1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define SST49LF004B	        0x0060
47 #define SST49LF040B	        0x0050
48 #define SST49LF008A		0x005a
49 #define AT49BV6416		0x00d6
50 
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 
62 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
63 				  size_t *retlen, const u_char *buf);
64 
65 static void cfi_amdstd_destroy(struct mtd_info *);
66 
67 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
69 
70 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72 #include "fwh_lock.h"
73 
74 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
75 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
76 
77 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 	.probe		= NULL, /* Not usable directly */
79 	.destroy	= cfi_amdstd_destroy,
80 	.name		= "cfi_cmdset_0002",
81 	.module		= THIS_MODULE
82 };
83 
84 
85 /* #define DEBUG_CFI_FEATURES */
86 
87 
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
90 {
91 	const char* erase_suspend[3] = {
92 		"Not supported", "Read only", "Read/write"
93 	};
94 	const char* top_bottom[6] = {
95 		"No WP", "8x8KiB sectors at top & bottom, no WP",
96 		"Bottom boot", "Top boot",
97 		"Uniform, Bottom WP", "Uniform, Top WP"
98 	};
99 
100 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
101 	printk("  Address sensitive unlock: %s\n",
102 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
103 
104 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 	else
107 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
108 
109 	if (extp->BlkProt == 0)
110 		printk("  Block protection: Not supported\n");
111 	else
112 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
113 
114 
115 	printk("  Temporary block unprotect: %s\n",
116 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 	printk("  Burst mode: %s\n",
120 	       extp->BurstMode ? "Supported" : "Not supported");
121 	if (extp->PageMode == 0)
122 		printk("  Page mode: Not supported\n");
123 	else
124 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
125 
126 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 	       extp->VppMin >> 4, extp->VppMin & 0xf);
128 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 	       extp->VppMax >> 4, extp->VppMax & 0xf);
130 
131 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 	else
134 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
135 }
136 #endif
137 
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info *mtd)
141 {
142 	struct map_info *map = mtd->priv;
143 	struct cfi_private *cfi = map->fldrv_priv;
144 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 	__u8 major = extp->MajorVersion;
146 	__u8 minor = extp->MinorVersion;
147 
148 	if (((major << 8) | minor) < 0x3131) {
149 		/* CFI version 1.0 => don't trust bootloc */
150 
151 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
152 			map->name, cfi->mfr, cfi->id);
153 
154 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
155 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
156 		 * These were badly detected as they have the 0x80 bit set
157 		 * so treat them as a special case.
158 		 */
159 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
160 
161 			/* Macronix added CFI to their 2nd generation
162 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
163 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
164 			 * has CFI.
165 			 *
166 			 * Therefore also check the manufacturer.
167 			 * This reduces the risk of false detection due to
168 			 * the 8-bit device ID.
169 			 */
170 			(cfi->mfr == CFI_MFR_MACRONIX)) {
171 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
172 				" detected\n", map->name);
173 			extp->TopBottom = 2;	/* bottom boot */
174 		} else
175 		if (cfi->id & 0x80) {
176 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
177 			extp->TopBottom = 3;	/* top boot */
178 		} else {
179 			extp->TopBottom = 2;	/* bottom boot */
180 		}
181 
182 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
183 			" deduced %s from Device ID\n", map->name, major, minor,
184 			extp->TopBottom == 2 ? "bottom" : "top");
185 	}
186 }
187 #endif
188 
189 static void fixup_use_write_buffers(struct mtd_info *mtd)
190 {
191 	struct map_info *map = mtd->priv;
192 	struct cfi_private *cfi = map->fldrv_priv;
193 	if (cfi->cfiq->BufWriteTimeoutTyp) {
194 		pr_debug("Using buffer write method\n" );
195 		mtd->_write = cfi_amdstd_write_buffers;
196 	}
197 }
198 
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
201 {
202 	struct map_info *map = mtd->priv;
203 	struct cfi_private *cfi = map->fldrv_priv;
204 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 	struct cfi_pri_atmel atmel_pri;
206 
207 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209 
210 	if (atmel_pri.Features & 0x02)
211 		extp->EraseSuspend = 2;
212 
213 	/* Some chips got it backwards... */
214 	if (cfi->id == AT49BV6416) {
215 		if (atmel_pri.BottomBoot)
216 			extp->TopBottom = 3;
217 		else
218 			extp->TopBottom = 2;
219 	} else {
220 		if (atmel_pri.BottomBoot)
221 			extp->TopBottom = 2;
222 		else
223 			extp->TopBottom = 3;
224 	}
225 
226 	/* burst write mode not supported */
227 	cfi->cfiq->BufWriteTimeoutTyp = 0;
228 	cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230 
231 static void fixup_use_secsi(struct mtd_info *mtd)
232 {
233 	/* Setup for chips with a secsi area */
234 	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
235 	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237 
238 static void fixup_use_erase_chip(struct mtd_info *mtd)
239 {
240 	struct map_info *map = mtd->priv;
241 	struct cfi_private *cfi = map->fldrv_priv;
242 	if ((cfi->cfiq->NumEraseRegions == 1) &&
243 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 		mtd->_erase = cfi_amdstd_erase_chip;
245 	}
246 
247 }
248 
249 /*
250  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251  * locked by default.
252  */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd)
254 {
255 	mtd->_lock = cfi_atmel_lock;
256 	mtd->_unlock = cfi_atmel_unlock;
257 	mtd->flags |= MTD_POWERUP_LOCK;
258 }
259 
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 	struct map_info *map = mtd->priv;
263 	struct cfi_private *cfi = map->fldrv_priv;
264 
265 	/*
266 	 * These flashes report two separate eraseblock regions based on the
267 	 * sector_erase-size and block_erase-size, although they both operate on the
268 	 * same memory. This is not allowed according to CFI, so we just pick the
269 	 * sector_erase-size.
270 	 */
271 	cfi->cfiq->NumEraseRegions = 1;
272 }
273 
274 static void fixup_sst39vf(struct mtd_info *mtd)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	fixup_old_sst_eraseregion(mtd);
280 
281 	cfi->addr_unlock1 = 0x5555;
282 	cfi->addr_unlock2 = 0x2AAA;
283 }
284 
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
286 {
287 	struct map_info *map = mtd->priv;
288 	struct cfi_private *cfi = map->fldrv_priv;
289 
290 	fixup_old_sst_eraseregion(mtd);
291 
292 	cfi->addr_unlock1 = 0x555;
293 	cfi->addr_unlock2 = 0x2AA;
294 
295 	cfi->sector_erase_cmd = CMD(0x50);
296 }
297 
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
299 {
300 	struct map_info *map = mtd->priv;
301 	struct cfi_private *cfi = map->fldrv_priv;
302 
303 	fixup_sst39vf_rev_b(mtd);
304 
305 	/*
306 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 	 * it should report a size of 8KBytes (0x0020*256).
308 	 */
309 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 	pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312 
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
314 {
315 	struct map_info *map = mtd->priv;
316 	struct cfi_private *cfi = map->fldrv_priv;
317 
318 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 		pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name);
321 	}
322 }
323 
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
325 {
326 	struct map_info *map = mtd->priv;
327 	struct cfi_private *cfi = map->fldrv_priv;
328 
329 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 		pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name);
332 	}
333 }
334 
335 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
336 {
337 	struct map_info *map = mtd->priv;
338 	struct cfi_private *cfi = map->fldrv_priv;
339 
340 	/*
341 	 *  S29NS512P flash uses more than 8bits to report number of sectors,
342 	 * which is not permitted by CFI.
343 	 */
344 	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
345 	pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name);
346 }
347 
348 /* Used to fix CFI-Tables of chips without Extended Query Tables */
349 static struct cfi_fixup cfi_nopri_fixup_table[] = {
350 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
351 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
352 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
353 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
354 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
355 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
356 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
357 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
358 	{ 0, 0, NULL }
359 };
360 
361 static struct cfi_fixup cfi_fixup_table[] = {
362 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
363 #ifdef AMD_BOOTLOC_BUG
364 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
365 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
366 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
367 #endif
368 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
369 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
370 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
371 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
372 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
373 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
374 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
375 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
376 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
377 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
378 	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
379 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
380 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
381 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
382 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
383 #if !FORCE_WORD_WRITE
384 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
385 #endif
386 	{ 0, 0, NULL }
387 };
388 static struct cfi_fixup jedec_fixup_table[] = {
389 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
390 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
391 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
392 	{ 0, 0, NULL }
393 };
394 
395 static struct cfi_fixup fixup_table[] = {
396 	/* The CFI vendor ids and the JEDEC vendor IDs appear
397 	 * to be common.  It is like the devices id's are as
398 	 * well.  This table is to pick all cases where
399 	 * we know that is the case.
400 	 */
401 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
402 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
403 	{ 0, 0, NULL }
404 };
405 
406 
407 static void cfi_fixup_major_minor(struct cfi_private *cfi,
408 				  struct cfi_pri_amdstd *extp)
409 {
410 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
411 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
412 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
413 			/*
414 			 * Samsung K8P2815UQB and K8D6x16UxM chips
415 			 * report major=0 / minor=0.
416 			 * K8D3x16UxC chips report major=3 / minor=3.
417 			 */
418 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
419 			       " Extended Query version to 1.%c\n",
420 			       extp->MinorVersion);
421 			extp->MajorVersion = '1';
422 		}
423 	}
424 
425 	/*
426 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
427 	 */
428 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
429 		extp->MajorVersion = '1';
430 		extp->MinorVersion = '0';
431 	}
432 }
433 
434 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
435 {
436 	struct cfi_private *cfi = map->fldrv_priv;
437 	struct mtd_info *mtd;
438 	int i;
439 
440 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
441 	if (!mtd) {
442 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
443 		return NULL;
444 	}
445 	mtd->priv = map;
446 	mtd->type = MTD_NORFLASH;
447 
448 	/* Fill in the default mtd operations */
449 	mtd->_erase   = cfi_amdstd_erase_varsize;
450 	mtd->_write   = cfi_amdstd_write_words;
451 	mtd->_read    = cfi_amdstd_read;
452 	mtd->_sync    = cfi_amdstd_sync;
453 	mtd->_suspend = cfi_amdstd_suspend;
454 	mtd->_resume  = cfi_amdstd_resume;
455 	mtd->flags   = MTD_CAP_NORFLASH;
456 	mtd->name    = map->name;
457 	mtd->writesize = 1;
458 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
459 
460 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
461 			mtd->writebufsize);
462 
463 	mtd->_panic_write = cfi_amdstd_panic_write;
464 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
465 
466 	if (cfi->cfi_mode==CFI_MODE_CFI){
467 		unsigned char bootloc;
468 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
469 		struct cfi_pri_amdstd *extp;
470 
471 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
472 		if (extp) {
473 			/*
474 			 * It's a real CFI chip, not one for which the probe
475 			 * routine faked a CFI structure.
476 			 */
477 			cfi_fixup_major_minor(cfi, extp);
478 
479 			/*
480 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
481 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
482 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
483 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
484 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
485 			 */
486 			if (extp->MajorVersion != '1' ||
487 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
488 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
489 				       "version %c.%c (%#02x/%#02x).\n",
490 				       extp->MajorVersion, extp->MinorVersion,
491 				       extp->MajorVersion, extp->MinorVersion);
492 				kfree(extp);
493 				kfree(mtd);
494 				return NULL;
495 			}
496 
497 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
498 			       extp->MajorVersion, extp->MinorVersion);
499 
500 			/* Install our own private info structure */
501 			cfi->cmdset_priv = extp;
502 
503 			/* Apply cfi device specific fixups */
504 			cfi_fixup(mtd, cfi_fixup_table);
505 
506 #ifdef DEBUG_CFI_FEATURES
507 			/* Tell the user about it in lots of lovely detail */
508 			cfi_tell_features(extp);
509 #endif
510 
511 			bootloc = extp->TopBottom;
512 			if ((bootloc < 2) || (bootloc > 5)) {
513 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
514 				       "bank location (%d). Assuming bottom.\n",
515 				       map->name, bootloc);
516 				bootloc = 2;
517 			}
518 
519 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
520 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
521 
522 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
523 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
524 					__u32 swap;
525 
526 					swap = cfi->cfiq->EraseRegionInfo[i];
527 					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
528 					cfi->cfiq->EraseRegionInfo[j] = swap;
529 				}
530 			}
531 			/* Set the default CFI lock/unlock addresses */
532 			cfi->addr_unlock1 = 0x555;
533 			cfi->addr_unlock2 = 0x2aa;
534 		}
535 		cfi_fixup(mtd, cfi_nopri_fixup_table);
536 
537 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
538 			kfree(mtd);
539 			return NULL;
540 		}
541 
542 	} /* CFI mode */
543 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
544 		/* Apply jedec specific fixups */
545 		cfi_fixup(mtd, jedec_fixup_table);
546 	}
547 	/* Apply generic fixups */
548 	cfi_fixup(mtd, fixup_table);
549 
550 	for (i=0; i< cfi->numchips; i++) {
551 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
552 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
553 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
554 		cfi->chips[i].ref_point_counter = 0;
555 		init_waitqueue_head(&(cfi->chips[i].wq));
556 	}
557 
558 	map->fldrv = &cfi_amdstd_chipdrv;
559 
560 	return cfi_amdstd_setup(mtd);
561 }
562 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
563 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
564 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
565 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
566 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
567 
568 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
569 {
570 	struct map_info *map = mtd->priv;
571 	struct cfi_private *cfi = map->fldrv_priv;
572 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
573 	unsigned long offset = 0;
574 	int i,j;
575 
576 	printk(KERN_NOTICE "number of %s chips: %d\n",
577 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
578 	/* Select the correct geometry setup */
579 	mtd->size = devsize * cfi->numchips;
580 
581 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
582 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
583 				    * mtd->numeraseregions, GFP_KERNEL);
584 	if (!mtd->eraseregions) {
585 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
586 		goto setup_err;
587 	}
588 
589 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
590 		unsigned long ernum, ersize;
591 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
592 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
593 
594 		if (mtd->erasesize < ersize) {
595 			mtd->erasesize = ersize;
596 		}
597 		for (j=0; j<cfi->numchips; j++) {
598 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
599 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
600 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
601 		}
602 		offset += (ersize * ernum);
603 	}
604 	if (offset != devsize) {
605 		/* Argh */
606 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
607 		goto setup_err;
608 	}
609 
610 	__module_get(THIS_MODULE);
611 	register_reboot_notifier(&mtd->reboot_notifier);
612 	return mtd;
613 
614  setup_err:
615 	kfree(mtd->eraseregions);
616 	kfree(mtd);
617 	kfree(cfi->cmdset_priv);
618 	kfree(cfi->cfiq);
619 	return NULL;
620 }
621 
622 /*
623  * Return true if the chip is ready.
624  *
625  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
626  * non-suspended sector) and is indicated by no toggle bits toggling.
627  *
628  * Note that anything more complicated than checking if no bits are toggling
629  * (including checking DQ5 for an error status) is tricky to get working
630  * correctly and is therefore not done	(particularly with interleaved chips
631  * as each chip must be checked independently of the others).
632  */
633 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
634 {
635 	map_word d, t;
636 
637 	d = map_read(map, addr);
638 	t = map_read(map, addr);
639 
640 	return map_word_equal(map, d, t);
641 }
642 
643 /*
644  * Return true if the chip is ready and has the correct value.
645  *
646  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
647  * non-suspended sector) and it is indicated by no bits toggling.
648  *
649  * Error are indicated by toggling bits or bits held with the wrong value,
650  * or with bits toggling.
651  *
652  * Note that anything more complicated than checking if no bits are toggling
653  * (including checking DQ5 for an error status) is tricky to get working
654  * correctly and is therefore not done	(particularly with interleaved chips
655  * as each chip must be checked independently of the others).
656  *
657  */
658 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
659 {
660 	map_word oldd, curd;
661 
662 	oldd = map_read(map, addr);
663 	curd = map_read(map, addr);
664 
665 	return	map_word_equal(map, oldd, curd) &&
666 		map_word_equal(map, curd, expected);
667 }
668 
669 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
670 {
671 	DECLARE_WAITQUEUE(wait, current);
672 	struct cfi_private *cfi = map->fldrv_priv;
673 	unsigned long timeo;
674 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
675 
676  resettime:
677 	timeo = jiffies + HZ;
678  retry:
679 	switch (chip->state) {
680 
681 	case FL_STATUS:
682 		for (;;) {
683 			if (chip_ready(map, adr))
684 				break;
685 
686 			if (time_after(jiffies, timeo)) {
687 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
688 				return -EIO;
689 			}
690 			mutex_unlock(&chip->mutex);
691 			cfi_udelay(1);
692 			mutex_lock(&chip->mutex);
693 			/* Someone else might have been playing with it. */
694 			goto retry;
695 		}
696 
697 	case FL_READY:
698 	case FL_CFI_QUERY:
699 	case FL_JEDEC_QUERY:
700 		return 0;
701 
702 	case FL_ERASING:
703 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
704 		    !(mode == FL_READY || mode == FL_POINT ||
705 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
706 			goto sleep;
707 
708 		/* We could check to see if we're trying to access the sector
709 		 * that is currently being erased. However, no user will try
710 		 * anything like that so we just wait for the timeout. */
711 
712 		/* Erase suspend */
713 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
714 		 * commands when the erase algorithm isn't in progress. */
715 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
716 		chip->oldstate = FL_ERASING;
717 		chip->state = FL_ERASE_SUSPENDING;
718 		chip->erase_suspended = 1;
719 		for (;;) {
720 			if (chip_ready(map, adr))
721 				break;
722 
723 			if (time_after(jiffies, timeo)) {
724 				/* Should have suspended the erase by now.
725 				 * Send an Erase-Resume command as either
726 				 * there was an error (so leave the erase
727 				 * routine to recover from it) or we trying to
728 				 * use the erase-in-progress sector. */
729 				put_chip(map, chip, adr);
730 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
731 				return -EIO;
732 			}
733 
734 			mutex_unlock(&chip->mutex);
735 			cfi_udelay(1);
736 			mutex_lock(&chip->mutex);
737 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
738 			   So we can just loop here. */
739 		}
740 		chip->state = FL_READY;
741 		return 0;
742 
743 	case FL_XIP_WHILE_ERASING:
744 		if (mode != FL_READY && mode != FL_POINT &&
745 		    (!cfip || !(cfip->EraseSuspend&2)))
746 			goto sleep;
747 		chip->oldstate = chip->state;
748 		chip->state = FL_READY;
749 		return 0;
750 
751 	case FL_SHUTDOWN:
752 		/* The machine is rebooting */
753 		return -EIO;
754 
755 	case FL_POINT:
756 		/* Only if there's no operation suspended... */
757 		if (mode == FL_READY && chip->oldstate == FL_READY)
758 			return 0;
759 
760 	default:
761 	sleep:
762 		set_current_state(TASK_UNINTERRUPTIBLE);
763 		add_wait_queue(&chip->wq, &wait);
764 		mutex_unlock(&chip->mutex);
765 		schedule();
766 		remove_wait_queue(&chip->wq, &wait);
767 		mutex_lock(&chip->mutex);
768 		goto resettime;
769 	}
770 }
771 
772 
773 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
774 {
775 	struct cfi_private *cfi = map->fldrv_priv;
776 
777 	switch(chip->oldstate) {
778 	case FL_ERASING:
779 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
780 		chip->oldstate = FL_READY;
781 		chip->state = FL_ERASING;
782 		break;
783 
784 	case FL_XIP_WHILE_ERASING:
785 		chip->state = chip->oldstate;
786 		chip->oldstate = FL_READY;
787 		break;
788 
789 	case FL_READY:
790 	case FL_STATUS:
791 		break;
792 	default:
793 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
794 	}
795 	wake_up(&chip->wq);
796 }
797 
798 #ifdef CONFIG_MTD_XIP
799 
800 /*
801  * No interrupt what so ever can be serviced while the flash isn't in array
802  * mode.  This is ensured by the xip_disable() and xip_enable() functions
803  * enclosing any code path where the flash is known not to be in array mode.
804  * And within a XIP disabled code path, only functions marked with __xipram
805  * may be called and nothing else (it's a good thing to inspect generated
806  * assembly to make sure inline functions were actually inlined and that gcc
807  * didn't emit calls to its own support functions). Also configuring MTD CFI
808  * support to a single buswidth and a single interleave is also recommended.
809  */
810 
811 static void xip_disable(struct map_info *map, struct flchip *chip,
812 			unsigned long adr)
813 {
814 	/* TODO: chips with no XIP use should ignore and return */
815 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
816 	local_irq_disable();
817 }
818 
819 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
820 				unsigned long adr)
821 {
822 	struct cfi_private *cfi = map->fldrv_priv;
823 
824 	if (chip->state != FL_POINT && chip->state != FL_READY) {
825 		map_write(map, CMD(0xf0), adr);
826 		chip->state = FL_READY;
827 	}
828 	(void) map_read(map, adr);
829 	xip_iprefetch();
830 	local_irq_enable();
831 }
832 
833 /*
834  * When a delay is required for the flash operation to complete, the
835  * xip_udelay() function is polling for both the given timeout and pending
836  * (but still masked) hardware interrupts.  Whenever there is an interrupt
837  * pending then the flash erase operation is suspended, array mode restored
838  * and interrupts unmasked.  Task scheduling might also happen at that
839  * point.  The CPU eventually returns from the interrupt or the call to
840  * schedule() and the suspended flash operation is resumed for the remaining
841  * of the delay period.
842  *
843  * Warning: this function _will_ fool interrupt latency tracing tools.
844  */
845 
846 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
847 				unsigned long adr, int usec)
848 {
849 	struct cfi_private *cfi = map->fldrv_priv;
850 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
851 	map_word status, OK = CMD(0x80);
852 	unsigned long suspended, start = xip_currtime();
853 	flstate_t oldstate;
854 
855 	do {
856 		cpu_relax();
857 		if (xip_irqpending() && extp &&
858 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
859 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
860 			/*
861 			 * Let's suspend the erase operation when supported.
862 			 * Note that we currently don't try to suspend
863 			 * interleaved chips if there is already another
864 			 * operation suspended (imagine what happens
865 			 * when one chip was already done with the current
866 			 * operation while another chip suspended it, then
867 			 * we resume the whole thing at once).  Yes, it
868 			 * can happen!
869 			 */
870 			map_write(map, CMD(0xb0), adr);
871 			usec -= xip_elapsed_since(start);
872 			suspended = xip_currtime();
873 			do {
874 				if (xip_elapsed_since(suspended) > 100000) {
875 					/*
876 					 * The chip doesn't want to suspend
877 					 * after waiting for 100 msecs.
878 					 * This is a critical error but there
879 					 * is not much we can do here.
880 					 */
881 					return;
882 				}
883 				status = map_read(map, adr);
884 			} while (!map_word_andequal(map, status, OK, OK));
885 
886 			/* Suspend succeeded */
887 			oldstate = chip->state;
888 			if (!map_word_bitsset(map, status, CMD(0x40)))
889 				break;
890 			chip->state = FL_XIP_WHILE_ERASING;
891 			chip->erase_suspended = 1;
892 			map_write(map, CMD(0xf0), adr);
893 			(void) map_read(map, adr);
894 			xip_iprefetch();
895 			local_irq_enable();
896 			mutex_unlock(&chip->mutex);
897 			xip_iprefetch();
898 			cond_resched();
899 
900 			/*
901 			 * We're back.  However someone else might have
902 			 * decided to go write to the chip if we are in
903 			 * a suspended erase state.  If so let's wait
904 			 * until it's done.
905 			 */
906 			mutex_lock(&chip->mutex);
907 			while (chip->state != FL_XIP_WHILE_ERASING) {
908 				DECLARE_WAITQUEUE(wait, current);
909 				set_current_state(TASK_UNINTERRUPTIBLE);
910 				add_wait_queue(&chip->wq, &wait);
911 				mutex_unlock(&chip->mutex);
912 				schedule();
913 				remove_wait_queue(&chip->wq, &wait);
914 				mutex_lock(&chip->mutex);
915 			}
916 			/* Disallow XIP again */
917 			local_irq_disable();
918 
919 			/* Resume the write or erase operation */
920 			map_write(map, cfi->sector_erase_cmd, adr);
921 			chip->state = oldstate;
922 			start = xip_currtime();
923 		} else if (usec >= 1000000/HZ) {
924 			/*
925 			 * Try to save on CPU power when waiting delay
926 			 * is at least a system timer tick period.
927 			 * No need to be extremely accurate here.
928 			 */
929 			xip_cpu_idle();
930 		}
931 		status = map_read(map, adr);
932 	} while (!map_word_andequal(map, status, OK, OK)
933 		 && xip_elapsed_since(start) < usec);
934 }
935 
936 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
937 
938 /*
939  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
940  * the flash is actively programming or erasing since we have to poll for
941  * the operation to complete anyway.  We can't do that in a generic way with
942  * a XIP setup so do it before the actual flash operation in this case
943  * and stub it out from INVALIDATE_CACHE_UDELAY.
944  */
945 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
946 	INVALIDATE_CACHED_RANGE(map, from, size)
947 
948 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
949 	UDELAY(map, chip, adr, usec)
950 
951 /*
952  * Extra notes:
953  *
954  * Activating this XIP support changes the way the code works a bit.  For
955  * example the code to suspend the current process when concurrent access
956  * happens is never executed because xip_udelay() will always return with the
957  * same chip state as it was entered with.  This is why there is no care for
958  * the presence of add_wait_queue() or schedule() calls from within a couple
959  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
960  * The queueing and scheduling are always happening within xip_udelay().
961  *
962  * Similarly, get_chip() and put_chip() just happen to always be executed
963  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
964  * is in array mode, therefore never executing many cases therein and not
965  * causing any problem with XIP.
966  */
967 
968 #else
969 
970 #define xip_disable(map, chip, adr)
971 #define xip_enable(map, chip, adr)
972 #define XIP_INVAL_CACHED_RANGE(x...)
973 
974 #define UDELAY(map, chip, adr, usec)  \
975 do {  \
976 	mutex_unlock(&chip->mutex);  \
977 	cfi_udelay(usec);  \
978 	mutex_lock(&chip->mutex);  \
979 } while (0)
980 
981 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
982 do {  \
983 	mutex_unlock(&chip->mutex);  \
984 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
985 	cfi_udelay(usec);  \
986 	mutex_lock(&chip->mutex);  \
987 } while (0)
988 
989 #endif
990 
991 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
992 {
993 	unsigned long cmd_addr;
994 	struct cfi_private *cfi = map->fldrv_priv;
995 	int ret;
996 
997 	adr += chip->start;
998 
999 	/* Ensure cmd read/writes are aligned. */
1000 	cmd_addr = adr & ~(map_bankwidth(map)-1);
1001 
1002 	mutex_lock(&chip->mutex);
1003 	ret = get_chip(map, chip, cmd_addr, FL_READY);
1004 	if (ret) {
1005 		mutex_unlock(&chip->mutex);
1006 		return ret;
1007 	}
1008 
1009 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1010 		map_write(map, CMD(0xf0), cmd_addr);
1011 		chip->state = FL_READY;
1012 	}
1013 
1014 	map_copy_from(map, buf, adr, len);
1015 
1016 	put_chip(map, chip, cmd_addr);
1017 
1018 	mutex_unlock(&chip->mutex);
1019 	return 0;
1020 }
1021 
1022 
1023 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1024 {
1025 	struct map_info *map = mtd->priv;
1026 	struct cfi_private *cfi = map->fldrv_priv;
1027 	unsigned long ofs;
1028 	int chipnum;
1029 	int ret = 0;
1030 
1031 	/* ofs: offset within the first chip that the first read should start */
1032 	chipnum = (from >> cfi->chipshift);
1033 	ofs = from - (chipnum <<  cfi->chipshift);
1034 
1035 	while (len) {
1036 		unsigned long thislen;
1037 
1038 		if (chipnum >= cfi->numchips)
1039 			break;
1040 
1041 		if ((len + ofs -1) >> cfi->chipshift)
1042 			thislen = (1<<cfi->chipshift) - ofs;
1043 		else
1044 			thislen = len;
1045 
1046 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1047 		if (ret)
1048 			break;
1049 
1050 		*retlen += thislen;
1051 		len -= thislen;
1052 		buf += thislen;
1053 
1054 		ofs = 0;
1055 		chipnum++;
1056 	}
1057 	return ret;
1058 }
1059 
1060 
1061 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1062 {
1063 	DECLARE_WAITQUEUE(wait, current);
1064 	unsigned long timeo = jiffies + HZ;
1065 	struct cfi_private *cfi = map->fldrv_priv;
1066 
1067  retry:
1068 	mutex_lock(&chip->mutex);
1069 
1070 	if (chip->state != FL_READY){
1071 		set_current_state(TASK_UNINTERRUPTIBLE);
1072 		add_wait_queue(&chip->wq, &wait);
1073 
1074 		mutex_unlock(&chip->mutex);
1075 
1076 		schedule();
1077 		remove_wait_queue(&chip->wq, &wait);
1078 		timeo = jiffies + HZ;
1079 
1080 		goto retry;
1081 	}
1082 
1083 	adr += chip->start;
1084 
1085 	chip->state = FL_READY;
1086 
1087 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1088 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1089 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1090 
1091 	map_copy_from(map, buf, adr, len);
1092 
1093 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1094 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1095 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1096 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1097 
1098 	wake_up(&chip->wq);
1099 	mutex_unlock(&chip->mutex);
1100 
1101 	return 0;
1102 }
1103 
1104 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1105 {
1106 	struct map_info *map = mtd->priv;
1107 	struct cfi_private *cfi = map->fldrv_priv;
1108 	unsigned long ofs;
1109 	int chipnum;
1110 	int ret = 0;
1111 
1112 	/* ofs: offset within the first chip that the first read should start */
1113 	/* 8 secsi bytes per chip */
1114 	chipnum=from>>3;
1115 	ofs=from & 7;
1116 
1117 	while (len) {
1118 		unsigned long thislen;
1119 
1120 		if (chipnum >= cfi->numchips)
1121 			break;
1122 
1123 		if ((len + ofs -1) >> 3)
1124 			thislen = (1<<3) - ofs;
1125 		else
1126 			thislen = len;
1127 
1128 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1129 		if (ret)
1130 			break;
1131 
1132 		*retlen += thislen;
1133 		len -= thislen;
1134 		buf += thislen;
1135 
1136 		ofs = 0;
1137 		chipnum++;
1138 	}
1139 	return ret;
1140 }
1141 
1142 
1143 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1144 {
1145 	struct cfi_private *cfi = map->fldrv_priv;
1146 	unsigned long timeo = jiffies + HZ;
1147 	/*
1148 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1149 	 * have a max write time of a few hundreds usec). However, we should
1150 	 * use the maximum timeout value given by the chip at probe time
1151 	 * instead.  Unfortunately, struct flchip does have a field for
1152 	 * maximum timeout, only for typical which can be far too short
1153 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1154 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1155 	 */
1156 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1157 	int ret = 0;
1158 	map_word oldd;
1159 	int retry_cnt = 0;
1160 
1161 	adr += chip->start;
1162 
1163 	mutex_lock(&chip->mutex);
1164 	ret = get_chip(map, chip, adr, FL_WRITING);
1165 	if (ret) {
1166 		mutex_unlock(&chip->mutex);
1167 		return ret;
1168 	}
1169 
1170 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1171 	       __func__, adr, datum.x[0] );
1172 
1173 	/*
1174 	 * Check for a NOP for the case when the datum to write is already
1175 	 * present - it saves time and works around buggy chips that corrupt
1176 	 * data at other locations when 0xff is written to a location that
1177 	 * already contains 0xff.
1178 	 */
1179 	oldd = map_read(map, adr);
1180 	if (map_word_equal(map, oldd, datum)) {
1181 		pr_debug("MTD %s(): NOP\n",
1182 		       __func__);
1183 		goto op_done;
1184 	}
1185 
1186 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1187 	ENABLE_VPP(map);
1188 	xip_disable(map, chip, adr);
1189  retry:
1190 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1191 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1192 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1193 	map_write(map, datum, adr);
1194 	chip->state = FL_WRITING;
1195 
1196 	INVALIDATE_CACHE_UDELAY(map, chip,
1197 				adr, map_bankwidth(map),
1198 				chip->word_write_time);
1199 
1200 	/* See comment above for timeout value. */
1201 	timeo = jiffies + uWriteTimeout;
1202 	for (;;) {
1203 		if (chip->state != FL_WRITING) {
1204 			/* Someone's suspended the write. Sleep */
1205 			DECLARE_WAITQUEUE(wait, current);
1206 
1207 			set_current_state(TASK_UNINTERRUPTIBLE);
1208 			add_wait_queue(&chip->wq, &wait);
1209 			mutex_unlock(&chip->mutex);
1210 			schedule();
1211 			remove_wait_queue(&chip->wq, &wait);
1212 			timeo = jiffies + (HZ / 2); /* FIXME */
1213 			mutex_lock(&chip->mutex);
1214 			continue;
1215 		}
1216 
1217 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1218 			xip_enable(map, chip, adr);
1219 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1220 			xip_disable(map, chip, adr);
1221 			break;
1222 		}
1223 
1224 		if (chip_ready(map, adr))
1225 			break;
1226 
1227 		/* Latency issues. Drop the lock, wait a while and retry */
1228 		UDELAY(map, chip, adr, 1);
1229 	}
1230 	/* Did we succeed? */
1231 	if (!chip_good(map, adr, datum)) {
1232 		/* reset on all failures. */
1233 		map_write( map, CMD(0xF0), chip->start );
1234 		/* FIXME - should have reset delay before continuing */
1235 
1236 		if (++retry_cnt <= MAX_WORD_RETRIES)
1237 			goto retry;
1238 
1239 		ret = -EIO;
1240 	}
1241 	xip_enable(map, chip, adr);
1242  op_done:
1243 	chip->state = FL_READY;
1244 	DISABLE_VPP(map);
1245 	put_chip(map, chip, adr);
1246 	mutex_unlock(&chip->mutex);
1247 
1248 	return ret;
1249 }
1250 
1251 
1252 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1253 				  size_t *retlen, const u_char *buf)
1254 {
1255 	struct map_info *map = mtd->priv;
1256 	struct cfi_private *cfi = map->fldrv_priv;
1257 	int ret = 0;
1258 	int chipnum;
1259 	unsigned long ofs, chipstart;
1260 	DECLARE_WAITQUEUE(wait, current);
1261 
1262 	chipnum = to >> cfi->chipshift;
1263 	ofs = to  - (chipnum << cfi->chipshift);
1264 	chipstart = cfi->chips[chipnum].start;
1265 
1266 	/* If it's not bus-aligned, do the first byte write */
1267 	if (ofs & (map_bankwidth(map)-1)) {
1268 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1269 		int i = ofs - bus_ofs;
1270 		int n = 0;
1271 		map_word tmp_buf;
1272 
1273  retry:
1274 		mutex_lock(&cfi->chips[chipnum].mutex);
1275 
1276 		if (cfi->chips[chipnum].state != FL_READY) {
1277 			set_current_state(TASK_UNINTERRUPTIBLE);
1278 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1279 
1280 			mutex_unlock(&cfi->chips[chipnum].mutex);
1281 
1282 			schedule();
1283 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1284 			goto retry;
1285 		}
1286 
1287 		/* Load 'tmp_buf' with old contents of flash */
1288 		tmp_buf = map_read(map, bus_ofs+chipstart);
1289 
1290 		mutex_unlock(&cfi->chips[chipnum].mutex);
1291 
1292 		/* Number of bytes to copy from buffer */
1293 		n = min_t(int, len, map_bankwidth(map)-i);
1294 
1295 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1296 
1297 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1298 				       bus_ofs, tmp_buf);
1299 		if (ret)
1300 			return ret;
1301 
1302 		ofs += n;
1303 		buf += n;
1304 		(*retlen) += n;
1305 		len -= n;
1306 
1307 		if (ofs >> cfi->chipshift) {
1308 			chipnum ++;
1309 			ofs = 0;
1310 			if (chipnum == cfi->numchips)
1311 				return 0;
1312 		}
1313 	}
1314 
1315 	/* We are now aligned, write as much as possible */
1316 	while(len >= map_bankwidth(map)) {
1317 		map_word datum;
1318 
1319 		datum = map_word_load(map, buf);
1320 
1321 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1322 				       ofs, datum);
1323 		if (ret)
1324 			return ret;
1325 
1326 		ofs += map_bankwidth(map);
1327 		buf += map_bankwidth(map);
1328 		(*retlen) += map_bankwidth(map);
1329 		len -= map_bankwidth(map);
1330 
1331 		if (ofs >> cfi->chipshift) {
1332 			chipnum ++;
1333 			ofs = 0;
1334 			if (chipnum == cfi->numchips)
1335 				return 0;
1336 			chipstart = cfi->chips[chipnum].start;
1337 		}
1338 	}
1339 
1340 	/* Write the trailing bytes if any */
1341 	if (len & (map_bankwidth(map)-1)) {
1342 		map_word tmp_buf;
1343 
1344  retry1:
1345 		mutex_lock(&cfi->chips[chipnum].mutex);
1346 
1347 		if (cfi->chips[chipnum].state != FL_READY) {
1348 			set_current_state(TASK_UNINTERRUPTIBLE);
1349 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1350 
1351 			mutex_unlock(&cfi->chips[chipnum].mutex);
1352 
1353 			schedule();
1354 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1355 			goto retry1;
1356 		}
1357 
1358 		tmp_buf = map_read(map, ofs + chipstart);
1359 
1360 		mutex_unlock(&cfi->chips[chipnum].mutex);
1361 
1362 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1363 
1364 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1365 				ofs, tmp_buf);
1366 		if (ret)
1367 			return ret;
1368 
1369 		(*retlen) += len;
1370 	}
1371 
1372 	return 0;
1373 }
1374 
1375 
1376 /*
1377  * FIXME: interleaved mode not tested, and probably not supported!
1378  */
1379 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1380 				    unsigned long adr, const u_char *buf,
1381 				    int len)
1382 {
1383 	struct cfi_private *cfi = map->fldrv_priv;
1384 	unsigned long timeo = jiffies + HZ;
1385 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1386 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1387 	int ret = -EIO;
1388 	unsigned long cmd_adr;
1389 	int z, words;
1390 	map_word datum;
1391 
1392 	adr += chip->start;
1393 	cmd_adr = adr;
1394 
1395 	mutex_lock(&chip->mutex);
1396 	ret = get_chip(map, chip, adr, FL_WRITING);
1397 	if (ret) {
1398 		mutex_unlock(&chip->mutex);
1399 		return ret;
1400 	}
1401 
1402 	datum = map_word_load(map, buf);
1403 
1404 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1405 	       __func__, adr, datum.x[0] );
1406 
1407 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1408 	ENABLE_VPP(map);
1409 	xip_disable(map, chip, cmd_adr);
1410 
1411 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1412 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1413 
1414 	/* Write Buffer Load */
1415 	map_write(map, CMD(0x25), cmd_adr);
1416 
1417 	chip->state = FL_WRITING_TO_BUFFER;
1418 
1419 	/* Write length of data to come */
1420 	words = len / map_bankwidth(map);
1421 	map_write(map, CMD(words - 1), cmd_adr);
1422 	/* Write data */
1423 	z = 0;
1424 	while(z < words * map_bankwidth(map)) {
1425 		datum = map_word_load(map, buf);
1426 		map_write(map, datum, adr + z);
1427 
1428 		z += map_bankwidth(map);
1429 		buf += map_bankwidth(map);
1430 	}
1431 	z -= map_bankwidth(map);
1432 
1433 	adr += z;
1434 
1435 	/* Write Buffer Program Confirm: GO GO GO */
1436 	map_write(map, CMD(0x29), cmd_adr);
1437 	chip->state = FL_WRITING;
1438 
1439 	INVALIDATE_CACHE_UDELAY(map, chip,
1440 				adr, map_bankwidth(map),
1441 				chip->word_write_time);
1442 
1443 	timeo = jiffies + uWriteTimeout;
1444 
1445 	for (;;) {
1446 		if (chip->state != FL_WRITING) {
1447 			/* Someone's suspended the write. Sleep */
1448 			DECLARE_WAITQUEUE(wait, current);
1449 
1450 			set_current_state(TASK_UNINTERRUPTIBLE);
1451 			add_wait_queue(&chip->wq, &wait);
1452 			mutex_unlock(&chip->mutex);
1453 			schedule();
1454 			remove_wait_queue(&chip->wq, &wait);
1455 			timeo = jiffies + (HZ / 2); /* FIXME */
1456 			mutex_lock(&chip->mutex);
1457 			continue;
1458 		}
1459 
1460 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1461 			break;
1462 
1463 		if (chip_ready(map, adr)) {
1464 			xip_enable(map, chip, adr);
1465 			goto op_done;
1466 		}
1467 
1468 		/* Latency issues. Drop the lock, wait a while and retry */
1469 		UDELAY(map, chip, adr, 1);
1470 	}
1471 
1472 	/* reset on all failures. */
1473 	map_write( map, CMD(0xF0), chip->start );
1474 	xip_enable(map, chip, adr);
1475 	/* FIXME - should have reset delay before continuing */
1476 
1477 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1478 	       __func__ );
1479 
1480 	ret = -EIO;
1481  op_done:
1482 	chip->state = FL_READY;
1483 	DISABLE_VPP(map);
1484 	put_chip(map, chip, adr);
1485 	mutex_unlock(&chip->mutex);
1486 
1487 	return ret;
1488 }
1489 
1490 
1491 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1492 				    size_t *retlen, const u_char *buf)
1493 {
1494 	struct map_info *map = mtd->priv;
1495 	struct cfi_private *cfi = map->fldrv_priv;
1496 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1497 	int ret = 0;
1498 	int chipnum;
1499 	unsigned long ofs;
1500 
1501 	chipnum = to >> cfi->chipshift;
1502 	ofs = to  - (chipnum << cfi->chipshift);
1503 
1504 	/* If it's not bus-aligned, do the first word write */
1505 	if (ofs & (map_bankwidth(map)-1)) {
1506 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1507 		if (local_len > len)
1508 			local_len = len;
1509 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1510 					     local_len, retlen, buf);
1511 		if (ret)
1512 			return ret;
1513 		ofs += local_len;
1514 		buf += local_len;
1515 		len -= local_len;
1516 
1517 		if (ofs >> cfi->chipshift) {
1518 			chipnum ++;
1519 			ofs = 0;
1520 			if (chipnum == cfi->numchips)
1521 				return 0;
1522 		}
1523 	}
1524 
1525 	/* Write buffer is worth it only if more than one word to write... */
1526 	while (len >= map_bankwidth(map) * 2) {
1527 		/* We must not cross write block boundaries */
1528 		int size = wbufsize - (ofs & (wbufsize-1));
1529 
1530 		if (size > len)
1531 			size = len;
1532 		if (size % map_bankwidth(map))
1533 			size -= size % map_bankwidth(map);
1534 
1535 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1536 				      ofs, buf, size);
1537 		if (ret)
1538 			return ret;
1539 
1540 		ofs += size;
1541 		buf += size;
1542 		(*retlen) += size;
1543 		len -= size;
1544 
1545 		if (ofs >> cfi->chipshift) {
1546 			chipnum ++;
1547 			ofs = 0;
1548 			if (chipnum == cfi->numchips)
1549 				return 0;
1550 		}
1551 	}
1552 
1553 	if (len) {
1554 		size_t retlen_dregs = 0;
1555 
1556 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1557 					     len, &retlen_dregs, buf);
1558 
1559 		*retlen += retlen_dregs;
1560 		return ret;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 /*
1567  * Wait for the flash chip to become ready to write data
1568  *
1569  * This is only called during the panic_write() path. When panic_write()
1570  * is called, the kernel is in the process of a panic, and will soon be
1571  * dead. Therefore we don't take any locks, and attempt to get access
1572  * to the chip as soon as possible.
1573  */
1574 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
1575 				 unsigned long adr)
1576 {
1577 	struct cfi_private *cfi = map->fldrv_priv;
1578 	int retries = 10;
1579 	int i;
1580 
1581 	/*
1582 	 * If the driver thinks the chip is idle, and no toggle bits
1583 	 * are changing, then the chip is actually idle for sure.
1584 	 */
1585 	if (chip->state == FL_READY && chip_ready(map, adr))
1586 		return 0;
1587 
1588 	/*
1589 	 * Try several times to reset the chip and then wait for it
1590 	 * to become idle. The upper limit of a few milliseconds of
1591 	 * delay isn't a big problem: the kernel is dying anyway. It
1592 	 * is more important to save the messages.
1593 	 */
1594 	while (retries > 0) {
1595 		const unsigned long timeo = (HZ / 1000) + 1;
1596 
1597 		/* send the reset command */
1598 		map_write(map, CMD(0xF0), chip->start);
1599 
1600 		/* wait for the chip to become ready */
1601 		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
1602 			if (chip_ready(map, adr))
1603 				return 0;
1604 
1605 			udelay(1);
1606 		}
1607 	}
1608 
1609 	/* the chip never became ready */
1610 	return -EBUSY;
1611 }
1612 
1613 /*
1614  * Write out one word of data to a single flash chip during a kernel panic
1615  *
1616  * This is only called during the panic_write() path. When panic_write()
1617  * is called, the kernel is in the process of a panic, and will soon be
1618  * dead. Therefore we don't take any locks, and attempt to get access
1619  * to the chip as soon as possible.
1620  *
1621  * The implementation of this routine is intentionally similar to
1622  * do_write_oneword(), in order to ease code maintenance.
1623  */
1624 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
1625 				  unsigned long adr, map_word datum)
1626 {
1627 	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
1628 	struct cfi_private *cfi = map->fldrv_priv;
1629 	int retry_cnt = 0;
1630 	map_word oldd;
1631 	int ret = 0;
1632 	int i;
1633 
1634 	adr += chip->start;
1635 
1636 	ret = cfi_amdstd_panic_wait(map, chip, adr);
1637 	if (ret)
1638 		return ret;
1639 
1640 	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
1641 			__func__, adr, datum.x[0]);
1642 
1643 	/*
1644 	 * Check for a NOP for the case when the datum to write is already
1645 	 * present - it saves time and works around buggy chips that corrupt
1646 	 * data at other locations when 0xff is written to a location that
1647 	 * already contains 0xff.
1648 	 */
1649 	oldd = map_read(map, adr);
1650 	if (map_word_equal(map, oldd, datum)) {
1651 		pr_debug("MTD %s(): NOP\n", __func__);
1652 		goto op_done;
1653 	}
1654 
1655 	ENABLE_VPP(map);
1656 
1657 retry:
1658 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1659 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1660 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1661 	map_write(map, datum, adr);
1662 
1663 	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
1664 		if (chip_ready(map, adr))
1665 			break;
1666 
1667 		udelay(1);
1668 	}
1669 
1670 	if (!chip_good(map, adr, datum)) {
1671 		/* reset on all failures. */
1672 		map_write(map, CMD(0xF0), chip->start);
1673 		/* FIXME - should have reset delay before continuing */
1674 
1675 		if (++retry_cnt <= MAX_WORD_RETRIES)
1676 			goto retry;
1677 
1678 		ret = -EIO;
1679 	}
1680 
1681 op_done:
1682 	DISABLE_VPP(map);
1683 	return ret;
1684 }
1685 
1686 /*
1687  * Write out some data during a kernel panic
1688  *
1689  * This is used by the mtdoops driver to save the dying messages from a
1690  * kernel which has panic'd.
1691  *
1692  * This routine ignores all of the locking used throughout the rest of the
1693  * driver, in order to ensure that the data gets written out no matter what
1694  * state this driver (and the flash chip itself) was in when the kernel crashed.
1695  *
1696  * The implementation of this routine is intentionally similar to
1697  * cfi_amdstd_write_words(), in order to ease code maintenance.
1698  */
1699 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1700 				  size_t *retlen, const u_char *buf)
1701 {
1702 	struct map_info *map = mtd->priv;
1703 	struct cfi_private *cfi = map->fldrv_priv;
1704 	unsigned long ofs, chipstart;
1705 	int ret = 0;
1706 	int chipnum;
1707 
1708 	chipnum = to >> cfi->chipshift;
1709 	ofs = to - (chipnum << cfi->chipshift);
1710 	chipstart = cfi->chips[chipnum].start;
1711 
1712 	/* If it's not bus aligned, do the first byte write */
1713 	if (ofs & (map_bankwidth(map) - 1)) {
1714 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
1715 		int i = ofs - bus_ofs;
1716 		int n = 0;
1717 		map_word tmp_buf;
1718 
1719 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
1720 		if (ret)
1721 			return ret;
1722 
1723 		/* Load 'tmp_buf' with old contents of flash */
1724 		tmp_buf = map_read(map, bus_ofs + chipstart);
1725 
1726 		/* Number of bytes to copy from buffer */
1727 		n = min_t(int, len, map_bankwidth(map) - i);
1728 
1729 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1730 
1731 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1732 					     bus_ofs, tmp_buf);
1733 		if (ret)
1734 			return ret;
1735 
1736 		ofs += n;
1737 		buf += n;
1738 		(*retlen) += n;
1739 		len -= n;
1740 
1741 		if (ofs >> cfi->chipshift) {
1742 			chipnum++;
1743 			ofs = 0;
1744 			if (chipnum == cfi->numchips)
1745 				return 0;
1746 		}
1747 	}
1748 
1749 	/* We are now aligned, write as much as possible */
1750 	while (len >= map_bankwidth(map)) {
1751 		map_word datum;
1752 
1753 		datum = map_word_load(map, buf);
1754 
1755 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1756 					     ofs, datum);
1757 		if (ret)
1758 			return ret;
1759 
1760 		ofs += map_bankwidth(map);
1761 		buf += map_bankwidth(map);
1762 		(*retlen) += map_bankwidth(map);
1763 		len -= map_bankwidth(map);
1764 
1765 		if (ofs >> cfi->chipshift) {
1766 			chipnum++;
1767 			ofs = 0;
1768 			if (chipnum == cfi->numchips)
1769 				return 0;
1770 
1771 			chipstart = cfi->chips[chipnum].start;
1772 		}
1773 	}
1774 
1775 	/* Write the trailing bytes if any */
1776 	if (len & (map_bankwidth(map) - 1)) {
1777 		map_word tmp_buf;
1778 
1779 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
1780 		if (ret)
1781 			return ret;
1782 
1783 		tmp_buf = map_read(map, ofs + chipstart);
1784 
1785 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1786 
1787 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1788 					     ofs, tmp_buf);
1789 		if (ret)
1790 			return ret;
1791 
1792 		(*retlen) += len;
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 
1799 /*
1800  * Handle devices with one erase region, that only implement
1801  * the chip erase command.
1802  */
1803 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1804 {
1805 	struct cfi_private *cfi = map->fldrv_priv;
1806 	unsigned long timeo = jiffies + HZ;
1807 	unsigned long int adr;
1808 	DECLARE_WAITQUEUE(wait, current);
1809 	int ret = 0;
1810 
1811 	adr = cfi->addr_unlock1;
1812 
1813 	mutex_lock(&chip->mutex);
1814 	ret = get_chip(map, chip, adr, FL_WRITING);
1815 	if (ret) {
1816 		mutex_unlock(&chip->mutex);
1817 		return ret;
1818 	}
1819 
1820 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1821 	       __func__, chip->start );
1822 
1823 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1824 	ENABLE_VPP(map);
1825 	xip_disable(map, chip, adr);
1826 
1827 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1828 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1829 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1830 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1831 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1832 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1833 
1834 	chip->state = FL_ERASING;
1835 	chip->erase_suspended = 0;
1836 	chip->in_progress_block_addr = adr;
1837 
1838 	INVALIDATE_CACHE_UDELAY(map, chip,
1839 				adr, map->size,
1840 				chip->erase_time*500);
1841 
1842 	timeo = jiffies + (HZ*20);
1843 
1844 	for (;;) {
1845 		if (chip->state != FL_ERASING) {
1846 			/* Someone's suspended the erase. Sleep */
1847 			set_current_state(TASK_UNINTERRUPTIBLE);
1848 			add_wait_queue(&chip->wq, &wait);
1849 			mutex_unlock(&chip->mutex);
1850 			schedule();
1851 			remove_wait_queue(&chip->wq, &wait);
1852 			mutex_lock(&chip->mutex);
1853 			continue;
1854 		}
1855 		if (chip->erase_suspended) {
1856 			/* This erase was suspended and resumed.
1857 			   Adjust the timeout */
1858 			timeo = jiffies + (HZ*20); /* FIXME */
1859 			chip->erase_suspended = 0;
1860 		}
1861 
1862 		if (chip_ready(map, adr))
1863 			break;
1864 
1865 		if (time_after(jiffies, timeo)) {
1866 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1867 				__func__ );
1868 			break;
1869 		}
1870 
1871 		/* Latency issues. Drop the lock, wait a while and retry */
1872 		UDELAY(map, chip, adr, 1000000/HZ);
1873 	}
1874 	/* Did we succeed? */
1875 	if (!chip_good(map, adr, map_word_ff(map))) {
1876 		/* reset on all failures. */
1877 		map_write( map, CMD(0xF0), chip->start );
1878 		/* FIXME - should have reset delay before continuing */
1879 
1880 		ret = -EIO;
1881 	}
1882 
1883 	chip->state = FL_READY;
1884 	xip_enable(map, chip, adr);
1885 	DISABLE_VPP(map);
1886 	put_chip(map, chip, adr);
1887 	mutex_unlock(&chip->mutex);
1888 
1889 	return ret;
1890 }
1891 
1892 
1893 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1894 {
1895 	struct cfi_private *cfi = map->fldrv_priv;
1896 	unsigned long timeo = jiffies + HZ;
1897 	DECLARE_WAITQUEUE(wait, current);
1898 	int ret = 0;
1899 
1900 	adr += chip->start;
1901 
1902 	mutex_lock(&chip->mutex);
1903 	ret = get_chip(map, chip, adr, FL_ERASING);
1904 	if (ret) {
1905 		mutex_unlock(&chip->mutex);
1906 		return ret;
1907 	}
1908 
1909 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1910 	       __func__, adr );
1911 
1912 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1913 	ENABLE_VPP(map);
1914 	xip_disable(map, chip, adr);
1915 
1916 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1917 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1918 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1919 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1920 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1921 	map_write(map, cfi->sector_erase_cmd, adr);
1922 
1923 	chip->state = FL_ERASING;
1924 	chip->erase_suspended = 0;
1925 	chip->in_progress_block_addr = adr;
1926 
1927 	INVALIDATE_CACHE_UDELAY(map, chip,
1928 				adr, len,
1929 				chip->erase_time*500);
1930 
1931 	timeo = jiffies + (HZ*20);
1932 
1933 	for (;;) {
1934 		if (chip->state != FL_ERASING) {
1935 			/* Someone's suspended the erase. Sleep */
1936 			set_current_state(TASK_UNINTERRUPTIBLE);
1937 			add_wait_queue(&chip->wq, &wait);
1938 			mutex_unlock(&chip->mutex);
1939 			schedule();
1940 			remove_wait_queue(&chip->wq, &wait);
1941 			mutex_lock(&chip->mutex);
1942 			continue;
1943 		}
1944 		if (chip->erase_suspended) {
1945 			/* This erase was suspended and resumed.
1946 			   Adjust the timeout */
1947 			timeo = jiffies + (HZ*20); /* FIXME */
1948 			chip->erase_suspended = 0;
1949 		}
1950 
1951 		if (chip_ready(map, adr)) {
1952 			xip_enable(map, chip, adr);
1953 			break;
1954 		}
1955 
1956 		if (time_after(jiffies, timeo)) {
1957 			xip_enable(map, chip, adr);
1958 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1959 				__func__ );
1960 			break;
1961 		}
1962 
1963 		/* Latency issues. Drop the lock, wait a while and retry */
1964 		UDELAY(map, chip, adr, 1000000/HZ);
1965 	}
1966 	/* Did we succeed? */
1967 	if (!chip_good(map, adr, map_word_ff(map))) {
1968 		/* reset on all failures. */
1969 		map_write( map, CMD(0xF0), chip->start );
1970 		/* FIXME - should have reset delay before continuing */
1971 
1972 		ret = -EIO;
1973 	}
1974 
1975 	chip->state = FL_READY;
1976 	DISABLE_VPP(map);
1977 	put_chip(map, chip, adr);
1978 	mutex_unlock(&chip->mutex);
1979 	return ret;
1980 }
1981 
1982 
1983 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1984 {
1985 	unsigned long ofs, len;
1986 	int ret;
1987 
1988 	ofs = instr->addr;
1989 	len = instr->len;
1990 
1991 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1992 	if (ret)
1993 		return ret;
1994 
1995 	instr->state = MTD_ERASE_DONE;
1996 	mtd_erase_callback(instr);
1997 
1998 	return 0;
1999 }
2000 
2001 
2002 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2003 {
2004 	struct map_info *map = mtd->priv;
2005 	struct cfi_private *cfi = map->fldrv_priv;
2006 	int ret = 0;
2007 
2008 	if (instr->addr != 0)
2009 		return -EINVAL;
2010 
2011 	if (instr->len != mtd->size)
2012 		return -EINVAL;
2013 
2014 	ret = do_erase_chip(map, &cfi->chips[0]);
2015 	if (ret)
2016 		return ret;
2017 
2018 	instr->state = MTD_ERASE_DONE;
2019 	mtd_erase_callback(instr);
2020 
2021 	return 0;
2022 }
2023 
2024 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2025 			 unsigned long adr, int len, void *thunk)
2026 {
2027 	struct cfi_private *cfi = map->fldrv_priv;
2028 	int ret;
2029 
2030 	mutex_lock(&chip->mutex);
2031 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2032 	if (ret)
2033 		goto out_unlock;
2034 	chip->state = FL_LOCKING;
2035 
2036 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2037 
2038 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2039 			 cfi->device_type, NULL);
2040 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2041 			 cfi->device_type, NULL);
2042 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2043 			 cfi->device_type, NULL);
2044 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2045 			 cfi->device_type, NULL);
2046 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2047 			 cfi->device_type, NULL);
2048 	map_write(map, CMD(0x40), chip->start + adr);
2049 
2050 	chip->state = FL_READY;
2051 	put_chip(map, chip, adr + chip->start);
2052 	ret = 0;
2053 
2054 out_unlock:
2055 	mutex_unlock(&chip->mutex);
2056 	return ret;
2057 }
2058 
2059 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2060 			   unsigned long adr, int len, void *thunk)
2061 {
2062 	struct cfi_private *cfi = map->fldrv_priv;
2063 	int ret;
2064 
2065 	mutex_lock(&chip->mutex);
2066 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2067 	if (ret)
2068 		goto out_unlock;
2069 	chip->state = FL_UNLOCKING;
2070 
2071 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2072 
2073 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2074 			 cfi->device_type, NULL);
2075 	map_write(map, CMD(0x70), adr);
2076 
2077 	chip->state = FL_READY;
2078 	put_chip(map, chip, adr + chip->start);
2079 	ret = 0;
2080 
2081 out_unlock:
2082 	mutex_unlock(&chip->mutex);
2083 	return ret;
2084 }
2085 
2086 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2087 {
2088 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2089 }
2090 
2091 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2092 {
2093 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2094 }
2095 
2096 
2097 static void cfi_amdstd_sync (struct mtd_info *mtd)
2098 {
2099 	struct map_info *map = mtd->priv;
2100 	struct cfi_private *cfi = map->fldrv_priv;
2101 	int i;
2102 	struct flchip *chip;
2103 	int ret = 0;
2104 	DECLARE_WAITQUEUE(wait, current);
2105 
2106 	for (i=0; !ret && i<cfi->numchips; i++) {
2107 		chip = &cfi->chips[i];
2108 
2109 	retry:
2110 		mutex_lock(&chip->mutex);
2111 
2112 		switch(chip->state) {
2113 		case FL_READY:
2114 		case FL_STATUS:
2115 		case FL_CFI_QUERY:
2116 		case FL_JEDEC_QUERY:
2117 			chip->oldstate = chip->state;
2118 			chip->state = FL_SYNCING;
2119 			/* No need to wake_up() on this state change -
2120 			 * as the whole point is that nobody can do anything
2121 			 * with the chip now anyway.
2122 			 */
2123 		case FL_SYNCING:
2124 			mutex_unlock(&chip->mutex);
2125 			break;
2126 
2127 		default:
2128 			/* Not an idle state */
2129 			set_current_state(TASK_UNINTERRUPTIBLE);
2130 			add_wait_queue(&chip->wq, &wait);
2131 
2132 			mutex_unlock(&chip->mutex);
2133 
2134 			schedule();
2135 
2136 			remove_wait_queue(&chip->wq, &wait);
2137 
2138 			goto retry;
2139 		}
2140 	}
2141 
2142 	/* Unlock the chips again */
2143 
2144 	for (i--; i >=0; i--) {
2145 		chip = &cfi->chips[i];
2146 
2147 		mutex_lock(&chip->mutex);
2148 
2149 		if (chip->state == FL_SYNCING) {
2150 			chip->state = chip->oldstate;
2151 			wake_up(&chip->wq);
2152 		}
2153 		mutex_unlock(&chip->mutex);
2154 	}
2155 }
2156 
2157 
2158 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2159 {
2160 	struct map_info *map = mtd->priv;
2161 	struct cfi_private *cfi = map->fldrv_priv;
2162 	int i;
2163 	struct flchip *chip;
2164 	int ret = 0;
2165 
2166 	for (i=0; !ret && i<cfi->numchips; i++) {
2167 		chip = &cfi->chips[i];
2168 
2169 		mutex_lock(&chip->mutex);
2170 
2171 		switch(chip->state) {
2172 		case FL_READY:
2173 		case FL_STATUS:
2174 		case FL_CFI_QUERY:
2175 		case FL_JEDEC_QUERY:
2176 			chip->oldstate = chip->state;
2177 			chip->state = FL_PM_SUSPENDED;
2178 			/* No need to wake_up() on this state change -
2179 			 * as the whole point is that nobody can do anything
2180 			 * with the chip now anyway.
2181 			 */
2182 		case FL_PM_SUSPENDED:
2183 			break;
2184 
2185 		default:
2186 			ret = -EAGAIN;
2187 			break;
2188 		}
2189 		mutex_unlock(&chip->mutex);
2190 	}
2191 
2192 	/* Unlock the chips again */
2193 
2194 	if (ret) {
2195 		for (i--; i >=0; i--) {
2196 			chip = &cfi->chips[i];
2197 
2198 			mutex_lock(&chip->mutex);
2199 
2200 			if (chip->state == FL_PM_SUSPENDED) {
2201 				chip->state = chip->oldstate;
2202 				wake_up(&chip->wq);
2203 			}
2204 			mutex_unlock(&chip->mutex);
2205 		}
2206 	}
2207 
2208 	return ret;
2209 }
2210 
2211 
2212 static void cfi_amdstd_resume(struct mtd_info *mtd)
2213 {
2214 	struct map_info *map = mtd->priv;
2215 	struct cfi_private *cfi = map->fldrv_priv;
2216 	int i;
2217 	struct flchip *chip;
2218 
2219 	for (i=0; i<cfi->numchips; i++) {
2220 
2221 		chip = &cfi->chips[i];
2222 
2223 		mutex_lock(&chip->mutex);
2224 
2225 		if (chip->state == FL_PM_SUSPENDED) {
2226 			chip->state = FL_READY;
2227 			map_write(map, CMD(0xF0), chip->start);
2228 			wake_up(&chip->wq);
2229 		}
2230 		else
2231 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2232 
2233 		mutex_unlock(&chip->mutex);
2234 	}
2235 }
2236 
2237 
2238 /*
2239  * Ensure that the flash device is put back into read array mode before
2240  * unloading the driver or rebooting.  On some systems, rebooting while
2241  * the flash is in query/program/erase mode will prevent the CPU from
2242  * fetching the bootloader code, requiring a hard reset or power cycle.
2243  */
2244 static int cfi_amdstd_reset(struct mtd_info *mtd)
2245 {
2246 	struct map_info *map = mtd->priv;
2247 	struct cfi_private *cfi = map->fldrv_priv;
2248 	int i, ret;
2249 	struct flchip *chip;
2250 
2251 	for (i = 0; i < cfi->numchips; i++) {
2252 
2253 		chip = &cfi->chips[i];
2254 
2255 		mutex_lock(&chip->mutex);
2256 
2257 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2258 		if (!ret) {
2259 			map_write(map, CMD(0xF0), chip->start);
2260 			chip->state = FL_SHUTDOWN;
2261 			put_chip(map, chip, chip->start);
2262 		}
2263 
2264 		mutex_unlock(&chip->mutex);
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 
2271 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2272 			       void *v)
2273 {
2274 	struct mtd_info *mtd;
2275 
2276 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2277 	cfi_amdstd_reset(mtd);
2278 	return NOTIFY_DONE;
2279 }
2280 
2281 
2282 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2283 {
2284 	struct map_info *map = mtd->priv;
2285 	struct cfi_private *cfi = map->fldrv_priv;
2286 
2287 	cfi_amdstd_reset(mtd);
2288 	unregister_reboot_notifier(&mtd->reboot_notifier);
2289 	kfree(cfi->cmdset_priv);
2290 	kfree(cfi->cfiq);
2291 	kfree(cfi);
2292 	kfree(mtd->eraseregions);
2293 }
2294 
2295 MODULE_LICENSE("GPL");
2296 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2297 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2298 MODULE_ALIAS("cfi_cmdset_0006");
2299 MODULE_ALIAS("cfi_cmdset_0701");
2300