1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29 
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41 
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44 
45 #define MAX_RETRIES 3
46 
47 #define SST49LF004B		0x0060
48 #define SST49LF040B		0x0050
49 #define SST49LF008A		0x005a
50 #define AT49BV6416		0x00d6
51 
52 /*
53  * Status Register bit description. Used by flash devices that don't
54  * support DQ polling (e.g. HyperFlash)
55  */
56 #define CFI_SR_DRB		BIT(7)
57 #define CFI_SR_ESB		BIT(5)
58 #define CFI_SR_PSB		BIT(4)
59 #define CFI_SR_WBASB		BIT(3)
60 #define CFI_SR_SLSB		BIT(1)
61 
62 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
64 #if !FORCE_WORD_WRITE
65 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
66 #endif
67 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
68 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
69 static void cfi_amdstd_sync (struct mtd_info *);
70 static int cfi_amdstd_suspend (struct mtd_info *);
71 static void cfi_amdstd_resume (struct mtd_info *);
72 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
73 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
74 					 size_t *, struct otp_info *);
75 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
76 					 size_t *, struct otp_info *);
77 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
78 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
79 					 size_t *, u_char *);
80 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
81 					 size_t *, u_char *);
82 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
83 					  size_t *, u_char *);
84 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
85 
86 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
87 				  size_t *retlen, const u_char *buf);
88 
89 static void cfi_amdstd_destroy(struct mtd_info *);
90 
91 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
92 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
93 
94 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
95 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
96 #include "fwh_lock.h"
97 
98 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
99 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
100 
101 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
102 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
103 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
104 
105 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
106 	.probe		= NULL, /* Not usable directly */
107 	.destroy	= cfi_amdstd_destroy,
108 	.name		= "cfi_cmdset_0002",
109 	.module		= THIS_MODULE
110 };
111 
112 /*
113  * Use status register to poll for Erase/write completion when DQ is not
114  * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
115  * CFI Primary Vendor-Specific Extended Query table 1.5
116  */
117 static int cfi_use_status_reg(struct cfi_private *cfi)
118 {
119 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
120 	u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
121 
122 	return extp->MinorVersion >= '5' &&
123 		(extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
124 }
125 
126 static void cfi_check_err_status(struct map_info *map, struct flchip *chip,
127 				 unsigned long adr)
128 {
129 	struct cfi_private *cfi = map->fldrv_priv;
130 	map_word status;
131 
132 	if (!cfi_use_status_reg(cfi))
133 		return;
134 
135 	cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
136 			 cfi->device_type, NULL);
137 	status = map_read(map, adr);
138 
139 	if (map_word_bitsset(map, status, CMD(0x3a))) {
140 		unsigned long chipstatus = MERGESTATUS(status);
141 
142 		if (chipstatus & CFI_SR_ESB)
143 			pr_err("%s erase operation failed, status %lx\n",
144 			       map->name, chipstatus);
145 		if (chipstatus & CFI_SR_PSB)
146 			pr_err("%s program operation failed, status %lx\n",
147 			       map->name, chipstatus);
148 		if (chipstatus & CFI_SR_WBASB)
149 			pr_err("%s buffer program command aborted, status %lx\n",
150 			       map->name, chipstatus);
151 		if (chipstatus & CFI_SR_SLSB)
152 			pr_err("%s sector write protected, status %lx\n",
153 			       map->name, chipstatus);
154 	}
155 }
156 
157 /* #define DEBUG_CFI_FEATURES */
158 
159 
160 #ifdef DEBUG_CFI_FEATURES
161 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
162 {
163 	const char* erase_suspend[3] = {
164 		"Not supported", "Read only", "Read/write"
165 	};
166 	const char* top_bottom[6] = {
167 		"No WP", "8x8KiB sectors at top & bottom, no WP",
168 		"Bottom boot", "Top boot",
169 		"Uniform, Bottom WP", "Uniform, Top WP"
170 	};
171 
172 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
173 	printk("  Address sensitive unlock: %s\n",
174 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
175 
176 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
177 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
178 	else
179 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
180 
181 	if (extp->BlkProt == 0)
182 		printk("  Block protection: Not supported\n");
183 	else
184 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
185 
186 
187 	printk("  Temporary block unprotect: %s\n",
188 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
189 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
190 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
191 	printk("  Burst mode: %s\n",
192 	       extp->BurstMode ? "Supported" : "Not supported");
193 	if (extp->PageMode == 0)
194 		printk("  Page mode: Not supported\n");
195 	else
196 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
197 
198 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
199 	       extp->VppMin >> 4, extp->VppMin & 0xf);
200 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
201 	       extp->VppMax >> 4, extp->VppMax & 0xf);
202 
203 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
204 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
205 	else
206 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
207 }
208 #endif
209 
210 #ifdef AMD_BOOTLOC_BUG
211 /* Wheee. Bring me the head of someone at AMD. */
212 static void fixup_amd_bootblock(struct mtd_info *mtd)
213 {
214 	struct map_info *map = mtd->priv;
215 	struct cfi_private *cfi = map->fldrv_priv;
216 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
217 	__u8 major = extp->MajorVersion;
218 	__u8 minor = extp->MinorVersion;
219 
220 	if (((major << 8) | minor) < 0x3131) {
221 		/* CFI version 1.0 => don't trust bootloc */
222 
223 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
224 			map->name, cfi->mfr, cfi->id);
225 
226 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
227 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
228 		 * These were badly detected as they have the 0x80 bit set
229 		 * so treat them as a special case.
230 		 */
231 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
232 
233 			/* Macronix added CFI to their 2nd generation
234 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
235 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
236 			 * has CFI.
237 			 *
238 			 * Therefore also check the manufacturer.
239 			 * This reduces the risk of false detection due to
240 			 * the 8-bit device ID.
241 			 */
242 			(cfi->mfr == CFI_MFR_MACRONIX)) {
243 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
244 				" detected\n", map->name);
245 			extp->TopBottom = 2;	/* bottom boot */
246 		} else
247 		if (cfi->id & 0x80) {
248 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
249 			extp->TopBottom = 3;	/* top boot */
250 		} else {
251 			extp->TopBottom = 2;	/* bottom boot */
252 		}
253 
254 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
255 			" deduced %s from Device ID\n", map->name, major, minor,
256 			extp->TopBottom == 2 ? "bottom" : "top");
257 	}
258 }
259 #endif
260 
261 #if !FORCE_WORD_WRITE
262 static void fixup_use_write_buffers(struct mtd_info *mtd)
263 {
264 	struct map_info *map = mtd->priv;
265 	struct cfi_private *cfi = map->fldrv_priv;
266 	if (cfi->cfiq->BufWriteTimeoutTyp) {
267 		pr_debug("Using buffer write method\n");
268 		mtd->_write = cfi_amdstd_write_buffers;
269 	}
270 }
271 #endif /* !FORCE_WORD_WRITE */
272 
273 /* Atmel chips don't use the same PRI format as AMD chips */
274 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
279 	struct cfi_pri_atmel atmel_pri;
280 
281 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
282 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
283 
284 	if (atmel_pri.Features & 0x02)
285 		extp->EraseSuspend = 2;
286 
287 	/* Some chips got it backwards... */
288 	if (cfi->id == AT49BV6416) {
289 		if (atmel_pri.BottomBoot)
290 			extp->TopBottom = 3;
291 		else
292 			extp->TopBottom = 2;
293 	} else {
294 		if (atmel_pri.BottomBoot)
295 			extp->TopBottom = 2;
296 		else
297 			extp->TopBottom = 3;
298 	}
299 
300 	/* burst write mode not supported */
301 	cfi->cfiq->BufWriteTimeoutTyp = 0;
302 	cfi->cfiq->BufWriteTimeoutMax = 0;
303 }
304 
305 static void fixup_use_secsi(struct mtd_info *mtd)
306 {
307 	/* Setup for chips with a secsi area */
308 	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
309 	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
310 }
311 
312 static void fixup_use_erase_chip(struct mtd_info *mtd)
313 {
314 	struct map_info *map = mtd->priv;
315 	struct cfi_private *cfi = map->fldrv_priv;
316 	if ((cfi->cfiq->NumEraseRegions == 1) &&
317 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
318 		mtd->_erase = cfi_amdstd_erase_chip;
319 	}
320 
321 }
322 
323 /*
324  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
325  * locked by default.
326  */
327 static void fixup_use_atmel_lock(struct mtd_info *mtd)
328 {
329 	mtd->_lock = cfi_atmel_lock;
330 	mtd->_unlock = cfi_atmel_unlock;
331 	mtd->flags |= MTD_POWERUP_LOCK;
332 }
333 
334 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
335 {
336 	struct map_info *map = mtd->priv;
337 	struct cfi_private *cfi = map->fldrv_priv;
338 
339 	/*
340 	 * These flashes report two separate eraseblock regions based on the
341 	 * sector_erase-size and block_erase-size, although they both operate on the
342 	 * same memory. This is not allowed according to CFI, so we just pick the
343 	 * sector_erase-size.
344 	 */
345 	cfi->cfiq->NumEraseRegions = 1;
346 }
347 
348 static void fixup_sst39vf(struct mtd_info *mtd)
349 {
350 	struct map_info *map = mtd->priv;
351 	struct cfi_private *cfi = map->fldrv_priv;
352 
353 	fixup_old_sst_eraseregion(mtd);
354 
355 	cfi->addr_unlock1 = 0x5555;
356 	cfi->addr_unlock2 = 0x2AAA;
357 }
358 
359 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
360 {
361 	struct map_info *map = mtd->priv;
362 	struct cfi_private *cfi = map->fldrv_priv;
363 
364 	fixup_old_sst_eraseregion(mtd);
365 
366 	cfi->addr_unlock1 = 0x555;
367 	cfi->addr_unlock2 = 0x2AA;
368 
369 	cfi->sector_erase_cmd = CMD(0x50);
370 }
371 
372 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
373 {
374 	struct map_info *map = mtd->priv;
375 	struct cfi_private *cfi = map->fldrv_priv;
376 
377 	fixup_sst39vf_rev_b(mtd);
378 
379 	/*
380 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
381 	 * it should report a size of 8KBytes (0x0020*256).
382 	 */
383 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
384 	pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
385 		mtd->name);
386 }
387 
388 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
389 {
390 	struct map_info *map = mtd->priv;
391 	struct cfi_private *cfi = map->fldrv_priv;
392 
393 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
394 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
395 		pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
396 			mtd->name);
397 	}
398 }
399 
400 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
401 {
402 	struct map_info *map = mtd->priv;
403 	struct cfi_private *cfi = map->fldrv_priv;
404 
405 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
406 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
407 		pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
408 			mtd->name);
409 	}
410 }
411 
412 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
413 {
414 	struct map_info *map = mtd->priv;
415 	struct cfi_private *cfi = map->fldrv_priv;
416 
417 	/*
418 	 *  S29NS512P flash uses more than 8bits to report number of sectors,
419 	 * which is not permitted by CFI.
420 	 */
421 	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
422 	pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
423 		mtd->name);
424 }
425 
426 /* Used to fix CFI-Tables of chips without Extended Query Tables */
427 static struct cfi_fixup cfi_nopri_fixup_table[] = {
428 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
429 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
430 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
431 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
432 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
433 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
434 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
435 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
436 	{ 0, 0, NULL }
437 };
438 
439 static struct cfi_fixup cfi_fixup_table[] = {
440 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
441 #ifdef AMD_BOOTLOC_BUG
442 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
443 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
444 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
445 #endif
446 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
447 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
448 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
449 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
450 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
451 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
452 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
453 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
454 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
455 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
456 	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
457 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
458 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
459 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
460 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
461 #if !FORCE_WORD_WRITE
462 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
463 #endif
464 	{ 0, 0, NULL }
465 };
466 static struct cfi_fixup jedec_fixup_table[] = {
467 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
468 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
469 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
470 	{ 0, 0, NULL }
471 };
472 
473 static struct cfi_fixup fixup_table[] = {
474 	/* The CFI vendor ids and the JEDEC vendor IDs appear
475 	 * to be common.  It is like the devices id's are as
476 	 * well.  This table is to pick all cases where
477 	 * we know that is the case.
478 	 */
479 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
480 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
481 	{ 0, 0, NULL }
482 };
483 
484 
485 static void cfi_fixup_major_minor(struct cfi_private *cfi,
486 				  struct cfi_pri_amdstd *extp)
487 {
488 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
489 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
490 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
491 			/*
492 			 * Samsung K8P2815UQB and K8D6x16UxM chips
493 			 * report major=0 / minor=0.
494 			 * K8D3x16UxC chips report major=3 / minor=3.
495 			 */
496 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
497 			       " Extended Query version to 1.%c\n",
498 			       extp->MinorVersion);
499 			extp->MajorVersion = '1';
500 		}
501 	}
502 
503 	/*
504 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
505 	 */
506 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
507 		extp->MajorVersion = '1';
508 		extp->MinorVersion = '0';
509 	}
510 }
511 
512 static int is_m29ew(struct cfi_private *cfi)
513 {
514 	if (cfi->mfr == CFI_MFR_INTEL &&
515 	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
516 	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
517 		return 1;
518 	return 0;
519 }
520 
521 /*
522  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
523  * Some revisions of the M29EW suffer from erase suspend hang ups. In
524  * particular, it can occur when the sequence
525  * Erase Confirm -> Suspend -> Program -> Resume
526  * causes a lockup due to internal timing issues. The consequence is that the
527  * erase cannot be resumed without inserting a dummy command after programming
528  * and prior to resuming. [...] The work-around is to issue a dummy write cycle
529  * that writes an F0 command code before the RESUME command.
530  */
531 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
532 					  unsigned long adr)
533 {
534 	struct cfi_private *cfi = map->fldrv_priv;
535 	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
536 	if (is_m29ew(cfi))
537 		map_write(map, CMD(0xF0), adr);
538 }
539 
540 /*
541  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
542  *
543  * Some revisions of the M29EW (for example, A1 and A2 step revisions)
544  * are affected by a problem that could cause a hang up when an ERASE SUSPEND
545  * command is issued after an ERASE RESUME operation without waiting for a
546  * minimum delay.  The result is that once the ERASE seems to be completed
547  * (no bits are toggling), the contents of the Flash memory block on which
548  * the erase was ongoing could be inconsistent with the expected values
549  * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
550  * values), causing a consequent failure of the ERASE operation.
551  * The occurrence of this issue could be high, especially when file system
552  * operations on the Flash are intensive.  As a result, it is recommended
553  * that a patch be applied.  Intensive file system operations can cause many
554  * calls to the garbage routine to free Flash space (also by erasing physical
555  * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
556  * commands can occur.  The problem disappears when a delay is inserted after
557  * the RESUME command by using the udelay() function available in Linux.
558  * The DELAY value must be tuned based on the customer's platform.
559  * The maximum value that fixes the problem in all cases is 500us.
560  * But, in our experience, a delay of 30 µs to 50 µs is sufficient
561  * in most cases.
562  * We have chosen 500µs because this latency is acceptable.
563  */
564 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
565 {
566 	/*
567 	 * Resolving the Delay After Resume Issue see Micron TN-13-07
568 	 * Worst case delay must be 500µs but 30-50µs should be ok as well
569 	 */
570 	if (is_m29ew(cfi))
571 		cfi_udelay(500);
572 }
573 
574 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
575 {
576 	struct cfi_private *cfi = map->fldrv_priv;
577 	struct device_node __maybe_unused *np = map->device_node;
578 	struct mtd_info *mtd;
579 	int i;
580 
581 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
582 	if (!mtd)
583 		return NULL;
584 	mtd->priv = map;
585 	mtd->type = MTD_NORFLASH;
586 
587 	/* Fill in the default mtd operations */
588 	mtd->_erase   = cfi_amdstd_erase_varsize;
589 	mtd->_write   = cfi_amdstd_write_words;
590 	mtd->_read    = cfi_amdstd_read;
591 	mtd->_sync    = cfi_amdstd_sync;
592 	mtd->_suspend = cfi_amdstd_suspend;
593 	mtd->_resume  = cfi_amdstd_resume;
594 	mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
595 	mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
596 	mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
597 	mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
598 	mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
599 	mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
600 	mtd->flags   = MTD_CAP_NORFLASH;
601 	mtd->name    = map->name;
602 	mtd->writesize = 1;
603 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
604 
605 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
606 			mtd->writebufsize);
607 
608 	mtd->_panic_write = cfi_amdstd_panic_write;
609 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
610 
611 	if (cfi->cfi_mode==CFI_MODE_CFI){
612 		unsigned char bootloc;
613 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
614 		struct cfi_pri_amdstd *extp;
615 
616 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
617 		if (extp) {
618 			/*
619 			 * It's a real CFI chip, not one for which the probe
620 			 * routine faked a CFI structure.
621 			 */
622 			cfi_fixup_major_minor(cfi, extp);
623 
624 			/*
625 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
626 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
627 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
628 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
629 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
630 			 */
631 			if (extp->MajorVersion != '1' ||
632 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
633 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
634 				       "version %c.%c (%#02x/%#02x).\n",
635 				       extp->MajorVersion, extp->MinorVersion,
636 				       extp->MajorVersion, extp->MinorVersion);
637 				kfree(extp);
638 				kfree(mtd);
639 				return NULL;
640 			}
641 
642 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
643 			       extp->MajorVersion, extp->MinorVersion);
644 
645 			/* Install our own private info structure */
646 			cfi->cmdset_priv = extp;
647 
648 			/* Apply cfi device specific fixups */
649 			cfi_fixup(mtd, cfi_fixup_table);
650 
651 #ifdef DEBUG_CFI_FEATURES
652 			/* Tell the user about it in lots of lovely detail */
653 			cfi_tell_features(extp);
654 #endif
655 
656 #ifdef CONFIG_OF
657 			if (np && of_property_read_bool(
658 				    np, "use-advanced-sector-protection")
659 			    && extp->BlkProtUnprot == 8) {
660 				printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
661 				mtd->_lock = cfi_ppb_lock;
662 				mtd->_unlock = cfi_ppb_unlock;
663 				mtd->_is_locked = cfi_ppb_is_locked;
664 			}
665 #endif
666 
667 			bootloc = extp->TopBottom;
668 			if ((bootloc < 2) || (bootloc > 5)) {
669 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
670 				       "bank location (%d). Assuming bottom.\n",
671 				       map->name, bootloc);
672 				bootloc = 2;
673 			}
674 
675 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
676 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
677 
678 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
679 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
680 
681 					swap(cfi->cfiq->EraseRegionInfo[i],
682 					     cfi->cfiq->EraseRegionInfo[j]);
683 				}
684 			}
685 			/* Set the default CFI lock/unlock addresses */
686 			cfi->addr_unlock1 = 0x555;
687 			cfi->addr_unlock2 = 0x2aa;
688 		}
689 		cfi_fixup(mtd, cfi_nopri_fixup_table);
690 
691 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
692 			kfree(mtd);
693 			return NULL;
694 		}
695 
696 	} /* CFI mode */
697 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
698 		/* Apply jedec specific fixups */
699 		cfi_fixup(mtd, jedec_fixup_table);
700 	}
701 	/* Apply generic fixups */
702 	cfi_fixup(mtd, fixup_table);
703 
704 	for (i=0; i< cfi->numchips; i++) {
705 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
706 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
707 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
708 		/*
709 		 * First calculate the timeout max according to timeout field
710 		 * of struct cfi_ident that probed from chip's CFI aera, if
711 		 * available. Specify a minimum of 2000us, in case the CFI data
712 		 * is wrong.
713 		 */
714 		if (cfi->cfiq->BufWriteTimeoutTyp &&
715 		    cfi->cfiq->BufWriteTimeoutMax)
716 			cfi->chips[i].buffer_write_time_max =
717 				1 << (cfi->cfiq->BufWriteTimeoutTyp +
718 				      cfi->cfiq->BufWriteTimeoutMax);
719 		else
720 			cfi->chips[i].buffer_write_time_max = 0;
721 
722 		cfi->chips[i].buffer_write_time_max =
723 			max(cfi->chips[i].buffer_write_time_max, 2000);
724 
725 		cfi->chips[i].ref_point_counter = 0;
726 		init_waitqueue_head(&(cfi->chips[i].wq));
727 	}
728 
729 	map->fldrv = &cfi_amdstd_chipdrv;
730 
731 	return cfi_amdstd_setup(mtd);
732 }
733 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
734 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
735 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
736 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
737 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
738 
739 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
740 {
741 	struct map_info *map = mtd->priv;
742 	struct cfi_private *cfi = map->fldrv_priv;
743 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
744 	unsigned long offset = 0;
745 	int i,j;
746 
747 	printk(KERN_NOTICE "number of %s chips: %d\n",
748 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
749 	/* Select the correct geometry setup */
750 	mtd->size = devsize * cfi->numchips;
751 
752 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
753 	mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
754 					  sizeof(struct mtd_erase_region_info),
755 					  GFP_KERNEL);
756 	if (!mtd->eraseregions)
757 		goto setup_err;
758 
759 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
760 		unsigned long ernum, ersize;
761 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
762 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
763 
764 		if (mtd->erasesize < ersize) {
765 			mtd->erasesize = ersize;
766 		}
767 		for (j=0; j<cfi->numchips; j++) {
768 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
769 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
770 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
771 		}
772 		offset += (ersize * ernum);
773 	}
774 	if (offset != devsize) {
775 		/* Argh */
776 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
777 		goto setup_err;
778 	}
779 
780 	__module_get(THIS_MODULE);
781 	register_reboot_notifier(&mtd->reboot_notifier);
782 	return mtd;
783 
784  setup_err:
785 	kfree(mtd->eraseregions);
786 	kfree(mtd);
787 	kfree(cfi->cmdset_priv);
788 	kfree(cfi->cfiq);
789 	return NULL;
790 }
791 
792 /*
793  * Return true if the chip is ready.
794  *
795  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
796  * non-suspended sector) and is indicated by no toggle bits toggling.
797  *
798  * Note that anything more complicated than checking if no bits are toggling
799  * (including checking DQ5 for an error status) is tricky to get working
800  * correctly and is therefore not done	(particularly with interleaved chips
801  * as each chip must be checked independently of the others).
802  */
803 static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
804 			       unsigned long addr)
805 {
806 	struct cfi_private *cfi = map->fldrv_priv;
807 	map_word d, t;
808 
809 	if (cfi_use_status_reg(cfi)) {
810 		map_word ready = CMD(CFI_SR_DRB);
811 		/*
812 		 * For chips that support status register, check device
813 		 * ready bit
814 		 */
815 		cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
816 				 cfi->device_type, NULL);
817 		d = map_read(map, addr);
818 
819 		return map_word_andequal(map, d, ready, ready);
820 	}
821 
822 	d = map_read(map, addr);
823 	t = map_read(map, addr);
824 
825 	return map_word_equal(map, d, t);
826 }
827 
828 /*
829  * Return true if the chip is ready and has the correct value.
830  *
831  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
832  * non-suspended sector) and it is indicated by no bits toggling.
833  *
834  * Error are indicated by toggling bits or bits held with the wrong value,
835  * or with bits toggling.
836  *
837  * Note that anything more complicated than checking if no bits are toggling
838  * (including checking DQ5 for an error status) is tricky to get working
839  * correctly and is therefore not done	(particularly with interleaved chips
840  * as each chip must be checked independently of the others).
841  *
842  */
843 static int __xipram chip_good(struct map_info *map, struct flchip *chip,
844 			      unsigned long addr, map_word expected)
845 {
846 	struct cfi_private *cfi = map->fldrv_priv;
847 	map_word oldd, curd;
848 
849 	if (cfi_use_status_reg(cfi)) {
850 		map_word ready = CMD(CFI_SR_DRB);
851 		map_word err = CMD(CFI_SR_PSB | CFI_SR_ESB);
852 		/*
853 		 * For chips that support status register, check device
854 		 * ready bit and Erase/Program status bit to know if
855 		 * operation succeeded.
856 		 */
857 		cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
858 				 cfi->device_type, NULL);
859 		curd = map_read(map, addr);
860 
861 		if (map_word_andequal(map, curd, ready, ready))
862 			return !map_word_bitsset(map, curd, err);
863 
864 		return 0;
865 	}
866 
867 	oldd = map_read(map, addr);
868 	curd = map_read(map, addr);
869 
870 	return	map_word_equal(map, oldd, curd) &&
871 		map_word_equal(map, curd, expected);
872 }
873 
874 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
875 {
876 	DECLARE_WAITQUEUE(wait, current);
877 	struct cfi_private *cfi = map->fldrv_priv;
878 	unsigned long timeo;
879 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
880 
881  resettime:
882 	timeo = jiffies + HZ;
883  retry:
884 	switch (chip->state) {
885 
886 	case FL_STATUS:
887 		for (;;) {
888 			if (chip_ready(map, chip, adr))
889 				break;
890 
891 			if (time_after(jiffies, timeo)) {
892 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
893 				return -EIO;
894 			}
895 			mutex_unlock(&chip->mutex);
896 			cfi_udelay(1);
897 			mutex_lock(&chip->mutex);
898 			/* Someone else might have been playing with it. */
899 			goto retry;
900 		}
901 
902 	case FL_READY:
903 	case FL_CFI_QUERY:
904 	case FL_JEDEC_QUERY:
905 		return 0;
906 
907 	case FL_ERASING:
908 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
909 		    !(mode == FL_READY || mode == FL_POINT ||
910 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
911 			goto sleep;
912 
913 		/* Do not allow suspend iff read/write to EB address */
914 		if ((adr & chip->in_progress_block_mask) ==
915 		    chip->in_progress_block_addr)
916 			goto sleep;
917 
918 		/* Erase suspend */
919 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
920 		 * commands when the erase algorithm isn't in progress. */
921 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
922 		chip->oldstate = FL_ERASING;
923 		chip->state = FL_ERASE_SUSPENDING;
924 		chip->erase_suspended = 1;
925 		for (;;) {
926 			if (chip_ready(map, chip, adr))
927 				break;
928 
929 			if (time_after(jiffies, timeo)) {
930 				/* Should have suspended the erase by now.
931 				 * Send an Erase-Resume command as either
932 				 * there was an error (so leave the erase
933 				 * routine to recover from it) or we trying to
934 				 * use the erase-in-progress sector. */
935 				put_chip(map, chip, adr);
936 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
937 				return -EIO;
938 			}
939 
940 			mutex_unlock(&chip->mutex);
941 			cfi_udelay(1);
942 			mutex_lock(&chip->mutex);
943 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
944 			   So we can just loop here. */
945 		}
946 		chip->state = FL_READY;
947 		return 0;
948 
949 	case FL_XIP_WHILE_ERASING:
950 		if (mode != FL_READY && mode != FL_POINT &&
951 		    (!cfip || !(cfip->EraseSuspend&2)))
952 			goto sleep;
953 		chip->oldstate = chip->state;
954 		chip->state = FL_READY;
955 		return 0;
956 
957 	case FL_SHUTDOWN:
958 		/* The machine is rebooting */
959 		return -EIO;
960 
961 	case FL_POINT:
962 		/* Only if there's no operation suspended... */
963 		if (mode == FL_READY && chip->oldstate == FL_READY)
964 			return 0;
965 		/* fall through */
966 
967 	default:
968 	sleep:
969 		set_current_state(TASK_UNINTERRUPTIBLE);
970 		add_wait_queue(&chip->wq, &wait);
971 		mutex_unlock(&chip->mutex);
972 		schedule();
973 		remove_wait_queue(&chip->wq, &wait);
974 		mutex_lock(&chip->mutex);
975 		goto resettime;
976 	}
977 }
978 
979 
980 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
981 {
982 	struct cfi_private *cfi = map->fldrv_priv;
983 
984 	switch(chip->oldstate) {
985 	case FL_ERASING:
986 		cfi_fixup_m29ew_erase_suspend(map,
987 			chip->in_progress_block_addr);
988 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
989 		cfi_fixup_m29ew_delay_after_resume(cfi);
990 		chip->oldstate = FL_READY;
991 		chip->state = FL_ERASING;
992 		break;
993 
994 	case FL_XIP_WHILE_ERASING:
995 		chip->state = chip->oldstate;
996 		chip->oldstate = FL_READY;
997 		break;
998 
999 	case FL_READY:
1000 	case FL_STATUS:
1001 		break;
1002 	default:
1003 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
1004 	}
1005 	wake_up(&chip->wq);
1006 }
1007 
1008 #ifdef CONFIG_MTD_XIP
1009 
1010 /*
1011  * No interrupt what so ever can be serviced while the flash isn't in array
1012  * mode.  This is ensured by the xip_disable() and xip_enable() functions
1013  * enclosing any code path where the flash is known not to be in array mode.
1014  * And within a XIP disabled code path, only functions marked with __xipram
1015  * may be called and nothing else (it's a good thing to inspect generated
1016  * assembly to make sure inline functions were actually inlined and that gcc
1017  * didn't emit calls to its own support functions). Also configuring MTD CFI
1018  * support to a single buswidth and a single interleave is also recommended.
1019  */
1020 
1021 static void xip_disable(struct map_info *map, struct flchip *chip,
1022 			unsigned long adr)
1023 {
1024 	/* TODO: chips with no XIP use should ignore and return */
1025 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
1026 	local_irq_disable();
1027 }
1028 
1029 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1030 				unsigned long adr)
1031 {
1032 	struct cfi_private *cfi = map->fldrv_priv;
1033 
1034 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1035 		map_write(map, CMD(0xf0), adr);
1036 		chip->state = FL_READY;
1037 	}
1038 	(void) map_read(map, adr);
1039 	xip_iprefetch();
1040 	local_irq_enable();
1041 }
1042 
1043 /*
1044  * When a delay is required for the flash operation to complete, the
1045  * xip_udelay() function is polling for both the given timeout and pending
1046  * (but still masked) hardware interrupts.  Whenever there is an interrupt
1047  * pending then the flash erase operation is suspended, array mode restored
1048  * and interrupts unmasked.  Task scheduling might also happen at that
1049  * point.  The CPU eventually returns from the interrupt or the call to
1050  * schedule() and the suspended flash operation is resumed for the remaining
1051  * of the delay period.
1052  *
1053  * Warning: this function _will_ fool interrupt latency tracing tools.
1054  */
1055 
1056 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
1057 				unsigned long adr, int usec)
1058 {
1059 	struct cfi_private *cfi = map->fldrv_priv;
1060 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
1061 	map_word status, OK = CMD(0x80);
1062 	unsigned long suspended, start = xip_currtime();
1063 	flstate_t oldstate;
1064 
1065 	do {
1066 		cpu_relax();
1067 		if (xip_irqpending() && extp &&
1068 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
1069 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1070 			/*
1071 			 * Let's suspend the erase operation when supported.
1072 			 * Note that we currently don't try to suspend
1073 			 * interleaved chips if there is already another
1074 			 * operation suspended (imagine what happens
1075 			 * when one chip was already done with the current
1076 			 * operation while another chip suspended it, then
1077 			 * we resume the whole thing at once).  Yes, it
1078 			 * can happen!
1079 			 */
1080 			map_write(map, CMD(0xb0), adr);
1081 			usec -= xip_elapsed_since(start);
1082 			suspended = xip_currtime();
1083 			do {
1084 				if (xip_elapsed_since(suspended) > 100000) {
1085 					/*
1086 					 * The chip doesn't want to suspend
1087 					 * after waiting for 100 msecs.
1088 					 * This is a critical error but there
1089 					 * is not much we can do here.
1090 					 */
1091 					return;
1092 				}
1093 				status = map_read(map, adr);
1094 			} while (!map_word_andequal(map, status, OK, OK));
1095 
1096 			/* Suspend succeeded */
1097 			oldstate = chip->state;
1098 			if (!map_word_bitsset(map, status, CMD(0x40)))
1099 				break;
1100 			chip->state = FL_XIP_WHILE_ERASING;
1101 			chip->erase_suspended = 1;
1102 			map_write(map, CMD(0xf0), adr);
1103 			(void) map_read(map, adr);
1104 			xip_iprefetch();
1105 			local_irq_enable();
1106 			mutex_unlock(&chip->mutex);
1107 			xip_iprefetch();
1108 			cond_resched();
1109 
1110 			/*
1111 			 * We're back.  However someone else might have
1112 			 * decided to go write to the chip if we are in
1113 			 * a suspended erase state.  If so let's wait
1114 			 * until it's done.
1115 			 */
1116 			mutex_lock(&chip->mutex);
1117 			while (chip->state != FL_XIP_WHILE_ERASING) {
1118 				DECLARE_WAITQUEUE(wait, current);
1119 				set_current_state(TASK_UNINTERRUPTIBLE);
1120 				add_wait_queue(&chip->wq, &wait);
1121 				mutex_unlock(&chip->mutex);
1122 				schedule();
1123 				remove_wait_queue(&chip->wq, &wait);
1124 				mutex_lock(&chip->mutex);
1125 			}
1126 			/* Disallow XIP again */
1127 			local_irq_disable();
1128 
1129 			/* Correct Erase Suspend Hangups for M29EW */
1130 			cfi_fixup_m29ew_erase_suspend(map, adr);
1131 			/* Resume the write or erase operation */
1132 			map_write(map, cfi->sector_erase_cmd, adr);
1133 			chip->state = oldstate;
1134 			start = xip_currtime();
1135 		} else if (usec >= 1000000/HZ) {
1136 			/*
1137 			 * Try to save on CPU power when waiting delay
1138 			 * is at least a system timer tick period.
1139 			 * No need to be extremely accurate here.
1140 			 */
1141 			xip_cpu_idle();
1142 		}
1143 		status = map_read(map, adr);
1144 	} while (!map_word_andequal(map, status, OK, OK)
1145 		 && xip_elapsed_since(start) < usec);
1146 }
1147 
1148 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1149 
1150 /*
1151  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1152  * the flash is actively programming or erasing since we have to poll for
1153  * the operation to complete anyway.  We can't do that in a generic way with
1154  * a XIP setup so do it before the actual flash operation in this case
1155  * and stub it out from INVALIDATE_CACHE_UDELAY.
1156  */
1157 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1158 	INVALIDATE_CACHED_RANGE(map, from, size)
1159 
1160 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1161 	UDELAY(map, chip, adr, usec)
1162 
1163 /*
1164  * Extra notes:
1165  *
1166  * Activating this XIP support changes the way the code works a bit.  For
1167  * example the code to suspend the current process when concurrent access
1168  * happens is never executed because xip_udelay() will always return with the
1169  * same chip state as it was entered with.  This is why there is no care for
1170  * the presence of add_wait_queue() or schedule() calls from within a couple
1171  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1172  * The queueing and scheduling are always happening within xip_udelay().
1173  *
1174  * Similarly, get_chip() and put_chip() just happen to always be executed
1175  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1176  * is in array mode, therefore never executing many cases therein and not
1177  * causing any problem with XIP.
1178  */
1179 
1180 #else
1181 
1182 #define xip_disable(map, chip, adr)
1183 #define xip_enable(map, chip, adr)
1184 #define XIP_INVAL_CACHED_RANGE(x...)
1185 
1186 #define UDELAY(map, chip, adr, usec)  \
1187 do {  \
1188 	mutex_unlock(&chip->mutex);  \
1189 	cfi_udelay(usec);  \
1190 	mutex_lock(&chip->mutex);  \
1191 } while (0)
1192 
1193 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1194 do {  \
1195 	mutex_unlock(&chip->mutex);  \
1196 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
1197 	cfi_udelay(usec);  \
1198 	mutex_lock(&chip->mutex);  \
1199 } while (0)
1200 
1201 #endif
1202 
1203 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1204 {
1205 	unsigned long cmd_addr;
1206 	struct cfi_private *cfi = map->fldrv_priv;
1207 	int ret;
1208 
1209 	adr += chip->start;
1210 
1211 	/* Ensure cmd read/writes are aligned. */
1212 	cmd_addr = adr & ~(map_bankwidth(map)-1);
1213 
1214 	mutex_lock(&chip->mutex);
1215 	ret = get_chip(map, chip, cmd_addr, FL_READY);
1216 	if (ret) {
1217 		mutex_unlock(&chip->mutex);
1218 		return ret;
1219 	}
1220 
1221 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1222 		map_write(map, CMD(0xf0), cmd_addr);
1223 		chip->state = FL_READY;
1224 	}
1225 
1226 	map_copy_from(map, buf, adr, len);
1227 
1228 	put_chip(map, chip, cmd_addr);
1229 
1230 	mutex_unlock(&chip->mutex);
1231 	return 0;
1232 }
1233 
1234 
1235 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1236 {
1237 	struct map_info *map = mtd->priv;
1238 	struct cfi_private *cfi = map->fldrv_priv;
1239 	unsigned long ofs;
1240 	int chipnum;
1241 	int ret = 0;
1242 
1243 	/* ofs: offset within the first chip that the first read should start */
1244 	chipnum = (from >> cfi->chipshift);
1245 	ofs = from - (chipnum <<  cfi->chipshift);
1246 
1247 	while (len) {
1248 		unsigned long thislen;
1249 
1250 		if (chipnum >= cfi->numchips)
1251 			break;
1252 
1253 		if ((len + ofs -1) >> cfi->chipshift)
1254 			thislen = (1<<cfi->chipshift) - ofs;
1255 		else
1256 			thislen = len;
1257 
1258 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1259 		if (ret)
1260 			break;
1261 
1262 		*retlen += thislen;
1263 		len -= thislen;
1264 		buf += thislen;
1265 
1266 		ofs = 0;
1267 		chipnum++;
1268 	}
1269 	return ret;
1270 }
1271 
1272 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1273 			loff_t adr, size_t len, u_char *buf, size_t grouplen);
1274 
1275 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1276 			     loff_t adr, size_t len)
1277 {
1278 	struct cfi_private *cfi = map->fldrv_priv;
1279 
1280 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1281 			 cfi->device_type, NULL);
1282 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1283 			 cfi->device_type, NULL);
1284 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1285 			 cfi->device_type, NULL);
1286 
1287 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1288 }
1289 
1290 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1291 			    loff_t adr, size_t len)
1292 {
1293 	struct cfi_private *cfi = map->fldrv_priv;
1294 
1295 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1296 			 cfi->device_type, NULL);
1297 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1298 			 cfi->device_type, NULL);
1299 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1300 			 cfi->device_type, NULL);
1301 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1302 			 cfi->device_type, NULL);
1303 
1304 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1305 }
1306 
1307 static inline int do_read_secsi_onechip(struct map_info *map,
1308 					struct flchip *chip, loff_t adr,
1309 					size_t len, u_char *buf,
1310 					size_t grouplen)
1311 {
1312 	DECLARE_WAITQUEUE(wait, current);
1313 
1314  retry:
1315 	mutex_lock(&chip->mutex);
1316 
1317 	if (chip->state != FL_READY){
1318 		set_current_state(TASK_UNINTERRUPTIBLE);
1319 		add_wait_queue(&chip->wq, &wait);
1320 
1321 		mutex_unlock(&chip->mutex);
1322 
1323 		schedule();
1324 		remove_wait_queue(&chip->wq, &wait);
1325 
1326 		goto retry;
1327 	}
1328 
1329 	adr += chip->start;
1330 
1331 	chip->state = FL_READY;
1332 
1333 	otp_enter(map, chip, adr, len);
1334 	map_copy_from(map, buf, adr, len);
1335 	otp_exit(map, chip, adr, len);
1336 
1337 	wake_up(&chip->wq);
1338 	mutex_unlock(&chip->mutex);
1339 
1340 	return 0;
1341 }
1342 
1343 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1344 {
1345 	struct map_info *map = mtd->priv;
1346 	struct cfi_private *cfi = map->fldrv_priv;
1347 	unsigned long ofs;
1348 	int chipnum;
1349 	int ret = 0;
1350 
1351 	/* ofs: offset within the first chip that the first read should start */
1352 	/* 8 secsi bytes per chip */
1353 	chipnum=from>>3;
1354 	ofs=from & 7;
1355 
1356 	while (len) {
1357 		unsigned long thislen;
1358 
1359 		if (chipnum >= cfi->numchips)
1360 			break;
1361 
1362 		if ((len + ofs -1) >> 3)
1363 			thislen = (1<<3) - ofs;
1364 		else
1365 			thislen = len;
1366 
1367 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1368 					    thislen, buf, 0);
1369 		if (ret)
1370 			break;
1371 
1372 		*retlen += thislen;
1373 		len -= thislen;
1374 		buf += thislen;
1375 
1376 		ofs = 0;
1377 		chipnum++;
1378 	}
1379 	return ret;
1380 }
1381 
1382 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1383 				     unsigned long adr, map_word datum,
1384 				     int mode);
1385 
1386 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1387 			size_t len, u_char *buf, size_t grouplen)
1388 {
1389 	int ret;
1390 	while (len) {
1391 		unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1392 		int gap = adr - bus_ofs;
1393 		int n = min_t(int, len, map_bankwidth(map) - gap);
1394 		map_word datum = map_word_ff(map);
1395 
1396 		if (n != map_bankwidth(map)) {
1397 			/* partial write of a word, load old contents */
1398 			otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1399 			datum = map_read(map, bus_ofs);
1400 			otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1401 		}
1402 
1403 		datum = map_word_load_partial(map, datum, buf, gap, n);
1404 		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1405 		if (ret)
1406 			return ret;
1407 
1408 		adr += n;
1409 		buf += n;
1410 		len -= n;
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1417 		       size_t len, u_char *buf, size_t grouplen)
1418 {
1419 	struct cfi_private *cfi = map->fldrv_priv;
1420 	uint8_t lockreg;
1421 	unsigned long timeo;
1422 	int ret;
1423 
1424 	/* make sure area matches group boundaries */
1425 	if ((adr != 0) || (len != grouplen))
1426 		return -EINVAL;
1427 
1428 	mutex_lock(&chip->mutex);
1429 	ret = get_chip(map, chip, chip->start, FL_LOCKING);
1430 	if (ret) {
1431 		mutex_unlock(&chip->mutex);
1432 		return ret;
1433 	}
1434 	chip->state = FL_LOCKING;
1435 
1436 	/* Enter lock register command */
1437 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1438 			 cfi->device_type, NULL);
1439 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1440 			 cfi->device_type, NULL);
1441 	cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1442 			 cfi->device_type, NULL);
1443 
1444 	/* read lock register */
1445 	lockreg = cfi_read_query(map, 0);
1446 
1447 	/* set bit 0 to protect extended memory block */
1448 	lockreg &= ~0x01;
1449 
1450 	/* set bit 0 to protect extended memory block */
1451 	/* write lock register */
1452 	map_write(map, CMD(0xA0), chip->start);
1453 	map_write(map, CMD(lockreg), chip->start);
1454 
1455 	/* wait for chip to become ready */
1456 	timeo = jiffies + msecs_to_jiffies(2);
1457 	for (;;) {
1458 		if (chip_ready(map, chip, adr))
1459 			break;
1460 
1461 		if (time_after(jiffies, timeo)) {
1462 			pr_err("Waiting for chip to be ready timed out.\n");
1463 			ret = -EIO;
1464 			break;
1465 		}
1466 		UDELAY(map, chip, 0, 1);
1467 	}
1468 
1469 	/* exit protection commands */
1470 	map_write(map, CMD(0x90), chip->start);
1471 	map_write(map, CMD(0x00), chip->start);
1472 
1473 	chip->state = FL_READY;
1474 	put_chip(map, chip, chip->start);
1475 	mutex_unlock(&chip->mutex);
1476 
1477 	return ret;
1478 }
1479 
1480 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1481 			       size_t *retlen, u_char *buf,
1482 			       otp_op_t action, int user_regs)
1483 {
1484 	struct map_info *map = mtd->priv;
1485 	struct cfi_private *cfi = map->fldrv_priv;
1486 	int ofs_factor = cfi->interleave * cfi->device_type;
1487 	unsigned long base;
1488 	int chipnum;
1489 	struct flchip *chip;
1490 	uint8_t otp, lockreg;
1491 	int ret;
1492 
1493 	size_t user_size, factory_size, otpsize;
1494 	loff_t user_offset, factory_offset, otpoffset;
1495 	int user_locked = 0, otplocked;
1496 
1497 	*retlen = 0;
1498 
1499 	for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1500 		chip = &cfi->chips[chipnum];
1501 		factory_size = 0;
1502 		user_size = 0;
1503 
1504 		/* Micron M29EW family */
1505 		if (is_m29ew(cfi)) {
1506 			base = chip->start;
1507 
1508 			/* check whether secsi area is factory locked
1509 			   or user lockable */
1510 			mutex_lock(&chip->mutex);
1511 			ret = get_chip(map, chip, base, FL_CFI_QUERY);
1512 			if (ret) {
1513 				mutex_unlock(&chip->mutex);
1514 				return ret;
1515 			}
1516 			cfi_qry_mode_on(base, map, cfi);
1517 			otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1518 			cfi_qry_mode_off(base, map, cfi);
1519 			put_chip(map, chip, base);
1520 			mutex_unlock(&chip->mutex);
1521 
1522 			if (otp & 0x80) {
1523 				/* factory locked */
1524 				factory_offset = 0;
1525 				factory_size = 0x100;
1526 			} else {
1527 				/* customer lockable */
1528 				user_offset = 0;
1529 				user_size = 0x100;
1530 
1531 				mutex_lock(&chip->mutex);
1532 				ret = get_chip(map, chip, base, FL_LOCKING);
1533 				if (ret) {
1534 					mutex_unlock(&chip->mutex);
1535 					return ret;
1536 				}
1537 
1538 				/* Enter lock register command */
1539 				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1540 						 chip->start, map, cfi,
1541 						 cfi->device_type, NULL);
1542 				cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1543 						 chip->start, map, cfi,
1544 						 cfi->device_type, NULL);
1545 				cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1546 						 chip->start, map, cfi,
1547 						 cfi->device_type, NULL);
1548 				/* read lock register */
1549 				lockreg = cfi_read_query(map, 0);
1550 				/* exit protection commands */
1551 				map_write(map, CMD(0x90), chip->start);
1552 				map_write(map, CMD(0x00), chip->start);
1553 				put_chip(map, chip, chip->start);
1554 				mutex_unlock(&chip->mutex);
1555 
1556 				user_locked = ((lockreg & 0x01) == 0x00);
1557 			}
1558 		}
1559 
1560 		otpsize = user_regs ? user_size : factory_size;
1561 		if (!otpsize)
1562 			continue;
1563 		otpoffset = user_regs ? user_offset : factory_offset;
1564 		otplocked = user_regs ? user_locked : 1;
1565 
1566 		if (!action) {
1567 			/* return otpinfo */
1568 			struct otp_info *otpinfo;
1569 			len -= sizeof(*otpinfo);
1570 			if (len <= 0)
1571 				return -ENOSPC;
1572 			otpinfo = (struct otp_info *)buf;
1573 			otpinfo->start = from;
1574 			otpinfo->length = otpsize;
1575 			otpinfo->locked = otplocked;
1576 			buf += sizeof(*otpinfo);
1577 			*retlen += sizeof(*otpinfo);
1578 			from += otpsize;
1579 		} else if ((from < otpsize) && (len > 0)) {
1580 			size_t size;
1581 			size = (len < otpsize - from) ? len : otpsize - from;
1582 			ret = action(map, chip, otpoffset + from, size, buf,
1583 				     otpsize);
1584 			if (ret < 0)
1585 				return ret;
1586 
1587 			buf += size;
1588 			len -= size;
1589 			*retlen += size;
1590 			from = 0;
1591 		} else {
1592 			from -= otpsize;
1593 		}
1594 	}
1595 	return 0;
1596 }
1597 
1598 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1599 					 size_t *retlen, struct otp_info *buf)
1600 {
1601 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1602 				   NULL, 0);
1603 }
1604 
1605 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1606 					 size_t *retlen, struct otp_info *buf)
1607 {
1608 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1609 				   NULL, 1);
1610 }
1611 
1612 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1613 					 size_t len, size_t *retlen,
1614 					 u_char *buf)
1615 {
1616 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1617 				   buf, do_read_secsi_onechip, 0);
1618 }
1619 
1620 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1621 					 size_t len, size_t *retlen,
1622 					 u_char *buf)
1623 {
1624 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1625 				   buf, do_read_secsi_onechip, 1);
1626 }
1627 
1628 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1629 					  size_t len, size_t *retlen,
1630 					  u_char *buf)
1631 {
1632 	return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1633 				   do_otp_write, 1);
1634 }
1635 
1636 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1637 					 size_t len)
1638 {
1639 	size_t retlen;
1640 	return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1641 				   do_otp_lock, 1);
1642 }
1643 
1644 static int __xipram do_write_oneword_once(struct map_info *map,
1645 					  struct flchip *chip,
1646 					  unsigned long adr, map_word datum,
1647 					  int mode, struct cfi_private *cfi)
1648 {
1649 	unsigned long timeo = jiffies + HZ;
1650 	/*
1651 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1652 	 * have a max write time of a few hundreds usec). However, we should
1653 	 * use the maximum timeout value given by the chip at probe time
1654 	 * instead.  Unfortunately, struct flchip does have a field for
1655 	 * maximum timeout, only for typical which can be far too short
1656 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1657 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1658 	 */
1659 	unsigned long uWriteTimeout = (HZ / 1000) + 1;
1660 	int ret = 0;
1661 
1662 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1663 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1664 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1665 	map_write(map, datum, adr);
1666 	chip->state = mode;
1667 
1668 	INVALIDATE_CACHE_UDELAY(map, chip,
1669 				adr, map_bankwidth(map),
1670 				chip->word_write_time);
1671 
1672 	/* See comment above for timeout value. */
1673 	timeo = jiffies + uWriteTimeout;
1674 	for (;;) {
1675 		if (chip->state != mode) {
1676 			/* Someone's suspended the write. Sleep */
1677 			DECLARE_WAITQUEUE(wait, current);
1678 
1679 			set_current_state(TASK_UNINTERRUPTIBLE);
1680 			add_wait_queue(&chip->wq, &wait);
1681 			mutex_unlock(&chip->mutex);
1682 			schedule();
1683 			remove_wait_queue(&chip->wq, &wait);
1684 			timeo = jiffies + (HZ / 2); /* FIXME */
1685 			mutex_lock(&chip->mutex);
1686 			continue;
1687 		}
1688 
1689 		/*
1690 		 * We check "time_after" and "!chip_good" before checking
1691 		 * "chip_good" to avoid the failure due to scheduling.
1692 		 */
1693 		if (time_after(jiffies, timeo) &&
1694 		    !chip_good(map, chip, adr, datum)) {
1695 			xip_enable(map, chip, adr);
1696 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1697 			xip_disable(map, chip, adr);
1698 			ret = -EIO;
1699 			break;
1700 		}
1701 
1702 		if (chip_good(map, chip, adr, datum))
1703 			break;
1704 
1705 		/* Latency issues. Drop the lock, wait a while and retry */
1706 		UDELAY(map, chip, adr, 1);
1707 	}
1708 
1709 	return ret;
1710 }
1711 
1712 static int __xipram do_write_oneword_start(struct map_info *map,
1713 					   struct flchip *chip,
1714 					   unsigned long adr, int mode)
1715 {
1716 	int ret = 0;
1717 
1718 	mutex_lock(&chip->mutex);
1719 
1720 	ret = get_chip(map, chip, adr, mode);
1721 	if (ret) {
1722 		mutex_unlock(&chip->mutex);
1723 		return ret;
1724 	}
1725 
1726 	if (mode == FL_OTP_WRITE)
1727 		otp_enter(map, chip, adr, map_bankwidth(map));
1728 
1729 	return ret;
1730 }
1731 
1732 static void __xipram do_write_oneword_done(struct map_info *map,
1733 					   struct flchip *chip,
1734 					   unsigned long adr, int mode)
1735 {
1736 	if (mode == FL_OTP_WRITE)
1737 		otp_exit(map, chip, adr, map_bankwidth(map));
1738 
1739 	chip->state = FL_READY;
1740 	DISABLE_VPP(map);
1741 	put_chip(map, chip, adr);
1742 
1743 	mutex_unlock(&chip->mutex);
1744 }
1745 
1746 static int __xipram do_write_oneword_retry(struct map_info *map,
1747 					   struct flchip *chip,
1748 					   unsigned long adr, map_word datum,
1749 					   int mode)
1750 {
1751 	struct cfi_private *cfi = map->fldrv_priv;
1752 	int ret = 0;
1753 	map_word oldd;
1754 	int retry_cnt = 0;
1755 
1756 	/*
1757 	 * Check for a NOP for the case when the datum to write is already
1758 	 * present - it saves time and works around buggy chips that corrupt
1759 	 * data at other locations when 0xff is written to a location that
1760 	 * already contains 0xff.
1761 	 */
1762 	oldd = map_read(map, adr);
1763 	if (map_word_equal(map, oldd, datum)) {
1764 		pr_debug("MTD %s(): NOP\n", __func__);
1765 		return ret;
1766 	}
1767 
1768 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1769 	ENABLE_VPP(map);
1770 	xip_disable(map, chip, adr);
1771 
1772  retry:
1773 	ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
1774 	if (ret) {
1775 		/* reset on all failures. */
1776 		cfi_check_err_status(map, chip, adr);
1777 		map_write(map, CMD(0xF0), chip->start);
1778 		/* FIXME - should have reset delay before continuing */
1779 
1780 		if (++retry_cnt <= MAX_RETRIES) {
1781 			ret = 0;
1782 			goto retry;
1783 		}
1784 	}
1785 	xip_enable(map, chip, adr);
1786 
1787 	return ret;
1788 }
1789 
1790 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1791 				     unsigned long adr, map_word datum,
1792 				     int mode)
1793 {
1794 	int ret = 0;
1795 
1796 	adr += chip->start;
1797 
1798 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
1799 		 datum.x[0]);
1800 
1801 	ret = do_write_oneword_start(map, chip, adr, mode);
1802 	if (ret)
1803 		return ret;
1804 
1805 	ret = do_write_oneword_retry(map, chip, adr, datum, mode);
1806 
1807 	do_write_oneword_done(map, chip, adr, mode);
1808 
1809 	return ret;
1810 }
1811 
1812 
1813 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1814 				  size_t *retlen, const u_char *buf)
1815 {
1816 	struct map_info *map = mtd->priv;
1817 	struct cfi_private *cfi = map->fldrv_priv;
1818 	int ret = 0;
1819 	int chipnum;
1820 	unsigned long ofs, chipstart;
1821 	DECLARE_WAITQUEUE(wait, current);
1822 
1823 	chipnum = to >> cfi->chipshift;
1824 	ofs = to  - (chipnum << cfi->chipshift);
1825 	chipstart = cfi->chips[chipnum].start;
1826 
1827 	/* If it's not bus-aligned, do the first byte write */
1828 	if (ofs & (map_bankwidth(map)-1)) {
1829 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1830 		int i = ofs - bus_ofs;
1831 		int n = 0;
1832 		map_word tmp_buf;
1833 
1834  retry:
1835 		mutex_lock(&cfi->chips[chipnum].mutex);
1836 
1837 		if (cfi->chips[chipnum].state != FL_READY) {
1838 			set_current_state(TASK_UNINTERRUPTIBLE);
1839 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1840 
1841 			mutex_unlock(&cfi->chips[chipnum].mutex);
1842 
1843 			schedule();
1844 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1845 			goto retry;
1846 		}
1847 
1848 		/* Load 'tmp_buf' with old contents of flash */
1849 		tmp_buf = map_read(map, bus_ofs+chipstart);
1850 
1851 		mutex_unlock(&cfi->chips[chipnum].mutex);
1852 
1853 		/* Number of bytes to copy from buffer */
1854 		n = min_t(int, len, map_bankwidth(map)-i);
1855 
1856 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1857 
1858 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1859 				       bus_ofs, tmp_buf, FL_WRITING);
1860 		if (ret)
1861 			return ret;
1862 
1863 		ofs += n;
1864 		buf += n;
1865 		(*retlen) += n;
1866 		len -= n;
1867 
1868 		if (ofs >> cfi->chipshift) {
1869 			chipnum ++;
1870 			ofs = 0;
1871 			if (chipnum == cfi->numchips)
1872 				return 0;
1873 		}
1874 	}
1875 
1876 	/* We are now aligned, write as much as possible */
1877 	while(len >= map_bankwidth(map)) {
1878 		map_word datum;
1879 
1880 		datum = map_word_load(map, buf);
1881 
1882 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1883 				       ofs, datum, FL_WRITING);
1884 		if (ret)
1885 			return ret;
1886 
1887 		ofs += map_bankwidth(map);
1888 		buf += map_bankwidth(map);
1889 		(*retlen) += map_bankwidth(map);
1890 		len -= map_bankwidth(map);
1891 
1892 		if (ofs >> cfi->chipshift) {
1893 			chipnum ++;
1894 			ofs = 0;
1895 			if (chipnum == cfi->numchips)
1896 				return 0;
1897 			chipstart = cfi->chips[chipnum].start;
1898 		}
1899 	}
1900 
1901 	/* Write the trailing bytes if any */
1902 	if (len & (map_bankwidth(map)-1)) {
1903 		map_word tmp_buf;
1904 
1905  retry1:
1906 		mutex_lock(&cfi->chips[chipnum].mutex);
1907 
1908 		if (cfi->chips[chipnum].state != FL_READY) {
1909 			set_current_state(TASK_UNINTERRUPTIBLE);
1910 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1911 
1912 			mutex_unlock(&cfi->chips[chipnum].mutex);
1913 
1914 			schedule();
1915 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1916 			goto retry1;
1917 		}
1918 
1919 		tmp_buf = map_read(map, ofs + chipstart);
1920 
1921 		mutex_unlock(&cfi->chips[chipnum].mutex);
1922 
1923 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1924 
1925 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1926 				       ofs, tmp_buf, FL_WRITING);
1927 		if (ret)
1928 			return ret;
1929 
1930 		(*retlen) += len;
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 #if !FORCE_WORD_WRITE
1937 static int __xipram do_write_buffer_wait(struct map_info *map,
1938 					 struct flchip *chip, unsigned long adr,
1939 					 map_word datum)
1940 {
1941 	unsigned long timeo;
1942 	unsigned long u_write_timeout;
1943 	int ret = 0;
1944 
1945 	/*
1946 	 * Timeout is calculated according to CFI data, if available.
1947 	 * See more comments in cfi_cmdset_0002().
1948 	 */
1949 	u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
1950 	timeo = jiffies + u_write_timeout;
1951 
1952 	for (;;) {
1953 		if (chip->state != FL_WRITING) {
1954 			/* Someone's suspended the write. Sleep */
1955 			DECLARE_WAITQUEUE(wait, current);
1956 
1957 			set_current_state(TASK_UNINTERRUPTIBLE);
1958 			add_wait_queue(&chip->wq, &wait);
1959 			mutex_unlock(&chip->mutex);
1960 			schedule();
1961 			remove_wait_queue(&chip->wq, &wait);
1962 			timeo = jiffies + (HZ / 2); /* FIXME */
1963 			mutex_lock(&chip->mutex);
1964 			continue;
1965 		}
1966 
1967 		/*
1968 		 * We check "time_after" and "!chip_good" before checking
1969 		 * "chip_good" to avoid the failure due to scheduling.
1970 		 */
1971 		if (time_after(jiffies, timeo) &&
1972 		    !chip_good(map, chip, adr, datum)) {
1973 			ret = -EIO;
1974 			break;
1975 		}
1976 
1977 		if (chip_good(map, chip, adr, datum))
1978 			break;
1979 
1980 		/* Latency issues. Drop the lock, wait a while and retry */
1981 		UDELAY(map, chip, adr, 1);
1982 	}
1983 
1984 	return ret;
1985 }
1986 
1987 static void __xipram do_write_buffer_reset(struct map_info *map,
1988 					   struct flchip *chip,
1989 					   struct cfi_private *cfi)
1990 {
1991 	/*
1992 	 * Recovery from write-buffer programming failures requires
1993 	 * the write-to-buffer-reset sequence.  Since the last part
1994 	 * of the sequence also works as a normal reset, we can run
1995 	 * the same commands regardless of why we are here.
1996 	 * See e.g.
1997 	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1998 	 */
1999 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2000 			 cfi->device_type, NULL);
2001 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2002 			 cfi->device_type, NULL);
2003 	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
2004 			 cfi->device_type, NULL);
2005 
2006 	/* FIXME - should have reset delay before continuing */
2007 }
2008 
2009 /*
2010  * FIXME: interleaved mode not tested, and probably not supported!
2011  */
2012 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
2013 				    unsigned long adr, const u_char *buf,
2014 				    int len)
2015 {
2016 	struct cfi_private *cfi = map->fldrv_priv;
2017 	int ret = -EIO;
2018 	unsigned long cmd_adr;
2019 	int z, words;
2020 	map_word datum;
2021 
2022 	adr += chip->start;
2023 	cmd_adr = adr;
2024 
2025 	mutex_lock(&chip->mutex);
2026 	ret = get_chip(map, chip, adr, FL_WRITING);
2027 	if (ret) {
2028 		mutex_unlock(&chip->mutex);
2029 		return ret;
2030 	}
2031 
2032 	datum = map_word_load(map, buf);
2033 
2034 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2035 		 __func__, adr, datum.x[0]);
2036 
2037 	XIP_INVAL_CACHED_RANGE(map, adr, len);
2038 	ENABLE_VPP(map);
2039 	xip_disable(map, chip, cmd_adr);
2040 
2041 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2042 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2043 
2044 	/* Write Buffer Load */
2045 	map_write(map, CMD(0x25), cmd_adr);
2046 
2047 	chip->state = FL_WRITING_TO_BUFFER;
2048 
2049 	/* Write length of data to come */
2050 	words = len / map_bankwidth(map);
2051 	map_write(map, CMD(words - 1), cmd_adr);
2052 	/* Write data */
2053 	z = 0;
2054 	while(z < words * map_bankwidth(map)) {
2055 		datum = map_word_load(map, buf);
2056 		map_write(map, datum, adr + z);
2057 
2058 		z += map_bankwidth(map);
2059 		buf += map_bankwidth(map);
2060 	}
2061 	z -= map_bankwidth(map);
2062 
2063 	adr += z;
2064 
2065 	/* Write Buffer Program Confirm: GO GO GO */
2066 	map_write(map, CMD(0x29), cmd_adr);
2067 	chip->state = FL_WRITING;
2068 
2069 	INVALIDATE_CACHE_UDELAY(map, chip,
2070 				adr, map_bankwidth(map),
2071 				chip->word_write_time);
2072 
2073 	ret = do_write_buffer_wait(map, chip, adr, datum);
2074 	if (ret) {
2075 		cfi_check_err_status(map, chip, adr);
2076 		do_write_buffer_reset(map, chip, cfi);
2077 		pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
2078 		       __func__, adr);
2079 	}
2080 
2081 	xip_enable(map, chip, adr);
2082 
2083 	chip->state = FL_READY;
2084 	DISABLE_VPP(map);
2085 	put_chip(map, chip, adr);
2086 	mutex_unlock(&chip->mutex);
2087 
2088 	return ret;
2089 }
2090 
2091 
2092 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
2093 				    size_t *retlen, const u_char *buf)
2094 {
2095 	struct map_info *map = mtd->priv;
2096 	struct cfi_private *cfi = map->fldrv_priv;
2097 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
2098 	int ret = 0;
2099 	int chipnum;
2100 	unsigned long ofs;
2101 
2102 	chipnum = to >> cfi->chipshift;
2103 	ofs = to  - (chipnum << cfi->chipshift);
2104 
2105 	/* If it's not bus-aligned, do the first word write */
2106 	if (ofs & (map_bankwidth(map)-1)) {
2107 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
2108 		if (local_len > len)
2109 			local_len = len;
2110 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2111 					     local_len, retlen, buf);
2112 		if (ret)
2113 			return ret;
2114 		ofs += local_len;
2115 		buf += local_len;
2116 		len -= local_len;
2117 
2118 		if (ofs >> cfi->chipshift) {
2119 			chipnum ++;
2120 			ofs = 0;
2121 			if (chipnum == cfi->numchips)
2122 				return 0;
2123 		}
2124 	}
2125 
2126 	/* Write buffer is worth it only if more than one word to write... */
2127 	while (len >= map_bankwidth(map) * 2) {
2128 		/* We must not cross write block boundaries */
2129 		int size = wbufsize - (ofs & (wbufsize-1));
2130 
2131 		if (size > len)
2132 			size = len;
2133 		if (size % map_bankwidth(map))
2134 			size -= size % map_bankwidth(map);
2135 
2136 		ret = do_write_buffer(map, &cfi->chips[chipnum],
2137 				      ofs, buf, size);
2138 		if (ret)
2139 			return ret;
2140 
2141 		ofs += size;
2142 		buf += size;
2143 		(*retlen) += size;
2144 		len -= size;
2145 
2146 		if (ofs >> cfi->chipshift) {
2147 			chipnum ++;
2148 			ofs = 0;
2149 			if (chipnum == cfi->numchips)
2150 				return 0;
2151 		}
2152 	}
2153 
2154 	if (len) {
2155 		size_t retlen_dregs = 0;
2156 
2157 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2158 					     len, &retlen_dregs, buf);
2159 
2160 		*retlen += retlen_dregs;
2161 		return ret;
2162 	}
2163 
2164 	return 0;
2165 }
2166 #endif /* !FORCE_WORD_WRITE */
2167 
2168 /*
2169  * Wait for the flash chip to become ready to write data
2170  *
2171  * This is only called during the panic_write() path. When panic_write()
2172  * is called, the kernel is in the process of a panic, and will soon be
2173  * dead. Therefore we don't take any locks, and attempt to get access
2174  * to the chip as soon as possible.
2175  */
2176 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2177 				 unsigned long adr)
2178 {
2179 	struct cfi_private *cfi = map->fldrv_priv;
2180 	int retries = 10;
2181 	int i;
2182 
2183 	/*
2184 	 * If the driver thinks the chip is idle, and no toggle bits
2185 	 * are changing, then the chip is actually idle for sure.
2186 	 */
2187 	if (chip->state == FL_READY && chip_ready(map, chip, adr))
2188 		return 0;
2189 
2190 	/*
2191 	 * Try several times to reset the chip and then wait for it
2192 	 * to become idle. The upper limit of a few milliseconds of
2193 	 * delay isn't a big problem: the kernel is dying anyway. It
2194 	 * is more important to save the messages.
2195 	 */
2196 	while (retries > 0) {
2197 		const unsigned long timeo = (HZ / 1000) + 1;
2198 
2199 		/* send the reset command */
2200 		map_write(map, CMD(0xF0), chip->start);
2201 
2202 		/* wait for the chip to become ready */
2203 		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2204 			if (chip_ready(map, chip, adr))
2205 				return 0;
2206 
2207 			udelay(1);
2208 		}
2209 
2210 		retries--;
2211 	}
2212 
2213 	/* the chip never became ready */
2214 	return -EBUSY;
2215 }
2216 
2217 /*
2218  * Write out one word of data to a single flash chip during a kernel panic
2219  *
2220  * This is only called during the panic_write() path. When panic_write()
2221  * is called, the kernel is in the process of a panic, and will soon be
2222  * dead. Therefore we don't take any locks, and attempt to get access
2223  * to the chip as soon as possible.
2224  *
2225  * The implementation of this routine is intentionally similar to
2226  * do_write_oneword(), in order to ease code maintenance.
2227  */
2228 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2229 				  unsigned long adr, map_word datum)
2230 {
2231 	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2232 	struct cfi_private *cfi = map->fldrv_priv;
2233 	int retry_cnt = 0;
2234 	map_word oldd;
2235 	int ret = 0;
2236 	int i;
2237 
2238 	adr += chip->start;
2239 
2240 	ret = cfi_amdstd_panic_wait(map, chip, adr);
2241 	if (ret)
2242 		return ret;
2243 
2244 	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2245 			__func__, adr, datum.x[0]);
2246 
2247 	/*
2248 	 * Check for a NOP for the case when the datum to write is already
2249 	 * present - it saves time and works around buggy chips that corrupt
2250 	 * data at other locations when 0xff is written to a location that
2251 	 * already contains 0xff.
2252 	 */
2253 	oldd = map_read(map, adr);
2254 	if (map_word_equal(map, oldd, datum)) {
2255 		pr_debug("MTD %s(): NOP\n", __func__);
2256 		goto op_done;
2257 	}
2258 
2259 	ENABLE_VPP(map);
2260 
2261 retry:
2262 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2263 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2264 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2265 	map_write(map, datum, adr);
2266 
2267 	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2268 		if (chip_ready(map, chip, adr))
2269 			break;
2270 
2271 		udelay(1);
2272 	}
2273 
2274 	if (!chip_good(map, chip, adr, datum)) {
2275 		/* reset on all failures. */
2276 		cfi_check_err_status(map, chip, adr);
2277 		map_write(map, CMD(0xF0), chip->start);
2278 		/* FIXME - should have reset delay before continuing */
2279 
2280 		if (++retry_cnt <= MAX_RETRIES)
2281 			goto retry;
2282 
2283 		ret = -EIO;
2284 	}
2285 
2286 op_done:
2287 	DISABLE_VPP(map);
2288 	return ret;
2289 }
2290 
2291 /*
2292  * Write out some data during a kernel panic
2293  *
2294  * This is used by the mtdoops driver to save the dying messages from a
2295  * kernel which has panic'd.
2296  *
2297  * This routine ignores all of the locking used throughout the rest of the
2298  * driver, in order to ensure that the data gets written out no matter what
2299  * state this driver (and the flash chip itself) was in when the kernel crashed.
2300  *
2301  * The implementation of this routine is intentionally similar to
2302  * cfi_amdstd_write_words(), in order to ease code maintenance.
2303  */
2304 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2305 				  size_t *retlen, const u_char *buf)
2306 {
2307 	struct map_info *map = mtd->priv;
2308 	struct cfi_private *cfi = map->fldrv_priv;
2309 	unsigned long ofs, chipstart;
2310 	int ret = 0;
2311 	int chipnum;
2312 
2313 	chipnum = to >> cfi->chipshift;
2314 	ofs = to - (chipnum << cfi->chipshift);
2315 	chipstart = cfi->chips[chipnum].start;
2316 
2317 	/* If it's not bus aligned, do the first byte write */
2318 	if (ofs & (map_bankwidth(map) - 1)) {
2319 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2320 		int i = ofs - bus_ofs;
2321 		int n = 0;
2322 		map_word tmp_buf;
2323 
2324 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2325 		if (ret)
2326 			return ret;
2327 
2328 		/* Load 'tmp_buf' with old contents of flash */
2329 		tmp_buf = map_read(map, bus_ofs + chipstart);
2330 
2331 		/* Number of bytes to copy from buffer */
2332 		n = min_t(int, len, map_bankwidth(map) - i);
2333 
2334 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2335 
2336 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2337 					     bus_ofs, tmp_buf);
2338 		if (ret)
2339 			return ret;
2340 
2341 		ofs += n;
2342 		buf += n;
2343 		(*retlen) += n;
2344 		len -= n;
2345 
2346 		if (ofs >> cfi->chipshift) {
2347 			chipnum++;
2348 			ofs = 0;
2349 			if (chipnum == cfi->numchips)
2350 				return 0;
2351 		}
2352 	}
2353 
2354 	/* We are now aligned, write as much as possible */
2355 	while (len >= map_bankwidth(map)) {
2356 		map_word datum;
2357 
2358 		datum = map_word_load(map, buf);
2359 
2360 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2361 					     ofs, datum);
2362 		if (ret)
2363 			return ret;
2364 
2365 		ofs += map_bankwidth(map);
2366 		buf += map_bankwidth(map);
2367 		(*retlen) += map_bankwidth(map);
2368 		len -= map_bankwidth(map);
2369 
2370 		if (ofs >> cfi->chipshift) {
2371 			chipnum++;
2372 			ofs = 0;
2373 			if (chipnum == cfi->numchips)
2374 				return 0;
2375 
2376 			chipstart = cfi->chips[chipnum].start;
2377 		}
2378 	}
2379 
2380 	/* Write the trailing bytes if any */
2381 	if (len & (map_bankwidth(map) - 1)) {
2382 		map_word tmp_buf;
2383 
2384 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2385 		if (ret)
2386 			return ret;
2387 
2388 		tmp_buf = map_read(map, ofs + chipstart);
2389 
2390 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2391 
2392 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2393 					     ofs, tmp_buf);
2394 		if (ret)
2395 			return ret;
2396 
2397 		(*retlen) += len;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
2403 
2404 /*
2405  * Handle devices with one erase region, that only implement
2406  * the chip erase command.
2407  */
2408 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2409 {
2410 	struct cfi_private *cfi = map->fldrv_priv;
2411 	unsigned long timeo = jiffies + HZ;
2412 	unsigned long int adr;
2413 	DECLARE_WAITQUEUE(wait, current);
2414 	int ret = 0;
2415 	int retry_cnt = 0;
2416 
2417 	adr = cfi->addr_unlock1;
2418 
2419 	mutex_lock(&chip->mutex);
2420 	ret = get_chip(map, chip, adr, FL_ERASING);
2421 	if (ret) {
2422 		mutex_unlock(&chip->mutex);
2423 		return ret;
2424 	}
2425 
2426 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2427 	       __func__, chip->start);
2428 
2429 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2430 	ENABLE_VPP(map);
2431 	xip_disable(map, chip, adr);
2432 
2433  retry:
2434 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2435 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2436 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2437 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2438 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2439 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2440 
2441 	chip->state = FL_ERASING;
2442 	chip->erase_suspended = 0;
2443 	chip->in_progress_block_addr = adr;
2444 	chip->in_progress_block_mask = ~(map->size - 1);
2445 
2446 	INVALIDATE_CACHE_UDELAY(map, chip,
2447 				adr, map->size,
2448 				chip->erase_time*500);
2449 
2450 	timeo = jiffies + (HZ*20);
2451 
2452 	for (;;) {
2453 		if (chip->state != FL_ERASING) {
2454 			/* Someone's suspended the erase. Sleep */
2455 			set_current_state(TASK_UNINTERRUPTIBLE);
2456 			add_wait_queue(&chip->wq, &wait);
2457 			mutex_unlock(&chip->mutex);
2458 			schedule();
2459 			remove_wait_queue(&chip->wq, &wait);
2460 			mutex_lock(&chip->mutex);
2461 			continue;
2462 		}
2463 		if (chip->erase_suspended) {
2464 			/* This erase was suspended and resumed.
2465 			   Adjust the timeout */
2466 			timeo = jiffies + (HZ*20); /* FIXME */
2467 			chip->erase_suspended = 0;
2468 		}
2469 
2470 		if (chip_good(map, chip, adr, map_word_ff(map)))
2471 			break;
2472 
2473 		if (time_after(jiffies, timeo)) {
2474 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2475 			       __func__);
2476 			ret = -EIO;
2477 			break;
2478 		}
2479 
2480 		/* Latency issues. Drop the lock, wait a while and retry */
2481 		UDELAY(map, chip, adr, 1000000/HZ);
2482 	}
2483 	/* Did we succeed? */
2484 	if (ret) {
2485 		/* reset on all failures. */
2486 		cfi_check_err_status(map, chip, adr);
2487 		map_write(map, CMD(0xF0), chip->start);
2488 		/* FIXME - should have reset delay before continuing */
2489 
2490 		if (++retry_cnt <= MAX_RETRIES) {
2491 			ret = 0;
2492 			goto retry;
2493 		}
2494 	}
2495 
2496 	chip->state = FL_READY;
2497 	xip_enable(map, chip, adr);
2498 	DISABLE_VPP(map);
2499 	put_chip(map, chip, adr);
2500 	mutex_unlock(&chip->mutex);
2501 
2502 	return ret;
2503 }
2504 
2505 
2506 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2507 {
2508 	struct cfi_private *cfi = map->fldrv_priv;
2509 	unsigned long timeo = jiffies + HZ;
2510 	DECLARE_WAITQUEUE(wait, current);
2511 	int ret = 0;
2512 	int retry_cnt = 0;
2513 
2514 	adr += chip->start;
2515 
2516 	mutex_lock(&chip->mutex);
2517 	ret = get_chip(map, chip, adr, FL_ERASING);
2518 	if (ret) {
2519 		mutex_unlock(&chip->mutex);
2520 		return ret;
2521 	}
2522 
2523 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2524 		 __func__, adr);
2525 
2526 	XIP_INVAL_CACHED_RANGE(map, adr, len);
2527 	ENABLE_VPP(map);
2528 	xip_disable(map, chip, adr);
2529 
2530  retry:
2531 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2532 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2533 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2534 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2535 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2536 	map_write(map, cfi->sector_erase_cmd, adr);
2537 
2538 	chip->state = FL_ERASING;
2539 	chip->erase_suspended = 0;
2540 	chip->in_progress_block_addr = adr;
2541 	chip->in_progress_block_mask = ~(len - 1);
2542 
2543 	INVALIDATE_CACHE_UDELAY(map, chip,
2544 				adr, len,
2545 				chip->erase_time*500);
2546 
2547 	timeo = jiffies + (HZ*20);
2548 
2549 	for (;;) {
2550 		if (chip->state != FL_ERASING) {
2551 			/* Someone's suspended the erase. Sleep */
2552 			set_current_state(TASK_UNINTERRUPTIBLE);
2553 			add_wait_queue(&chip->wq, &wait);
2554 			mutex_unlock(&chip->mutex);
2555 			schedule();
2556 			remove_wait_queue(&chip->wq, &wait);
2557 			mutex_lock(&chip->mutex);
2558 			continue;
2559 		}
2560 		if (chip->erase_suspended) {
2561 			/* This erase was suspended and resumed.
2562 			   Adjust the timeout */
2563 			timeo = jiffies + (HZ*20); /* FIXME */
2564 			chip->erase_suspended = 0;
2565 		}
2566 
2567 		if (chip_good(map, chip, adr, map_word_ff(map)))
2568 			break;
2569 
2570 		if (time_after(jiffies, timeo)) {
2571 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2572 			       __func__);
2573 			ret = -EIO;
2574 			break;
2575 		}
2576 
2577 		/* Latency issues. Drop the lock, wait a while and retry */
2578 		UDELAY(map, chip, adr, 1000000/HZ);
2579 	}
2580 	/* Did we succeed? */
2581 	if (ret) {
2582 		/* reset on all failures. */
2583 		cfi_check_err_status(map, chip, adr);
2584 		map_write(map, CMD(0xF0), chip->start);
2585 		/* FIXME - should have reset delay before continuing */
2586 
2587 		if (++retry_cnt <= MAX_RETRIES) {
2588 			ret = 0;
2589 			goto retry;
2590 		}
2591 	}
2592 
2593 	chip->state = FL_READY;
2594 	xip_enable(map, chip, adr);
2595 	DISABLE_VPP(map);
2596 	put_chip(map, chip, adr);
2597 	mutex_unlock(&chip->mutex);
2598 	return ret;
2599 }
2600 
2601 
2602 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2603 {
2604 	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2605 				instr->len, NULL);
2606 }
2607 
2608 
2609 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2610 {
2611 	struct map_info *map = mtd->priv;
2612 	struct cfi_private *cfi = map->fldrv_priv;
2613 
2614 	if (instr->addr != 0)
2615 		return -EINVAL;
2616 
2617 	if (instr->len != mtd->size)
2618 		return -EINVAL;
2619 
2620 	return do_erase_chip(map, &cfi->chips[0]);
2621 }
2622 
2623 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2624 			 unsigned long adr, int len, void *thunk)
2625 {
2626 	struct cfi_private *cfi = map->fldrv_priv;
2627 	int ret;
2628 
2629 	mutex_lock(&chip->mutex);
2630 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2631 	if (ret)
2632 		goto out_unlock;
2633 	chip->state = FL_LOCKING;
2634 
2635 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2636 
2637 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2638 			 cfi->device_type, NULL);
2639 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2640 			 cfi->device_type, NULL);
2641 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2642 			 cfi->device_type, NULL);
2643 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2644 			 cfi->device_type, NULL);
2645 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2646 			 cfi->device_type, NULL);
2647 	map_write(map, CMD(0x40), chip->start + adr);
2648 
2649 	chip->state = FL_READY;
2650 	put_chip(map, chip, adr + chip->start);
2651 	ret = 0;
2652 
2653 out_unlock:
2654 	mutex_unlock(&chip->mutex);
2655 	return ret;
2656 }
2657 
2658 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2659 			   unsigned long adr, int len, void *thunk)
2660 {
2661 	struct cfi_private *cfi = map->fldrv_priv;
2662 	int ret;
2663 
2664 	mutex_lock(&chip->mutex);
2665 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2666 	if (ret)
2667 		goto out_unlock;
2668 	chip->state = FL_UNLOCKING;
2669 
2670 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2671 
2672 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2673 			 cfi->device_type, NULL);
2674 	map_write(map, CMD(0x70), adr);
2675 
2676 	chip->state = FL_READY;
2677 	put_chip(map, chip, adr + chip->start);
2678 	ret = 0;
2679 
2680 out_unlock:
2681 	mutex_unlock(&chip->mutex);
2682 	return ret;
2683 }
2684 
2685 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2686 {
2687 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2688 }
2689 
2690 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2691 {
2692 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2693 }
2694 
2695 /*
2696  * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2697  */
2698 
2699 struct ppb_lock {
2700 	struct flchip *chip;
2701 	unsigned long adr;
2702 	int locked;
2703 };
2704 
2705 #define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1)
2706 #define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2)
2707 #define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3)
2708 
2709 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2710 					struct flchip *chip,
2711 					unsigned long adr, int len, void *thunk)
2712 {
2713 	struct cfi_private *cfi = map->fldrv_priv;
2714 	unsigned long timeo;
2715 	int ret;
2716 
2717 	adr += chip->start;
2718 	mutex_lock(&chip->mutex);
2719 	ret = get_chip(map, chip, adr, FL_LOCKING);
2720 	if (ret) {
2721 		mutex_unlock(&chip->mutex);
2722 		return ret;
2723 	}
2724 
2725 	pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2726 
2727 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2728 			 cfi->device_type, NULL);
2729 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2730 			 cfi->device_type, NULL);
2731 	/* PPB entry command */
2732 	cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2733 			 cfi->device_type, NULL);
2734 
2735 	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2736 		chip->state = FL_LOCKING;
2737 		map_write(map, CMD(0xA0), adr);
2738 		map_write(map, CMD(0x00), adr);
2739 	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2740 		/*
2741 		 * Unlocking of one specific sector is not supported, so we
2742 		 * have to unlock all sectors of this device instead
2743 		 */
2744 		chip->state = FL_UNLOCKING;
2745 		map_write(map, CMD(0x80), chip->start);
2746 		map_write(map, CMD(0x30), chip->start);
2747 	} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2748 		chip->state = FL_JEDEC_QUERY;
2749 		/* Return locked status: 0->locked, 1->unlocked */
2750 		ret = !cfi_read_query(map, adr);
2751 	} else
2752 		BUG();
2753 
2754 	/*
2755 	 * Wait for some time as unlocking of all sectors takes quite long
2756 	 */
2757 	timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */
2758 	for (;;) {
2759 		if (chip_ready(map, chip, adr))
2760 			break;
2761 
2762 		if (time_after(jiffies, timeo)) {
2763 			printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2764 			ret = -EIO;
2765 			break;
2766 		}
2767 
2768 		UDELAY(map, chip, adr, 1);
2769 	}
2770 
2771 	/* Exit BC commands */
2772 	map_write(map, CMD(0x90), chip->start);
2773 	map_write(map, CMD(0x00), chip->start);
2774 
2775 	chip->state = FL_READY;
2776 	put_chip(map, chip, adr);
2777 	mutex_unlock(&chip->mutex);
2778 
2779 	return ret;
2780 }
2781 
2782 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2783 				       uint64_t len)
2784 {
2785 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2786 				DO_XXLOCK_ONEBLOCK_LOCK);
2787 }
2788 
2789 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2790 					 uint64_t len)
2791 {
2792 	struct mtd_erase_region_info *regions = mtd->eraseregions;
2793 	struct map_info *map = mtd->priv;
2794 	struct cfi_private *cfi = map->fldrv_priv;
2795 	struct ppb_lock *sect;
2796 	unsigned long adr;
2797 	loff_t offset;
2798 	uint64_t length;
2799 	int chipnum;
2800 	int i;
2801 	int sectors;
2802 	int ret;
2803 	int max_sectors;
2804 
2805 	/*
2806 	 * PPB unlocking always unlocks all sectors of the flash chip.
2807 	 * We need to re-lock all previously locked sectors. So lets
2808 	 * first check the locking status of all sectors and save
2809 	 * it for future use.
2810 	 */
2811 	max_sectors = 0;
2812 	for (i = 0; i < mtd->numeraseregions; i++)
2813 		max_sectors += regions[i].numblocks;
2814 
2815 	sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2816 	if (!sect)
2817 		return -ENOMEM;
2818 
2819 	/*
2820 	 * This code to walk all sectors is a slightly modified version
2821 	 * of the cfi_varsize_frob() code.
2822 	 */
2823 	i = 0;
2824 	chipnum = 0;
2825 	adr = 0;
2826 	sectors = 0;
2827 	offset = 0;
2828 	length = mtd->size;
2829 
2830 	while (length) {
2831 		int size = regions[i].erasesize;
2832 
2833 		/*
2834 		 * Only test sectors that shall not be unlocked. The other
2835 		 * sectors shall be unlocked, so lets keep their locking
2836 		 * status at "unlocked" (locked=0) for the final re-locking.
2837 		 */
2838 		if ((offset < ofs) || (offset >= (ofs + len))) {
2839 			sect[sectors].chip = &cfi->chips[chipnum];
2840 			sect[sectors].adr = adr;
2841 			sect[sectors].locked = do_ppb_xxlock(
2842 				map, &cfi->chips[chipnum], adr, 0,
2843 				DO_XXLOCK_ONEBLOCK_GETLOCK);
2844 		}
2845 
2846 		adr += size;
2847 		offset += size;
2848 		length -= size;
2849 
2850 		if (offset == regions[i].offset + size * regions[i].numblocks)
2851 			i++;
2852 
2853 		if (adr >> cfi->chipshift) {
2854 			if (offset >= (ofs + len))
2855 				break;
2856 			adr = 0;
2857 			chipnum++;
2858 
2859 			if (chipnum >= cfi->numchips)
2860 				break;
2861 		}
2862 
2863 		sectors++;
2864 		if (sectors >= max_sectors) {
2865 			printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2866 			       max_sectors);
2867 			kfree(sect);
2868 			return -EINVAL;
2869 		}
2870 	}
2871 
2872 	/* Now unlock the whole chip */
2873 	ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2874 			       DO_XXLOCK_ONEBLOCK_UNLOCK);
2875 	if (ret) {
2876 		kfree(sect);
2877 		return ret;
2878 	}
2879 
2880 	/*
2881 	 * PPB unlocking always unlocks all sectors of the flash chip.
2882 	 * We need to re-lock all previously locked sectors.
2883 	 */
2884 	for (i = 0; i < sectors; i++) {
2885 		if (sect[i].locked)
2886 			do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2887 				      DO_XXLOCK_ONEBLOCK_LOCK);
2888 	}
2889 
2890 	kfree(sect);
2891 	return ret;
2892 }
2893 
2894 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2895 					    uint64_t len)
2896 {
2897 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2898 				DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2899 }
2900 
2901 static void cfi_amdstd_sync (struct mtd_info *mtd)
2902 {
2903 	struct map_info *map = mtd->priv;
2904 	struct cfi_private *cfi = map->fldrv_priv;
2905 	int i;
2906 	struct flchip *chip;
2907 	int ret = 0;
2908 	DECLARE_WAITQUEUE(wait, current);
2909 
2910 	for (i=0; !ret && i<cfi->numchips; i++) {
2911 		chip = &cfi->chips[i];
2912 
2913 	retry:
2914 		mutex_lock(&chip->mutex);
2915 
2916 		switch(chip->state) {
2917 		case FL_READY:
2918 		case FL_STATUS:
2919 		case FL_CFI_QUERY:
2920 		case FL_JEDEC_QUERY:
2921 			chip->oldstate = chip->state;
2922 			chip->state = FL_SYNCING;
2923 			/* No need to wake_up() on this state change -
2924 			 * as the whole point is that nobody can do anything
2925 			 * with the chip now anyway.
2926 			 */
2927 			/* fall through */
2928 		case FL_SYNCING:
2929 			mutex_unlock(&chip->mutex);
2930 			break;
2931 
2932 		default:
2933 			/* Not an idle state */
2934 			set_current_state(TASK_UNINTERRUPTIBLE);
2935 			add_wait_queue(&chip->wq, &wait);
2936 
2937 			mutex_unlock(&chip->mutex);
2938 
2939 			schedule();
2940 
2941 			remove_wait_queue(&chip->wq, &wait);
2942 
2943 			goto retry;
2944 		}
2945 	}
2946 
2947 	/* Unlock the chips again */
2948 
2949 	for (i--; i >=0; i--) {
2950 		chip = &cfi->chips[i];
2951 
2952 		mutex_lock(&chip->mutex);
2953 
2954 		if (chip->state == FL_SYNCING) {
2955 			chip->state = chip->oldstate;
2956 			wake_up(&chip->wq);
2957 		}
2958 		mutex_unlock(&chip->mutex);
2959 	}
2960 }
2961 
2962 
2963 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2964 {
2965 	struct map_info *map = mtd->priv;
2966 	struct cfi_private *cfi = map->fldrv_priv;
2967 	int i;
2968 	struct flchip *chip;
2969 	int ret = 0;
2970 
2971 	for (i=0; !ret && i<cfi->numchips; i++) {
2972 		chip = &cfi->chips[i];
2973 
2974 		mutex_lock(&chip->mutex);
2975 
2976 		switch(chip->state) {
2977 		case FL_READY:
2978 		case FL_STATUS:
2979 		case FL_CFI_QUERY:
2980 		case FL_JEDEC_QUERY:
2981 			chip->oldstate = chip->state;
2982 			chip->state = FL_PM_SUSPENDED;
2983 			/* No need to wake_up() on this state change -
2984 			 * as the whole point is that nobody can do anything
2985 			 * with the chip now anyway.
2986 			 */
2987 		case FL_PM_SUSPENDED:
2988 			break;
2989 
2990 		default:
2991 			ret = -EAGAIN;
2992 			break;
2993 		}
2994 		mutex_unlock(&chip->mutex);
2995 	}
2996 
2997 	/* Unlock the chips again */
2998 
2999 	if (ret) {
3000 		for (i--; i >=0; i--) {
3001 			chip = &cfi->chips[i];
3002 
3003 			mutex_lock(&chip->mutex);
3004 
3005 			if (chip->state == FL_PM_SUSPENDED) {
3006 				chip->state = chip->oldstate;
3007 				wake_up(&chip->wq);
3008 			}
3009 			mutex_unlock(&chip->mutex);
3010 		}
3011 	}
3012 
3013 	return ret;
3014 }
3015 
3016 
3017 static void cfi_amdstd_resume(struct mtd_info *mtd)
3018 {
3019 	struct map_info *map = mtd->priv;
3020 	struct cfi_private *cfi = map->fldrv_priv;
3021 	int i;
3022 	struct flchip *chip;
3023 
3024 	for (i=0; i<cfi->numchips; i++) {
3025 
3026 		chip = &cfi->chips[i];
3027 
3028 		mutex_lock(&chip->mutex);
3029 
3030 		if (chip->state == FL_PM_SUSPENDED) {
3031 			chip->state = FL_READY;
3032 			map_write(map, CMD(0xF0), chip->start);
3033 			wake_up(&chip->wq);
3034 		}
3035 		else
3036 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3037 
3038 		mutex_unlock(&chip->mutex);
3039 	}
3040 }
3041 
3042 
3043 /*
3044  * Ensure that the flash device is put back into read array mode before
3045  * unloading the driver or rebooting.  On some systems, rebooting while
3046  * the flash is in query/program/erase mode will prevent the CPU from
3047  * fetching the bootloader code, requiring a hard reset or power cycle.
3048  */
3049 static int cfi_amdstd_reset(struct mtd_info *mtd)
3050 {
3051 	struct map_info *map = mtd->priv;
3052 	struct cfi_private *cfi = map->fldrv_priv;
3053 	int i, ret;
3054 	struct flchip *chip;
3055 
3056 	for (i = 0; i < cfi->numchips; i++) {
3057 
3058 		chip = &cfi->chips[i];
3059 
3060 		mutex_lock(&chip->mutex);
3061 
3062 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
3063 		if (!ret) {
3064 			map_write(map, CMD(0xF0), chip->start);
3065 			chip->state = FL_SHUTDOWN;
3066 			put_chip(map, chip, chip->start);
3067 		}
3068 
3069 		mutex_unlock(&chip->mutex);
3070 	}
3071 
3072 	return 0;
3073 }
3074 
3075 
3076 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
3077 			       void *v)
3078 {
3079 	struct mtd_info *mtd;
3080 
3081 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
3082 	cfi_amdstd_reset(mtd);
3083 	return NOTIFY_DONE;
3084 }
3085 
3086 
3087 static void cfi_amdstd_destroy(struct mtd_info *mtd)
3088 {
3089 	struct map_info *map = mtd->priv;
3090 	struct cfi_private *cfi = map->fldrv_priv;
3091 
3092 	cfi_amdstd_reset(mtd);
3093 	unregister_reboot_notifier(&mtd->reboot_notifier);
3094 	kfree(cfi->cmdset_priv);
3095 	kfree(cfi->cfiq);
3096 	kfree(cfi);
3097 	kfree(mtd->eraseregions);
3098 }
3099 
3100 MODULE_LICENSE("GPL");
3101 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3102 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3103 MODULE_ALIAS("cfi_cmdset_0006");
3104 MODULE_ALIAS("cfi_cmdset_0701");
3105