1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define SST49LF004B	        0x0060
47 #define SST49LF040B	        0x0050
48 #define SST49LF008A		0x005a
49 #define AT49BV6416		0x00d6
50 
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 
62 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
63 				  size_t *retlen, const u_char *buf);
64 
65 static void cfi_amdstd_destroy(struct mtd_info *);
66 
67 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
69 
70 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72 #include "fwh_lock.h"
73 
74 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
75 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
76 
77 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 	.probe		= NULL, /* Not usable directly */
79 	.destroy	= cfi_amdstd_destroy,
80 	.name		= "cfi_cmdset_0002",
81 	.module		= THIS_MODULE
82 };
83 
84 
85 /* #define DEBUG_CFI_FEATURES */
86 
87 
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
90 {
91 	const char* erase_suspend[3] = {
92 		"Not supported", "Read only", "Read/write"
93 	};
94 	const char* top_bottom[6] = {
95 		"No WP", "8x8KiB sectors at top & bottom, no WP",
96 		"Bottom boot", "Top boot",
97 		"Uniform, Bottom WP", "Uniform, Top WP"
98 	};
99 
100 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
101 	printk("  Address sensitive unlock: %s\n",
102 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
103 
104 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 	else
107 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
108 
109 	if (extp->BlkProt == 0)
110 		printk("  Block protection: Not supported\n");
111 	else
112 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
113 
114 
115 	printk("  Temporary block unprotect: %s\n",
116 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 	printk("  Burst mode: %s\n",
120 	       extp->BurstMode ? "Supported" : "Not supported");
121 	if (extp->PageMode == 0)
122 		printk("  Page mode: Not supported\n");
123 	else
124 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
125 
126 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 	       extp->VppMin >> 4, extp->VppMin & 0xf);
128 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 	       extp->VppMax >> 4, extp->VppMax & 0xf);
130 
131 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 	else
134 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
135 }
136 #endif
137 
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info *mtd)
141 {
142 	struct map_info *map = mtd->priv;
143 	struct cfi_private *cfi = map->fldrv_priv;
144 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 	__u8 major = extp->MajorVersion;
146 	__u8 minor = extp->MinorVersion;
147 
148 	if (((major << 8) | minor) < 0x3131) {
149 		/* CFI version 1.0 => don't trust bootloc */
150 
151 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
152 			map->name, cfi->mfr, cfi->id);
153 
154 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
155 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
156 		 * These were badly detected as they have the 0x80 bit set
157 		 * so treat them as a special case.
158 		 */
159 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
160 
161 			/* Macronix added CFI to their 2nd generation
162 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
163 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
164 			 * has CFI.
165 			 *
166 			 * Therefore also check the manufacturer.
167 			 * This reduces the risk of false detection due to
168 			 * the 8-bit device ID.
169 			 */
170 			(cfi->mfr == CFI_MFR_MACRONIX)) {
171 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
172 				" detected\n", map->name);
173 			extp->TopBottom = 2;	/* bottom boot */
174 		} else
175 		if (cfi->id & 0x80) {
176 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
177 			extp->TopBottom = 3;	/* top boot */
178 		} else {
179 			extp->TopBottom = 2;	/* bottom boot */
180 		}
181 
182 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
183 			" deduced %s from Device ID\n", map->name, major, minor,
184 			extp->TopBottom == 2 ? "bottom" : "top");
185 	}
186 }
187 #endif
188 
189 static void fixup_use_write_buffers(struct mtd_info *mtd)
190 {
191 	struct map_info *map = mtd->priv;
192 	struct cfi_private *cfi = map->fldrv_priv;
193 	if (cfi->cfiq->BufWriteTimeoutTyp) {
194 		pr_debug("Using buffer write method\n" );
195 		mtd->_write = cfi_amdstd_write_buffers;
196 	}
197 }
198 
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
201 {
202 	struct map_info *map = mtd->priv;
203 	struct cfi_private *cfi = map->fldrv_priv;
204 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 	struct cfi_pri_atmel atmel_pri;
206 
207 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209 
210 	if (atmel_pri.Features & 0x02)
211 		extp->EraseSuspend = 2;
212 
213 	/* Some chips got it backwards... */
214 	if (cfi->id == AT49BV6416) {
215 		if (atmel_pri.BottomBoot)
216 			extp->TopBottom = 3;
217 		else
218 			extp->TopBottom = 2;
219 	} else {
220 		if (atmel_pri.BottomBoot)
221 			extp->TopBottom = 2;
222 		else
223 			extp->TopBottom = 3;
224 	}
225 
226 	/* burst write mode not supported */
227 	cfi->cfiq->BufWriteTimeoutTyp = 0;
228 	cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230 
231 static void fixup_use_secsi(struct mtd_info *mtd)
232 {
233 	/* Setup for chips with a secsi area */
234 	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
235 	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237 
238 static void fixup_use_erase_chip(struct mtd_info *mtd)
239 {
240 	struct map_info *map = mtd->priv;
241 	struct cfi_private *cfi = map->fldrv_priv;
242 	if ((cfi->cfiq->NumEraseRegions == 1) &&
243 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 		mtd->_erase = cfi_amdstd_erase_chip;
245 	}
246 
247 }
248 
249 /*
250  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251  * locked by default.
252  */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd)
254 {
255 	mtd->_lock = cfi_atmel_lock;
256 	mtd->_unlock = cfi_atmel_unlock;
257 	mtd->flags |= MTD_POWERUP_LOCK;
258 }
259 
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 	struct map_info *map = mtd->priv;
263 	struct cfi_private *cfi = map->fldrv_priv;
264 
265 	/*
266 	 * These flashes report two separate eraseblock regions based on the
267 	 * sector_erase-size and block_erase-size, although they both operate on the
268 	 * same memory. This is not allowed according to CFI, so we just pick the
269 	 * sector_erase-size.
270 	 */
271 	cfi->cfiq->NumEraseRegions = 1;
272 }
273 
274 static void fixup_sst39vf(struct mtd_info *mtd)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	fixup_old_sst_eraseregion(mtd);
280 
281 	cfi->addr_unlock1 = 0x5555;
282 	cfi->addr_unlock2 = 0x2AAA;
283 }
284 
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
286 {
287 	struct map_info *map = mtd->priv;
288 	struct cfi_private *cfi = map->fldrv_priv;
289 
290 	fixup_old_sst_eraseregion(mtd);
291 
292 	cfi->addr_unlock1 = 0x555;
293 	cfi->addr_unlock2 = 0x2AA;
294 
295 	cfi->sector_erase_cmd = CMD(0x50);
296 }
297 
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
299 {
300 	struct map_info *map = mtd->priv;
301 	struct cfi_private *cfi = map->fldrv_priv;
302 
303 	fixup_sst39vf_rev_b(mtd);
304 
305 	/*
306 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 	 * it should report a size of 8KBytes (0x0020*256).
308 	 */
309 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 	pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312 
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
314 {
315 	struct map_info *map = mtd->priv;
316 	struct cfi_private *cfi = map->fldrv_priv;
317 
318 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 		pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name);
321 	}
322 }
323 
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
325 {
326 	struct map_info *map = mtd->priv;
327 	struct cfi_private *cfi = map->fldrv_priv;
328 
329 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 		pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name);
332 	}
333 }
334 
335 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
336 {
337 	struct map_info *map = mtd->priv;
338 	struct cfi_private *cfi = map->fldrv_priv;
339 
340 	/*
341 	 *  S29NS512P flash uses more than 8bits to report number of sectors,
342 	 * which is not permitted by CFI.
343 	 */
344 	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
345 	pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name);
346 }
347 
348 /* Used to fix CFI-Tables of chips without Extended Query Tables */
349 static struct cfi_fixup cfi_nopri_fixup_table[] = {
350 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
351 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
352 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
353 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
354 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
355 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
356 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
357 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
358 	{ 0, 0, NULL }
359 };
360 
361 static struct cfi_fixup cfi_fixup_table[] = {
362 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
363 #ifdef AMD_BOOTLOC_BUG
364 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
365 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
366 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
367 #endif
368 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
369 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
370 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
371 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
372 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
373 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
374 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
375 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
376 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
377 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
378 	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
379 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
380 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
381 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
382 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
383 #if !FORCE_WORD_WRITE
384 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
385 #endif
386 	{ 0, 0, NULL }
387 };
388 static struct cfi_fixup jedec_fixup_table[] = {
389 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
390 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
391 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
392 	{ 0, 0, NULL }
393 };
394 
395 static struct cfi_fixup fixup_table[] = {
396 	/* The CFI vendor ids and the JEDEC vendor IDs appear
397 	 * to be common.  It is like the devices id's are as
398 	 * well.  This table is to pick all cases where
399 	 * we know that is the case.
400 	 */
401 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
402 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
403 	{ 0, 0, NULL }
404 };
405 
406 
407 static void cfi_fixup_major_minor(struct cfi_private *cfi,
408 				  struct cfi_pri_amdstd *extp)
409 {
410 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
411 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
412 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
413 			/*
414 			 * Samsung K8P2815UQB and K8D6x16UxM chips
415 			 * report major=0 / minor=0.
416 			 * K8D3x16UxC chips report major=3 / minor=3.
417 			 */
418 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
419 			       " Extended Query version to 1.%c\n",
420 			       extp->MinorVersion);
421 			extp->MajorVersion = '1';
422 		}
423 	}
424 
425 	/*
426 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
427 	 */
428 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
429 		extp->MajorVersion = '1';
430 		extp->MinorVersion = '0';
431 	}
432 }
433 
434 static int is_m29ew(struct cfi_private *cfi)
435 {
436 	if (cfi->mfr == CFI_MFR_INTEL &&
437 	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
438 	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
439 		return 1;
440 	return 0;
441 }
442 
443 /*
444  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
445  * Some revisions of the M29EW suffer from erase suspend hang ups. In
446  * particular, it can occur when the sequence
447  * Erase Confirm -> Suspend -> Program -> Resume
448  * causes a lockup due to internal timing issues. The consequence is that the
449  * erase cannot be resumed without inserting a dummy command after programming
450  * and prior to resuming. [...] The work-around is to issue a dummy write cycle
451  * that writes an F0 command code before the RESUME command.
452  */
453 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
454 					  unsigned long adr)
455 {
456 	struct cfi_private *cfi = map->fldrv_priv;
457 	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
458 	if (is_m29ew(cfi))
459 		map_write(map, CMD(0xF0), adr);
460 }
461 
462 /*
463  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
464  *
465  * Some revisions of the M29EW (for example, A1 and A2 step revisions)
466  * are affected by a problem that could cause a hang up when an ERASE SUSPEND
467  * command is issued after an ERASE RESUME operation without waiting for a
468  * minimum delay.  The result is that once the ERASE seems to be completed
469  * (no bits are toggling), the contents of the Flash memory block on which
470  * the erase was ongoing could be inconsistent with the expected values
471  * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
472  * values), causing a consequent failure of the ERASE operation.
473  * The occurrence of this issue could be high, especially when file system
474  * operations on the Flash are intensive.  As a result, it is recommended
475  * that a patch be applied.  Intensive file system operations can cause many
476  * calls to the garbage routine to free Flash space (also by erasing physical
477  * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
478  * commands can occur.  The problem disappears when a delay is inserted after
479  * the RESUME command by using the udelay() function available in Linux.
480  * The DELAY value must be tuned based on the customer's platform.
481  * The maximum value that fixes the problem in all cases is 500us.
482  * But, in our experience, a delay of 30 µs to 50 µs is sufficient
483  * in most cases.
484  * We have chosen 500µs because this latency is acceptable.
485  */
486 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
487 {
488 	/*
489 	 * Resolving the Delay After Resume Issue see Micron TN-13-07
490 	 * Worst case delay must be 500µs but 30-50µs should be ok as well
491 	 */
492 	if (is_m29ew(cfi))
493 		cfi_udelay(500);
494 }
495 
496 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
497 {
498 	struct cfi_private *cfi = map->fldrv_priv;
499 	struct mtd_info *mtd;
500 	int i;
501 
502 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
503 	if (!mtd) {
504 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
505 		return NULL;
506 	}
507 	mtd->priv = map;
508 	mtd->type = MTD_NORFLASH;
509 
510 	/* Fill in the default mtd operations */
511 	mtd->_erase   = cfi_amdstd_erase_varsize;
512 	mtd->_write   = cfi_amdstd_write_words;
513 	mtd->_read    = cfi_amdstd_read;
514 	mtd->_sync    = cfi_amdstd_sync;
515 	mtd->_suspend = cfi_amdstd_suspend;
516 	mtd->_resume  = cfi_amdstd_resume;
517 	mtd->flags   = MTD_CAP_NORFLASH;
518 	mtd->name    = map->name;
519 	mtd->writesize = 1;
520 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
521 
522 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
523 			mtd->writebufsize);
524 
525 	mtd->_panic_write = cfi_amdstd_panic_write;
526 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
527 
528 	if (cfi->cfi_mode==CFI_MODE_CFI){
529 		unsigned char bootloc;
530 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
531 		struct cfi_pri_amdstd *extp;
532 
533 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
534 		if (extp) {
535 			/*
536 			 * It's a real CFI chip, not one for which the probe
537 			 * routine faked a CFI structure.
538 			 */
539 			cfi_fixup_major_minor(cfi, extp);
540 
541 			/*
542 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
543 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
544 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
545 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
546 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
547 			 */
548 			if (extp->MajorVersion != '1' ||
549 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
550 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
551 				       "version %c.%c (%#02x/%#02x).\n",
552 				       extp->MajorVersion, extp->MinorVersion,
553 				       extp->MajorVersion, extp->MinorVersion);
554 				kfree(extp);
555 				kfree(mtd);
556 				return NULL;
557 			}
558 
559 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
560 			       extp->MajorVersion, extp->MinorVersion);
561 
562 			/* Install our own private info structure */
563 			cfi->cmdset_priv = extp;
564 
565 			/* Apply cfi device specific fixups */
566 			cfi_fixup(mtd, cfi_fixup_table);
567 
568 #ifdef DEBUG_CFI_FEATURES
569 			/* Tell the user about it in lots of lovely detail */
570 			cfi_tell_features(extp);
571 #endif
572 
573 			bootloc = extp->TopBottom;
574 			if ((bootloc < 2) || (bootloc > 5)) {
575 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
576 				       "bank location (%d). Assuming bottom.\n",
577 				       map->name, bootloc);
578 				bootloc = 2;
579 			}
580 
581 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
582 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
583 
584 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
585 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
586 					__u32 swap;
587 
588 					swap = cfi->cfiq->EraseRegionInfo[i];
589 					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
590 					cfi->cfiq->EraseRegionInfo[j] = swap;
591 				}
592 			}
593 			/* Set the default CFI lock/unlock addresses */
594 			cfi->addr_unlock1 = 0x555;
595 			cfi->addr_unlock2 = 0x2aa;
596 		}
597 		cfi_fixup(mtd, cfi_nopri_fixup_table);
598 
599 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
600 			kfree(mtd);
601 			return NULL;
602 		}
603 
604 	} /* CFI mode */
605 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
606 		/* Apply jedec specific fixups */
607 		cfi_fixup(mtd, jedec_fixup_table);
608 	}
609 	/* Apply generic fixups */
610 	cfi_fixup(mtd, fixup_table);
611 
612 	for (i=0; i< cfi->numchips; i++) {
613 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
614 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
615 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
616 		cfi->chips[i].ref_point_counter = 0;
617 		init_waitqueue_head(&(cfi->chips[i].wq));
618 	}
619 
620 	map->fldrv = &cfi_amdstd_chipdrv;
621 
622 	return cfi_amdstd_setup(mtd);
623 }
624 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
625 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
626 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
627 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
628 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
629 
630 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
631 {
632 	struct map_info *map = mtd->priv;
633 	struct cfi_private *cfi = map->fldrv_priv;
634 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
635 	unsigned long offset = 0;
636 	int i,j;
637 
638 	printk(KERN_NOTICE "number of %s chips: %d\n",
639 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
640 	/* Select the correct geometry setup */
641 	mtd->size = devsize * cfi->numchips;
642 
643 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
644 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
645 				    * mtd->numeraseregions, GFP_KERNEL);
646 	if (!mtd->eraseregions) {
647 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
648 		goto setup_err;
649 	}
650 
651 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
652 		unsigned long ernum, ersize;
653 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
654 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
655 
656 		if (mtd->erasesize < ersize) {
657 			mtd->erasesize = ersize;
658 		}
659 		for (j=0; j<cfi->numchips; j++) {
660 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
661 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
662 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
663 		}
664 		offset += (ersize * ernum);
665 	}
666 	if (offset != devsize) {
667 		/* Argh */
668 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
669 		goto setup_err;
670 	}
671 
672 	__module_get(THIS_MODULE);
673 	register_reboot_notifier(&mtd->reboot_notifier);
674 	return mtd;
675 
676  setup_err:
677 	kfree(mtd->eraseregions);
678 	kfree(mtd);
679 	kfree(cfi->cmdset_priv);
680 	kfree(cfi->cfiq);
681 	return NULL;
682 }
683 
684 /*
685  * Return true if the chip is ready.
686  *
687  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
688  * non-suspended sector) and is indicated by no toggle bits toggling.
689  *
690  * Note that anything more complicated than checking if no bits are toggling
691  * (including checking DQ5 for an error status) is tricky to get working
692  * correctly and is therefore not done	(particularly with interleaved chips
693  * as each chip must be checked independently of the others).
694  */
695 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
696 {
697 	map_word d, t;
698 
699 	d = map_read(map, addr);
700 	t = map_read(map, addr);
701 
702 	return map_word_equal(map, d, t);
703 }
704 
705 /*
706  * Return true if the chip is ready and has the correct value.
707  *
708  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
709  * non-suspended sector) and it is indicated by no bits toggling.
710  *
711  * Error are indicated by toggling bits or bits held with the wrong value,
712  * or with bits toggling.
713  *
714  * Note that anything more complicated than checking if no bits are toggling
715  * (including checking DQ5 for an error status) is tricky to get working
716  * correctly and is therefore not done	(particularly with interleaved chips
717  * as each chip must be checked independently of the others).
718  *
719  */
720 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
721 {
722 	map_word oldd, curd;
723 
724 	oldd = map_read(map, addr);
725 	curd = map_read(map, addr);
726 
727 	return	map_word_equal(map, oldd, curd) &&
728 		map_word_equal(map, curd, expected);
729 }
730 
731 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
732 {
733 	DECLARE_WAITQUEUE(wait, current);
734 	struct cfi_private *cfi = map->fldrv_priv;
735 	unsigned long timeo;
736 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
737 
738  resettime:
739 	timeo = jiffies + HZ;
740  retry:
741 	switch (chip->state) {
742 
743 	case FL_STATUS:
744 		for (;;) {
745 			if (chip_ready(map, adr))
746 				break;
747 
748 			if (time_after(jiffies, timeo)) {
749 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
750 				return -EIO;
751 			}
752 			mutex_unlock(&chip->mutex);
753 			cfi_udelay(1);
754 			mutex_lock(&chip->mutex);
755 			/* Someone else might have been playing with it. */
756 			goto retry;
757 		}
758 
759 	case FL_READY:
760 	case FL_CFI_QUERY:
761 	case FL_JEDEC_QUERY:
762 		return 0;
763 
764 	case FL_ERASING:
765 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
766 		    !(mode == FL_READY || mode == FL_POINT ||
767 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
768 			goto sleep;
769 
770 		/* We could check to see if we're trying to access the sector
771 		 * that is currently being erased. However, no user will try
772 		 * anything like that so we just wait for the timeout. */
773 
774 		/* Erase suspend */
775 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
776 		 * commands when the erase algorithm isn't in progress. */
777 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
778 		chip->oldstate = FL_ERASING;
779 		chip->state = FL_ERASE_SUSPENDING;
780 		chip->erase_suspended = 1;
781 		for (;;) {
782 			if (chip_ready(map, adr))
783 				break;
784 
785 			if (time_after(jiffies, timeo)) {
786 				/* Should have suspended the erase by now.
787 				 * Send an Erase-Resume command as either
788 				 * there was an error (so leave the erase
789 				 * routine to recover from it) or we trying to
790 				 * use the erase-in-progress sector. */
791 				put_chip(map, chip, adr);
792 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
793 				return -EIO;
794 			}
795 
796 			mutex_unlock(&chip->mutex);
797 			cfi_udelay(1);
798 			mutex_lock(&chip->mutex);
799 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
800 			   So we can just loop here. */
801 		}
802 		chip->state = FL_READY;
803 		return 0;
804 
805 	case FL_XIP_WHILE_ERASING:
806 		if (mode != FL_READY && mode != FL_POINT &&
807 		    (!cfip || !(cfip->EraseSuspend&2)))
808 			goto sleep;
809 		chip->oldstate = chip->state;
810 		chip->state = FL_READY;
811 		return 0;
812 
813 	case FL_SHUTDOWN:
814 		/* The machine is rebooting */
815 		return -EIO;
816 
817 	case FL_POINT:
818 		/* Only if there's no operation suspended... */
819 		if (mode == FL_READY && chip->oldstate == FL_READY)
820 			return 0;
821 
822 	default:
823 	sleep:
824 		set_current_state(TASK_UNINTERRUPTIBLE);
825 		add_wait_queue(&chip->wq, &wait);
826 		mutex_unlock(&chip->mutex);
827 		schedule();
828 		remove_wait_queue(&chip->wq, &wait);
829 		mutex_lock(&chip->mutex);
830 		goto resettime;
831 	}
832 }
833 
834 
835 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
836 {
837 	struct cfi_private *cfi = map->fldrv_priv;
838 
839 	switch(chip->oldstate) {
840 	case FL_ERASING:
841 		cfi_fixup_m29ew_erase_suspend(map,
842 			chip->in_progress_block_addr);
843 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
844 		cfi_fixup_m29ew_delay_after_resume(cfi);
845 		chip->oldstate = FL_READY;
846 		chip->state = FL_ERASING;
847 		break;
848 
849 	case FL_XIP_WHILE_ERASING:
850 		chip->state = chip->oldstate;
851 		chip->oldstate = FL_READY;
852 		break;
853 
854 	case FL_READY:
855 	case FL_STATUS:
856 		break;
857 	default:
858 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
859 	}
860 	wake_up(&chip->wq);
861 }
862 
863 #ifdef CONFIG_MTD_XIP
864 
865 /*
866  * No interrupt what so ever can be serviced while the flash isn't in array
867  * mode.  This is ensured by the xip_disable() and xip_enable() functions
868  * enclosing any code path where the flash is known not to be in array mode.
869  * And within a XIP disabled code path, only functions marked with __xipram
870  * may be called and nothing else (it's a good thing to inspect generated
871  * assembly to make sure inline functions were actually inlined and that gcc
872  * didn't emit calls to its own support functions). Also configuring MTD CFI
873  * support to a single buswidth and a single interleave is also recommended.
874  */
875 
876 static void xip_disable(struct map_info *map, struct flchip *chip,
877 			unsigned long adr)
878 {
879 	/* TODO: chips with no XIP use should ignore and return */
880 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
881 	local_irq_disable();
882 }
883 
884 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
885 				unsigned long adr)
886 {
887 	struct cfi_private *cfi = map->fldrv_priv;
888 
889 	if (chip->state != FL_POINT && chip->state != FL_READY) {
890 		map_write(map, CMD(0xf0), adr);
891 		chip->state = FL_READY;
892 	}
893 	(void) map_read(map, adr);
894 	xip_iprefetch();
895 	local_irq_enable();
896 }
897 
898 /*
899  * When a delay is required for the flash operation to complete, the
900  * xip_udelay() function is polling for both the given timeout and pending
901  * (but still masked) hardware interrupts.  Whenever there is an interrupt
902  * pending then the flash erase operation is suspended, array mode restored
903  * and interrupts unmasked.  Task scheduling might also happen at that
904  * point.  The CPU eventually returns from the interrupt or the call to
905  * schedule() and the suspended flash operation is resumed for the remaining
906  * of the delay period.
907  *
908  * Warning: this function _will_ fool interrupt latency tracing tools.
909  */
910 
911 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
912 				unsigned long adr, int usec)
913 {
914 	struct cfi_private *cfi = map->fldrv_priv;
915 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
916 	map_word status, OK = CMD(0x80);
917 	unsigned long suspended, start = xip_currtime();
918 	flstate_t oldstate;
919 
920 	do {
921 		cpu_relax();
922 		if (xip_irqpending() && extp &&
923 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
924 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
925 			/*
926 			 * Let's suspend the erase operation when supported.
927 			 * Note that we currently don't try to suspend
928 			 * interleaved chips if there is already another
929 			 * operation suspended (imagine what happens
930 			 * when one chip was already done with the current
931 			 * operation while another chip suspended it, then
932 			 * we resume the whole thing at once).  Yes, it
933 			 * can happen!
934 			 */
935 			map_write(map, CMD(0xb0), adr);
936 			usec -= xip_elapsed_since(start);
937 			suspended = xip_currtime();
938 			do {
939 				if (xip_elapsed_since(suspended) > 100000) {
940 					/*
941 					 * The chip doesn't want to suspend
942 					 * after waiting for 100 msecs.
943 					 * This is a critical error but there
944 					 * is not much we can do here.
945 					 */
946 					return;
947 				}
948 				status = map_read(map, adr);
949 			} while (!map_word_andequal(map, status, OK, OK));
950 
951 			/* Suspend succeeded */
952 			oldstate = chip->state;
953 			if (!map_word_bitsset(map, status, CMD(0x40)))
954 				break;
955 			chip->state = FL_XIP_WHILE_ERASING;
956 			chip->erase_suspended = 1;
957 			map_write(map, CMD(0xf0), adr);
958 			(void) map_read(map, adr);
959 			xip_iprefetch();
960 			local_irq_enable();
961 			mutex_unlock(&chip->mutex);
962 			xip_iprefetch();
963 			cond_resched();
964 
965 			/*
966 			 * We're back.  However someone else might have
967 			 * decided to go write to the chip if we are in
968 			 * a suspended erase state.  If so let's wait
969 			 * until it's done.
970 			 */
971 			mutex_lock(&chip->mutex);
972 			while (chip->state != FL_XIP_WHILE_ERASING) {
973 				DECLARE_WAITQUEUE(wait, current);
974 				set_current_state(TASK_UNINTERRUPTIBLE);
975 				add_wait_queue(&chip->wq, &wait);
976 				mutex_unlock(&chip->mutex);
977 				schedule();
978 				remove_wait_queue(&chip->wq, &wait);
979 				mutex_lock(&chip->mutex);
980 			}
981 			/* Disallow XIP again */
982 			local_irq_disable();
983 
984 			/* Correct Erase Suspend Hangups for M29EW */
985 			cfi_fixup_m29ew_erase_suspend(map, adr);
986 			/* Resume the write or erase operation */
987 			map_write(map, cfi->sector_erase_cmd, adr);
988 			chip->state = oldstate;
989 			start = xip_currtime();
990 		} else if (usec >= 1000000/HZ) {
991 			/*
992 			 * Try to save on CPU power when waiting delay
993 			 * is at least a system timer tick period.
994 			 * No need to be extremely accurate here.
995 			 */
996 			xip_cpu_idle();
997 		}
998 		status = map_read(map, adr);
999 	} while (!map_word_andequal(map, status, OK, OK)
1000 		 && xip_elapsed_since(start) < usec);
1001 }
1002 
1003 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1004 
1005 /*
1006  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1007  * the flash is actively programming or erasing since we have to poll for
1008  * the operation to complete anyway.  We can't do that in a generic way with
1009  * a XIP setup so do it before the actual flash operation in this case
1010  * and stub it out from INVALIDATE_CACHE_UDELAY.
1011  */
1012 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1013 	INVALIDATE_CACHED_RANGE(map, from, size)
1014 
1015 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1016 	UDELAY(map, chip, adr, usec)
1017 
1018 /*
1019  * Extra notes:
1020  *
1021  * Activating this XIP support changes the way the code works a bit.  For
1022  * example the code to suspend the current process when concurrent access
1023  * happens is never executed because xip_udelay() will always return with the
1024  * same chip state as it was entered with.  This is why there is no care for
1025  * the presence of add_wait_queue() or schedule() calls from within a couple
1026  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1027  * The queueing and scheduling are always happening within xip_udelay().
1028  *
1029  * Similarly, get_chip() and put_chip() just happen to always be executed
1030  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1031  * is in array mode, therefore never executing many cases therein and not
1032  * causing any problem with XIP.
1033  */
1034 
1035 #else
1036 
1037 #define xip_disable(map, chip, adr)
1038 #define xip_enable(map, chip, adr)
1039 #define XIP_INVAL_CACHED_RANGE(x...)
1040 
1041 #define UDELAY(map, chip, adr, usec)  \
1042 do {  \
1043 	mutex_unlock(&chip->mutex);  \
1044 	cfi_udelay(usec);  \
1045 	mutex_lock(&chip->mutex);  \
1046 } while (0)
1047 
1048 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1049 do {  \
1050 	mutex_unlock(&chip->mutex);  \
1051 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
1052 	cfi_udelay(usec);  \
1053 	mutex_lock(&chip->mutex);  \
1054 } while (0)
1055 
1056 #endif
1057 
1058 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1059 {
1060 	unsigned long cmd_addr;
1061 	struct cfi_private *cfi = map->fldrv_priv;
1062 	int ret;
1063 
1064 	adr += chip->start;
1065 
1066 	/* Ensure cmd read/writes are aligned. */
1067 	cmd_addr = adr & ~(map_bankwidth(map)-1);
1068 
1069 	mutex_lock(&chip->mutex);
1070 	ret = get_chip(map, chip, cmd_addr, FL_READY);
1071 	if (ret) {
1072 		mutex_unlock(&chip->mutex);
1073 		return ret;
1074 	}
1075 
1076 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1077 		map_write(map, CMD(0xf0), cmd_addr);
1078 		chip->state = FL_READY;
1079 	}
1080 
1081 	map_copy_from(map, buf, adr, len);
1082 
1083 	put_chip(map, chip, cmd_addr);
1084 
1085 	mutex_unlock(&chip->mutex);
1086 	return 0;
1087 }
1088 
1089 
1090 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1091 {
1092 	struct map_info *map = mtd->priv;
1093 	struct cfi_private *cfi = map->fldrv_priv;
1094 	unsigned long ofs;
1095 	int chipnum;
1096 	int ret = 0;
1097 
1098 	/* ofs: offset within the first chip that the first read should start */
1099 	chipnum = (from >> cfi->chipshift);
1100 	ofs = from - (chipnum <<  cfi->chipshift);
1101 
1102 	while (len) {
1103 		unsigned long thislen;
1104 
1105 		if (chipnum >= cfi->numchips)
1106 			break;
1107 
1108 		if ((len + ofs -1) >> cfi->chipshift)
1109 			thislen = (1<<cfi->chipshift) - ofs;
1110 		else
1111 			thislen = len;
1112 
1113 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1114 		if (ret)
1115 			break;
1116 
1117 		*retlen += thislen;
1118 		len -= thislen;
1119 		buf += thislen;
1120 
1121 		ofs = 0;
1122 		chipnum++;
1123 	}
1124 	return ret;
1125 }
1126 
1127 
1128 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1129 {
1130 	DECLARE_WAITQUEUE(wait, current);
1131 	unsigned long timeo = jiffies + HZ;
1132 	struct cfi_private *cfi = map->fldrv_priv;
1133 
1134  retry:
1135 	mutex_lock(&chip->mutex);
1136 
1137 	if (chip->state != FL_READY){
1138 		set_current_state(TASK_UNINTERRUPTIBLE);
1139 		add_wait_queue(&chip->wq, &wait);
1140 
1141 		mutex_unlock(&chip->mutex);
1142 
1143 		schedule();
1144 		remove_wait_queue(&chip->wq, &wait);
1145 		timeo = jiffies + HZ;
1146 
1147 		goto retry;
1148 	}
1149 
1150 	adr += chip->start;
1151 
1152 	chip->state = FL_READY;
1153 
1154 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1155 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1156 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1157 
1158 	map_copy_from(map, buf, adr, len);
1159 
1160 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1161 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1162 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1163 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1164 
1165 	wake_up(&chip->wq);
1166 	mutex_unlock(&chip->mutex);
1167 
1168 	return 0;
1169 }
1170 
1171 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1172 {
1173 	struct map_info *map = mtd->priv;
1174 	struct cfi_private *cfi = map->fldrv_priv;
1175 	unsigned long ofs;
1176 	int chipnum;
1177 	int ret = 0;
1178 
1179 	/* ofs: offset within the first chip that the first read should start */
1180 	/* 8 secsi bytes per chip */
1181 	chipnum=from>>3;
1182 	ofs=from & 7;
1183 
1184 	while (len) {
1185 		unsigned long thislen;
1186 
1187 		if (chipnum >= cfi->numchips)
1188 			break;
1189 
1190 		if ((len + ofs -1) >> 3)
1191 			thislen = (1<<3) - ofs;
1192 		else
1193 			thislen = len;
1194 
1195 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1196 		if (ret)
1197 			break;
1198 
1199 		*retlen += thislen;
1200 		len -= thislen;
1201 		buf += thislen;
1202 
1203 		ofs = 0;
1204 		chipnum++;
1205 	}
1206 	return ret;
1207 }
1208 
1209 
1210 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1211 {
1212 	struct cfi_private *cfi = map->fldrv_priv;
1213 	unsigned long timeo = jiffies + HZ;
1214 	/*
1215 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1216 	 * have a max write time of a few hundreds usec). However, we should
1217 	 * use the maximum timeout value given by the chip at probe time
1218 	 * instead.  Unfortunately, struct flchip does have a field for
1219 	 * maximum timeout, only for typical which can be far too short
1220 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1221 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1222 	 */
1223 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1224 	int ret = 0;
1225 	map_word oldd;
1226 	int retry_cnt = 0;
1227 
1228 	adr += chip->start;
1229 
1230 	mutex_lock(&chip->mutex);
1231 	ret = get_chip(map, chip, adr, FL_WRITING);
1232 	if (ret) {
1233 		mutex_unlock(&chip->mutex);
1234 		return ret;
1235 	}
1236 
1237 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1238 	       __func__, adr, datum.x[0] );
1239 
1240 	/*
1241 	 * Check for a NOP for the case when the datum to write is already
1242 	 * present - it saves time and works around buggy chips that corrupt
1243 	 * data at other locations when 0xff is written to a location that
1244 	 * already contains 0xff.
1245 	 */
1246 	oldd = map_read(map, adr);
1247 	if (map_word_equal(map, oldd, datum)) {
1248 		pr_debug("MTD %s(): NOP\n",
1249 		       __func__);
1250 		goto op_done;
1251 	}
1252 
1253 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1254 	ENABLE_VPP(map);
1255 	xip_disable(map, chip, adr);
1256  retry:
1257 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1258 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1259 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1260 	map_write(map, datum, adr);
1261 	chip->state = FL_WRITING;
1262 
1263 	INVALIDATE_CACHE_UDELAY(map, chip,
1264 				adr, map_bankwidth(map),
1265 				chip->word_write_time);
1266 
1267 	/* See comment above for timeout value. */
1268 	timeo = jiffies + uWriteTimeout;
1269 	for (;;) {
1270 		if (chip->state != FL_WRITING) {
1271 			/* Someone's suspended the write. Sleep */
1272 			DECLARE_WAITQUEUE(wait, current);
1273 
1274 			set_current_state(TASK_UNINTERRUPTIBLE);
1275 			add_wait_queue(&chip->wq, &wait);
1276 			mutex_unlock(&chip->mutex);
1277 			schedule();
1278 			remove_wait_queue(&chip->wq, &wait);
1279 			timeo = jiffies + (HZ / 2); /* FIXME */
1280 			mutex_lock(&chip->mutex);
1281 			continue;
1282 		}
1283 
1284 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1285 			xip_enable(map, chip, adr);
1286 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1287 			xip_disable(map, chip, adr);
1288 			break;
1289 		}
1290 
1291 		if (chip_ready(map, adr))
1292 			break;
1293 
1294 		/* Latency issues. Drop the lock, wait a while and retry */
1295 		UDELAY(map, chip, adr, 1);
1296 	}
1297 	/* Did we succeed? */
1298 	if (!chip_good(map, adr, datum)) {
1299 		/* reset on all failures. */
1300 		map_write( map, CMD(0xF0), chip->start );
1301 		/* FIXME - should have reset delay before continuing */
1302 
1303 		if (++retry_cnt <= MAX_WORD_RETRIES)
1304 			goto retry;
1305 
1306 		ret = -EIO;
1307 	}
1308 	xip_enable(map, chip, adr);
1309  op_done:
1310 	chip->state = FL_READY;
1311 	DISABLE_VPP(map);
1312 	put_chip(map, chip, adr);
1313 	mutex_unlock(&chip->mutex);
1314 
1315 	return ret;
1316 }
1317 
1318 
1319 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1320 				  size_t *retlen, const u_char *buf)
1321 {
1322 	struct map_info *map = mtd->priv;
1323 	struct cfi_private *cfi = map->fldrv_priv;
1324 	int ret = 0;
1325 	int chipnum;
1326 	unsigned long ofs, chipstart;
1327 	DECLARE_WAITQUEUE(wait, current);
1328 
1329 	chipnum = to >> cfi->chipshift;
1330 	ofs = to  - (chipnum << cfi->chipshift);
1331 	chipstart = cfi->chips[chipnum].start;
1332 
1333 	/* If it's not bus-aligned, do the first byte write */
1334 	if (ofs & (map_bankwidth(map)-1)) {
1335 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1336 		int i = ofs - bus_ofs;
1337 		int n = 0;
1338 		map_word tmp_buf;
1339 
1340  retry:
1341 		mutex_lock(&cfi->chips[chipnum].mutex);
1342 
1343 		if (cfi->chips[chipnum].state != FL_READY) {
1344 			set_current_state(TASK_UNINTERRUPTIBLE);
1345 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1346 
1347 			mutex_unlock(&cfi->chips[chipnum].mutex);
1348 
1349 			schedule();
1350 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1351 			goto retry;
1352 		}
1353 
1354 		/* Load 'tmp_buf' with old contents of flash */
1355 		tmp_buf = map_read(map, bus_ofs+chipstart);
1356 
1357 		mutex_unlock(&cfi->chips[chipnum].mutex);
1358 
1359 		/* Number of bytes to copy from buffer */
1360 		n = min_t(int, len, map_bankwidth(map)-i);
1361 
1362 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1363 
1364 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1365 				       bus_ofs, tmp_buf);
1366 		if (ret)
1367 			return ret;
1368 
1369 		ofs += n;
1370 		buf += n;
1371 		(*retlen) += n;
1372 		len -= n;
1373 
1374 		if (ofs >> cfi->chipshift) {
1375 			chipnum ++;
1376 			ofs = 0;
1377 			if (chipnum == cfi->numchips)
1378 				return 0;
1379 		}
1380 	}
1381 
1382 	/* We are now aligned, write as much as possible */
1383 	while(len >= map_bankwidth(map)) {
1384 		map_word datum;
1385 
1386 		datum = map_word_load(map, buf);
1387 
1388 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1389 				       ofs, datum);
1390 		if (ret)
1391 			return ret;
1392 
1393 		ofs += map_bankwidth(map);
1394 		buf += map_bankwidth(map);
1395 		(*retlen) += map_bankwidth(map);
1396 		len -= map_bankwidth(map);
1397 
1398 		if (ofs >> cfi->chipshift) {
1399 			chipnum ++;
1400 			ofs = 0;
1401 			if (chipnum == cfi->numchips)
1402 				return 0;
1403 			chipstart = cfi->chips[chipnum].start;
1404 		}
1405 	}
1406 
1407 	/* Write the trailing bytes if any */
1408 	if (len & (map_bankwidth(map)-1)) {
1409 		map_word tmp_buf;
1410 
1411  retry1:
1412 		mutex_lock(&cfi->chips[chipnum].mutex);
1413 
1414 		if (cfi->chips[chipnum].state != FL_READY) {
1415 			set_current_state(TASK_UNINTERRUPTIBLE);
1416 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1417 
1418 			mutex_unlock(&cfi->chips[chipnum].mutex);
1419 
1420 			schedule();
1421 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1422 			goto retry1;
1423 		}
1424 
1425 		tmp_buf = map_read(map, ofs + chipstart);
1426 
1427 		mutex_unlock(&cfi->chips[chipnum].mutex);
1428 
1429 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1430 
1431 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1432 				ofs, tmp_buf);
1433 		if (ret)
1434 			return ret;
1435 
1436 		(*retlen) += len;
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 
1443 /*
1444  * FIXME: interleaved mode not tested, and probably not supported!
1445  */
1446 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1447 				    unsigned long adr, const u_char *buf,
1448 				    int len)
1449 {
1450 	struct cfi_private *cfi = map->fldrv_priv;
1451 	unsigned long timeo = jiffies + HZ;
1452 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1453 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1454 	int ret = -EIO;
1455 	unsigned long cmd_adr;
1456 	int z, words;
1457 	map_word datum;
1458 
1459 	adr += chip->start;
1460 	cmd_adr = adr;
1461 
1462 	mutex_lock(&chip->mutex);
1463 	ret = get_chip(map, chip, adr, FL_WRITING);
1464 	if (ret) {
1465 		mutex_unlock(&chip->mutex);
1466 		return ret;
1467 	}
1468 
1469 	datum = map_word_load(map, buf);
1470 
1471 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1472 	       __func__, adr, datum.x[0] );
1473 
1474 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1475 	ENABLE_VPP(map);
1476 	xip_disable(map, chip, cmd_adr);
1477 
1478 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1479 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1480 
1481 	/* Write Buffer Load */
1482 	map_write(map, CMD(0x25), cmd_adr);
1483 
1484 	chip->state = FL_WRITING_TO_BUFFER;
1485 
1486 	/* Write length of data to come */
1487 	words = len / map_bankwidth(map);
1488 	map_write(map, CMD(words - 1), cmd_adr);
1489 	/* Write data */
1490 	z = 0;
1491 	while(z < words * map_bankwidth(map)) {
1492 		datum = map_word_load(map, buf);
1493 		map_write(map, datum, adr + z);
1494 
1495 		z += map_bankwidth(map);
1496 		buf += map_bankwidth(map);
1497 	}
1498 	z -= map_bankwidth(map);
1499 
1500 	adr += z;
1501 
1502 	/* Write Buffer Program Confirm: GO GO GO */
1503 	map_write(map, CMD(0x29), cmd_adr);
1504 	chip->state = FL_WRITING;
1505 
1506 	INVALIDATE_CACHE_UDELAY(map, chip,
1507 				adr, map_bankwidth(map),
1508 				chip->word_write_time);
1509 
1510 	timeo = jiffies + uWriteTimeout;
1511 
1512 	for (;;) {
1513 		if (chip->state != FL_WRITING) {
1514 			/* Someone's suspended the write. Sleep */
1515 			DECLARE_WAITQUEUE(wait, current);
1516 
1517 			set_current_state(TASK_UNINTERRUPTIBLE);
1518 			add_wait_queue(&chip->wq, &wait);
1519 			mutex_unlock(&chip->mutex);
1520 			schedule();
1521 			remove_wait_queue(&chip->wq, &wait);
1522 			timeo = jiffies + (HZ / 2); /* FIXME */
1523 			mutex_lock(&chip->mutex);
1524 			continue;
1525 		}
1526 
1527 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1528 			break;
1529 
1530 		if (chip_ready(map, adr)) {
1531 			xip_enable(map, chip, adr);
1532 			goto op_done;
1533 		}
1534 
1535 		/* Latency issues. Drop the lock, wait a while and retry */
1536 		UDELAY(map, chip, adr, 1);
1537 	}
1538 
1539 	/*
1540 	 * Recovery from write-buffer programming failures requires
1541 	 * the write-to-buffer-reset sequence.  Since the last part
1542 	 * of the sequence also works as a normal reset, we can run
1543 	 * the same commands regardless of why we are here.
1544 	 * See e.g.
1545 	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1546 	 */
1547 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1548 			 cfi->device_type, NULL);
1549 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1550 			 cfi->device_type, NULL);
1551 	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1552 			 cfi->device_type, NULL);
1553 	xip_enable(map, chip, adr);
1554 	/* FIXME - should have reset delay before continuing */
1555 
1556 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1557 	       __func__ );
1558 
1559 	ret = -EIO;
1560  op_done:
1561 	chip->state = FL_READY;
1562 	DISABLE_VPP(map);
1563 	put_chip(map, chip, adr);
1564 	mutex_unlock(&chip->mutex);
1565 
1566 	return ret;
1567 }
1568 
1569 
1570 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1571 				    size_t *retlen, const u_char *buf)
1572 {
1573 	struct map_info *map = mtd->priv;
1574 	struct cfi_private *cfi = map->fldrv_priv;
1575 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1576 	int ret = 0;
1577 	int chipnum;
1578 	unsigned long ofs;
1579 
1580 	chipnum = to >> cfi->chipshift;
1581 	ofs = to  - (chipnum << cfi->chipshift);
1582 
1583 	/* If it's not bus-aligned, do the first word write */
1584 	if (ofs & (map_bankwidth(map)-1)) {
1585 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1586 		if (local_len > len)
1587 			local_len = len;
1588 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1589 					     local_len, retlen, buf);
1590 		if (ret)
1591 			return ret;
1592 		ofs += local_len;
1593 		buf += local_len;
1594 		len -= local_len;
1595 
1596 		if (ofs >> cfi->chipshift) {
1597 			chipnum ++;
1598 			ofs = 0;
1599 			if (chipnum == cfi->numchips)
1600 				return 0;
1601 		}
1602 	}
1603 
1604 	/* Write buffer is worth it only if more than one word to write... */
1605 	while (len >= map_bankwidth(map) * 2) {
1606 		/* We must not cross write block boundaries */
1607 		int size = wbufsize - (ofs & (wbufsize-1));
1608 
1609 		if (size > len)
1610 			size = len;
1611 		if (size % map_bankwidth(map))
1612 			size -= size % map_bankwidth(map);
1613 
1614 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1615 				      ofs, buf, size);
1616 		if (ret)
1617 			return ret;
1618 
1619 		ofs += size;
1620 		buf += size;
1621 		(*retlen) += size;
1622 		len -= size;
1623 
1624 		if (ofs >> cfi->chipshift) {
1625 			chipnum ++;
1626 			ofs = 0;
1627 			if (chipnum == cfi->numchips)
1628 				return 0;
1629 		}
1630 	}
1631 
1632 	if (len) {
1633 		size_t retlen_dregs = 0;
1634 
1635 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1636 					     len, &retlen_dregs, buf);
1637 
1638 		*retlen += retlen_dregs;
1639 		return ret;
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 /*
1646  * Wait for the flash chip to become ready to write data
1647  *
1648  * This is only called during the panic_write() path. When panic_write()
1649  * is called, the kernel is in the process of a panic, and will soon be
1650  * dead. Therefore we don't take any locks, and attempt to get access
1651  * to the chip as soon as possible.
1652  */
1653 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
1654 				 unsigned long adr)
1655 {
1656 	struct cfi_private *cfi = map->fldrv_priv;
1657 	int retries = 10;
1658 	int i;
1659 
1660 	/*
1661 	 * If the driver thinks the chip is idle, and no toggle bits
1662 	 * are changing, then the chip is actually idle for sure.
1663 	 */
1664 	if (chip->state == FL_READY && chip_ready(map, adr))
1665 		return 0;
1666 
1667 	/*
1668 	 * Try several times to reset the chip and then wait for it
1669 	 * to become idle. The upper limit of a few milliseconds of
1670 	 * delay isn't a big problem: the kernel is dying anyway. It
1671 	 * is more important to save the messages.
1672 	 */
1673 	while (retries > 0) {
1674 		const unsigned long timeo = (HZ / 1000) + 1;
1675 
1676 		/* send the reset command */
1677 		map_write(map, CMD(0xF0), chip->start);
1678 
1679 		/* wait for the chip to become ready */
1680 		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
1681 			if (chip_ready(map, adr))
1682 				return 0;
1683 
1684 			udelay(1);
1685 		}
1686 	}
1687 
1688 	/* the chip never became ready */
1689 	return -EBUSY;
1690 }
1691 
1692 /*
1693  * Write out one word of data to a single flash chip during a kernel panic
1694  *
1695  * This is only called during the panic_write() path. When panic_write()
1696  * is called, the kernel is in the process of a panic, and will soon be
1697  * dead. Therefore we don't take any locks, and attempt to get access
1698  * to the chip as soon as possible.
1699  *
1700  * The implementation of this routine is intentionally similar to
1701  * do_write_oneword(), in order to ease code maintenance.
1702  */
1703 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
1704 				  unsigned long adr, map_word datum)
1705 {
1706 	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
1707 	struct cfi_private *cfi = map->fldrv_priv;
1708 	int retry_cnt = 0;
1709 	map_word oldd;
1710 	int ret = 0;
1711 	int i;
1712 
1713 	adr += chip->start;
1714 
1715 	ret = cfi_amdstd_panic_wait(map, chip, adr);
1716 	if (ret)
1717 		return ret;
1718 
1719 	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
1720 			__func__, adr, datum.x[0]);
1721 
1722 	/*
1723 	 * Check for a NOP for the case when the datum to write is already
1724 	 * present - it saves time and works around buggy chips that corrupt
1725 	 * data at other locations when 0xff is written to a location that
1726 	 * already contains 0xff.
1727 	 */
1728 	oldd = map_read(map, adr);
1729 	if (map_word_equal(map, oldd, datum)) {
1730 		pr_debug("MTD %s(): NOP\n", __func__);
1731 		goto op_done;
1732 	}
1733 
1734 	ENABLE_VPP(map);
1735 
1736 retry:
1737 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1738 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1739 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1740 	map_write(map, datum, adr);
1741 
1742 	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
1743 		if (chip_ready(map, adr))
1744 			break;
1745 
1746 		udelay(1);
1747 	}
1748 
1749 	if (!chip_good(map, adr, datum)) {
1750 		/* reset on all failures. */
1751 		map_write(map, CMD(0xF0), chip->start);
1752 		/* FIXME - should have reset delay before continuing */
1753 
1754 		if (++retry_cnt <= MAX_WORD_RETRIES)
1755 			goto retry;
1756 
1757 		ret = -EIO;
1758 	}
1759 
1760 op_done:
1761 	DISABLE_VPP(map);
1762 	return ret;
1763 }
1764 
1765 /*
1766  * Write out some data during a kernel panic
1767  *
1768  * This is used by the mtdoops driver to save the dying messages from a
1769  * kernel which has panic'd.
1770  *
1771  * This routine ignores all of the locking used throughout the rest of the
1772  * driver, in order to ensure that the data gets written out no matter what
1773  * state this driver (and the flash chip itself) was in when the kernel crashed.
1774  *
1775  * The implementation of this routine is intentionally similar to
1776  * cfi_amdstd_write_words(), in order to ease code maintenance.
1777  */
1778 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1779 				  size_t *retlen, const u_char *buf)
1780 {
1781 	struct map_info *map = mtd->priv;
1782 	struct cfi_private *cfi = map->fldrv_priv;
1783 	unsigned long ofs, chipstart;
1784 	int ret = 0;
1785 	int chipnum;
1786 
1787 	chipnum = to >> cfi->chipshift;
1788 	ofs = to - (chipnum << cfi->chipshift);
1789 	chipstart = cfi->chips[chipnum].start;
1790 
1791 	/* If it's not bus aligned, do the first byte write */
1792 	if (ofs & (map_bankwidth(map) - 1)) {
1793 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
1794 		int i = ofs - bus_ofs;
1795 		int n = 0;
1796 		map_word tmp_buf;
1797 
1798 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
1799 		if (ret)
1800 			return ret;
1801 
1802 		/* Load 'tmp_buf' with old contents of flash */
1803 		tmp_buf = map_read(map, bus_ofs + chipstart);
1804 
1805 		/* Number of bytes to copy from buffer */
1806 		n = min_t(int, len, map_bankwidth(map) - i);
1807 
1808 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1809 
1810 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1811 					     bus_ofs, tmp_buf);
1812 		if (ret)
1813 			return ret;
1814 
1815 		ofs += n;
1816 		buf += n;
1817 		(*retlen) += n;
1818 		len -= n;
1819 
1820 		if (ofs >> cfi->chipshift) {
1821 			chipnum++;
1822 			ofs = 0;
1823 			if (chipnum == cfi->numchips)
1824 				return 0;
1825 		}
1826 	}
1827 
1828 	/* We are now aligned, write as much as possible */
1829 	while (len >= map_bankwidth(map)) {
1830 		map_word datum;
1831 
1832 		datum = map_word_load(map, buf);
1833 
1834 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1835 					     ofs, datum);
1836 		if (ret)
1837 			return ret;
1838 
1839 		ofs += map_bankwidth(map);
1840 		buf += map_bankwidth(map);
1841 		(*retlen) += map_bankwidth(map);
1842 		len -= map_bankwidth(map);
1843 
1844 		if (ofs >> cfi->chipshift) {
1845 			chipnum++;
1846 			ofs = 0;
1847 			if (chipnum == cfi->numchips)
1848 				return 0;
1849 
1850 			chipstart = cfi->chips[chipnum].start;
1851 		}
1852 	}
1853 
1854 	/* Write the trailing bytes if any */
1855 	if (len & (map_bankwidth(map) - 1)) {
1856 		map_word tmp_buf;
1857 
1858 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
1859 		if (ret)
1860 			return ret;
1861 
1862 		tmp_buf = map_read(map, ofs + chipstart);
1863 
1864 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1865 
1866 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1867 					     ofs, tmp_buf);
1868 		if (ret)
1869 			return ret;
1870 
1871 		(*retlen) += len;
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 
1878 /*
1879  * Handle devices with one erase region, that only implement
1880  * the chip erase command.
1881  */
1882 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1883 {
1884 	struct cfi_private *cfi = map->fldrv_priv;
1885 	unsigned long timeo = jiffies + HZ;
1886 	unsigned long int adr;
1887 	DECLARE_WAITQUEUE(wait, current);
1888 	int ret = 0;
1889 
1890 	adr = cfi->addr_unlock1;
1891 
1892 	mutex_lock(&chip->mutex);
1893 	ret = get_chip(map, chip, adr, FL_WRITING);
1894 	if (ret) {
1895 		mutex_unlock(&chip->mutex);
1896 		return ret;
1897 	}
1898 
1899 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1900 	       __func__, chip->start );
1901 
1902 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1903 	ENABLE_VPP(map);
1904 	xip_disable(map, chip, adr);
1905 
1906 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1907 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1908 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1909 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1910 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1911 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1912 
1913 	chip->state = FL_ERASING;
1914 	chip->erase_suspended = 0;
1915 	chip->in_progress_block_addr = adr;
1916 
1917 	INVALIDATE_CACHE_UDELAY(map, chip,
1918 				adr, map->size,
1919 				chip->erase_time*500);
1920 
1921 	timeo = jiffies + (HZ*20);
1922 
1923 	for (;;) {
1924 		if (chip->state != FL_ERASING) {
1925 			/* Someone's suspended the erase. Sleep */
1926 			set_current_state(TASK_UNINTERRUPTIBLE);
1927 			add_wait_queue(&chip->wq, &wait);
1928 			mutex_unlock(&chip->mutex);
1929 			schedule();
1930 			remove_wait_queue(&chip->wq, &wait);
1931 			mutex_lock(&chip->mutex);
1932 			continue;
1933 		}
1934 		if (chip->erase_suspended) {
1935 			/* This erase was suspended and resumed.
1936 			   Adjust the timeout */
1937 			timeo = jiffies + (HZ*20); /* FIXME */
1938 			chip->erase_suspended = 0;
1939 		}
1940 
1941 		if (chip_ready(map, adr))
1942 			break;
1943 
1944 		if (time_after(jiffies, timeo)) {
1945 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1946 				__func__ );
1947 			break;
1948 		}
1949 
1950 		/* Latency issues. Drop the lock, wait a while and retry */
1951 		UDELAY(map, chip, adr, 1000000/HZ);
1952 	}
1953 	/* Did we succeed? */
1954 	if (!chip_good(map, adr, map_word_ff(map))) {
1955 		/* reset on all failures. */
1956 		map_write( map, CMD(0xF0), chip->start );
1957 		/* FIXME - should have reset delay before continuing */
1958 
1959 		ret = -EIO;
1960 	}
1961 
1962 	chip->state = FL_READY;
1963 	xip_enable(map, chip, adr);
1964 	DISABLE_VPP(map);
1965 	put_chip(map, chip, adr);
1966 	mutex_unlock(&chip->mutex);
1967 
1968 	return ret;
1969 }
1970 
1971 
1972 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1973 {
1974 	struct cfi_private *cfi = map->fldrv_priv;
1975 	unsigned long timeo = jiffies + HZ;
1976 	DECLARE_WAITQUEUE(wait, current);
1977 	int ret = 0;
1978 
1979 	adr += chip->start;
1980 
1981 	mutex_lock(&chip->mutex);
1982 	ret = get_chip(map, chip, adr, FL_ERASING);
1983 	if (ret) {
1984 		mutex_unlock(&chip->mutex);
1985 		return ret;
1986 	}
1987 
1988 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1989 	       __func__, adr );
1990 
1991 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1992 	ENABLE_VPP(map);
1993 	xip_disable(map, chip, adr);
1994 
1995 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1996 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1997 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1998 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1999 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2000 	map_write(map, cfi->sector_erase_cmd, adr);
2001 
2002 	chip->state = FL_ERASING;
2003 	chip->erase_suspended = 0;
2004 	chip->in_progress_block_addr = adr;
2005 
2006 	INVALIDATE_CACHE_UDELAY(map, chip,
2007 				adr, len,
2008 				chip->erase_time*500);
2009 
2010 	timeo = jiffies + (HZ*20);
2011 
2012 	for (;;) {
2013 		if (chip->state != FL_ERASING) {
2014 			/* Someone's suspended the erase. Sleep */
2015 			set_current_state(TASK_UNINTERRUPTIBLE);
2016 			add_wait_queue(&chip->wq, &wait);
2017 			mutex_unlock(&chip->mutex);
2018 			schedule();
2019 			remove_wait_queue(&chip->wq, &wait);
2020 			mutex_lock(&chip->mutex);
2021 			continue;
2022 		}
2023 		if (chip->erase_suspended) {
2024 			/* This erase was suspended and resumed.
2025 			   Adjust the timeout */
2026 			timeo = jiffies + (HZ*20); /* FIXME */
2027 			chip->erase_suspended = 0;
2028 		}
2029 
2030 		if (chip_ready(map, adr)) {
2031 			xip_enable(map, chip, adr);
2032 			break;
2033 		}
2034 
2035 		if (time_after(jiffies, timeo)) {
2036 			xip_enable(map, chip, adr);
2037 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2038 				__func__ );
2039 			break;
2040 		}
2041 
2042 		/* Latency issues. Drop the lock, wait a while and retry */
2043 		UDELAY(map, chip, adr, 1000000/HZ);
2044 	}
2045 	/* Did we succeed? */
2046 	if (!chip_good(map, adr, map_word_ff(map))) {
2047 		/* reset on all failures. */
2048 		map_write( map, CMD(0xF0), chip->start );
2049 		/* FIXME - should have reset delay before continuing */
2050 
2051 		ret = -EIO;
2052 	}
2053 
2054 	chip->state = FL_READY;
2055 	DISABLE_VPP(map);
2056 	put_chip(map, chip, adr);
2057 	mutex_unlock(&chip->mutex);
2058 	return ret;
2059 }
2060 
2061 
2062 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2063 {
2064 	unsigned long ofs, len;
2065 	int ret;
2066 
2067 	ofs = instr->addr;
2068 	len = instr->len;
2069 
2070 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
2071 	if (ret)
2072 		return ret;
2073 
2074 	instr->state = MTD_ERASE_DONE;
2075 	mtd_erase_callback(instr);
2076 
2077 	return 0;
2078 }
2079 
2080 
2081 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2082 {
2083 	struct map_info *map = mtd->priv;
2084 	struct cfi_private *cfi = map->fldrv_priv;
2085 	int ret = 0;
2086 
2087 	if (instr->addr != 0)
2088 		return -EINVAL;
2089 
2090 	if (instr->len != mtd->size)
2091 		return -EINVAL;
2092 
2093 	ret = do_erase_chip(map, &cfi->chips[0]);
2094 	if (ret)
2095 		return ret;
2096 
2097 	instr->state = MTD_ERASE_DONE;
2098 	mtd_erase_callback(instr);
2099 
2100 	return 0;
2101 }
2102 
2103 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2104 			 unsigned long adr, int len, void *thunk)
2105 {
2106 	struct cfi_private *cfi = map->fldrv_priv;
2107 	int ret;
2108 
2109 	mutex_lock(&chip->mutex);
2110 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2111 	if (ret)
2112 		goto out_unlock;
2113 	chip->state = FL_LOCKING;
2114 
2115 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2116 
2117 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2118 			 cfi->device_type, NULL);
2119 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2120 			 cfi->device_type, NULL);
2121 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2122 			 cfi->device_type, NULL);
2123 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2124 			 cfi->device_type, NULL);
2125 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2126 			 cfi->device_type, NULL);
2127 	map_write(map, CMD(0x40), chip->start + adr);
2128 
2129 	chip->state = FL_READY;
2130 	put_chip(map, chip, adr + chip->start);
2131 	ret = 0;
2132 
2133 out_unlock:
2134 	mutex_unlock(&chip->mutex);
2135 	return ret;
2136 }
2137 
2138 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2139 			   unsigned long adr, int len, void *thunk)
2140 {
2141 	struct cfi_private *cfi = map->fldrv_priv;
2142 	int ret;
2143 
2144 	mutex_lock(&chip->mutex);
2145 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2146 	if (ret)
2147 		goto out_unlock;
2148 	chip->state = FL_UNLOCKING;
2149 
2150 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2151 
2152 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2153 			 cfi->device_type, NULL);
2154 	map_write(map, CMD(0x70), adr);
2155 
2156 	chip->state = FL_READY;
2157 	put_chip(map, chip, adr + chip->start);
2158 	ret = 0;
2159 
2160 out_unlock:
2161 	mutex_unlock(&chip->mutex);
2162 	return ret;
2163 }
2164 
2165 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2166 {
2167 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2168 }
2169 
2170 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2171 {
2172 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2173 }
2174 
2175 
2176 static void cfi_amdstd_sync (struct mtd_info *mtd)
2177 {
2178 	struct map_info *map = mtd->priv;
2179 	struct cfi_private *cfi = map->fldrv_priv;
2180 	int i;
2181 	struct flchip *chip;
2182 	int ret = 0;
2183 	DECLARE_WAITQUEUE(wait, current);
2184 
2185 	for (i=0; !ret && i<cfi->numchips; i++) {
2186 		chip = &cfi->chips[i];
2187 
2188 	retry:
2189 		mutex_lock(&chip->mutex);
2190 
2191 		switch(chip->state) {
2192 		case FL_READY:
2193 		case FL_STATUS:
2194 		case FL_CFI_QUERY:
2195 		case FL_JEDEC_QUERY:
2196 			chip->oldstate = chip->state;
2197 			chip->state = FL_SYNCING;
2198 			/* No need to wake_up() on this state change -
2199 			 * as the whole point is that nobody can do anything
2200 			 * with the chip now anyway.
2201 			 */
2202 		case FL_SYNCING:
2203 			mutex_unlock(&chip->mutex);
2204 			break;
2205 
2206 		default:
2207 			/* Not an idle state */
2208 			set_current_state(TASK_UNINTERRUPTIBLE);
2209 			add_wait_queue(&chip->wq, &wait);
2210 
2211 			mutex_unlock(&chip->mutex);
2212 
2213 			schedule();
2214 
2215 			remove_wait_queue(&chip->wq, &wait);
2216 
2217 			goto retry;
2218 		}
2219 	}
2220 
2221 	/* Unlock the chips again */
2222 
2223 	for (i--; i >=0; i--) {
2224 		chip = &cfi->chips[i];
2225 
2226 		mutex_lock(&chip->mutex);
2227 
2228 		if (chip->state == FL_SYNCING) {
2229 			chip->state = chip->oldstate;
2230 			wake_up(&chip->wq);
2231 		}
2232 		mutex_unlock(&chip->mutex);
2233 	}
2234 }
2235 
2236 
2237 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2238 {
2239 	struct map_info *map = mtd->priv;
2240 	struct cfi_private *cfi = map->fldrv_priv;
2241 	int i;
2242 	struct flchip *chip;
2243 	int ret = 0;
2244 
2245 	for (i=0; !ret && i<cfi->numchips; i++) {
2246 		chip = &cfi->chips[i];
2247 
2248 		mutex_lock(&chip->mutex);
2249 
2250 		switch(chip->state) {
2251 		case FL_READY:
2252 		case FL_STATUS:
2253 		case FL_CFI_QUERY:
2254 		case FL_JEDEC_QUERY:
2255 			chip->oldstate = chip->state;
2256 			chip->state = FL_PM_SUSPENDED;
2257 			/* No need to wake_up() on this state change -
2258 			 * as the whole point is that nobody can do anything
2259 			 * with the chip now anyway.
2260 			 */
2261 		case FL_PM_SUSPENDED:
2262 			break;
2263 
2264 		default:
2265 			ret = -EAGAIN;
2266 			break;
2267 		}
2268 		mutex_unlock(&chip->mutex);
2269 	}
2270 
2271 	/* Unlock the chips again */
2272 
2273 	if (ret) {
2274 		for (i--; i >=0; i--) {
2275 			chip = &cfi->chips[i];
2276 
2277 			mutex_lock(&chip->mutex);
2278 
2279 			if (chip->state == FL_PM_SUSPENDED) {
2280 				chip->state = chip->oldstate;
2281 				wake_up(&chip->wq);
2282 			}
2283 			mutex_unlock(&chip->mutex);
2284 		}
2285 	}
2286 
2287 	return ret;
2288 }
2289 
2290 
2291 static void cfi_amdstd_resume(struct mtd_info *mtd)
2292 {
2293 	struct map_info *map = mtd->priv;
2294 	struct cfi_private *cfi = map->fldrv_priv;
2295 	int i;
2296 	struct flchip *chip;
2297 
2298 	for (i=0; i<cfi->numchips; i++) {
2299 
2300 		chip = &cfi->chips[i];
2301 
2302 		mutex_lock(&chip->mutex);
2303 
2304 		if (chip->state == FL_PM_SUSPENDED) {
2305 			chip->state = FL_READY;
2306 			map_write(map, CMD(0xF0), chip->start);
2307 			wake_up(&chip->wq);
2308 		}
2309 		else
2310 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2311 
2312 		mutex_unlock(&chip->mutex);
2313 	}
2314 }
2315 
2316 
2317 /*
2318  * Ensure that the flash device is put back into read array mode before
2319  * unloading the driver or rebooting.  On some systems, rebooting while
2320  * the flash is in query/program/erase mode will prevent the CPU from
2321  * fetching the bootloader code, requiring a hard reset or power cycle.
2322  */
2323 static int cfi_amdstd_reset(struct mtd_info *mtd)
2324 {
2325 	struct map_info *map = mtd->priv;
2326 	struct cfi_private *cfi = map->fldrv_priv;
2327 	int i, ret;
2328 	struct flchip *chip;
2329 
2330 	for (i = 0; i < cfi->numchips; i++) {
2331 
2332 		chip = &cfi->chips[i];
2333 
2334 		mutex_lock(&chip->mutex);
2335 
2336 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2337 		if (!ret) {
2338 			map_write(map, CMD(0xF0), chip->start);
2339 			chip->state = FL_SHUTDOWN;
2340 			put_chip(map, chip, chip->start);
2341 		}
2342 
2343 		mutex_unlock(&chip->mutex);
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 
2350 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2351 			       void *v)
2352 {
2353 	struct mtd_info *mtd;
2354 
2355 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2356 	cfi_amdstd_reset(mtd);
2357 	return NOTIFY_DONE;
2358 }
2359 
2360 
2361 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2362 {
2363 	struct map_info *map = mtd->priv;
2364 	struct cfi_private *cfi = map->fldrv_priv;
2365 
2366 	cfi_amdstd_reset(mtd);
2367 	unregister_reboot_notifier(&mtd->reboot_notifier);
2368 	kfree(cfi->cmdset_priv);
2369 	kfree(cfi->cfiq);
2370 	kfree(cfi);
2371 	kfree(mtd->eraseregions);
2372 }
2373 
2374 MODULE_LICENSE("GPL");
2375 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2376 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2377 MODULE_ALIAS("cfi_cmdset_0006");
2378 MODULE_ALIAS("cfi_cmdset_0701");
2379