1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define SST49LF004B	        0x0060
47 #define SST49LF040B	        0x0050
48 #define SST49LF008A		0x005a
49 #define AT49BV6416		0x00d6
50 
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 
62 static void cfi_amdstd_destroy(struct mtd_info *);
63 
64 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66 
67 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69 #include "fwh_lock.h"
70 
71 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
73 
74 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 	.probe		= NULL, /* Not usable directly */
76 	.destroy	= cfi_amdstd_destroy,
77 	.name		= "cfi_cmdset_0002",
78 	.module		= THIS_MODULE
79 };
80 
81 
82 /* #define DEBUG_CFI_FEATURES */
83 
84 
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87 {
88 	const char* erase_suspend[3] = {
89 		"Not supported", "Read only", "Read/write"
90 	};
91 	const char* top_bottom[6] = {
92 		"No WP", "8x8KiB sectors at top & bottom, no WP",
93 		"Bottom boot", "Top boot",
94 		"Uniform, Bottom WP", "Uniform, Top WP"
95 	};
96 
97 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
98 	printk("  Address sensitive unlock: %s\n",
99 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
100 
101 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 	else
104 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105 
106 	if (extp->BlkProt == 0)
107 		printk("  Block protection: Not supported\n");
108 	else
109 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
110 
111 
112 	printk("  Temporary block unprotect: %s\n",
113 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 	printk("  Burst mode: %s\n",
117 	       extp->BurstMode ? "Supported" : "Not supported");
118 	if (extp->PageMode == 0)
119 		printk("  Page mode: Not supported\n");
120 	else
121 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
122 
123 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 	       extp->VppMin >> 4, extp->VppMin & 0xf);
125 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 	       extp->VppMax >> 4, extp->VppMax & 0xf);
127 
128 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 	else
131 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132 }
133 #endif
134 
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info *mtd)
138 {
139 	struct map_info *map = mtd->priv;
140 	struct cfi_private *cfi = map->fldrv_priv;
141 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 	__u8 major = extp->MajorVersion;
143 	__u8 minor = extp->MinorVersion;
144 
145 	if (((major << 8) | minor) < 0x3131) {
146 		/* CFI version 1.0 => don't trust bootloc */
147 
148 		DEBUG(MTD_DEBUG_LEVEL1,
149 			"%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
150 			map->name, cfi->mfr, cfi->id);
151 
152 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
153 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
154 		 * These were badly detected as they have the 0x80 bit set
155 		 * so treat them as a special case.
156 		 */
157 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
158 
159 			/* Macronix added CFI to their 2nd generation
160 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
161 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
162 			 * has CFI.
163 			 *
164 			 * Therefore also check the manufacturer.
165 			 * This reduces the risk of false detection due to
166 			 * the 8-bit device ID.
167 			 */
168 			(cfi->mfr == CFI_MFR_MACRONIX)) {
169 			DEBUG(MTD_DEBUG_LEVEL1,
170 				"%s: Macronix MX29LV400C with bottom boot block"
171 				" detected\n", map->name);
172 			extp->TopBottom = 2;	/* bottom boot */
173 		} else
174 		if (cfi->id & 0x80) {
175 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
176 			extp->TopBottom = 3;	/* top boot */
177 		} else {
178 			extp->TopBottom = 2;	/* bottom boot */
179 		}
180 
181 		DEBUG(MTD_DEBUG_LEVEL1,
182 			"%s: AMD CFI PRI V%c.%c has no boot block field;"
183 			" deduced %s from Device ID\n", map->name, major, minor,
184 			extp->TopBottom == 2 ? "bottom" : "top");
185 	}
186 }
187 #endif
188 
189 static void fixup_use_write_buffers(struct mtd_info *mtd)
190 {
191 	struct map_info *map = mtd->priv;
192 	struct cfi_private *cfi = map->fldrv_priv;
193 	if (cfi->cfiq->BufWriteTimeoutTyp) {
194 		DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
195 		mtd->write = cfi_amdstd_write_buffers;
196 	}
197 }
198 
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
201 {
202 	struct map_info *map = mtd->priv;
203 	struct cfi_private *cfi = map->fldrv_priv;
204 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 	struct cfi_pri_atmel atmel_pri;
206 
207 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209 
210 	if (atmel_pri.Features & 0x02)
211 		extp->EraseSuspend = 2;
212 
213 	/* Some chips got it backwards... */
214 	if (cfi->id == AT49BV6416) {
215 		if (atmel_pri.BottomBoot)
216 			extp->TopBottom = 3;
217 		else
218 			extp->TopBottom = 2;
219 	} else {
220 		if (atmel_pri.BottomBoot)
221 			extp->TopBottom = 2;
222 		else
223 			extp->TopBottom = 3;
224 	}
225 
226 	/* burst write mode not supported */
227 	cfi->cfiq->BufWriteTimeoutTyp = 0;
228 	cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230 
231 static void fixup_use_secsi(struct mtd_info *mtd)
232 {
233 	/* Setup for chips with a secsi area */
234 	mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
235 	mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237 
238 static void fixup_use_erase_chip(struct mtd_info *mtd)
239 {
240 	struct map_info *map = mtd->priv;
241 	struct cfi_private *cfi = map->fldrv_priv;
242 	if ((cfi->cfiq->NumEraseRegions == 1) &&
243 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 		mtd->erase = cfi_amdstd_erase_chip;
245 	}
246 
247 }
248 
249 /*
250  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251  * locked by default.
252  */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd)
254 {
255 	mtd->lock = cfi_atmel_lock;
256 	mtd->unlock = cfi_atmel_unlock;
257 	mtd->flags |= MTD_POWERUP_LOCK;
258 }
259 
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 	struct map_info *map = mtd->priv;
263 	struct cfi_private *cfi = map->fldrv_priv;
264 
265 	/*
266 	 * These flashes report two seperate eraseblock regions based on the
267 	 * sector_erase-size and block_erase-size, although they both operate on the
268 	 * same memory. This is not allowed according to CFI, so we just pick the
269 	 * sector_erase-size.
270 	 */
271 	cfi->cfiq->NumEraseRegions = 1;
272 }
273 
274 static void fixup_sst39vf(struct mtd_info *mtd)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	fixup_old_sst_eraseregion(mtd);
280 
281 	cfi->addr_unlock1 = 0x5555;
282 	cfi->addr_unlock2 = 0x2AAA;
283 }
284 
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
286 {
287 	struct map_info *map = mtd->priv;
288 	struct cfi_private *cfi = map->fldrv_priv;
289 
290 	fixup_old_sst_eraseregion(mtd);
291 
292 	cfi->addr_unlock1 = 0x555;
293 	cfi->addr_unlock2 = 0x2AA;
294 
295 	cfi->sector_erase_cmd = CMD(0x50);
296 }
297 
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
299 {
300 	struct map_info *map = mtd->priv;
301 	struct cfi_private *cfi = map->fldrv_priv;
302 
303 	fixup_sst39vf_rev_b(mtd);
304 
305 	/*
306 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 	 * it should report a size of 8KBytes (0x0020*256).
308 	 */
309 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 	pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312 
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
314 {
315 	struct map_info *map = mtd->priv;
316 	struct cfi_private *cfi = map->fldrv_priv;
317 
318 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 		pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
321 	}
322 }
323 
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
325 {
326 	struct map_info *map = mtd->priv;
327 	struct cfi_private *cfi = map->fldrv_priv;
328 
329 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 		pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
332 	}
333 }
334 
335 /* Used to fix CFI-Tables of chips without Extended Query Tables */
336 static struct cfi_fixup cfi_nopri_fixup_table[] = {
337 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
338 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
339 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
340 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
341 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
342 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
343 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
344 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
345 	{ 0, 0, NULL }
346 };
347 
348 static struct cfi_fixup cfi_fixup_table[] = {
349 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
350 #ifdef AMD_BOOTLOC_BUG
351 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
352 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
353 #endif
354 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
355 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
356 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
357 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
358 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
359 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
360 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
361 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
362 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
363 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
364 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
365 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
366 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
367 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
368 #if !FORCE_WORD_WRITE
369 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
370 #endif
371 	{ 0, 0, NULL }
372 };
373 static struct cfi_fixup jedec_fixup_table[] = {
374 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
375 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
376 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
377 	{ 0, 0, NULL }
378 };
379 
380 static struct cfi_fixup fixup_table[] = {
381 	/* The CFI vendor ids and the JEDEC vendor IDs appear
382 	 * to be common.  It is like the devices id's are as
383 	 * well.  This table is to pick all cases where
384 	 * we know that is the case.
385 	 */
386 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
387 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
388 	{ 0, 0, NULL }
389 };
390 
391 
392 static void cfi_fixup_major_minor(struct cfi_private *cfi,
393 				  struct cfi_pri_amdstd *extp)
394 {
395 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
396 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
397 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
398 			/*
399 			 * Samsung K8P2815UQB and K8D6x16UxM chips
400 			 * report major=0 / minor=0.
401 			 * K8D3x16UxC chips report major=3 / minor=3.
402 			 */
403 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
404 			       " Extended Query version to 1.%c\n",
405 			       extp->MinorVersion);
406 			extp->MajorVersion = '1';
407 		}
408 	}
409 
410 	/*
411 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
412 	 */
413 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
414 		extp->MajorVersion = '1';
415 		extp->MinorVersion = '0';
416 	}
417 }
418 
419 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
420 {
421 	struct cfi_private *cfi = map->fldrv_priv;
422 	struct mtd_info *mtd;
423 	int i;
424 
425 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
426 	if (!mtd) {
427 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
428 		return NULL;
429 	}
430 	mtd->priv = map;
431 	mtd->type = MTD_NORFLASH;
432 
433 	/* Fill in the default mtd operations */
434 	mtd->erase   = cfi_amdstd_erase_varsize;
435 	mtd->write   = cfi_amdstd_write_words;
436 	mtd->read    = cfi_amdstd_read;
437 	mtd->sync    = cfi_amdstd_sync;
438 	mtd->suspend = cfi_amdstd_suspend;
439 	mtd->resume  = cfi_amdstd_resume;
440 	mtd->flags   = MTD_CAP_NORFLASH;
441 	mtd->name    = map->name;
442 	mtd->writesize = 1;
443 	mtd->writebufsize = 1 << cfi->cfiq->MaxBufWriteSize;
444 
445 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): write buffer size %d\n",
446 		__func__, mtd->writebufsize);
447 
448 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
449 
450 	if (cfi->cfi_mode==CFI_MODE_CFI){
451 		unsigned char bootloc;
452 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
453 		struct cfi_pri_amdstd *extp;
454 
455 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
456 		if (extp) {
457 			/*
458 			 * It's a real CFI chip, not one for which the probe
459 			 * routine faked a CFI structure.
460 			 */
461 			cfi_fixup_major_minor(cfi, extp);
462 
463 			/*
464 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4
465 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
466 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
467 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
468 			 */
469 			if (extp->MajorVersion != '1' ||
470 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '4'))) {
471 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
472 				       "version %c.%c (%#02x/%#02x).\n",
473 				       extp->MajorVersion, extp->MinorVersion,
474 				       extp->MajorVersion, extp->MinorVersion);
475 				kfree(extp);
476 				kfree(mtd);
477 				return NULL;
478 			}
479 
480 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
481 			       extp->MajorVersion, extp->MinorVersion);
482 
483 			/* Install our own private info structure */
484 			cfi->cmdset_priv = extp;
485 
486 			/* Apply cfi device specific fixups */
487 			cfi_fixup(mtd, cfi_fixup_table);
488 
489 #ifdef DEBUG_CFI_FEATURES
490 			/* Tell the user about it in lots of lovely detail */
491 			cfi_tell_features(extp);
492 #endif
493 
494 			bootloc = extp->TopBottom;
495 			if ((bootloc < 2) || (bootloc > 5)) {
496 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
497 				       "bank location (%d). Assuming bottom.\n",
498 				       map->name, bootloc);
499 				bootloc = 2;
500 			}
501 
502 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
503 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
504 
505 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
506 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
507 					__u32 swap;
508 
509 					swap = cfi->cfiq->EraseRegionInfo[i];
510 					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
511 					cfi->cfiq->EraseRegionInfo[j] = swap;
512 				}
513 			}
514 			/* Set the default CFI lock/unlock addresses */
515 			cfi->addr_unlock1 = 0x555;
516 			cfi->addr_unlock2 = 0x2aa;
517 		}
518 		cfi_fixup(mtd, cfi_nopri_fixup_table);
519 
520 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
521 			kfree(mtd);
522 			return NULL;
523 		}
524 
525 	} /* CFI mode */
526 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
527 		/* Apply jedec specific fixups */
528 		cfi_fixup(mtd, jedec_fixup_table);
529 	}
530 	/* Apply generic fixups */
531 	cfi_fixup(mtd, fixup_table);
532 
533 	for (i=0; i< cfi->numchips; i++) {
534 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
535 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
536 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
537 		cfi->chips[i].ref_point_counter = 0;
538 		init_waitqueue_head(&(cfi->chips[i].wq));
539 	}
540 
541 	map->fldrv = &cfi_amdstd_chipdrv;
542 
543 	return cfi_amdstd_setup(mtd);
544 }
545 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
546 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
547 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
550 
551 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
552 {
553 	struct map_info *map = mtd->priv;
554 	struct cfi_private *cfi = map->fldrv_priv;
555 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
556 	unsigned long offset = 0;
557 	int i,j;
558 
559 	printk(KERN_NOTICE "number of %s chips: %d\n",
560 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
561 	/* Select the correct geometry setup */
562 	mtd->size = devsize * cfi->numchips;
563 
564 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
565 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
566 				    * mtd->numeraseregions, GFP_KERNEL);
567 	if (!mtd->eraseregions) {
568 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
569 		goto setup_err;
570 	}
571 
572 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
573 		unsigned long ernum, ersize;
574 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
575 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
576 
577 		if (mtd->erasesize < ersize) {
578 			mtd->erasesize = ersize;
579 		}
580 		for (j=0; j<cfi->numchips; j++) {
581 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
582 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
583 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
584 		}
585 		offset += (ersize * ernum);
586 	}
587 	if (offset != devsize) {
588 		/* Argh */
589 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
590 		goto setup_err;
591 	}
592 
593 	__module_get(THIS_MODULE);
594 	register_reboot_notifier(&mtd->reboot_notifier);
595 	return mtd;
596 
597  setup_err:
598 	kfree(mtd->eraseregions);
599 	kfree(mtd);
600 	kfree(cfi->cmdset_priv);
601 	kfree(cfi->cfiq);
602 	return NULL;
603 }
604 
605 /*
606  * Return true if the chip is ready.
607  *
608  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
609  * non-suspended sector) and is indicated by no toggle bits toggling.
610  *
611  * Note that anything more complicated than checking if no bits are toggling
612  * (including checking DQ5 for an error status) is tricky to get working
613  * correctly and is therefore not done	(particulary with interleaved chips
614  * as each chip must be checked independantly of the others).
615  */
616 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
617 {
618 	map_word d, t;
619 
620 	d = map_read(map, addr);
621 	t = map_read(map, addr);
622 
623 	return map_word_equal(map, d, t);
624 }
625 
626 /*
627  * Return true if the chip is ready and has the correct value.
628  *
629  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
630  * non-suspended sector) and it is indicated by no bits toggling.
631  *
632  * Error are indicated by toggling bits or bits held with the wrong value,
633  * or with bits toggling.
634  *
635  * Note that anything more complicated than checking if no bits are toggling
636  * (including checking DQ5 for an error status) is tricky to get working
637  * correctly and is therefore not done	(particulary with interleaved chips
638  * as each chip must be checked independantly of the others).
639  *
640  */
641 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
642 {
643 	map_word oldd, curd;
644 
645 	oldd = map_read(map, addr);
646 	curd = map_read(map, addr);
647 
648 	return	map_word_equal(map, oldd, curd) &&
649 		map_word_equal(map, curd, expected);
650 }
651 
652 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
653 {
654 	DECLARE_WAITQUEUE(wait, current);
655 	struct cfi_private *cfi = map->fldrv_priv;
656 	unsigned long timeo;
657 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
658 
659  resettime:
660 	timeo = jiffies + HZ;
661  retry:
662 	switch (chip->state) {
663 
664 	case FL_STATUS:
665 		for (;;) {
666 			if (chip_ready(map, adr))
667 				break;
668 
669 			if (time_after(jiffies, timeo)) {
670 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
671 				return -EIO;
672 			}
673 			mutex_unlock(&chip->mutex);
674 			cfi_udelay(1);
675 			mutex_lock(&chip->mutex);
676 			/* Someone else might have been playing with it. */
677 			goto retry;
678 		}
679 
680 	case FL_READY:
681 	case FL_CFI_QUERY:
682 	case FL_JEDEC_QUERY:
683 		return 0;
684 
685 	case FL_ERASING:
686 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
687 		    !(mode == FL_READY || mode == FL_POINT ||
688 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
689 			goto sleep;
690 
691 		/* We could check to see if we're trying to access the sector
692 		 * that is currently being erased. However, no user will try
693 		 * anything like that so we just wait for the timeout. */
694 
695 		/* Erase suspend */
696 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
697 		 * commands when the erase algorithm isn't in progress. */
698 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
699 		chip->oldstate = FL_ERASING;
700 		chip->state = FL_ERASE_SUSPENDING;
701 		chip->erase_suspended = 1;
702 		for (;;) {
703 			if (chip_ready(map, adr))
704 				break;
705 
706 			if (time_after(jiffies, timeo)) {
707 				/* Should have suspended the erase by now.
708 				 * Send an Erase-Resume command as either
709 				 * there was an error (so leave the erase
710 				 * routine to recover from it) or we trying to
711 				 * use the erase-in-progress sector. */
712 				map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
713 				chip->state = FL_ERASING;
714 				chip->oldstate = FL_READY;
715 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
716 				return -EIO;
717 			}
718 
719 			mutex_unlock(&chip->mutex);
720 			cfi_udelay(1);
721 			mutex_lock(&chip->mutex);
722 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
723 			   So we can just loop here. */
724 		}
725 		chip->state = FL_READY;
726 		return 0;
727 
728 	case FL_XIP_WHILE_ERASING:
729 		if (mode != FL_READY && mode != FL_POINT &&
730 		    (!cfip || !(cfip->EraseSuspend&2)))
731 			goto sleep;
732 		chip->oldstate = chip->state;
733 		chip->state = FL_READY;
734 		return 0;
735 
736 	case FL_SHUTDOWN:
737 		/* The machine is rebooting */
738 		return -EIO;
739 
740 	case FL_POINT:
741 		/* Only if there's no operation suspended... */
742 		if (mode == FL_READY && chip->oldstate == FL_READY)
743 			return 0;
744 
745 	default:
746 	sleep:
747 		set_current_state(TASK_UNINTERRUPTIBLE);
748 		add_wait_queue(&chip->wq, &wait);
749 		mutex_unlock(&chip->mutex);
750 		schedule();
751 		remove_wait_queue(&chip->wq, &wait);
752 		mutex_lock(&chip->mutex);
753 		goto resettime;
754 	}
755 }
756 
757 
758 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
759 {
760 	struct cfi_private *cfi = map->fldrv_priv;
761 
762 	switch(chip->oldstate) {
763 	case FL_ERASING:
764 		chip->state = chip->oldstate;
765 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
766 		chip->oldstate = FL_READY;
767 		chip->state = FL_ERASING;
768 		break;
769 
770 	case FL_XIP_WHILE_ERASING:
771 		chip->state = chip->oldstate;
772 		chip->oldstate = FL_READY;
773 		break;
774 
775 	case FL_READY:
776 	case FL_STATUS:
777 		/* We should really make set_vpp() count, rather than doing this */
778 		DISABLE_VPP(map);
779 		break;
780 	default:
781 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
782 	}
783 	wake_up(&chip->wq);
784 }
785 
786 #ifdef CONFIG_MTD_XIP
787 
788 /*
789  * No interrupt what so ever can be serviced while the flash isn't in array
790  * mode.  This is ensured by the xip_disable() and xip_enable() functions
791  * enclosing any code path where the flash is known not to be in array mode.
792  * And within a XIP disabled code path, only functions marked with __xipram
793  * may be called and nothing else (it's a good thing to inspect generated
794  * assembly to make sure inline functions were actually inlined and that gcc
795  * didn't emit calls to its own support functions). Also configuring MTD CFI
796  * support to a single buswidth and a single interleave is also recommended.
797  */
798 
799 static void xip_disable(struct map_info *map, struct flchip *chip,
800 			unsigned long adr)
801 {
802 	/* TODO: chips with no XIP use should ignore and return */
803 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
804 	local_irq_disable();
805 }
806 
807 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
808 				unsigned long adr)
809 {
810 	struct cfi_private *cfi = map->fldrv_priv;
811 
812 	if (chip->state != FL_POINT && chip->state != FL_READY) {
813 		map_write(map, CMD(0xf0), adr);
814 		chip->state = FL_READY;
815 	}
816 	(void) map_read(map, adr);
817 	xip_iprefetch();
818 	local_irq_enable();
819 }
820 
821 /*
822  * When a delay is required for the flash operation to complete, the
823  * xip_udelay() function is polling for both the given timeout and pending
824  * (but still masked) hardware interrupts.  Whenever there is an interrupt
825  * pending then the flash erase operation is suspended, array mode restored
826  * and interrupts unmasked.  Task scheduling might also happen at that
827  * point.  The CPU eventually returns from the interrupt or the call to
828  * schedule() and the suspended flash operation is resumed for the remaining
829  * of the delay period.
830  *
831  * Warning: this function _will_ fool interrupt latency tracing tools.
832  */
833 
834 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
835 				unsigned long adr, int usec)
836 {
837 	struct cfi_private *cfi = map->fldrv_priv;
838 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
839 	map_word status, OK = CMD(0x80);
840 	unsigned long suspended, start = xip_currtime();
841 	flstate_t oldstate;
842 
843 	do {
844 		cpu_relax();
845 		if (xip_irqpending() && extp &&
846 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
847 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
848 			/*
849 			 * Let's suspend the erase operation when supported.
850 			 * Note that we currently don't try to suspend
851 			 * interleaved chips if there is already another
852 			 * operation suspended (imagine what happens
853 			 * when one chip was already done with the current
854 			 * operation while another chip suspended it, then
855 			 * we resume the whole thing at once).  Yes, it
856 			 * can happen!
857 			 */
858 			map_write(map, CMD(0xb0), adr);
859 			usec -= xip_elapsed_since(start);
860 			suspended = xip_currtime();
861 			do {
862 				if (xip_elapsed_since(suspended) > 100000) {
863 					/*
864 					 * The chip doesn't want to suspend
865 					 * after waiting for 100 msecs.
866 					 * This is a critical error but there
867 					 * is not much we can do here.
868 					 */
869 					return;
870 				}
871 				status = map_read(map, adr);
872 			} while (!map_word_andequal(map, status, OK, OK));
873 
874 			/* Suspend succeeded */
875 			oldstate = chip->state;
876 			if (!map_word_bitsset(map, status, CMD(0x40)))
877 				break;
878 			chip->state = FL_XIP_WHILE_ERASING;
879 			chip->erase_suspended = 1;
880 			map_write(map, CMD(0xf0), adr);
881 			(void) map_read(map, adr);
882 			xip_iprefetch();
883 			local_irq_enable();
884 			mutex_unlock(&chip->mutex);
885 			xip_iprefetch();
886 			cond_resched();
887 
888 			/*
889 			 * We're back.  However someone else might have
890 			 * decided to go write to the chip if we are in
891 			 * a suspended erase state.  If so let's wait
892 			 * until it's done.
893 			 */
894 			mutex_lock(&chip->mutex);
895 			while (chip->state != FL_XIP_WHILE_ERASING) {
896 				DECLARE_WAITQUEUE(wait, current);
897 				set_current_state(TASK_UNINTERRUPTIBLE);
898 				add_wait_queue(&chip->wq, &wait);
899 				mutex_unlock(&chip->mutex);
900 				schedule();
901 				remove_wait_queue(&chip->wq, &wait);
902 				mutex_lock(&chip->mutex);
903 			}
904 			/* Disallow XIP again */
905 			local_irq_disable();
906 
907 			/* Resume the write or erase operation */
908 			map_write(map, cfi->sector_erase_cmd, adr);
909 			chip->state = oldstate;
910 			start = xip_currtime();
911 		} else if (usec >= 1000000/HZ) {
912 			/*
913 			 * Try to save on CPU power when waiting delay
914 			 * is at least a system timer tick period.
915 			 * No need to be extremely accurate here.
916 			 */
917 			xip_cpu_idle();
918 		}
919 		status = map_read(map, adr);
920 	} while (!map_word_andequal(map, status, OK, OK)
921 		 && xip_elapsed_since(start) < usec);
922 }
923 
924 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
925 
926 /*
927  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
928  * the flash is actively programming or erasing since we have to poll for
929  * the operation to complete anyway.  We can't do that in a generic way with
930  * a XIP setup so do it before the actual flash operation in this case
931  * and stub it out from INVALIDATE_CACHE_UDELAY.
932  */
933 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
934 	INVALIDATE_CACHED_RANGE(map, from, size)
935 
936 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
937 	UDELAY(map, chip, adr, usec)
938 
939 /*
940  * Extra notes:
941  *
942  * Activating this XIP support changes the way the code works a bit.  For
943  * example the code to suspend the current process when concurrent access
944  * happens is never executed because xip_udelay() will always return with the
945  * same chip state as it was entered with.  This is why there is no care for
946  * the presence of add_wait_queue() or schedule() calls from within a couple
947  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
948  * The queueing and scheduling are always happening within xip_udelay().
949  *
950  * Similarly, get_chip() and put_chip() just happen to always be executed
951  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
952  * is in array mode, therefore never executing many cases therein and not
953  * causing any problem with XIP.
954  */
955 
956 #else
957 
958 #define xip_disable(map, chip, adr)
959 #define xip_enable(map, chip, adr)
960 #define XIP_INVAL_CACHED_RANGE(x...)
961 
962 #define UDELAY(map, chip, adr, usec)  \
963 do {  \
964 	mutex_unlock(&chip->mutex);  \
965 	cfi_udelay(usec);  \
966 	mutex_lock(&chip->mutex);  \
967 } while (0)
968 
969 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
970 do {  \
971 	mutex_unlock(&chip->mutex);  \
972 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
973 	cfi_udelay(usec);  \
974 	mutex_lock(&chip->mutex);  \
975 } while (0)
976 
977 #endif
978 
979 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
980 {
981 	unsigned long cmd_addr;
982 	struct cfi_private *cfi = map->fldrv_priv;
983 	int ret;
984 
985 	adr += chip->start;
986 
987 	/* Ensure cmd read/writes are aligned. */
988 	cmd_addr = adr & ~(map_bankwidth(map)-1);
989 
990 	mutex_lock(&chip->mutex);
991 	ret = get_chip(map, chip, cmd_addr, FL_READY);
992 	if (ret) {
993 		mutex_unlock(&chip->mutex);
994 		return ret;
995 	}
996 
997 	if (chip->state != FL_POINT && chip->state != FL_READY) {
998 		map_write(map, CMD(0xf0), cmd_addr);
999 		chip->state = FL_READY;
1000 	}
1001 
1002 	map_copy_from(map, buf, adr, len);
1003 
1004 	put_chip(map, chip, cmd_addr);
1005 
1006 	mutex_unlock(&chip->mutex);
1007 	return 0;
1008 }
1009 
1010 
1011 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1012 {
1013 	struct map_info *map = mtd->priv;
1014 	struct cfi_private *cfi = map->fldrv_priv;
1015 	unsigned long ofs;
1016 	int chipnum;
1017 	int ret = 0;
1018 
1019 	/* ofs: offset within the first chip that the first read should start */
1020 
1021 	chipnum = (from >> cfi->chipshift);
1022 	ofs = from - (chipnum <<  cfi->chipshift);
1023 
1024 
1025 	*retlen = 0;
1026 
1027 	while (len) {
1028 		unsigned long thislen;
1029 
1030 		if (chipnum >= cfi->numchips)
1031 			break;
1032 
1033 		if ((len + ofs -1) >> cfi->chipshift)
1034 			thislen = (1<<cfi->chipshift) - ofs;
1035 		else
1036 			thislen = len;
1037 
1038 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1039 		if (ret)
1040 			break;
1041 
1042 		*retlen += thislen;
1043 		len -= thislen;
1044 		buf += thislen;
1045 
1046 		ofs = 0;
1047 		chipnum++;
1048 	}
1049 	return ret;
1050 }
1051 
1052 
1053 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1054 {
1055 	DECLARE_WAITQUEUE(wait, current);
1056 	unsigned long timeo = jiffies + HZ;
1057 	struct cfi_private *cfi = map->fldrv_priv;
1058 
1059  retry:
1060 	mutex_lock(&chip->mutex);
1061 
1062 	if (chip->state != FL_READY){
1063 		set_current_state(TASK_UNINTERRUPTIBLE);
1064 		add_wait_queue(&chip->wq, &wait);
1065 
1066 		mutex_unlock(&chip->mutex);
1067 
1068 		schedule();
1069 		remove_wait_queue(&chip->wq, &wait);
1070 		timeo = jiffies + HZ;
1071 
1072 		goto retry;
1073 	}
1074 
1075 	adr += chip->start;
1076 
1077 	chip->state = FL_READY;
1078 
1079 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1080 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1081 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1082 
1083 	map_copy_from(map, buf, adr, len);
1084 
1085 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1086 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1087 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1088 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1089 
1090 	wake_up(&chip->wq);
1091 	mutex_unlock(&chip->mutex);
1092 
1093 	return 0;
1094 }
1095 
1096 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1097 {
1098 	struct map_info *map = mtd->priv;
1099 	struct cfi_private *cfi = map->fldrv_priv;
1100 	unsigned long ofs;
1101 	int chipnum;
1102 	int ret = 0;
1103 
1104 
1105 	/* ofs: offset within the first chip that the first read should start */
1106 
1107 	/* 8 secsi bytes per chip */
1108 	chipnum=from>>3;
1109 	ofs=from & 7;
1110 
1111 
1112 	*retlen = 0;
1113 
1114 	while (len) {
1115 		unsigned long thislen;
1116 
1117 		if (chipnum >= cfi->numchips)
1118 			break;
1119 
1120 		if ((len + ofs -1) >> 3)
1121 			thislen = (1<<3) - ofs;
1122 		else
1123 			thislen = len;
1124 
1125 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1126 		if (ret)
1127 			break;
1128 
1129 		*retlen += thislen;
1130 		len -= thislen;
1131 		buf += thislen;
1132 
1133 		ofs = 0;
1134 		chipnum++;
1135 	}
1136 	return ret;
1137 }
1138 
1139 
1140 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1141 {
1142 	struct cfi_private *cfi = map->fldrv_priv;
1143 	unsigned long timeo = jiffies + HZ;
1144 	/*
1145 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1146 	 * have a max write time of a few hundreds usec). However, we should
1147 	 * use the maximum timeout value given by the chip at probe time
1148 	 * instead.  Unfortunately, struct flchip does have a field for
1149 	 * maximum timeout, only for typical which can be far too short
1150 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1151 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1152 	 */
1153 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1154 	int ret = 0;
1155 	map_word oldd;
1156 	int retry_cnt = 0;
1157 
1158 	adr += chip->start;
1159 
1160 	mutex_lock(&chip->mutex);
1161 	ret = get_chip(map, chip, adr, FL_WRITING);
1162 	if (ret) {
1163 		mutex_unlock(&chip->mutex);
1164 		return ret;
1165 	}
1166 
1167 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1168 	       __func__, adr, datum.x[0] );
1169 
1170 	/*
1171 	 * Check for a NOP for the case when the datum to write is already
1172 	 * present - it saves time and works around buggy chips that corrupt
1173 	 * data at other locations when 0xff is written to a location that
1174 	 * already contains 0xff.
1175 	 */
1176 	oldd = map_read(map, adr);
1177 	if (map_word_equal(map, oldd, datum)) {
1178 		DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1179 		       __func__);
1180 		goto op_done;
1181 	}
1182 
1183 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1184 	ENABLE_VPP(map);
1185 	xip_disable(map, chip, adr);
1186  retry:
1187 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1188 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1189 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1190 	map_write(map, datum, adr);
1191 	chip->state = FL_WRITING;
1192 
1193 	INVALIDATE_CACHE_UDELAY(map, chip,
1194 				adr, map_bankwidth(map),
1195 				chip->word_write_time);
1196 
1197 	/* See comment above for timeout value. */
1198 	timeo = jiffies + uWriteTimeout;
1199 	for (;;) {
1200 		if (chip->state != FL_WRITING) {
1201 			/* Someone's suspended the write. Sleep */
1202 			DECLARE_WAITQUEUE(wait, current);
1203 
1204 			set_current_state(TASK_UNINTERRUPTIBLE);
1205 			add_wait_queue(&chip->wq, &wait);
1206 			mutex_unlock(&chip->mutex);
1207 			schedule();
1208 			remove_wait_queue(&chip->wq, &wait);
1209 			timeo = jiffies + (HZ / 2); /* FIXME */
1210 			mutex_lock(&chip->mutex);
1211 			continue;
1212 		}
1213 
1214 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1215 			xip_enable(map, chip, adr);
1216 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1217 			xip_disable(map, chip, adr);
1218 			break;
1219 		}
1220 
1221 		if (chip_ready(map, adr))
1222 			break;
1223 
1224 		/* Latency issues. Drop the lock, wait a while and retry */
1225 		UDELAY(map, chip, adr, 1);
1226 	}
1227 	/* Did we succeed? */
1228 	if (!chip_good(map, adr, datum)) {
1229 		/* reset on all failures. */
1230 		map_write( map, CMD(0xF0), chip->start );
1231 		/* FIXME - should have reset delay before continuing */
1232 
1233 		if (++retry_cnt <= MAX_WORD_RETRIES)
1234 			goto retry;
1235 
1236 		ret = -EIO;
1237 	}
1238 	xip_enable(map, chip, adr);
1239  op_done:
1240 	chip->state = FL_READY;
1241 	put_chip(map, chip, adr);
1242 	mutex_unlock(&chip->mutex);
1243 
1244 	return ret;
1245 }
1246 
1247 
1248 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1249 				  size_t *retlen, const u_char *buf)
1250 {
1251 	struct map_info *map = mtd->priv;
1252 	struct cfi_private *cfi = map->fldrv_priv;
1253 	int ret = 0;
1254 	int chipnum;
1255 	unsigned long ofs, chipstart;
1256 	DECLARE_WAITQUEUE(wait, current);
1257 
1258 	*retlen = 0;
1259 	if (!len)
1260 		return 0;
1261 
1262 	chipnum = to >> cfi->chipshift;
1263 	ofs = to  - (chipnum << cfi->chipshift);
1264 	chipstart = cfi->chips[chipnum].start;
1265 
1266 	/* If it's not bus-aligned, do the first byte write */
1267 	if (ofs & (map_bankwidth(map)-1)) {
1268 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1269 		int i = ofs - bus_ofs;
1270 		int n = 0;
1271 		map_word tmp_buf;
1272 
1273  retry:
1274 		mutex_lock(&cfi->chips[chipnum].mutex);
1275 
1276 		if (cfi->chips[chipnum].state != FL_READY) {
1277 			set_current_state(TASK_UNINTERRUPTIBLE);
1278 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1279 
1280 			mutex_unlock(&cfi->chips[chipnum].mutex);
1281 
1282 			schedule();
1283 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1284 			goto retry;
1285 		}
1286 
1287 		/* Load 'tmp_buf' with old contents of flash */
1288 		tmp_buf = map_read(map, bus_ofs+chipstart);
1289 
1290 		mutex_unlock(&cfi->chips[chipnum].mutex);
1291 
1292 		/* Number of bytes to copy from buffer */
1293 		n = min_t(int, len, map_bankwidth(map)-i);
1294 
1295 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1296 
1297 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1298 				       bus_ofs, tmp_buf);
1299 		if (ret)
1300 			return ret;
1301 
1302 		ofs += n;
1303 		buf += n;
1304 		(*retlen) += n;
1305 		len -= n;
1306 
1307 		if (ofs >> cfi->chipshift) {
1308 			chipnum ++;
1309 			ofs = 0;
1310 			if (chipnum == cfi->numchips)
1311 				return 0;
1312 		}
1313 	}
1314 
1315 	/* We are now aligned, write as much as possible */
1316 	while(len >= map_bankwidth(map)) {
1317 		map_word datum;
1318 
1319 		datum = map_word_load(map, buf);
1320 
1321 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1322 				       ofs, datum);
1323 		if (ret)
1324 			return ret;
1325 
1326 		ofs += map_bankwidth(map);
1327 		buf += map_bankwidth(map);
1328 		(*retlen) += map_bankwidth(map);
1329 		len -= map_bankwidth(map);
1330 
1331 		if (ofs >> cfi->chipshift) {
1332 			chipnum ++;
1333 			ofs = 0;
1334 			if (chipnum == cfi->numchips)
1335 				return 0;
1336 			chipstart = cfi->chips[chipnum].start;
1337 		}
1338 	}
1339 
1340 	/* Write the trailing bytes if any */
1341 	if (len & (map_bankwidth(map)-1)) {
1342 		map_word tmp_buf;
1343 
1344  retry1:
1345 		mutex_lock(&cfi->chips[chipnum].mutex);
1346 
1347 		if (cfi->chips[chipnum].state != FL_READY) {
1348 			set_current_state(TASK_UNINTERRUPTIBLE);
1349 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1350 
1351 			mutex_unlock(&cfi->chips[chipnum].mutex);
1352 
1353 			schedule();
1354 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1355 			goto retry1;
1356 		}
1357 
1358 		tmp_buf = map_read(map, ofs + chipstart);
1359 
1360 		mutex_unlock(&cfi->chips[chipnum].mutex);
1361 
1362 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1363 
1364 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1365 				ofs, tmp_buf);
1366 		if (ret)
1367 			return ret;
1368 
1369 		(*retlen) += len;
1370 	}
1371 
1372 	return 0;
1373 }
1374 
1375 
1376 /*
1377  * FIXME: interleaved mode not tested, and probably not supported!
1378  */
1379 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1380 				    unsigned long adr, const u_char *buf,
1381 				    int len)
1382 {
1383 	struct cfi_private *cfi = map->fldrv_priv;
1384 	unsigned long timeo = jiffies + HZ;
1385 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1386 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1387 	int ret = -EIO;
1388 	unsigned long cmd_adr;
1389 	int z, words;
1390 	map_word datum;
1391 
1392 	adr += chip->start;
1393 	cmd_adr = adr;
1394 
1395 	mutex_lock(&chip->mutex);
1396 	ret = get_chip(map, chip, adr, FL_WRITING);
1397 	if (ret) {
1398 		mutex_unlock(&chip->mutex);
1399 		return ret;
1400 	}
1401 
1402 	datum = map_word_load(map, buf);
1403 
1404 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1405 	       __func__, adr, datum.x[0] );
1406 
1407 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1408 	ENABLE_VPP(map);
1409 	xip_disable(map, chip, cmd_adr);
1410 
1411 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1412 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1413 
1414 	/* Write Buffer Load */
1415 	map_write(map, CMD(0x25), cmd_adr);
1416 
1417 	chip->state = FL_WRITING_TO_BUFFER;
1418 
1419 	/* Write length of data to come */
1420 	words = len / map_bankwidth(map);
1421 	map_write(map, CMD(words - 1), cmd_adr);
1422 	/* Write data */
1423 	z = 0;
1424 	while(z < words * map_bankwidth(map)) {
1425 		datum = map_word_load(map, buf);
1426 		map_write(map, datum, adr + z);
1427 
1428 		z += map_bankwidth(map);
1429 		buf += map_bankwidth(map);
1430 	}
1431 	z -= map_bankwidth(map);
1432 
1433 	adr += z;
1434 
1435 	/* Write Buffer Program Confirm: GO GO GO */
1436 	map_write(map, CMD(0x29), cmd_adr);
1437 	chip->state = FL_WRITING;
1438 
1439 	INVALIDATE_CACHE_UDELAY(map, chip,
1440 				adr, map_bankwidth(map),
1441 				chip->word_write_time);
1442 
1443 	timeo = jiffies + uWriteTimeout;
1444 
1445 	for (;;) {
1446 		if (chip->state != FL_WRITING) {
1447 			/* Someone's suspended the write. Sleep */
1448 			DECLARE_WAITQUEUE(wait, current);
1449 
1450 			set_current_state(TASK_UNINTERRUPTIBLE);
1451 			add_wait_queue(&chip->wq, &wait);
1452 			mutex_unlock(&chip->mutex);
1453 			schedule();
1454 			remove_wait_queue(&chip->wq, &wait);
1455 			timeo = jiffies + (HZ / 2); /* FIXME */
1456 			mutex_lock(&chip->mutex);
1457 			continue;
1458 		}
1459 
1460 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1461 			break;
1462 
1463 		if (chip_ready(map, adr)) {
1464 			xip_enable(map, chip, adr);
1465 			goto op_done;
1466 		}
1467 
1468 		/* Latency issues. Drop the lock, wait a while and retry */
1469 		UDELAY(map, chip, adr, 1);
1470 	}
1471 
1472 	/* reset on all failures. */
1473 	map_write( map, CMD(0xF0), chip->start );
1474 	xip_enable(map, chip, adr);
1475 	/* FIXME - should have reset delay before continuing */
1476 
1477 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1478 	       __func__ );
1479 
1480 	ret = -EIO;
1481  op_done:
1482 	chip->state = FL_READY;
1483 	put_chip(map, chip, adr);
1484 	mutex_unlock(&chip->mutex);
1485 
1486 	return ret;
1487 }
1488 
1489 
1490 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1491 				    size_t *retlen, const u_char *buf)
1492 {
1493 	struct map_info *map = mtd->priv;
1494 	struct cfi_private *cfi = map->fldrv_priv;
1495 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1496 	int ret = 0;
1497 	int chipnum;
1498 	unsigned long ofs;
1499 
1500 	*retlen = 0;
1501 	if (!len)
1502 		return 0;
1503 
1504 	chipnum = to >> cfi->chipshift;
1505 	ofs = to  - (chipnum << cfi->chipshift);
1506 
1507 	/* If it's not bus-aligned, do the first word write */
1508 	if (ofs & (map_bankwidth(map)-1)) {
1509 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1510 		if (local_len > len)
1511 			local_len = len;
1512 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1513 					     local_len, retlen, buf);
1514 		if (ret)
1515 			return ret;
1516 		ofs += local_len;
1517 		buf += local_len;
1518 		len -= local_len;
1519 
1520 		if (ofs >> cfi->chipshift) {
1521 			chipnum ++;
1522 			ofs = 0;
1523 			if (chipnum == cfi->numchips)
1524 				return 0;
1525 		}
1526 	}
1527 
1528 	/* Write buffer is worth it only if more than one word to write... */
1529 	while (len >= map_bankwidth(map) * 2) {
1530 		/* We must not cross write block boundaries */
1531 		int size = wbufsize - (ofs & (wbufsize-1));
1532 
1533 		if (size > len)
1534 			size = len;
1535 		if (size % map_bankwidth(map))
1536 			size -= size % map_bankwidth(map);
1537 
1538 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1539 				      ofs, buf, size);
1540 		if (ret)
1541 			return ret;
1542 
1543 		ofs += size;
1544 		buf += size;
1545 		(*retlen) += size;
1546 		len -= size;
1547 
1548 		if (ofs >> cfi->chipshift) {
1549 			chipnum ++;
1550 			ofs = 0;
1551 			if (chipnum == cfi->numchips)
1552 				return 0;
1553 		}
1554 	}
1555 
1556 	if (len) {
1557 		size_t retlen_dregs = 0;
1558 
1559 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1560 					     len, &retlen_dregs, buf);
1561 
1562 		*retlen += retlen_dregs;
1563 		return ret;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 
1570 /*
1571  * Handle devices with one erase region, that only implement
1572  * the chip erase command.
1573  */
1574 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1575 {
1576 	struct cfi_private *cfi = map->fldrv_priv;
1577 	unsigned long timeo = jiffies + HZ;
1578 	unsigned long int adr;
1579 	DECLARE_WAITQUEUE(wait, current);
1580 	int ret = 0;
1581 
1582 	adr = cfi->addr_unlock1;
1583 
1584 	mutex_lock(&chip->mutex);
1585 	ret = get_chip(map, chip, adr, FL_WRITING);
1586 	if (ret) {
1587 		mutex_unlock(&chip->mutex);
1588 		return ret;
1589 	}
1590 
1591 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1592 	       __func__, chip->start );
1593 
1594 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1595 	ENABLE_VPP(map);
1596 	xip_disable(map, chip, adr);
1597 
1598 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1599 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1600 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1601 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1602 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1603 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1604 
1605 	chip->state = FL_ERASING;
1606 	chip->erase_suspended = 0;
1607 	chip->in_progress_block_addr = adr;
1608 
1609 	INVALIDATE_CACHE_UDELAY(map, chip,
1610 				adr, map->size,
1611 				chip->erase_time*500);
1612 
1613 	timeo = jiffies + (HZ*20);
1614 
1615 	for (;;) {
1616 		if (chip->state != FL_ERASING) {
1617 			/* Someone's suspended the erase. Sleep */
1618 			set_current_state(TASK_UNINTERRUPTIBLE);
1619 			add_wait_queue(&chip->wq, &wait);
1620 			mutex_unlock(&chip->mutex);
1621 			schedule();
1622 			remove_wait_queue(&chip->wq, &wait);
1623 			mutex_lock(&chip->mutex);
1624 			continue;
1625 		}
1626 		if (chip->erase_suspended) {
1627 			/* This erase was suspended and resumed.
1628 			   Adjust the timeout */
1629 			timeo = jiffies + (HZ*20); /* FIXME */
1630 			chip->erase_suspended = 0;
1631 		}
1632 
1633 		if (chip_ready(map, adr))
1634 			break;
1635 
1636 		if (time_after(jiffies, timeo)) {
1637 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1638 				__func__ );
1639 			break;
1640 		}
1641 
1642 		/* Latency issues. Drop the lock, wait a while and retry */
1643 		UDELAY(map, chip, adr, 1000000/HZ);
1644 	}
1645 	/* Did we succeed? */
1646 	if (!chip_good(map, adr, map_word_ff(map))) {
1647 		/* reset on all failures. */
1648 		map_write( map, CMD(0xF0), chip->start );
1649 		/* FIXME - should have reset delay before continuing */
1650 
1651 		ret = -EIO;
1652 	}
1653 
1654 	chip->state = FL_READY;
1655 	xip_enable(map, chip, adr);
1656 	put_chip(map, chip, adr);
1657 	mutex_unlock(&chip->mutex);
1658 
1659 	return ret;
1660 }
1661 
1662 
1663 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1664 {
1665 	struct cfi_private *cfi = map->fldrv_priv;
1666 	unsigned long timeo = jiffies + HZ;
1667 	DECLARE_WAITQUEUE(wait, current);
1668 	int ret = 0;
1669 
1670 	adr += chip->start;
1671 
1672 	mutex_lock(&chip->mutex);
1673 	ret = get_chip(map, chip, adr, FL_ERASING);
1674 	if (ret) {
1675 		mutex_unlock(&chip->mutex);
1676 		return ret;
1677 	}
1678 
1679 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1680 	       __func__, adr );
1681 
1682 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1683 	ENABLE_VPP(map);
1684 	xip_disable(map, chip, adr);
1685 
1686 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1687 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1688 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1689 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1690 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1691 	map_write(map, cfi->sector_erase_cmd, adr);
1692 
1693 	chip->state = FL_ERASING;
1694 	chip->erase_suspended = 0;
1695 	chip->in_progress_block_addr = adr;
1696 
1697 	INVALIDATE_CACHE_UDELAY(map, chip,
1698 				adr, len,
1699 				chip->erase_time*500);
1700 
1701 	timeo = jiffies + (HZ*20);
1702 
1703 	for (;;) {
1704 		if (chip->state != FL_ERASING) {
1705 			/* Someone's suspended the erase. Sleep */
1706 			set_current_state(TASK_UNINTERRUPTIBLE);
1707 			add_wait_queue(&chip->wq, &wait);
1708 			mutex_unlock(&chip->mutex);
1709 			schedule();
1710 			remove_wait_queue(&chip->wq, &wait);
1711 			mutex_lock(&chip->mutex);
1712 			continue;
1713 		}
1714 		if (chip->erase_suspended) {
1715 			/* This erase was suspended and resumed.
1716 			   Adjust the timeout */
1717 			timeo = jiffies + (HZ*20); /* FIXME */
1718 			chip->erase_suspended = 0;
1719 		}
1720 
1721 		if (chip_ready(map, adr)) {
1722 			xip_enable(map, chip, adr);
1723 			break;
1724 		}
1725 
1726 		if (time_after(jiffies, timeo)) {
1727 			xip_enable(map, chip, adr);
1728 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1729 				__func__ );
1730 			break;
1731 		}
1732 
1733 		/* Latency issues. Drop the lock, wait a while and retry */
1734 		UDELAY(map, chip, adr, 1000000/HZ);
1735 	}
1736 	/* Did we succeed? */
1737 	if (!chip_good(map, adr, map_word_ff(map))) {
1738 		/* reset on all failures. */
1739 		map_write( map, CMD(0xF0), chip->start );
1740 		/* FIXME - should have reset delay before continuing */
1741 
1742 		ret = -EIO;
1743 	}
1744 
1745 	chip->state = FL_READY;
1746 	put_chip(map, chip, adr);
1747 	mutex_unlock(&chip->mutex);
1748 	return ret;
1749 }
1750 
1751 
1752 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1753 {
1754 	unsigned long ofs, len;
1755 	int ret;
1756 
1757 	ofs = instr->addr;
1758 	len = instr->len;
1759 
1760 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1761 	if (ret)
1762 		return ret;
1763 
1764 	instr->state = MTD_ERASE_DONE;
1765 	mtd_erase_callback(instr);
1766 
1767 	return 0;
1768 }
1769 
1770 
1771 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1772 {
1773 	struct map_info *map = mtd->priv;
1774 	struct cfi_private *cfi = map->fldrv_priv;
1775 	int ret = 0;
1776 
1777 	if (instr->addr != 0)
1778 		return -EINVAL;
1779 
1780 	if (instr->len != mtd->size)
1781 		return -EINVAL;
1782 
1783 	ret = do_erase_chip(map, &cfi->chips[0]);
1784 	if (ret)
1785 		return ret;
1786 
1787 	instr->state = MTD_ERASE_DONE;
1788 	mtd_erase_callback(instr);
1789 
1790 	return 0;
1791 }
1792 
1793 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1794 			 unsigned long adr, int len, void *thunk)
1795 {
1796 	struct cfi_private *cfi = map->fldrv_priv;
1797 	int ret;
1798 
1799 	mutex_lock(&chip->mutex);
1800 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1801 	if (ret)
1802 		goto out_unlock;
1803 	chip->state = FL_LOCKING;
1804 
1805 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1806 	      __func__, adr, len);
1807 
1808 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1809 			 cfi->device_type, NULL);
1810 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1811 			 cfi->device_type, NULL);
1812 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1813 			 cfi->device_type, NULL);
1814 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1815 			 cfi->device_type, NULL);
1816 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1817 			 cfi->device_type, NULL);
1818 	map_write(map, CMD(0x40), chip->start + adr);
1819 
1820 	chip->state = FL_READY;
1821 	put_chip(map, chip, adr + chip->start);
1822 	ret = 0;
1823 
1824 out_unlock:
1825 	mutex_unlock(&chip->mutex);
1826 	return ret;
1827 }
1828 
1829 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1830 			   unsigned long adr, int len, void *thunk)
1831 {
1832 	struct cfi_private *cfi = map->fldrv_priv;
1833 	int ret;
1834 
1835 	mutex_lock(&chip->mutex);
1836 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1837 	if (ret)
1838 		goto out_unlock;
1839 	chip->state = FL_UNLOCKING;
1840 
1841 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1842 	      __func__, adr, len);
1843 
1844 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1845 			 cfi->device_type, NULL);
1846 	map_write(map, CMD(0x70), adr);
1847 
1848 	chip->state = FL_READY;
1849 	put_chip(map, chip, adr + chip->start);
1850 	ret = 0;
1851 
1852 out_unlock:
1853 	mutex_unlock(&chip->mutex);
1854 	return ret;
1855 }
1856 
1857 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1858 {
1859 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1860 }
1861 
1862 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1863 {
1864 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1865 }
1866 
1867 
1868 static void cfi_amdstd_sync (struct mtd_info *mtd)
1869 {
1870 	struct map_info *map = mtd->priv;
1871 	struct cfi_private *cfi = map->fldrv_priv;
1872 	int i;
1873 	struct flchip *chip;
1874 	int ret = 0;
1875 	DECLARE_WAITQUEUE(wait, current);
1876 
1877 	for (i=0; !ret && i<cfi->numchips; i++) {
1878 		chip = &cfi->chips[i];
1879 
1880 	retry:
1881 		mutex_lock(&chip->mutex);
1882 
1883 		switch(chip->state) {
1884 		case FL_READY:
1885 		case FL_STATUS:
1886 		case FL_CFI_QUERY:
1887 		case FL_JEDEC_QUERY:
1888 			chip->oldstate = chip->state;
1889 			chip->state = FL_SYNCING;
1890 			/* No need to wake_up() on this state change -
1891 			 * as the whole point is that nobody can do anything
1892 			 * with the chip now anyway.
1893 			 */
1894 		case FL_SYNCING:
1895 			mutex_unlock(&chip->mutex);
1896 			break;
1897 
1898 		default:
1899 			/* Not an idle state */
1900 			set_current_state(TASK_UNINTERRUPTIBLE);
1901 			add_wait_queue(&chip->wq, &wait);
1902 
1903 			mutex_unlock(&chip->mutex);
1904 
1905 			schedule();
1906 
1907 			remove_wait_queue(&chip->wq, &wait);
1908 
1909 			goto retry;
1910 		}
1911 	}
1912 
1913 	/* Unlock the chips again */
1914 
1915 	for (i--; i >=0; i--) {
1916 		chip = &cfi->chips[i];
1917 
1918 		mutex_lock(&chip->mutex);
1919 
1920 		if (chip->state == FL_SYNCING) {
1921 			chip->state = chip->oldstate;
1922 			wake_up(&chip->wq);
1923 		}
1924 		mutex_unlock(&chip->mutex);
1925 	}
1926 }
1927 
1928 
1929 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1930 {
1931 	struct map_info *map = mtd->priv;
1932 	struct cfi_private *cfi = map->fldrv_priv;
1933 	int i;
1934 	struct flchip *chip;
1935 	int ret = 0;
1936 
1937 	for (i=0; !ret && i<cfi->numchips; i++) {
1938 		chip = &cfi->chips[i];
1939 
1940 		mutex_lock(&chip->mutex);
1941 
1942 		switch(chip->state) {
1943 		case FL_READY:
1944 		case FL_STATUS:
1945 		case FL_CFI_QUERY:
1946 		case FL_JEDEC_QUERY:
1947 			chip->oldstate = chip->state;
1948 			chip->state = FL_PM_SUSPENDED;
1949 			/* No need to wake_up() on this state change -
1950 			 * as the whole point is that nobody can do anything
1951 			 * with the chip now anyway.
1952 			 */
1953 		case FL_PM_SUSPENDED:
1954 			break;
1955 
1956 		default:
1957 			ret = -EAGAIN;
1958 			break;
1959 		}
1960 		mutex_unlock(&chip->mutex);
1961 	}
1962 
1963 	/* Unlock the chips again */
1964 
1965 	if (ret) {
1966 		for (i--; i >=0; i--) {
1967 			chip = &cfi->chips[i];
1968 
1969 			mutex_lock(&chip->mutex);
1970 
1971 			if (chip->state == FL_PM_SUSPENDED) {
1972 				chip->state = chip->oldstate;
1973 				wake_up(&chip->wq);
1974 			}
1975 			mutex_unlock(&chip->mutex);
1976 		}
1977 	}
1978 
1979 	return ret;
1980 }
1981 
1982 
1983 static void cfi_amdstd_resume(struct mtd_info *mtd)
1984 {
1985 	struct map_info *map = mtd->priv;
1986 	struct cfi_private *cfi = map->fldrv_priv;
1987 	int i;
1988 	struct flchip *chip;
1989 
1990 	for (i=0; i<cfi->numchips; i++) {
1991 
1992 		chip = &cfi->chips[i];
1993 
1994 		mutex_lock(&chip->mutex);
1995 
1996 		if (chip->state == FL_PM_SUSPENDED) {
1997 			chip->state = FL_READY;
1998 			map_write(map, CMD(0xF0), chip->start);
1999 			wake_up(&chip->wq);
2000 		}
2001 		else
2002 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2003 
2004 		mutex_unlock(&chip->mutex);
2005 	}
2006 }
2007 
2008 
2009 /*
2010  * Ensure that the flash device is put back into read array mode before
2011  * unloading the driver or rebooting.  On some systems, rebooting while
2012  * the flash is in query/program/erase mode will prevent the CPU from
2013  * fetching the bootloader code, requiring a hard reset or power cycle.
2014  */
2015 static int cfi_amdstd_reset(struct mtd_info *mtd)
2016 {
2017 	struct map_info *map = mtd->priv;
2018 	struct cfi_private *cfi = map->fldrv_priv;
2019 	int i, ret;
2020 	struct flchip *chip;
2021 
2022 	for (i = 0; i < cfi->numchips; i++) {
2023 
2024 		chip = &cfi->chips[i];
2025 
2026 		mutex_lock(&chip->mutex);
2027 
2028 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2029 		if (!ret) {
2030 			map_write(map, CMD(0xF0), chip->start);
2031 			chip->state = FL_SHUTDOWN;
2032 			put_chip(map, chip, chip->start);
2033 		}
2034 
2035 		mutex_unlock(&chip->mutex);
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 
2042 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2043 			       void *v)
2044 {
2045 	struct mtd_info *mtd;
2046 
2047 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2048 	cfi_amdstd_reset(mtd);
2049 	return NOTIFY_DONE;
2050 }
2051 
2052 
2053 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2054 {
2055 	struct map_info *map = mtd->priv;
2056 	struct cfi_private *cfi = map->fldrv_priv;
2057 
2058 	cfi_amdstd_reset(mtd);
2059 	unregister_reboot_notifier(&mtd->reboot_notifier);
2060 	kfree(cfi->cmdset_priv);
2061 	kfree(cfi->cfiq);
2062 	kfree(cfi);
2063 	kfree(mtd->eraseregions);
2064 }
2065 
2066 MODULE_LICENSE("GPL");
2067 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2068 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2069 MODULE_ALIAS("cfi_cmdset_0006");
2070 MODULE_ALIAS("cfi_cmdset_0701");
2071