1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define SST49LF004B	        0x0060
47 #define SST49LF040B	        0x0050
48 #define SST49LF008A		0x005a
49 #define AT49BV6416		0x00d6
50 
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 
62 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
63 				  size_t *retlen, const u_char *buf);
64 
65 static void cfi_amdstd_destroy(struct mtd_info *);
66 
67 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
69 
70 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72 #include "fwh_lock.h"
73 
74 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
75 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
76 
77 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 	.probe		= NULL, /* Not usable directly */
79 	.destroy	= cfi_amdstd_destroy,
80 	.name		= "cfi_cmdset_0002",
81 	.module		= THIS_MODULE
82 };
83 
84 
85 /* #define DEBUG_CFI_FEATURES */
86 
87 
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
90 {
91 	const char* erase_suspend[3] = {
92 		"Not supported", "Read only", "Read/write"
93 	};
94 	const char* top_bottom[6] = {
95 		"No WP", "8x8KiB sectors at top & bottom, no WP",
96 		"Bottom boot", "Top boot",
97 		"Uniform, Bottom WP", "Uniform, Top WP"
98 	};
99 
100 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
101 	printk("  Address sensitive unlock: %s\n",
102 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
103 
104 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 	else
107 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
108 
109 	if (extp->BlkProt == 0)
110 		printk("  Block protection: Not supported\n");
111 	else
112 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
113 
114 
115 	printk("  Temporary block unprotect: %s\n",
116 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 	printk("  Burst mode: %s\n",
120 	       extp->BurstMode ? "Supported" : "Not supported");
121 	if (extp->PageMode == 0)
122 		printk("  Page mode: Not supported\n");
123 	else
124 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
125 
126 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 	       extp->VppMin >> 4, extp->VppMin & 0xf);
128 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 	       extp->VppMax >> 4, extp->VppMax & 0xf);
130 
131 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 	else
134 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
135 }
136 #endif
137 
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info *mtd)
141 {
142 	struct map_info *map = mtd->priv;
143 	struct cfi_private *cfi = map->fldrv_priv;
144 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 	__u8 major = extp->MajorVersion;
146 	__u8 minor = extp->MinorVersion;
147 
148 	if (((major << 8) | minor) < 0x3131) {
149 		/* CFI version 1.0 => don't trust bootloc */
150 
151 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
152 			map->name, cfi->mfr, cfi->id);
153 
154 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
155 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
156 		 * These were badly detected as they have the 0x80 bit set
157 		 * so treat them as a special case.
158 		 */
159 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
160 
161 			/* Macronix added CFI to their 2nd generation
162 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
163 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
164 			 * has CFI.
165 			 *
166 			 * Therefore also check the manufacturer.
167 			 * This reduces the risk of false detection due to
168 			 * the 8-bit device ID.
169 			 */
170 			(cfi->mfr == CFI_MFR_MACRONIX)) {
171 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
172 				" detected\n", map->name);
173 			extp->TopBottom = 2;	/* bottom boot */
174 		} else
175 		if (cfi->id & 0x80) {
176 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
177 			extp->TopBottom = 3;	/* top boot */
178 		} else {
179 			extp->TopBottom = 2;	/* bottom boot */
180 		}
181 
182 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
183 			" deduced %s from Device ID\n", map->name, major, minor,
184 			extp->TopBottom == 2 ? "bottom" : "top");
185 	}
186 }
187 #endif
188 
189 static void fixup_use_write_buffers(struct mtd_info *mtd)
190 {
191 	struct map_info *map = mtd->priv;
192 	struct cfi_private *cfi = map->fldrv_priv;
193 	if (cfi->cfiq->BufWriteTimeoutTyp) {
194 		pr_debug("Using buffer write method\n" );
195 		mtd->_write = cfi_amdstd_write_buffers;
196 	}
197 }
198 
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
201 {
202 	struct map_info *map = mtd->priv;
203 	struct cfi_private *cfi = map->fldrv_priv;
204 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 	struct cfi_pri_atmel atmel_pri;
206 
207 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209 
210 	if (atmel_pri.Features & 0x02)
211 		extp->EraseSuspend = 2;
212 
213 	/* Some chips got it backwards... */
214 	if (cfi->id == AT49BV6416) {
215 		if (atmel_pri.BottomBoot)
216 			extp->TopBottom = 3;
217 		else
218 			extp->TopBottom = 2;
219 	} else {
220 		if (atmel_pri.BottomBoot)
221 			extp->TopBottom = 2;
222 		else
223 			extp->TopBottom = 3;
224 	}
225 
226 	/* burst write mode not supported */
227 	cfi->cfiq->BufWriteTimeoutTyp = 0;
228 	cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230 
231 static void fixup_use_secsi(struct mtd_info *mtd)
232 {
233 	/* Setup for chips with a secsi area */
234 	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
235 	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237 
238 static void fixup_use_erase_chip(struct mtd_info *mtd)
239 {
240 	struct map_info *map = mtd->priv;
241 	struct cfi_private *cfi = map->fldrv_priv;
242 	if ((cfi->cfiq->NumEraseRegions == 1) &&
243 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 		mtd->_erase = cfi_amdstd_erase_chip;
245 	}
246 
247 }
248 
249 /*
250  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251  * locked by default.
252  */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd)
254 {
255 	mtd->_lock = cfi_atmel_lock;
256 	mtd->_unlock = cfi_atmel_unlock;
257 	mtd->flags |= MTD_POWERUP_LOCK;
258 }
259 
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 	struct map_info *map = mtd->priv;
263 	struct cfi_private *cfi = map->fldrv_priv;
264 
265 	/*
266 	 * These flashes report two separate eraseblock regions based on the
267 	 * sector_erase-size and block_erase-size, although they both operate on the
268 	 * same memory. This is not allowed according to CFI, so we just pick the
269 	 * sector_erase-size.
270 	 */
271 	cfi->cfiq->NumEraseRegions = 1;
272 }
273 
274 static void fixup_sst39vf(struct mtd_info *mtd)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	fixup_old_sst_eraseregion(mtd);
280 
281 	cfi->addr_unlock1 = 0x5555;
282 	cfi->addr_unlock2 = 0x2AAA;
283 }
284 
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
286 {
287 	struct map_info *map = mtd->priv;
288 	struct cfi_private *cfi = map->fldrv_priv;
289 
290 	fixup_old_sst_eraseregion(mtd);
291 
292 	cfi->addr_unlock1 = 0x555;
293 	cfi->addr_unlock2 = 0x2AA;
294 
295 	cfi->sector_erase_cmd = CMD(0x50);
296 }
297 
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
299 {
300 	struct map_info *map = mtd->priv;
301 	struct cfi_private *cfi = map->fldrv_priv;
302 
303 	fixup_sst39vf_rev_b(mtd);
304 
305 	/*
306 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 	 * it should report a size of 8KBytes (0x0020*256).
308 	 */
309 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 	pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312 
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
314 {
315 	struct map_info *map = mtd->priv;
316 	struct cfi_private *cfi = map->fldrv_priv;
317 
318 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 		pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
321 	}
322 }
323 
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
325 {
326 	struct map_info *map = mtd->priv;
327 	struct cfi_private *cfi = map->fldrv_priv;
328 
329 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 		pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
332 	}
333 }
334 
335 /* Used to fix CFI-Tables of chips without Extended Query Tables */
336 static struct cfi_fixup cfi_nopri_fixup_table[] = {
337 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
338 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
339 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
340 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
341 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
342 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
343 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
344 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
345 	{ 0, 0, NULL }
346 };
347 
348 static struct cfi_fixup cfi_fixup_table[] = {
349 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
350 #ifdef AMD_BOOTLOC_BUG
351 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
352 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
353 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
354 #endif
355 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
356 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
357 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
358 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
359 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
360 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
361 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
362 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
363 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
364 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
365 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
366 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
367 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
368 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
369 #if !FORCE_WORD_WRITE
370 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
371 #endif
372 	{ 0, 0, NULL }
373 };
374 static struct cfi_fixup jedec_fixup_table[] = {
375 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
376 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
377 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
378 	{ 0, 0, NULL }
379 };
380 
381 static struct cfi_fixup fixup_table[] = {
382 	/* The CFI vendor ids and the JEDEC vendor IDs appear
383 	 * to be common.  It is like the devices id's are as
384 	 * well.  This table is to pick all cases where
385 	 * we know that is the case.
386 	 */
387 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
388 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
389 	{ 0, 0, NULL }
390 };
391 
392 
393 static void cfi_fixup_major_minor(struct cfi_private *cfi,
394 				  struct cfi_pri_amdstd *extp)
395 {
396 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
397 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
398 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
399 			/*
400 			 * Samsung K8P2815UQB and K8D6x16UxM chips
401 			 * report major=0 / minor=0.
402 			 * K8D3x16UxC chips report major=3 / minor=3.
403 			 */
404 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
405 			       " Extended Query version to 1.%c\n",
406 			       extp->MinorVersion);
407 			extp->MajorVersion = '1';
408 		}
409 	}
410 
411 	/*
412 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
413 	 */
414 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
415 		extp->MajorVersion = '1';
416 		extp->MinorVersion = '0';
417 	}
418 }
419 
420 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
421 {
422 	struct cfi_private *cfi = map->fldrv_priv;
423 	struct mtd_info *mtd;
424 	int i;
425 
426 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
427 	if (!mtd) {
428 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
429 		return NULL;
430 	}
431 	mtd->priv = map;
432 	mtd->type = MTD_NORFLASH;
433 
434 	/* Fill in the default mtd operations */
435 	mtd->_erase   = cfi_amdstd_erase_varsize;
436 	mtd->_write   = cfi_amdstd_write_words;
437 	mtd->_read    = cfi_amdstd_read;
438 	mtd->_sync    = cfi_amdstd_sync;
439 	mtd->_suspend = cfi_amdstd_suspend;
440 	mtd->_resume  = cfi_amdstd_resume;
441 	mtd->flags   = MTD_CAP_NORFLASH;
442 	mtd->name    = map->name;
443 	mtd->writesize = 1;
444 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
445 
446 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
447 			mtd->writebufsize);
448 
449 	mtd->_panic_write = cfi_amdstd_panic_write;
450 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
451 
452 	if (cfi->cfi_mode==CFI_MODE_CFI){
453 		unsigned char bootloc;
454 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
455 		struct cfi_pri_amdstd *extp;
456 
457 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
458 		if (extp) {
459 			/*
460 			 * It's a real CFI chip, not one for which the probe
461 			 * routine faked a CFI structure.
462 			 */
463 			cfi_fixup_major_minor(cfi, extp);
464 
465 			/*
466 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
467 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
468 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
469 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
470 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
471 			 */
472 			if (extp->MajorVersion != '1' ||
473 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
474 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
475 				       "version %c.%c (%#02x/%#02x).\n",
476 				       extp->MajorVersion, extp->MinorVersion,
477 				       extp->MajorVersion, extp->MinorVersion);
478 				kfree(extp);
479 				kfree(mtd);
480 				return NULL;
481 			}
482 
483 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
484 			       extp->MajorVersion, extp->MinorVersion);
485 
486 			/* Install our own private info structure */
487 			cfi->cmdset_priv = extp;
488 
489 			/* Apply cfi device specific fixups */
490 			cfi_fixup(mtd, cfi_fixup_table);
491 
492 #ifdef DEBUG_CFI_FEATURES
493 			/* Tell the user about it in lots of lovely detail */
494 			cfi_tell_features(extp);
495 #endif
496 
497 			bootloc = extp->TopBottom;
498 			if ((bootloc < 2) || (bootloc > 5)) {
499 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
500 				       "bank location (%d). Assuming bottom.\n",
501 				       map->name, bootloc);
502 				bootloc = 2;
503 			}
504 
505 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
506 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
507 
508 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
509 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
510 					__u32 swap;
511 
512 					swap = cfi->cfiq->EraseRegionInfo[i];
513 					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
514 					cfi->cfiq->EraseRegionInfo[j] = swap;
515 				}
516 			}
517 			/* Set the default CFI lock/unlock addresses */
518 			cfi->addr_unlock1 = 0x555;
519 			cfi->addr_unlock2 = 0x2aa;
520 		}
521 		cfi_fixup(mtd, cfi_nopri_fixup_table);
522 
523 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
524 			kfree(mtd);
525 			return NULL;
526 		}
527 
528 	} /* CFI mode */
529 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
530 		/* Apply jedec specific fixups */
531 		cfi_fixup(mtd, jedec_fixup_table);
532 	}
533 	/* Apply generic fixups */
534 	cfi_fixup(mtd, fixup_table);
535 
536 	for (i=0; i< cfi->numchips; i++) {
537 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
538 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
539 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
540 		cfi->chips[i].ref_point_counter = 0;
541 		init_waitqueue_head(&(cfi->chips[i].wq));
542 	}
543 
544 	map->fldrv = &cfi_amdstd_chipdrv;
545 
546 	return cfi_amdstd_setup(mtd);
547 }
548 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
549 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
550 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
551 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
552 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
553 
554 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
555 {
556 	struct map_info *map = mtd->priv;
557 	struct cfi_private *cfi = map->fldrv_priv;
558 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
559 	unsigned long offset = 0;
560 	int i,j;
561 
562 	printk(KERN_NOTICE "number of %s chips: %d\n",
563 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
564 	/* Select the correct geometry setup */
565 	mtd->size = devsize * cfi->numchips;
566 
567 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
568 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
569 				    * mtd->numeraseregions, GFP_KERNEL);
570 	if (!mtd->eraseregions) {
571 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
572 		goto setup_err;
573 	}
574 
575 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
576 		unsigned long ernum, ersize;
577 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
578 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
579 
580 		if (mtd->erasesize < ersize) {
581 			mtd->erasesize = ersize;
582 		}
583 		for (j=0; j<cfi->numchips; j++) {
584 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
585 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
586 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
587 		}
588 		offset += (ersize * ernum);
589 	}
590 	if (offset != devsize) {
591 		/* Argh */
592 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
593 		goto setup_err;
594 	}
595 
596 	__module_get(THIS_MODULE);
597 	register_reboot_notifier(&mtd->reboot_notifier);
598 	return mtd;
599 
600  setup_err:
601 	kfree(mtd->eraseregions);
602 	kfree(mtd);
603 	kfree(cfi->cmdset_priv);
604 	kfree(cfi->cfiq);
605 	return NULL;
606 }
607 
608 /*
609  * Return true if the chip is ready.
610  *
611  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
612  * non-suspended sector) and is indicated by no toggle bits toggling.
613  *
614  * Note that anything more complicated than checking if no bits are toggling
615  * (including checking DQ5 for an error status) is tricky to get working
616  * correctly and is therefore not done	(particularly with interleaved chips
617  * as each chip must be checked independently of the others).
618  */
619 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
620 {
621 	map_word d, t;
622 
623 	d = map_read(map, addr);
624 	t = map_read(map, addr);
625 
626 	return map_word_equal(map, d, t);
627 }
628 
629 /*
630  * Return true if the chip is ready and has the correct value.
631  *
632  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
633  * non-suspended sector) and it is indicated by no bits toggling.
634  *
635  * Error are indicated by toggling bits or bits held with the wrong value,
636  * or with bits toggling.
637  *
638  * Note that anything more complicated than checking if no bits are toggling
639  * (including checking DQ5 for an error status) is tricky to get working
640  * correctly and is therefore not done	(particularly with interleaved chips
641  * as each chip must be checked independently of the others).
642  *
643  */
644 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
645 {
646 	map_word oldd, curd;
647 
648 	oldd = map_read(map, addr);
649 	curd = map_read(map, addr);
650 
651 	return	map_word_equal(map, oldd, curd) &&
652 		map_word_equal(map, curd, expected);
653 }
654 
655 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
656 {
657 	DECLARE_WAITQUEUE(wait, current);
658 	struct cfi_private *cfi = map->fldrv_priv;
659 	unsigned long timeo;
660 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
661 
662  resettime:
663 	timeo = jiffies + HZ;
664  retry:
665 	switch (chip->state) {
666 
667 	case FL_STATUS:
668 		for (;;) {
669 			if (chip_ready(map, adr))
670 				break;
671 
672 			if (time_after(jiffies, timeo)) {
673 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
674 				return -EIO;
675 			}
676 			mutex_unlock(&chip->mutex);
677 			cfi_udelay(1);
678 			mutex_lock(&chip->mutex);
679 			/* Someone else might have been playing with it. */
680 			goto retry;
681 		}
682 
683 	case FL_READY:
684 	case FL_CFI_QUERY:
685 	case FL_JEDEC_QUERY:
686 		return 0;
687 
688 	case FL_ERASING:
689 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
690 		    !(mode == FL_READY || mode == FL_POINT ||
691 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
692 			goto sleep;
693 
694 		/* We could check to see if we're trying to access the sector
695 		 * that is currently being erased. However, no user will try
696 		 * anything like that so we just wait for the timeout. */
697 
698 		/* Erase suspend */
699 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
700 		 * commands when the erase algorithm isn't in progress. */
701 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
702 		chip->oldstate = FL_ERASING;
703 		chip->state = FL_ERASE_SUSPENDING;
704 		chip->erase_suspended = 1;
705 		for (;;) {
706 			if (chip_ready(map, adr))
707 				break;
708 
709 			if (time_after(jiffies, timeo)) {
710 				/* Should have suspended the erase by now.
711 				 * Send an Erase-Resume command as either
712 				 * there was an error (so leave the erase
713 				 * routine to recover from it) or we trying to
714 				 * use the erase-in-progress sector. */
715 				put_chip(map, chip, adr);
716 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
717 				return -EIO;
718 			}
719 
720 			mutex_unlock(&chip->mutex);
721 			cfi_udelay(1);
722 			mutex_lock(&chip->mutex);
723 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
724 			   So we can just loop here. */
725 		}
726 		chip->state = FL_READY;
727 		return 0;
728 
729 	case FL_XIP_WHILE_ERASING:
730 		if (mode != FL_READY && mode != FL_POINT &&
731 		    (!cfip || !(cfip->EraseSuspend&2)))
732 			goto sleep;
733 		chip->oldstate = chip->state;
734 		chip->state = FL_READY;
735 		return 0;
736 
737 	case FL_SHUTDOWN:
738 		/* The machine is rebooting */
739 		return -EIO;
740 
741 	case FL_POINT:
742 		/* Only if there's no operation suspended... */
743 		if (mode == FL_READY && chip->oldstate == FL_READY)
744 			return 0;
745 
746 	default:
747 	sleep:
748 		set_current_state(TASK_UNINTERRUPTIBLE);
749 		add_wait_queue(&chip->wq, &wait);
750 		mutex_unlock(&chip->mutex);
751 		schedule();
752 		remove_wait_queue(&chip->wq, &wait);
753 		mutex_lock(&chip->mutex);
754 		goto resettime;
755 	}
756 }
757 
758 
759 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
760 {
761 	struct cfi_private *cfi = map->fldrv_priv;
762 
763 	switch(chip->oldstate) {
764 	case FL_ERASING:
765 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
766 		chip->oldstate = FL_READY;
767 		chip->state = FL_ERASING;
768 		break;
769 
770 	case FL_XIP_WHILE_ERASING:
771 		chip->state = chip->oldstate;
772 		chip->oldstate = FL_READY;
773 		break;
774 
775 	case FL_READY:
776 	case FL_STATUS:
777 		break;
778 	default:
779 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
780 	}
781 	wake_up(&chip->wq);
782 }
783 
784 #ifdef CONFIG_MTD_XIP
785 
786 /*
787  * No interrupt what so ever can be serviced while the flash isn't in array
788  * mode.  This is ensured by the xip_disable() and xip_enable() functions
789  * enclosing any code path where the flash is known not to be in array mode.
790  * And within a XIP disabled code path, only functions marked with __xipram
791  * may be called and nothing else (it's a good thing to inspect generated
792  * assembly to make sure inline functions were actually inlined and that gcc
793  * didn't emit calls to its own support functions). Also configuring MTD CFI
794  * support to a single buswidth and a single interleave is also recommended.
795  */
796 
797 static void xip_disable(struct map_info *map, struct flchip *chip,
798 			unsigned long adr)
799 {
800 	/* TODO: chips with no XIP use should ignore and return */
801 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
802 	local_irq_disable();
803 }
804 
805 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
806 				unsigned long adr)
807 {
808 	struct cfi_private *cfi = map->fldrv_priv;
809 
810 	if (chip->state != FL_POINT && chip->state != FL_READY) {
811 		map_write(map, CMD(0xf0), adr);
812 		chip->state = FL_READY;
813 	}
814 	(void) map_read(map, adr);
815 	xip_iprefetch();
816 	local_irq_enable();
817 }
818 
819 /*
820  * When a delay is required for the flash operation to complete, the
821  * xip_udelay() function is polling for both the given timeout and pending
822  * (but still masked) hardware interrupts.  Whenever there is an interrupt
823  * pending then the flash erase operation is suspended, array mode restored
824  * and interrupts unmasked.  Task scheduling might also happen at that
825  * point.  The CPU eventually returns from the interrupt or the call to
826  * schedule() and the suspended flash operation is resumed for the remaining
827  * of the delay period.
828  *
829  * Warning: this function _will_ fool interrupt latency tracing tools.
830  */
831 
832 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
833 				unsigned long adr, int usec)
834 {
835 	struct cfi_private *cfi = map->fldrv_priv;
836 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
837 	map_word status, OK = CMD(0x80);
838 	unsigned long suspended, start = xip_currtime();
839 	flstate_t oldstate;
840 
841 	do {
842 		cpu_relax();
843 		if (xip_irqpending() && extp &&
844 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
845 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
846 			/*
847 			 * Let's suspend the erase operation when supported.
848 			 * Note that we currently don't try to suspend
849 			 * interleaved chips if there is already another
850 			 * operation suspended (imagine what happens
851 			 * when one chip was already done with the current
852 			 * operation while another chip suspended it, then
853 			 * we resume the whole thing at once).  Yes, it
854 			 * can happen!
855 			 */
856 			map_write(map, CMD(0xb0), adr);
857 			usec -= xip_elapsed_since(start);
858 			suspended = xip_currtime();
859 			do {
860 				if (xip_elapsed_since(suspended) > 100000) {
861 					/*
862 					 * The chip doesn't want to suspend
863 					 * after waiting for 100 msecs.
864 					 * This is a critical error but there
865 					 * is not much we can do here.
866 					 */
867 					return;
868 				}
869 				status = map_read(map, adr);
870 			} while (!map_word_andequal(map, status, OK, OK));
871 
872 			/* Suspend succeeded */
873 			oldstate = chip->state;
874 			if (!map_word_bitsset(map, status, CMD(0x40)))
875 				break;
876 			chip->state = FL_XIP_WHILE_ERASING;
877 			chip->erase_suspended = 1;
878 			map_write(map, CMD(0xf0), adr);
879 			(void) map_read(map, adr);
880 			xip_iprefetch();
881 			local_irq_enable();
882 			mutex_unlock(&chip->mutex);
883 			xip_iprefetch();
884 			cond_resched();
885 
886 			/*
887 			 * We're back.  However someone else might have
888 			 * decided to go write to the chip if we are in
889 			 * a suspended erase state.  If so let's wait
890 			 * until it's done.
891 			 */
892 			mutex_lock(&chip->mutex);
893 			while (chip->state != FL_XIP_WHILE_ERASING) {
894 				DECLARE_WAITQUEUE(wait, current);
895 				set_current_state(TASK_UNINTERRUPTIBLE);
896 				add_wait_queue(&chip->wq, &wait);
897 				mutex_unlock(&chip->mutex);
898 				schedule();
899 				remove_wait_queue(&chip->wq, &wait);
900 				mutex_lock(&chip->mutex);
901 			}
902 			/* Disallow XIP again */
903 			local_irq_disable();
904 
905 			/* Resume the write or erase operation */
906 			map_write(map, cfi->sector_erase_cmd, adr);
907 			chip->state = oldstate;
908 			start = xip_currtime();
909 		} else if (usec >= 1000000/HZ) {
910 			/*
911 			 * Try to save on CPU power when waiting delay
912 			 * is at least a system timer tick period.
913 			 * No need to be extremely accurate here.
914 			 */
915 			xip_cpu_idle();
916 		}
917 		status = map_read(map, adr);
918 	} while (!map_word_andequal(map, status, OK, OK)
919 		 && xip_elapsed_since(start) < usec);
920 }
921 
922 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
923 
924 /*
925  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
926  * the flash is actively programming or erasing since we have to poll for
927  * the operation to complete anyway.  We can't do that in a generic way with
928  * a XIP setup so do it before the actual flash operation in this case
929  * and stub it out from INVALIDATE_CACHE_UDELAY.
930  */
931 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
932 	INVALIDATE_CACHED_RANGE(map, from, size)
933 
934 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
935 	UDELAY(map, chip, adr, usec)
936 
937 /*
938  * Extra notes:
939  *
940  * Activating this XIP support changes the way the code works a bit.  For
941  * example the code to suspend the current process when concurrent access
942  * happens is never executed because xip_udelay() will always return with the
943  * same chip state as it was entered with.  This is why there is no care for
944  * the presence of add_wait_queue() or schedule() calls from within a couple
945  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
946  * The queueing and scheduling are always happening within xip_udelay().
947  *
948  * Similarly, get_chip() and put_chip() just happen to always be executed
949  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
950  * is in array mode, therefore never executing many cases therein and not
951  * causing any problem with XIP.
952  */
953 
954 #else
955 
956 #define xip_disable(map, chip, adr)
957 #define xip_enable(map, chip, adr)
958 #define XIP_INVAL_CACHED_RANGE(x...)
959 
960 #define UDELAY(map, chip, adr, usec)  \
961 do {  \
962 	mutex_unlock(&chip->mutex);  \
963 	cfi_udelay(usec);  \
964 	mutex_lock(&chip->mutex);  \
965 } while (0)
966 
967 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
968 do {  \
969 	mutex_unlock(&chip->mutex);  \
970 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
971 	cfi_udelay(usec);  \
972 	mutex_lock(&chip->mutex);  \
973 } while (0)
974 
975 #endif
976 
977 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
978 {
979 	unsigned long cmd_addr;
980 	struct cfi_private *cfi = map->fldrv_priv;
981 	int ret;
982 
983 	adr += chip->start;
984 
985 	/* Ensure cmd read/writes are aligned. */
986 	cmd_addr = adr & ~(map_bankwidth(map)-1);
987 
988 	mutex_lock(&chip->mutex);
989 	ret = get_chip(map, chip, cmd_addr, FL_READY);
990 	if (ret) {
991 		mutex_unlock(&chip->mutex);
992 		return ret;
993 	}
994 
995 	if (chip->state != FL_POINT && chip->state != FL_READY) {
996 		map_write(map, CMD(0xf0), cmd_addr);
997 		chip->state = FL_READY;
998 	}
999 
1000 	map_copy_from(map, buf, adr, len);
1001 
1002 	put_chip(map, chip, cmd_addr);
1003 
1004 	mutex_unlock(&chip->mutex);
1005 	return 0;
1006 }
1007 
1008 
1009 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1010 {
1011 	struct map_info *map = mtd->priv;
1012 	struct cfi_private *cfi = map->fldrv_priv;
1013 	unsigned long ofs;
1014 	int chipnum;
1015 	int ret = 0;
1016 
1017 	/* ofs: offset within the first chip that the first read should start */
1018 	chipnum = (from >> cfi->chipshift);
1019 	ofs = from - (chipnum <<  cfi->chipshift);
1020 
1021 	while (len) {
1022 		unsigned long thislen;
1023 
1024 		if (chipnum >= cfi->numchips)
1025 			break;
1026 
1027 		if ((len + ofs -1) >> cfi->chipshift)
1028 			thislen = (1<<cfi->chipshift) - ofs;
1029 		else
1030 			thislen = len;
1031 
1032 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1033 		if (ret)
1034 			break;
1035 
1036 		*retlen += thislen;
1037 		len -= thislen;
1038 		buf += thislen;
1039 
1040 		ofs = 0;
1041 		chipnum++;
1042 	}
1043 	return ret;
1044 }
1045 
1046 
1047 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1048 {
1049 	DECLARE_WAITQUEUE(wait, current);
1050 	unsigned long timeo = jiffies + HZ;
1051 	struct cfi_private *cfi = map->fldrv_priv;
1052 
1053  retry:
1054 	mutex_lock(&chip->mutex);
1055 
1056 	if (chip->state != FL_READY){
1057 		set_current_state(TASK_UNINTERRUPTIBLE);
1058 		add_wait_queue(&chip->wq, &wait);
1059 
1060 		mutex_unlock(&chip->mutex);
1061 
1062 		schedule();
1063 		remove_wait_queue(&chip->wq, &wait);
1064 		timeo = jiffies + HZ;
1065 
1066 		goto retry;
1067 	}
1068 
1069 	adr += chip->start;
1070 
1071 	chip->state = FL_READY;
1072 
1073 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1074 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1075 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1076 
1077 	map_copy_from(map, buf, adr, len);
1078 
1079 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1080 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1081 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1082 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1083 
1084 	wake_up(&chip->wq);
1085 	mutex_unlock(&chip->mutex);
1086 
1087 	return 0;
1088 }
1089 
1090 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1091 {
1092 	struct map_info *map = mtd->priv;
1093 	struct cfi_private *cfi = map->fldrv_priv;
1094 	unsigned long ofs;
1095 	int chipnum;
1096 	int ret = 0;
1097 
1098 	/* ofs: offset within the first chip that the first read should start */
1099 	/* 8 secsi bytes per chip */
1100 	chipnum=from>>3;
1101 	ofs=from & 7;
1102 
1103 	while (len) {
1104 		unsigned long thislen;
1105 
1106 		if (chipnum >= cfi->numchips)
1107 			break;
1108 
1109 		if ((len + ofs -1) >> 3)
1110 			thislen = (1<<3) - ofs;
1111 		else
1112 			thislen = len;
1113 
1114 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1115 		if (ret)
1116 			break;
1117 
1118 		*retlen += thislen;
1119 		len -= thislen;
1120 		buf += thislen;
1121 
1122 		ofs = 0;
1123 		chipnum++;
1124 	}
1125 	return ret;
1126 }
1127 
1128 
1129 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1130 {
1131 	struct cfi_private *cfi = map->fldrv_priv;
1132 	unsigned long timeo = jiffies + HZ;
1133 	/*
1134 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1135 	 * have a max write time of a few hundreds usec). However, we should
1136 	 * use the maximum timeout value given by the chip at probe time
1137 	 * instead.  Unfortunately, struct flchip does have a field for
1138 	 * maximum timeout, only for typical which can be far too short
1139 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1140 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1141 	 */
1142 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1143 	int ret = 0;
1144 	map_word oldd;
1145 	int retry_cnt = 0;
1146 
1147 	adr += chip->start;
1148 
1149 	mutex_lock(&chip->mutex);
1150 	ret = get_chip(map, chip, adr, FL_WRITING);
1151 	if (ret) {
1152 		mutex_unlock(&chip->mutex);
1153 		return ret;
1154 	}
1155 
1156 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1157 	       __func__, adr, datum.x[0] );
1158 
1159 	/*
1160 	 * Check for a NOP for the case when the datum to write is already
1161 	 * present - it saves time and works around buggy chips that corrupt
1162 	 * data at other locations when 0xff is written to a location that
1163 	 * already contains 0xff.
1164 	 */
1165 	oldd = map_read(map, adr);
1166 	if (map_word_equal(map, oldd, datum)) {
1167 		pr_debug("MTD %s(): NOP\n",
1168 		       __func__);
1169 		goto op_done;
1170 	}
1171 
1172 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1173 	ENABLE_VPP(map);
1174 	xip_disable(map, chip, adr);
1175  retry:
1176 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1177 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1178 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1179 	map_write(map, datum, adr);
1180 	chip->state = FL_WRITING;
1181 
1182 	INVALIDATE_CACHE_UDELAY(map, chip,
1183 				adr, map_bankwidth(map),
1184 				chip->word_write_time);
1185 
1186 	/* See comment above for timeout value. */
1187 	timeo = jiffies + uWriteTimeout;
1188 	for (;;) {
1189 		if (chip->state != FL_WRITING) {
1190 			/* Someone's suspended the write. Sleep */
1191 			DECLARE_WAITQUEUE(wait, current);
1192 
1193 			set_current_state(TASK_UNINTERRUPTIBLE);
1194 			add_wait_queue(&chip->wq, &wait);
1195 			mutex_unlock(&chip->mutex);
1196 			schedule();
1197 			remove_wait_queue(&chip->wq, &wait);
1198 			timeo = jiffies + (HZ / 2); /* FIXME */
1199 			mutex_lock(&chip->mutex);
1200 			continue;
1201 		}
1202 
1203 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1204 			xip_enable(map, chip, adr);
1205 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1206 			xip_disable(map, chip, adr);
1207 			break;
1208 		}
1209 
1210 		if (chip_ready(map, adr))
1211 			break;
1212 
1213 		/* Latency issues. Drop the lock, wait a while and retry */
1214 		UDELAY(map, chip, adr, 1);
1215 	}
1216 	/* Did we succeed? */
1217 	if (!chip_good(map, adr, datum)) {
1218 		/* reset on all failures. */
1219 		map_write( map, CMD(0xF0), chip->start );
1220 		/* FIXME - should have reset delay before continuing */
1221 
1222 		if (++retry_cnt <= MAX_WORD_RETRIES)
1223 			goto retry;
1224 
1225 		ret = -EIO;
1226 	}
1227 	xip_enable(map, chip, adr);
1228  op_done:
1229 	chip->state = FL_READY;
1230 	DISABLE_VPP(map);
1231 	put_chip(map, chip, adr);
1232 	mutex_unlock(&chip->mutex);
1233 
1234 	return ret;
1235 }
1236 
1237 
1238 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1239 				  size_t *retlen, const u_char *buf)
1240 {
1241 	struct map_info *map = mtd->priv;
1242 	struct cfi_private *cfi = map->fldrv_priv;
1243 	int ret = 0;
1244 	int chipnum;
1245 	unsigned long ofs, chipstart;
1246 	DECLARE_WAITQUEUE(wait, current);
1247 
1248 	chipnum = to >> cfi->chipshift;
1249 	ofs = to  - (chipnum << cfi->chipshift);
1250 	chipstart = cfi->chips[chipnum].start;
1251 
1252 	/* If it's not bus-aligned, do the first byte write */
1253 	if (ofs & (map_bankwidth(map)-1)) {
1254 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1255 		int i = ofs - bus_ofs;
1256 		int n = 0;
1257 		map_word tmp_buf;
1258 
1259  retry:
1260 		mutex_lock(&cfi->chips[chipnum].mutex);
1261 
1262 		if (cfi->chips[chipnum].state != FL_READY) {
1263 			set_current_state(TASK_UNINTERRUPTIBLE);
1264 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1265 
1266 			mutex_unlock(&cfi->chips[chipnum].mutex);
1267 
1268 			schedule();
1269 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1270 			goto retry;
1271 		}
1272 
1273 		/* Load 'tmp_buf' with old contents of flash */
1274 		tmp_buf = map_read(map, bus_ofs+chipstart);
1275 
1276 		mutex_unlock(&cfi->chips[chipnum].mutex);
1277 
1278 		/* Number of bytes to copy from buffer */
1279 		n = min_t(int, len, map_bankwidth(map)-i);
1280 
1281 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1282 
1283 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1284 				       bus_ofs, tmp_buf);
1285 		if (ret)
1286 			return ret;
1287 
1288 		ofs += n;
1289 		buf += n;
1290 		(*retlen) += n;
1291 		len -= n;
1292 
1293 		if (ofs >> cfi->chipshift) {
1294 			chipnum ++;
1295 			ofs = 0;
1296 			if (chipnum == cfi->numchips)
1297 				return 0;
1298 		}
1299 	}
1300 
1301 	/* We are now aligned, write as much as possible */
1302 	while(len >= map_bankwidth(map)) {
1303 		map_word datum;
1304 
1305 		datum = map_word_load(map, buf);
1306 
1307 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1308 				       ofs, datum);
1309 		if (ret)
1310 			return ret;
1311 
1312 		ofs += map_bankwidth(map);
1313 		buf += map_bankwidth(map);
1314 		(*retlen) += map_bankwidth(map);
1315 		len -= map_bankwidth(map);
1316 
1317 		if (ofs >> cfi->chipshift) {
1318 			chipnum ++;
1319 			ofs = 0;
1320 			if (chipnum == cfi->numchips)
1321 				return 0;
1322 			chipstart = cfi->chips[chipnum].start;
1323 		}
1324 	}
1325 
1326 	/* Write the trailing bytes if any */
1327 	if (len & (map_bankwidth(map)-1)) {
1328 		map_word tmp_buf;
1329 
1330  retry1:
1331 		mutex_lock(&cfi->chips[chipnum].mutex);
1332 
1333 		if (cfi->chips[chipnum].state != FL_READY) {
1334 			set_current_state(TASK_UNINTERRUPTIBLE);
1335 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1336 
1337 			mutex_unlock(&cfi->chips[chipnum].mutex);
1338 
1339 			schedule();
1340 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1341 			goto retry1;
1342 		}
1343 
1344 		tmp_buf = map_read(map, ofs + chipstart);
1345 
1346 		mutex_unlock(&cfi->chips[chipnum].mutex);
1347 
1348 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1349 
1350 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1351 				ofs, tmp_buf);
1352 		if (ret)
1353 			return ret;
1354 
1355 		(*retlen) += len;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 
1362 /*
1363  * FIXME: interleaved mode not tested, and probably not supported!
1364  */
1365 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1366 				    unsigned long adr, const u_char *buf,
1367 				    int len)
1368 {
1369 	struct cfi_private *cfi = map->fldrv_priv;
1370 	unsigned long timeo = jiffies + HZ;
1371 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1372 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1373 	int ret = -EIO;
1374 	unsigned long cmd_adr;
1375 	int z, words;
1376 	map_word datum;
1377 
1378 	adr += chip->start;
1379 	cmd_adr = adr;
1380 
1381 	mutex_lock(&chip->mutex);
1382 	ret = get_chip(map, chip, adr, FL_WRITING);
1383 	if (ret) {
1384 		mutex_unlock(&chip->mutex);
1385 		return ret;
1386 	}
1387 
1388 	datum = map_word_load(map, buf);
1389 
1390 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1391 	       __func__, adr, datum.x[0] );
1392 
1393 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1394 	ENABLE_VPP(map);
1395 	xip_disable(map, chip, cmd_adr);
1396 
1397 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1398 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1399 
1400 	/* Write Buffer Load */
1401 	map_write(map, CMD(0x25), cmd_adr);
1402 
1403 	chip->state = FL_WRITING_TO_BUFFER;
1404 
1405 	/* Write length of data to come */
1406 	words = len / map_bankwidth(map);
1407 	map_write(map, CMD(words - 1), cmd_adr);
1408 	/* Write data */
1409 	z = 0;
1410 	while(z < words * map_bankwidth(map)) {
1411 		datum = map_word_load(map, buf);
1412 		map_write(map, datum, adr + z);
1413 
1414 		z += map_bankwidth(map);
1415 		buf += map_bankwidth(map);
1416 	}
1417 	z -= map_bankwidth(map);
1418 
1419 	adr += z;
1420 
1421 	/* Write Buffer Program Confirm: GO GO GO */
1422 	map_write(map, CMD(0x29), cmd_adr);
1423 	chip->state = FL_WRITING;
1424 
1425 	INVALIDATE_CACHE_UDELAY(map, chip,
1426 				adr, map_bankwidth(map),
1427 				chip->word_write_time);
1428 
1429 	timeo = jiffies + uWriteTimeout;
1430 
1431 	for (;;) {
1432 		if (chip->state != FL_WRITING) {
1433 			/* Someone's suspended the write. Sleep */
1434 			DECLARE_WAITQUEUE(wait, current);
1435 
1436 			set_current_state(TASK_UNINTERRUPTIBLE);
1437 			add_wait_queue(&chip->wq, &wait);
1438 			mutex_unlock(&chip->mutex);
1439 			schedule();
1440 			remove_wait_queue(&chip->wq, &wait);
1441 			timeo = jiffies + (HZ / 2); /* FIXME */
1442 			mutex_lock(&chip->mutex);
1443 			continue;
1444 		}
1445 
1446 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1447 			break;
1448 
1449 		if (chip_ready(map, adr)) {
1450 			xip_enable(map, chip, adr);
1451 			goto op_done;
1452 		}
1453 
1454 		/* Latency issues. Drop the lock, wait a while and retry */
1455 		UDELAY(map, chip, adr, 1);
1456 	}
1457 
1458 	/* reset on all failures. */
1459 	map_write( map, CMD(0xF0), chip->start );
1460 	xip_enable(map, chip, adr);
1461 	/* FIXME - should have reset delay before continuing */
1462 
1463 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1464 	       __func__ );
1465 
1466 	ret = -EIO;
1467  op_done:
1468 	chip->state = FL_READY;
1469 	DISABLE_VPP(map);
1470 	put_chip(map, chip, adr);
1471 	mutex_unlock(&chip->mutex);
1472 
1473 	return ret;
1474 }
1475 
1476 
1477 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1478 				    size_t *retlen, const u_char *buf)
1479 {
1480 	struct map_info *map = mtd->priv;
1481 	struct cfi_private *cfi = map->fldrv_priv;
1482 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1483 	int ret = 0;
1484 	int chipnum;
1485 	unsigned long ofs;
1486 
1487 	chipnum = to >> cfi->chipshift;
1488 	ofs = to  - (chipnum << cfi->chipshift);
1489 
1490 	/* If it's not bus-aligned, do the first word write */
1491 	if (ofs & (map_bankwidth(map)-1)) {
1492 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1493 		if (local_len > len)
1494 			local_len = len;
1495 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1496 					     local_len, retlen, buf);
1497 		if (ret)
1498 			return ret;
1499 		ofs += local_len;
1500 		buf += local_len;
1501 		len -= local_len;
1502 
1503 		if (ofs >> cfi->chipshift) {
1504 			chipnum ++;
1505 			ofs = 0;
1506 			if (chipnum == cfi->numchips)
1507 				return 0;
1508 		}
1509 	}
1510 
1511 	/* Write buffer is worth it only if more than one word to write... */
1512 	while (len >= map_bankwidth(map) * 2) {
1513 		/* We must not cross write block boundaries */
1514 		int size = wbufsize - (ofs & (wbufsize-1));
1515 
1516 		if (size > len)
1517 			size = len;
1518 		if (size % map_bankwidth(map))
1519 			size -= size % map_bankwidth(map);
1520 
1521 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1522 				      ofs, buf, size);
1523 		if (ret)
1524 			return ret;
1525 
1526 		ofs += size;
1527 		buf += size;
1528 		(*retlen) += size;
1529 		len -= size;
1530 
1531 		if (ofs >> cfi->chipshift) {
1532 			chipnum ++;
1533 			ofs = 0;
1534 			if (chipnum == cfi->numchips)
1535 				return 0;
1536 		}
1537 	}
1538 
1539 	if (len) {
1540 		size_t retlen_dregs = 0;
1541 
1542 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1543 					     len, &retlen_dregs, buf);
1544 
1545 		*retlen += retlen_dregs;
1546 		return ret;
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 /*
1553  * Wait for the flash chip to become ready to write data
1554  *
1555  * This is only called during the panic_write() path. When panic_write()
1556  * is called, the kernel is in the process of a panic, and will soon be
1557  * dead. Therefore we don't take any locks, and attempt to get access
1558  * to the chip as soon as possible.
1559  */
1560 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
1561 				 unsigned long adr)
1562 {
1563 	struct cfi_private *cfi = map->fldrv_priv;
1564 	int retries = 10;
1565 	int i;
1566 
1567 	/*
1568 	 * If the driver thinks the chip is idle, and no toggle bits
1569 	 * are changing, then the chip is actually idle for sure.
1570 	 */
1571 	if (chip->state == FL_READY && chip_ready(map, adr))
1572 		return 0;
1573 
1574 	/*
1575 	 * Try several times to reset the chip and then wait for it
1576 	 * to become idle. The upper limit of a few milliseconds of
1577 	 * delay isn't a big problem: the kernel is dying anyway. It
1578 	 * is more important to save the messages.
1579 	 */
1580 	while (retries > 0) {
1581 		const unsigned long timeo = (HZ / 1000) + 1;
1582 
1583 		/* send the reset command */
1584 		map_write(map, CMD(0xF0), chip->start);
1585 
1586 		/* wait for the chip to become ready */
1587 		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
1588 			if (chip_ready(map, adr))
1589 				return 0;
1590 
1591 			udelay(1);
1592 		}
1593 	}
1594 
1595 	/* the chip never became ready */
1596 	return -EBUSY;
1597 }
1598 
1599 /*
1600  * Write out one word of data to a single flash chip during a kernel panic
1601  *
1602  * This is only called during the panic_write() path. When panic_write()
1603  * is called, the kernel is in the process of a panic, and will soon be
1604  * dead. Therefore we don't take any locks, and attempt to get access
1605  * to the chip as soon as possible.
1606  *
1607  * The implementation of this routine is intentionally similar to
1608  * do_write_oneword(), in order to ease code maintenance.
1609  */
1610 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
1611 				  unsigned long adr, map_word datum)
1612 {
1613 	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
1614 	struct cfi_private *cfi = map->fldrv_priv;
1615 	int retry_cnt = 0;
1616 	map_word oldd;
1617 	int ret = 0;
1618 	int i;
1619 
1620 	adr += chip->start;
1621 
1622 	ret = cfi_amdstd_panic_wait(map, chip, adr);
1623 	if (ret)
1624 		return ret;
1625 
1626 	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
1627 			__func__, adr, datum.x[0]);
1628 
1629 	/*
1630 	 * Check for a NOP for the case when the datum to write is already
1631 	 * present - it saves time and works around buggy chips that corrupt
1632 	 * data at other locations when 0xff is written to a location that
1633 	 * already contains 0xff.
1634 	 */
1635 	oldd = map_read(map, adr);
1636 	if (map_word_equal(map, oldd, datum)) {
1637 		pr_debug("MTD %s(): NOP\n", __func__);
1638 		goto op_done;
1639 	}
1640 
1641 	ENABLE_VPP(map);
1642 
1643 retry:
1644 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1645 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1646 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1647 	map_write(map, datum, adr);
1648 
1649 	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
1650 		if (chip_ready(map, adr))
1651 			break;
1652 
1653 		udelay(1);
1654 	}
1655 
1656 	if (!chip_good(map, adr, datum)) {
1657 		/* reset on all failures. */
1658 		map_write(map, CMD(0xF0), chip->start);
1659 		/* FIXME - should have reset delay before continuing */
1660 
1661 		if (++retry_cnt <= MAX_WORD_RETRIES)
1662 			goto retry;
1663 
1664 		ret = -EIO;
1665 	}
1666 
1667 op_done:
1668 	DISABLE_VPP(map);
1669 	return ret;
1670 }
1671 
1672 /*
1673  * Write out some data during a kernel panic
1674  *
1675  * This is used by the mtdoops driver to save the dying messages from a
1676  * kernel which has panic'd.
1677  *
1678  * This routine ignores all of the locking used throughout the rest of the
1679  * driver, in order to ensure that the data gets written out no matter what
1680  * state this driver (and the flash chip itself) was in when the kernel crashed.
1681  *
1682  * The implementation of this routine is intentionally similar to
1683  * cfi_amdstd_write_words(), in order to ease code maintenance.
1684  */
1685 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1686 				  size_t *retlen, const u_char *buf)
1687 {
1688 	struct map_info *map = mtd->priv;
1689 	struct cfi_private *cfi = map->fldrv_priv;
1690 	unsigned long ofs, chipstart;
1691 	int ret = 0;
1692 	int chipnum;
1693 
1694 	chipnum = to >> cfi->chipshift;
1695 	ofs = to - (chipnum << cfi->chipshift);
1696 	chipstart = cfi->chips[chipnum].start;
1697 
1698 	/* If it's not bus aligned, do the first byte write */
1699 	if (ofs & (map_bankwidth(map) - 1)) {
1700 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
1701 		int i = ofs - bus_ofs;
1702 		int n = 0;
1703 		map_word tmp_buf;
1704 
1705 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
1706 		if (ret)
1707 			return ret;
1708 
1709 		/* Load 'tmp_buf' with old contents of flash */
1710 		tmp_buf = map_read(map, bus_ofs + chipstart);
1711 
1712 		/* Number of bytes to copy from buffer */
1713 		n = min_t(int, len, map_bankwidth(map) - i);
1714 
1715 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1716 
1717 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1718 					     bus_ofs, tmp_buf);
1719 		if (ret)
1720 			return ret;
1721 
1722 		ofs += n;
1723 		buf += n;
1724 		(*retlen) += n;
1725 		len -= n;
1726 
1727 		if (ofs >> cfi->chipshift) {
1728 			chipnum++;
1729 			ofs = 0;
1730 			if (chipnum == cfi->numchips)
1731 				return 0;
1732 		}
1733 	}
1734 
1735 	/* We are now aligned, write as much as possible */
1736 	while (len >= map_bankwidth(map)) {
1737 		map_word datum;
1738 
1739 		datum = map_word_load(map, buf);
1740 
1741 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1742 					     ofs, datum);
1743 		if (ret)
1744 			return ret;
1745 
1746 		ofs += map_bankwidth(map);
1747 		buf += map_bankwidth(map);
1748 		(*retlen) += map_bankwidth(map);
1749 		len -= map_bankwidth(map);
1750 
1751 		if (ofs >> cfi->chipshift) {
1752 			chipnum++;
1753 			ofs = 0;
1754 			if (chipnum == cfi->numchips)
1755 				return 0;
1756 
1757 			chipstart = cfi->chips[chipnum].start;
1758 		}
1759 	}
1760 
1761 	/* Write the trailing bytes if any */
1762 	if (len & (map_bankwidth(map) - 1)) {
1763 		map_word tmp_buf;
1764 
1765 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
1766 		if (ret)
1767 			return ret;
1768 
1769 		tmp_buf = map_read(map, ofs + chipstart);
1770 
1771 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1772 
1773 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1774 					     ofs, tmp_buf);
1775 		if (ret)
1776 			return ret;
1777 
1778 		(*retlen) += len;
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 
1785 /*
1786  * Handle devices with one erase region, that only implement
1787  * the chip erase command.
1788  */
1789 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1790 {
1791 	struct cfi_private *cfi = map->fldrv_priv;
1792 	unsigned long timeo = jiffies + HZ;
1793 	unsigned long int adr;
1794 	DECLARE_WAITQUEUE(wait, current);
1795 	int ret = 0;
1796 
1797 	adr = cfi->addr_unlock1;
1798 
1799 	mutex_lock(&chip->mutex);
1800 	ret = get_chip(map, chip, adr, FL_WRITING);
1801 	if (ret) {
1802 		mutex_unlock(&chip->mutex);
1803 		return ret;
1804 	}
1805 
1806 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1807 	       __func__, chip->start );
1808 
1809 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1810 	ENABLE_VPP(map);
1811 	xip_disable(map, chip, adr);
1812 
1813 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1814 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1815 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1816 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1817 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1818 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1819 
1820 	chip->state = FL_ERASING;
1821 	chip->erase_suspended = 0;
1822 	chip->in_progress_block_addr = adr;
1823 
1824 	INVALIDATE_CACHE_UDELAY(map, chip,
1825 				adr, map->size,
1826 				chip->erase_time*500);
1827 
1828 	timeo = jiffies + (HZ*20);
1829 
1830 	for (;;) {
1831 		if (chip->state != FL_ERASING) {
1832 			/* Someone's suspended the erase. Sleep */
1833 			set_current_state(TASK_UNINTERRUPTIBLE);
1834 			add_wait_queue(&chip->wq, &wait);
1835 			mutex_unlock(&chip->mutex);
1836 			schedule();
1837 			remove_wait_queue(&chip->wq, &wait);
1838 			mutex_lock(&chip->mutex);
1839 			continue;
1840 		}
1841 		if (chip->erase_suspended) {
1842 			/* This erase was suspended and resumed.
1843 			   Adjust the timeout */
1844 			timeo = jiffies + (HZ*20); /* FIXME */
1845 			chip->erase_suspended = 0;
1846 		}
1847 
1848 		if (chip_ready(map, adr))
1849 			break;
1850 
1851 		if (time_after(jiffies, timeo)) {
1852 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1853 				__func__ );
1854 			break;
1855 		}
1856 
1857 		/* Latency issues. Drop the lock, wait a while and retry */
1858 		UDELAY(map, chip, adr, 1000000/HZ);
1859 	}
1860 	/* Did we succeed? */
1861 	if (!chip_good(map, adr, map_word_ff(map))) {
1862 		/* reset on all failures. */
1863 		map_write( map, CMD(0xF0), chip->start );
1864 		/* FIXME - should have reset delay before continuing */
1865 
1866 		ret = -EIO;
1867 	}
1868 
1869 	chip->state = FL_READY;
1870 	xip_enable(map, chip, adr);
1871 	DISABLE_VPP(map);
1872 	put_chip(map, chip, adr);
1873 	mutex_unlock(&chip->mutex);
1874 
1875 	return ret;
1876 }
1877 
1878 
1879 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1880 {
1881 	struct cfi_private *cfi = map->fldrv_priv;
1882 	unsigned long timeo = jiffies + HZ;
1883 	DECLARE_WAITQUEUE(wait, current);
1884 	int ret = 0;
1885 
1886 	adr += chip->start;
1887 
1888 	mutex_lock(&chip->mutex);
1889 	ret = get_chip(map, chip, adr, FL_ERASING);
1890 	if (ret) {
1891 		mutex_unlock(&chip->mutex);
1892 		return ret;
1893 	}
1894 
1895 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1896 	       __func__, adr );
1897 
1898 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1899 	ENABLE_VPP(map);
1900 	xip_disable(map, chip, adr);
1901 
1902 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1903 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1904 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1905 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1906 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1907 	map_write(map, cfi->sector_erase_cmd, adr);
1908 
1909 	chip->state = FL_ERASING;
1910 	chip->erase_suspended = 0;
1911 	chip->in_progress_block_addr = adr;
1912 
1913 	INVALIDATE_CACHE_UDELAY(map, chip,
1914 				adr, len,
1915 				chip->erase_time*500);
1916 
1917 	timeo = jiffies + (HZ*20);
1918 
1919 	for (;;) {
1920 		if (chip->state != FL_ERASING) {
1921 			/* Someone's suspended the erase. Sleep */
1922 			set_current_state(TASK_UNINTERRUPTIBLE);
1923 			add_wait_queue(&chip->wq, &wait);
1924 			mutex_unlock(&chip->mutex);
1925 			schedule();
1926 			remove_wait_queue(&chip->wq, &wait);
1927 			mutex_lock(&chip->mutex);
1928 			continue;
1929 		}
1930 		if (chip->erase_suspended) {
1931 			/* This erase was suspended and resumed.
1932 			   Adjust the timeout */
1933 			timeo = jiffies + (HZ*20); /* FIXME */
1934 			chip->erase_suspended = 0;
1935 		}
1936 
1937 		if (chip_ready(map, adr)) {
1938 			xip_enable(map, chip, adr);
1939 			break;
1940 		}
1941 
1942 		if (time_after(jiffies, timeo)) {
1943 			xip_enable(map, chip, adr);
1944 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1945 				__func__ );
1946 			break;
1947 		}
1948 
1949 		/* Latency issues. Drop the lock, wait a while and retry */
1950 		UDELAY(map, chip, adr, 1000000/HZ);
1951 	}
1952 	/* Did we succeed? */
1953 	if (!chip_good(map, adr, map_word_ff(map))) {
1954 		/* reset on all failures. */
1955 		map_write( map, CMD(0xF0), chip->start );
1956 		/* FIXME - should have reset delay before continuing */
1957 
1958 		ret = -EIO;
1959 	}
1960 
1961 	chip->state = FL_READY;
1962 	DISABLE_VPP(map);
1963 	put_chip(map, chip, adr);
1964 	mutex_unlock(&chip->mutex);
1965 	return ret;
1966 }
1967 
1968 
1969 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1970 {
1971 	unsigned long ofs, len;
1972 	int ret;
1973 
1974 	ofs = instr->addr;
1975 	len = instr->len;
1976 
1977 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1978 	if (ret)
1979 		return ret;
1980 
1981 	instr->state = MTD_ERASE_DONE;
1982 	mtd_erase_callback(instr);
1983 
1984 	return 0;
1985 }
1986 
1987 
1988 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1989 {
1990 	struct map_info *map = mtd->priv;
1991 	struct cfi_private *cfi = map->fldrv_priv;
1992 	int ret = 0;
1993 
1994 	if (instr->addr != 0)
1995 		return -EINVAL;
1996 
1997 	if (instr->len != mtd->size)
1998 		return -EINVAL;
1999 
2000 	ret = do_erase_chip(map, &cfi->chips[0]);
2001 	if (ret)
2002 		return ret;
2003 
2004 	instr->state = MTD_ERASE_DONE;
2005 	mtd_erase_callback(instr);
2006 
2007 	return 0;
2008 }
2009 
2010 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2011 			 unsigned long adr, int len, void *thunk)
2012 {
2013 	struct cfi_private *cfi = map->fldrv_priv;
2014 	int ret;
2015 
2016 	mutex_lock(&chip->mutex);
2017 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2018 	if (ret)
2019 		goto out_unlock;
2020 	chip->state = FL_LOCKING;
2021 
2022 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2023 
2024 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2025 			 cfi->device_type, NULL);
2026 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2027 			 cfi->device_type, NULL);
2028 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2029 			 cfi->device_type, NULL);
2030 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2031 			 cfi->device_type, NULL);
2032 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2033 			 cfi->device_type, NULL);
2034 	map_write(map, CMD(0x40), chip->start + adr);
2035 
2036 	chip->state = FL_READY;
2037 	put_chip(map, chip, adr + chip->start);
2038 	ret = 0;
2039 
2040 out_unlock:
2041 	mutex_unlock(&chip->mutex);
2042 	return ret;
2043 }
2044 
2045 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2046 			   unsigned long adr, int len, void *thunk)
2047 {
2048 	struct cfi_private *cfi = map->fldrv_priv;
2049 	int ret;
2050 
2051 	mutex_lock(&chip->mutex);
2052 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2053 	if (ret)
2054 		goto out_unlock;
2055 	chip->state = FL_UNLOCKING;
2056 
2057 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2058 
2059 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2060 			 cfi->device_type, NULL);
2061 	map_write(map, CMD(0x70), adr);
2062 
2063 	chip->state = FL_READY;
2064 	put_chip(map, chip, adr + chip->start);
2065 	ret = 0;
2066 
2067 out_unlock:
2068 	mutex_unlock(&chip->mutex);
2069 	return ret;
2070 }
2071 
2072 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2073 {
2074 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2075 }
2076 
2077 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2078 {
2079 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2080 }
2081 
2082 
2083 static void cfi_amdstd_sync (struct mtd_info *mtd)
2084 {
2085 	struct map_info *map = mtd->priv;
2086 	struct cfi_private *cfi = map->fldrv_priv;
2087 	int i;
2088 	struct flchip *chip;
2089 	int ret = 0;
2090 	DECLARE_WAITQUEUE(wait, current);
2091 
2092 	for (i=0; !ret && i<cfi->numchips; i++) {
2093 		chip = &cfi->chips[i];
2094 
2095 	retry:
2096 		mutex_lock(&chip->mutex);
2097 
2098 		switch(chip->state) {
2099 		case FL_READY:
2100 		case FL_STATUS:
2101 		case FL_CFI_QUERY:
2102 		case FL_JEDEC_QUERY:
2103 			chip->oldstate = chip->state;
2104 			chip->state = FL_SYNCING;
2105 			/* No need to wake_up() on this state change -
2106 			 * as the whole point is that nobody can do anything
2107 			 * with the chip now anyway.
2108 			 */
2109 		case FL_SYNCING:
2110 			mutex_unlock(&chip->mutex);
2111 			break;
2112 
2113 		default:
2114 			/* Not an idle state */
2115 			set_current_state(TASK_UNINTERRUPTIBLE);
2116 			add_wait_queue(&chip->wq, &wait);
2117 
2118 			mutex_unlock(&chip->mutex);
2119 
2120 			schedule();
2121 
2122 			remove_wait_queue(&chip->wq, &wait);
2123 
2124 			goto retry;
2125 		}
2126 	}
2127 
2128 	/* Unlock the chips again */
2129 
2130 	for (i--; i >=0; i--) {
2131 		chip = &cfi->chips[i];
2132 
2133 		mutex_lock(&chip->mutex);
2134 
2135 		if (chip->state == FL_SYNCING) {
2136 			chip->state = chip->oldstate;
2137 			wake_up(&chip->wq);
2138 		}
2139 		mutex_unlock(&chip->mutex);
2140 	}
2141 }
2142 
2143 
2144 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2145 {
2146 	struct map_info *map = mtd->priv;
2147 	struct cfi_private *cfi = map->fldrv_priv;
2148 	int i;
2149 	struct flchip *chip;
2150 	int ret = 0;
2151 
2152 	for (i=0; !ret && i<cfi->numchips; i++) {
2153 		chip = &cfi->chips[i];
2154 
2155 		mutex_lock(&chip->mutex);
2156 
2157 		switch(chip->state) {
2158 		case FL_READY:
2159 		case FL_STATUS:
2160 		case FL_CFI_QUERY:
2161 		case FL_JEDEC_QUERY:
2162 			chip->oldstate = chip->state;
2163 			chip->state = FL_PM_SUSPENDED;
2164 			/* No need to wake_up() on this state change -
2165 			 * as the whole point is that nobody can do anything
2166 			 * with the chip now anyway.
2167 			 */
2168 		case FL_PM_SUSPENDED:
2169 			break;
2170 
2171 		default:
2172 			ret = -EAGAIN;
2173 			break;
2174 		}
2175 		mutex_unlock(&chip->mutex);
2176 	}
2177 
2178 	/* Unlock the chips again */
2179 
2180 	if (ret) {
2181 		for (i--; i >=0; i--) {
2182 			chip = &cfi->chips[i];
2183 
2184 			mutex_lock(&chip->mutex);
2185 
2186 			if (chip->state == FL_PM_SUSPENDED) {
2187 				chip->state = chip->oldstate;
2188 				wake_up(&chip->wq);
2189 			}
2190 			mutex_unlock(&chip->mutex);
2191 		}
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 
2198 static void cfi_amdstd_resume(struct mtd_info *mtd)
2199 {
2200 	struct map_info *map = mtd->priv;
2201 	struct cfi_private *cfi = map->fldrv_priv;
2202 	int i;
2203 	struct flchip *chip;
2204 
2205 	for (i=0; i<cfi->numchips; i++) {
2206 
2207 		chip = &cfi->chips[i];
2208 
2209 		mutex_lock(&chip->mutex);
2210 
2211 		if (chip->state == FL_PM_SUSPENDED) {
2212 			chip->state = FL_READY;
2213 			map_write(map, CMD(0xF0), chip->start);
2214 			wake_up(&chip->wq);
2215 		}
2216 		else
2217 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2218 
2219 		mutex_unlock(&chip->mutex);
2220 	}
2221 }
2222 
2223 
2224 /*
2225  * Ensure that the flash device is put back into read array mode before
2226  * unloading the driver or rebooting.  On some systems, rebooting while
2227  * the flash is in query/program/erase mode will prevent the CPU from
2228  * fetching the bootloader code, requiring a hard reset or power cycle.
2229  */
2230 static int cfi_amdstd_reset(struct mtd_info *mtd)
2231 {
2232 	struct map_info *map = mtd->priv;
2233 	struct cfi_private *cfi = map->fldrv_priv;
2234 	int i, ret;
2235 	struct flchip *chip;
2236 
2237 	for (i = 0; i < cfi->numchips; i++) {
2238 
2239 		chip = &cfi->chips[i];
2240 
2241 		mutex_lock(&chip->mutex);
2242 
2243 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2244 		if (!ret) {
2245 			map_write(map, CMD(0xF0), chip->start);
2246 			chip->state = FL_SHUTDOWN;
2247 			put_chip(map, chip, chip->start);
2248 		}
2249 
2250 		mutex_unlock(&chip->mutex);
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 
2257 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2258 			       void *v)
2259 {
2260 	struct mtd_info *mtd;
2261 
2262 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2263 	cfi_amdstd_reset(mtd);
2264 	return NOTIFY_DONE;
2265 }
2266 
2267 
2268 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2269 {
2270 	struct map_info *map = mtd->priv;
2271 	struct cfi_private *cfi = map->fldrv_priv;
2272 
2273 	cfi_amdstd_reset(mtd);
2274 	unregister_reboot_notifier(&mtd->reboot_notifier);
2275 	kfree(cfi->cmdset_priv);
2276 	kfree(cfi->cfiq);
2277 	kfree(cfi);
2278 	kfree(mtd->eraseregions);
2279 }
2280 
2281 MODULE_LICENSE("GPL");
2282 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2283 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2284 MODULE_ALIAS("cfi_cmdset_0006");
2285 MODULE_ALIAS("cfi_cmdset_0701");
2286