMD(0x30), chip->start);
2575 	} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2576 		chip->state = FL_JEDEC_QUERY;
2577 		/* Return locked status: 0->locked, 1->unlocked */
2578 		ret = !cfi_read_query(map, adr);
2579 	} else
2580 		BUG();
2581 
2582 	/*
2583 	 * Wait for some time as unlocking of all sectors takes quite long
2584 	 */
2585 	timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */
2586 	for (;;) {
2587 		if (chip_ready(map, adr))
2588 			break;
2589 
2590 		if (time_after(jiffies, timeo)) {
2591 			printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2592 			ret = -EIO;
2593 			break;
2594 		}
2595 
2596 		UDELAY(map, chip, adr, 1);
2597 	}
2598 
2599 	/* Exit BC commands */
2600 	map_write(map, CMD(0x90), chip->start);
2601 	map_write(map, CMD(0x00), chip->start);
2602 
2603 	chip->state = FL_READY;
2604 	put_chip(map, chip, adr);
2605 	mutex_unlock(&chip->mutex);
2606 
2607 	return ret;
2608 }
2609 
2610 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2611 				       uint64_t len)
2612 {
2613 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2614 				DO_XXLOCK_ONEBLOCK_LOCK);
2615 }
2616 
2617 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2618 					 uint64_t len)
2619 {
2620 	struct mtd_erase_region_info *regions = mtd->eraseregions;
2621 	struct map_info *map = mtd->priv;
2622 	struct cfi_private *cfi = map->fldrv_priv;
2623 	struct ppb_lock *sect;
2624 	unsigned long adr;
2625 	loff_t offset;
2626 	uint64_t length;
2627 	int chipnum;
2628 	int i;
2629 	int sectors;
2630 	int ret;
2631 
2632 	/*
2633 	 * PPB unlocking always unlocks all sectors of the flash chip.
2634 	 * We need to re-lock all previously locked sectors. So lets
2635 	 * first check the locking status of all sectors and save
2636 	 * it for future use.
2637 	 */
2638 	sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL);
2639 	if (!sect)
2640 		return -ENOMEM;
2641 
2642 	/*
2643 	 * This code to walk all sectors is a slightly modified version
2644 	 * of the cfi_varsize_frob() code.
2645 	 */
2646 	i = 0;
2647 	chipnum = 0;
2648 	adr = 0;
2649 	sectors = 0;
2650 	offset = 0;
2651 	length = mtd->size;
2652 
2653 	while (length) {
2654 		int size = regions[i].erasesize;
2655 
2656 		/*
2657 		 * Only test sectors that shall not be unlocked. The other
2658 		 * sectors shall be unlocked, so lets keep their locking
2659 		 * status at "unlocked" (locked=0) for the final re-locking.
2660 		 */
2661 		if ((offset < ofs) || (offset >= (ofs + len))) {
2662 			sect[sectors].chip = &cfi->chips[chipnum];
2663 			sect[sectors].adr = adr;
2664 			sect[sectors].locked = do_ppb_xxlock(
2665 				map, &cfi->chips[chipnum], adr, 0,
2666 				DO_XXLOCK_ONEBLOCK_GETLOCK);
2667 		}
2668 
2669 		adr += size;
2670 		offset += size;
2671 		length -= size;
2672 
2673 		if (offset == regions[i].offset + size * regions[i].numblocks)
2674 			i++;
2675 
2676 		if (adr >> cfi->chipshift) {
2677 			if (offset >= (ofs + len))
2678 				break;
2679 			adr = 0;
2680 			chipnum++;
2681 
2682 			if (chipnum >= cfi->numchips)
2683 				break;
2684 		}
2685 
2686 		sectors++;
2687 		if (sectors >= MAX_SECTORS) {
2688 			printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2689 			       MAX_SECTORS);
2690 			kfree(sect);
2691 			return -EINVAL;
2692 		}
2693 	}
2694 
2695 	/* Now unlock the whole chip */
2696 	ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2697 			       DO_XXLOCK_ONEBLOCK_UNLOCK);
2698 	if (ret) {
2699 		kfree(sect);
2700 		return ret;
2701 	}
2702 
2703 	/*
2704 	 * PPB unlocking always unlocks all sectors of the flash chip.
2705 	 * We need to re-lock all previously locked sectors.
2706 	 */
2707 	for (i = 0; i < sectors; i++) {
2708 		if (sect[i].locked)
2709 			do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2710 				      DO_XXLOCK_ONEBLOCK_LOCK);
2711 	}
2712 
2713 	kfree(sect);
2714 	return ret;
2715 }
2716 
2717 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2718 					    uint64_t len)
2719 {
2720 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2721 				DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2722 }
2723 
2724 static void cfi_amdstd_sync (struct mtd_info *mtd)
2725 {
2726 	struct map_info *map = mtd->priv;
2727 	struct cfi_private *cfi = map->fldrv_priv;
2728 	int i;
2729 	struct flchip *chip;
2730 	int ret = 0;
2731 	DECLARE_WAITQUEUE(wait, current);
2732 
2733 	for (i=0; !ret && i<cfi->numchips; i++) {
2734 		chip = &cfi->chips[i];
2735 
2736 	retry:
2737 		mutex_lock(&chip->mutex);
2738 
2739 		switch(chip->state) {
2740 		case FL_READY:
2741 		case FL_STATUS:
2742 		case FL_CFI_QUERY:
2743 		case FL_JEDEC_QUERY:
2744 			chip->oldstate = chip->state;
2745 			chip->state = FL_SYNCING;
2746 			/* No need to wake_up() on this state change -
2747 			 * as the whole point is that nobody can do anything
2748 			 * with the chip now anyway.
2749 			 */
2750 		case FL_SYNCING:
2751 			mutex_unlock(&chip->mutex);
2752 			break;
2753 
2754 		default:
2755 			/* Not an idle state */
2756 			set_current_state(TASK_UNINTERRUPTIBLE);
2757 			add_wait_queue(&chip->wq, &wait);
2758 
2759 			mutex_unlock(&chip->mutex);
2760 
2761 			schedule();
2762 
2763 			remove_wait_queue(&chip->wq, &wait);
2764 
2765 			goto retry;
2766 		}
2767 	}
2768 
2769 	/* Unlock the chips again */
2770 
2771 	for (i--; i >=0; i--) {
2772 		chip = &cfi->chips[i];
2773 
2774 		mutex_lock(&chip->mutex);
2775 
2776 		if (chip->state == FL_SYNCING) {
2777 			chip->state = chip->oldstate;
2778 			wake_up(&chip->wq);
2779 		}
2780 		mutex_unlock(&chip->mutex);
2781 	}
2782 }
2783 
2784 
2785 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2786 {
2787 	struct map_info *map = mtd->priv;
2788 	struct cfi_private *cfi = map->fldrv_priv;
2789 	int i;
2790 	struct flchip *chip;
2791 	int ret = 0;
2792 
2793 	for (i=0; !ret && i<cfi->numchips; i++) {
2794 		chip = &cfi->chips[i];
2795 
2796 		mutex_lock(&chip->mutex);
2797 
2798 		switch(chip->state) {
2799 		case FL_READY:
2800 		case FL_STATUS:
2801 		case FL_CFI_QUERY:
2802 		case FL_JEDEC_QUERY:
2803 			chip->oldstate = chip->state;
2804 			chip->state = FL_PM_SUSPENDED;
2805 			/* No need to wake_up() on this state change -
2806 			 * as the whole point is that nobody can do anything
2807 			 * with the chip now anyway.
2808 			 */
2809 		case FL_PM_SUSPENDED:
2810 			break;
2811 
2812 		default:
2813 			ret = -EAGAIN;
2814 			break;
2815 		}
2816 		mutex_unlock(&chip->mutex);
2817 	}
2818 
2819 	/* Unlock the chips again */
2820 
2821 	if (ret) {
2822 		for (i--; i >=0; i--) {
2823 			chip = &cfi->chips[i];
2824 
2825 			mutex_lock(&chip->mutex);
2826 
2827 			if (chip->state == FL_PM_SUSPENDED) {
2828 				chip->state = chip->oldstate;
2829 				wake_up(&chip->wq);
2830 			}
2831 			mutex_unlock(&chip->mutex);
2832 		}
2833 	}
2834 
2835 	return ret;
2836 }
2837 
2838 
2839 static void cfi_amdstd_resume(struct mtd_info *mtd)
2840 {
2841 	struct map_info *map = mtd->priv;
2842 	struct cfi_private *cfi = map->fldrv_priv;
2843 	int i;
2844 	struct flchip *chip;
2845 
2846 	for (i=0; i<cfi->numchips; i++) {
2847 
2848 		chip = &cfi->chips[i];
2849 
2850 		mutex_lock(&chip->mutex);
2851 
2852 		if (chip->state == FL_PM_SUSPENDED) {
2853 			chip->state = FL_READY;
2854 			map_write(map, CMD(0xF0), chip->start);
2855 			wake_up(&chip->wq);
2856 		}
2857 		else
2858 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2859 
2860 		mutex_unlock(&chip->mutex);
2861 	}
2862 }
2863 
2864 
2865 /*
2866  * Ensure that the flash device is put back into read array mode before
2867  * unloading the driver or rebooting.  On some systems, rebooting while
2868  * the flash is in query/program/erase mode will prevent the CPU from
2869  * fetching the bootloader code, requiring a hard reset or power cycle.
2870  */
2871 static int cfi_amdstd_reset(struct mtd_info *mtd)
2872 {
2873 	struct map_info *map = mtd->priv;
2874 	struct cfi_private *cfi = map->fldrv_priv;
2875 	int i, ret;
2876 	struct flchip *chip;
2877 
2878 	for (i = 0; i < cfi->numchips; i++) {
2879 
2880 		chip = &cfi->chips[i];
2881 
2882 		mutex_lock(&chip->mutex);
2883 
2884 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2885 		if (!ret) {
2886 			map_write(map, CMD(0xF0), chip->start);
2887 			chip->state = FL_SHUTDOWN;
2888 			put_chip(map, chip, chip->start);
2889 		}
2890 
2891 		mutex_unlock(&chip->mutex);
2892 	}
2893 
2894 	return 0;
2895 }
2896 
2897 
2898 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2899 			       void *v)
2900 {
2901 	struct mtd_info *mtd;
2902 
2903 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2904 	cfi_amdstd_reset(mtd);
2905 	return NOTIFY_DONE;
2906 }
2907 
2908 
2909 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2910 {
2911 	struct map_info *map = mtd->priv;
2912 	struct cfi_private *cfi = map->fldrv_priv;
2913 
2914 	cfi_amdstd_reset(mtd);
2915 	unregister_reboot_notifier(&mtd->reboot_notifier);
2916 	kfree(cfi->cmdset_priv);
2917 	kfree(cfi->cfiq);
2918 	kfree(cfi);
2919 	kfree(mtd->eraseregions);
2920 }
2921 
2922 MODULE_LICENSE("GPL");
2923 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2924 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2925 MODULE_ALIAS("cfi_cmdset_0006");
2926 MODULE_ALIAS("cfi_cmdset_0701");
2927