1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define SST49LF004B	        0x0060
47 #define SST49LF040B	        0x0050
48 #define SST49LF008A		0x005a
49 #define AT49BV6416		0x00d6
50 
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 
62 static void cfi_amdstd_destroy(struct mtd_info *);
63 
64 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66 
67 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69 #include "fwh_lock.h"
70 
71 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
73 
74 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 	.probe		= NULL, /* Not usable directly */
76 	.destroy	= cfi_amdstd_destroy,
77 	.name		= "cfi_cmdset_0002",
78 	.module		= THIS_MODULE
79 };
80 
81 
82 /* #define DEBUG_CFI_FEATURES */
83 
84 
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87 {
88 	const char* erase_suspend[3] = {
89 		"Not supported", "Read only", "Read/write"
90 	};
91 	const char* top_bottom[6] = {
92 		"No WP", "8x8KiB sectors at top & bottom, no WP",
93 		"Bottom boot", "Top boot",
94 		"Uniform, Bottom WP", "Uniform, Top WP"
95 	};
96 
97 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
98 	printk("  Address sensitive unlock: %s\n",
99 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
100 
101 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 	else
104 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105 
106 	if (extp->BlkProt == 0)
107 		printk("  Block protection: Not supported\n");
108 	else
109 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
110 
111 
112 	printk("  Temporary block unprotect: %s\n",
113 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 	printk("  Burst mode: %s\n",
117 	       extp->BurstMode ? "Supported" : "Not supported");
118 	if (extp->PageMode == 0)
119 		printk("  Page mode: Not supported\n");
120 	else
121 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
122 
123 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 	       extp->VppMin >> 4, extp->VppMin & 0xf);
125 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 	       extp->VppMax >> 4, extp->VppMax & 0xf);
127 
128 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 	else
131 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132 }
133 #endif
134 
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info *mtd)
138 {
139 	struct map_info *map = mtd->priv;
140 	struct cfi_private *cfi = map->fldrv_priv;
141 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 	__u8 major = extp->MajorVersion;
143 	__u8 minor = extp->MinorVersion;
144 
145 	if (((major << 8) | minor) < 0x3131) {
146 		/* CFI version 1.0 => don't trust bootloc */
147 
148 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
149 			map->name, cfi->mfr, cfi->id);
150 
151 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
152 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
153 		 * These were badly detected as they have the 0x80 bit set
154 		 * so treat them as a special case.
155 		 */
156 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
157 
158 			/* Macronix added CFI to their 2nd generation
159 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
160 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
161 			 * has CFI.
162 			 *
163 			 * Therefore also check the manufacturer.
164 			 * This reduces the risk of false detection due to
165 			 * the 8-bit device ID.
166 			 */
167 			(cfi->mfr == CFI_MFR_MACRONIX)) {
168 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
169 				" detected\n", map->name);
170 			extp->TopBottom = 2;	/* bottom boot */
171 		} else
172 		if (cfi->id & 0x80) {
173 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
174 			extp->TopBottom = 3;	/* top boot */
175 		} else {
176 			extp->TopBottom = 2;	/* bottom boot */
177 		}
178 
179 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
180 			" deduced %s from Device ID\n", map->name, major, minor,
181 			extp->TopBottom == 2 ? "bottom" : "top");
182 	}
183 }
184 #endif
185 
186 static void fixup_use_write_buffers(struct mtd_info *mtd)
187 {
188 	struct map_info *map = mtd->priv;
189 	struct cfi_private *cfi = map->fldrv_priv;
190 	if (cfi->cfiq->BufWriteTimeoutTyp) {
191 		pr_debug("Using buffer write method\n" );
192 		mtd->write = cfi_amdstd_write_buffers;
193 	}
194 }
195 
196 /* Atmel chips don't use the same PRI format as AMD chips */
197 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
198 {
199 	struct map_info *map = mtd->priv;
200 	struct cfi_private *cfi = map->fldrv_priv;
201 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
202 	struct cfi_pri_atmel atmel_pri;
203 
204 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
205 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
206 
207 	if (atmel_pri.Features & 0x02)
208 		extp->EraseSuspend = 2;
209 
210 	/* Some chips got it backwards... */
211 	if (cfi->id == AT49BV6416) {
212 		if (atmel_pri.BottomBoot)
213 			extp->TopBottom = 3;
214 		else
215 			extp->TopBottom = 2;
216 	} else {
217 		if (atmel_pri.BottomBoot)
218 			extp->TopBottom = 2;
219 		else
220 			extp->TopBottom = 3;
221 	}
222 
223 	/* burst write mode not supported */
224 	cfi->cfiq->BufWriteTimeoutTyp = 0;
225 	cfi->cfiq->BufWriteTimeoutMax = 0;
226 }
227 
228 static void fixup_use_secsi(struct mtd_info *mtd)
229 {
230 	/* Setup for chips with a secsi area */
231 	mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
232 	mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
233 }
234 
235 static void fixup_use_erase_chip(struct mtd_info *mtd)
236 {
237 	struct map_info *map = mtd->priv;
238 	struct cfi_private *cfi = map->fldrv_priv;
239 	if ((cfi->cfiq->NumEraseRegions == 1) &&
240 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
241 		mtd->erase = cfi_amdstd_erase_chip;
242 	}
243 
244 }
245 
246 /*
247  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
248  * locked by default.
249  */
250 static void fixup_use_atmel_lock(struct mtd_info *mtd)
251 {
252 	mtd->lock = cfi_atmel_lock;
253 	mtd->unlock = cfi_atmel_unlock;
254 	mtd->flags |= MTD_POWERUP_LOCK;
255 }
256 
257 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
258 {
259 	struct map_info *map = mtd->priv;
260 	struct cfi_private *cfi = map->fldrv_priv;
261 
262 	/*
263 	 * These flashes report two separate eraseblock regions based on the
264 	 * sector_erase-size and block_erase-size, although they both operate on the
265 	 * same memory. This is not allowed according to CFI, so we just pick the
266 	 * sector_erase-size.
267 	 */
268 	cfi->cfiq->NumEraseRegions = 1;
269 }
270 
271 static void fixup_sst39vf(struct mtd_info *mtd)
272 {
273 	struct map_info *map = mtd->priv;
274 	struct cfi_private *cfi = map->fldrv_priv;
275 
276 	fixup_old_sst_eraseregion(mtd);
277 
278 	cfi->addr_unlock1 = 0x5555;
279 	cfi->addr_unlock2 = 0x2AAA;
280 }
281 
282 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
283 {
284 	struct map_info *map = mtd->priv;
285 	struct cfi_private *cfi = map->fldrv_priv;
286 
287 	fixup_old_sst_eraseregion(mtd);
288 
289 	cfi->addr_unlock1 = 0x555;
290 	cfi->addr_unlock2 = 0x2AA;
291 
292 	cfi->sector_erase_cmd = CMD(0x50);
293 }
294 
295 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
296 {
297 	struct map_info *map = mtd->priv;
298 	struct cfi_private *cfi = map->fldrv_priv;
299 
300 	fixup_sst39vf_rev_b(mtd);
301 
302 	/*
303 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
304 	 * it should report a size of 8KBytes (0x0020*256).
305 	 */
306 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
307 	pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
308 }
309 
310 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
311 {
312 	struct map_info *map = mtd->priv;
313 	struct cfi_private *cfi = map->fldrv_priv;
314 
315 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
316 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
317 		pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
318 	}
319 }
320 
321 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
322 {
323 	struct map_info *map = mtd->priv;
324 	struct cfi_private *cfi = map->fldrv_priv;
325 
326 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
327 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
328 		pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
329 	}
330 }
331 
332 /* Used to fix CFI-Tables of chips without Extended Query Tables */
333 static struct cfi_fixup cfi_nopri_fixup_table[] = {
334 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
335 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
336 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
337 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
338 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
339 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
340 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
341 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
342 	{ 0, 0, NULL }
343 };
344 
345 static struct cfi_fixup cfi_fixup_table[] = {
346 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
347 #ifdef AMD_BOOTLOC_BUG
348 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
349 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
350 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
351 #endif
352 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
353 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
354 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
355 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
356 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
357 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
358 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
359 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
360 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
361 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
362 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
363 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
364 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
365 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
366 #if !FORCE_WORD_WRITE
367 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
368 #endif
369 	{ 0, 0, NULL }
370 };
371 static struct cfi_fixup jedec_fixup_table[] = {
372 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
373 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
374 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
375 	{ 0, 0, NULL }
376 };
377 
378 static struct cfi_fixup fixup_table[] = {
379 	/* The CFI vendor ids and the JEDEC vendor IDs appear
380 	 * to be common.  It is like the devices id's are as
381 	 * well.  This table is to pick all cases where
382 	 * we know that is the case.
383 	 */
384 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
385 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
386 	{ 0, 0, NULL }
387 };
388 
389 
390 static void cfi_fixup_major_minor(struct cfi_private *cfi,
391 				  struct cfi_pri_amdstd *extp)
392 {
393 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
394 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
395 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
396 			/*
397 			 * Samsung K8P2815UQB and K8D6x16UxM chips
398 			 * report major=0 / minor=0.
399 			 * K8D3x16UxC chips report major=3 / minor=3.
400 			 */
401 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
402 			       " Extended Query version to 1.%c\n",
403 			       extp->MinorVersion);
404 			extp->MajorVersion = '1';
405 		}
406 	}
407 
408 	/*
409 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
410 	 */
411 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
412 		extp->MajorVersion = '1';
413 		extp->MinorVersion = '0';
414 	}
415 }
416 
417 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
418 {
419 	struct cfi_private *cfi = map->fldrv_priv;
420 	struct mtd_info *mtd;
421 	int i;
422 
423 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
424 	if (!mtd) {
425 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
426 		return NULL;
427 	}
428 	mtd->priv = map;
429 	mtd->type = MTD_NORFLASH;
430 
431 	/* Fill in the default mtd operations */
432 	mtd->erase   = cfi_amdstd_erase_varsize;
433 	mtd->write   = cfi_amdstd_write_words;
434 	mtd->read    = cfi_amdstd_read;
435 	mtd->sync    = cfi_amdstd_sync;
436 	mtd->suspend = cfi_amdstd_suspend;
437 	mtd->resume  = cfi_amdstd_resume;
438 	mtd->flags   = MTD_CAP_NORFLASH;
439 	mtd->name    = map->name;
440 	mtd->writesize = 1;
441 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
442 
443 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
444 			mtd->writebufsize);
445 
446 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
447 
448 	if (cfi->cfi_mode==CFI_MODE_CFI){
449 		unsigned char bootloc;
450 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
451 		struct cfi_pri_amdstd *extp;
452 
453 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
454 		if (extp) {
455 			/*
456 			 * It's a real CFI chip, not one for which the probe
457 			 * routine faked a CFI structure.
458 			 */
459 			cfi_fixup_major_minor(cfi, extp);
460 
461 			/*
462 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
463 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
464 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
465 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
466 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
467 			 */
468 			if (extp->MajorVersion != '1' ||
469 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
470 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
471 				       "version %c.%c (%#02x/%#02x).\n",
472 				       extp->MajorVersion, extp->MinorVersion,
473 				       extp->MajorVersion, extp->MinorVersion);
474 				kfree(extp);
475 				kfree(mtd);
476 				return NULL;
477 			}
478 
479 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
480 			       extp->MajorVersion, extp->MinorVersion);
481 
482 			/* Install our own private info structure */
483 			cfi->cmdset_priv = extp;
484 
485 			/* Apply cfi device specific fixups */
486 			cfi_fixup(mtd, cfi_fixup_table);
487 
488 #ifdef DEBUG_CFI_FEATURES
489 			/* Tell the user about it in lots of lovely detail */
490 			cfi_tell_features(extp);
491 #endif
492 
493 			bootloc = extp->TopBottom;
494 			if ((bootloc < 2) || (bootloc > 5)) {
495 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
496 				       "bank location (%d). Assuming bottom.\n",
497 				       map->name, bootloc);
498 				bootloc = 2;
499 			}
500 
501 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
502 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
503 
504 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
505 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
506 					__u32 swap;
507 
508 					swap = cfi->cfiq->EraseRegionInfo[i];
509 					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
510 					cfi->cfiq->EraseRegionInfo[j] = swap;
511 				}
512 			}
513 			/* Set the default CFI lock/unlock addresses */
514 			cfi->addr_unlock1 = 0x555;
515 			cfi->addr_unlock2 = 0x2aa;
516 		}
517 		cfi_fixup(mtd, cfi_nopri_fixup_table);
518 
519 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
520 			kfree(mtd);
521 			return NULL;
522 		}
523 
524 	} /* CFI mode */
525 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
526 		/* Apply jedec specific fixups */
527 		cfi_fixup(mtd, jedec_fixup_table);
528 	}
529 	/* Apply generic fixups */
530 	cfi_fixup(mtd, fixup_table);
531 
532 	for (i=0; i< cfi->numchips; i++) {
533 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
534 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
535 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
536 		cfi->chips[i].ref_point_counter = 0;
537 		init_waitqueue_head(&(cfi->chips[i].wq));
538 	}
539 
540 	map->fldrv = &cfi_amdstd_chipdrv;
541 
542 	return cfi_amdstd_setup(mtd);
543 }
544 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
545 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
546 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
547 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
549 
550 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
551 {
552 	struct map_info *map = mtd->priv;
553 	struct cfi_private *cfi = map->fldrv_priv;
554 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
555 	unsigned long offset = 0;
556 	int i,j;
557 
558 	printk(KERN_NOTICE "number of %s chips: %d\n",
559 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
560 	/* Select the correct geometry setup */
561 	mtd->size = devsize * cfi->numchips;
562 
563 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
564 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
565 				    * mtd->numeraseregions, GFP_KERNEL);
566 	if (!mtd->eraseregions) {
567 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
568 		goto setup_err;
569 	}
570 
571 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
572 		unsigned long ernum, ersize;
573 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
574 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
575 
576 		if (mtd->erasesize < ersize) {
577 			mtd->erasesize = ersize;
578 		}
579 		for (j=0; j<cfi->numchips; j++) {
580 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
581 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
582 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
583 		}
584 		offset += (ersize * ernum);
585 	}
586 	if (offset != devsize) {
587 		/* Argh */
588 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
589 		goto setup_err;
590 	}
591 
592 	__module_get(THIS_MODULE);
593 	register_reboot_notifier(&mtd->reboot_notifier);
594 	return mtd;
595 
596  setup_err:
597 	kfree(mtd->eraseregions);
598 	kfree(mtd);
599 	kfree(cfi->cmdset_priv);
600 	kfree(cfi->cfiq);
601 	return NULL;
602 }
603 
604 /*
605  * Return true if the chip is ready.
606  *
607  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
608  * non-suspended sector) and is indicated by no toggle bits toggling.
609  *
610  * Note that anything more complicated than checking if no bits are toggling
611  * (including checking DQ5 for an error status) is tricky to get working
612  * correctly and is therefore not done	(particularly with interleaved chips
613  * as each chip must be checked independently of the others).
614  */
615 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
616 {
617 	map_word d, t;
618 
619 	d = map_read(map, addr);
620 	t = map_read(map, addr);
621 
622 	return map_word_equal(map, d, t);
623 }
624 
625 /*
626  * Return true if the chip is ready and has the correct value.
627  *
628  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
629  * non-suspended sector) and it is indicated by no bits toggling.
630  *
631  * Error are indicated by toggling bits or bits held with the wrong value,
632  * or with bits toggling.
633  *
634  * Note that anything more complicated than checking if no bits are toggling
635  * (including checking DQ5 for an error status) is tricky to get working
636  * correctly and is therefore not done	(particularly with interleaved chips
637  * as each chip must be checked independently of the others).
638  *
639  */
640 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
641 {
642 	map_word oldd, curd;
643 
644 	oldd = map_read(map, addr);
645 	curd = map_read(map, addr);
646 
647 	return	map_word_equal(map, oldd, curd) &&
648 		map_word_equal(map, curd, expected);
649 }
650 
651 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
652 {
653 	DECLARE_WAITQUEUE(wait, current);
654 	struct cfi_private *cfi = map->fldrv_priv;
655 	unsigned long timeo;
656 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
657 
658  resettime:
659 	timeo = jiffies + HZ;
660  retry:
661 	switch (chip->state) {
662 
663 	case FL_STATUS:
664 		for (;;) {
665 			if (chip_ready(map, adr))
666 				break;
667 
668 			if (time_after(jiffies, timeo)) {
669 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
670 				return -EIO;
671 			}
672 			mutex_unlock(&chip->mutex);
673 			cfi_udelay(1);
674 			mutex_lock(&chip->mutex);
675 			/* Someone else might have been playing with it. */
676 			goto retry;
677 		}
678 
679 	case FL_READY:
680 	case FL_CFI_QUERY:
681 	case FL_JEDEC_QUERY:
682 		return 0;
683 
684 	case FL_ERASING:
685 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
686 		    !(mode == FL_READY || mode == FL_POINT ||
687 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
688 			goto sleep;
689 
690 		/* We could check to see if we're trying to access the sector
691 		 * that is currently being erased. However, no user will try
692 		 * anything like that so we just wait for the timeout. */
693 
694 		/* Erase suspend */
695 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
696 		 * commands when the erase algorithm isn't in progress. */
697 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
698 		chip->oldstate = FL_ERASING;
699 		chip->state = FL_ERASE_SUSPENDING;
700 		chip->erase_suspended = 1;
701 		for (;;) {
702 			if (chip_ready(map, adr))
703 				break;
704 
705 			if (time_after(jiffies, timeo)) {
706 				/* Should have suspended the erase by now.
707 				 * Send an Erase-Resume command as either
708 				 * there was an error (so leave the erase
709 				 * routine to recover from it) or we trying to
710 				 * use the erase-in-progress sector. */
711 				put_chip(map, chip, adr);
712 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
713 				return -EIO;
714 			}
715 
716 			mutex_unlock(&chip->mutex);
717 			cfi_udelay(1);
718 			mutex_lock(&chip->mutex);
719 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
720 			   So we can just loop here. */
721 		}
722 		chip->state = FL_READY;
723 		return 0;
724 
725 	case FL_XIP_WHILE_ERASING:
726 		if (mode != FL_READY && mode != FL_POINT &&
727 		    (!cfip || !(cfip->EraseSuspend&2)))
728 			goto sleep;
729 		chip->oldstate = chip->state;
730 		chip->state = FL_READY;
731 		return 0;
732 
733 	case FL_SHUTDOWN:
734 		/* The machine is rebooting */
735 		return -EIO;
736 
737 	case FL_POINT:
738 		/* Only if there's no operation suspended... */
739 		if (mode == FL_READY && chip->oldstate == FL_READY)
740 			return 0;
741 
742 	default:
743 	sleep:
744 		set_current_state(TASK_UNINTERRUPTIBLE);
745 		add_wait_queue(&chip->wq, &wait);
746 		mutex_unlock(&chip->mutex);
747 		schedule();
748 		remove_wait_queue(&chip->wq, &wait);
749 		mutex_lock(&chip->mutex);
750 		goto resettime;
751 	}
752 }
753 
754 
755 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
756 {
757 	struct cfi_private *cfi = map->fldrv_priv;
758 
759 	switch(chip->oldstate) {
760 	case FL_ERASING:
761 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
762 		chip->oldstate = FL_READY;
763 		chip->state = FL_ERASING;
764 		break;
765 
766 	case FL_XIP_WHILE_ERASING:
767 		chip->state = chip->oldstate;
768 		chip->oldstate = FL_READY;
769 		break;
770 
771 	case FL_READY:
772 	case FL_STATUS:
773 		/* We should really make set_vpp() count, rather than doing this */
774 		DISABLE_VPP(map);
775 		break;
776 	default:
777 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
778 	}
779 	wake_up(&chip->wq);
780 }
781 
782 #ifdef CONFIG_MTD_XIP
783 
784 /*
785  * No interrupt what so ever can be serviced while the flash isn't in array
786  * mode.  This is ensured by the xip_disable() and xip_enable() functions
787  * enclosing any code path where the flash is known not to be in array mode.
788  * And within a XIP disabled code path, only functions marked with __xipram
789  * may be called and nothing else (it's a good thing to inspect generated
790  * assembly to make sure inline functions were actually inlined and that gcc
791  * didn't emit calls to its own support functions). Also configuring MTD CFI
792  * support to a single buswidth and a single interleave is also recommended.
793  */
794 
795 static void xip_disable(struct map_info *map, struct flchip *chip,
796 			unsigned long adr)
797 {
798 	/* TODO: chips with no XIP use should ignore and return */
799 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
800 	local_irq_disable();
801 }
802 
803 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
804 				unsigned long adr)
805 {
806 	struct cfi_private *cfi = map->fldrv_priv;
807 
808 	if (chip->state != FL_POINT && chip->state != FL_READY) {
809 		map_write(map, CMD(0xf0), adr);
810 		chip->state = FL_READY;
811 	}
812 	(void) map_read(map, adr);
813 	xip_iprefetch();
814 	local_irq_enable();
815 }
816 
817 /*
818  * When a delay is required for the flash operation to complete, the
819  * xip_udelay() function is polling for both the given timeout and pending
820  * (but still masked) hardware interrupts.  Whenever there is an interrupt
821  * pending then the flash erase operation is suspended, array mode restored
822  * and interrupts unmasked.  Task scheduling might also happen at that
823  * point.  The CPU eventually returns from the interrupt or the call to
824  * schedule() and the suspended flash operation is resumed for the remaining
825  * of the delay period.
826  *
827  * Warning: this function _will_ fool interrupt latency tracing tools.
828  */
829 
830 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
831 				unsigned long adr, int usec)
832 {
833 	struct cfi_private *cfi = map->fldrv_priv;
834 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
835 	map_word status, OK = CMD(0x80);
836 	unsigned long suspended, start = xip_currtime();
837 	flstate_t oldstate;
838 
839 	do {
840 		cpu_relax();
841 		if (xip_irqpending() && extp &&
842 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
843 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
844 			/*
845 			 * Let's suspend the erase operation when supported.
846 			 * Note that we currently don't try to suspend
847 			 * interleaved chips if there is already another
848 			 * operation suspended (imagine what happens
849 			 * when one chip was already done with the current
850 			 * operation while another chip suspended it, then
851 			 * we resume the whole thing at once).  Yes, it
852 			 * can happen!
853 			 */
854 			map_write(map, CMD(0xb0), adr);
855 			usec -= xip_elapsed_since(start);
856 			suspended = xip_currtime();
857 			do {
858 				if (xip_elapsed_since(suspended) > 100000) {
859 					/*
860 					 * The chip doesn't want to suspend
861 					 * after waiting for 100 msecs.
862 					 * This is a critical error but there
863 					 * is not much we can do here.
864 					 */
865 					return;
866 				}
867 				status = map_read(map, adr);
868 			} while (!map_word_andequal(map, status, OK, OK));
869 
870 			/* Suspend succeeded */
871 			oldstate = chip->state;
872 			if (!map_word_bitsset(map, status, CMD(0x40)))
873 				break;
874 			chip->state = FL_XIP_WHILE_ERASING;
875 			chip->erase_suspended = 1;
876 			map_write(map, CMD(0xf0), adr);
877 			(void) map_read(map, adr);
878 			xip_iprefetch();
879 			local_irq_enable();
880 			mutex_unlock(&chip->mutex);
881 			xip_iprefetch();
882 			cond_resched();
883 
884 			/*
885 			 * We're back.  However someone else might have
886 			 * decided to go write to the chip if we are in
887 			 * a suspended erase state.  If so let's wait
888 			 * until it's done.
889 			 */
890 			mutex_lock(&chip->mutex);
891 			while (chip->state != FL_XIP_WHILE_ERASING) {
892 				DECLARE_WAITQUEUE(wait, current);
893 				set_current_state(TASK_UNINTERRUPTIBLE);
894 				add_wait_queue(&chip->wq, &wait);
895 				mutex_unlock(&chip->mutex);
896 				schedule();
897 				remove_wait_queue(&chip->wq, &wait);
898 				mutex_lock(&chip->mutex);
899 			}
900 			/* Disallow XIP again */
901 			local_irq_disable();
902 
903 			/* Resume the write or erase operation */
904 			map_write(map, cfi->sector_erase_cmd, adr);
905 			chip->state = oldstate;
906 			start = xip_currtime();
907 		} else if (usec >= 1000000/HZ) {
908 			/*
909 			 * Try to save on CPU power when waiting delay
910 			 * is at least a system timer tick period.
911 			 * No need to be extremely accurate here.
912 			 */
913 			xip_cpu_idle();
914 		}
915 		status = map_read(map, adr);
916 	} while (!map_word_andequal(map, status, OK, OK)
917 		 && xip_elapsed_since(start) < usec);
918 }
919 
920 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
921 
922 /*
923  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
924  * the flash is actively programming or erasing since we have to poll for
925  * the operation to complete anyway.  We can't do that in a generic way with
926  * a XIP setup so do it before the actual flash operation in this case
927  * and stub it out from INVALIDATE_CACHE_UDELAY.
928  */
929 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
930 	INVALIDATE_CACHED_RANGE(map, from, size)
931 
932 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
933 	UDELAY(map, chip, adr, usec)
934 
935 /*
936  * Extra notes:
937  *
938  * Activating this XIP support changes the way the code works a bit.  For
939  * example the code to suspend the current process when concurrent access
940  * happens is never executed because xip_udelay() will always return with the
941  * same chip state as it was entered with.  This is why there is no care for
942  * the presence of add_wait_queue() or schedule() calls from within a couple
943  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
944  * The queueing and scheduling are always happening within xip_udelay().
945  *
946  * Similarly, get_chip() and put_chip() just happen to always be executed
947  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
948  * is in array mode, therefore never executing many cases therein and not
949  * causing any problem with XIP.
950  */
951 
952 #else
953 
954 #define xip_disable(map, chip, adr)
955 #define xip_enable(map, chip, adr)
956 #define XIP_INVAL_CACHED_RANGE(x...)
957 
958 #define UDELAY(map, chip, adr, usec)  \
959 do {  \
960 	mutex_unlock(&chip->mutex);  \
961 	cfi_udelay(usec);  \
962 	mutex_lock(&chip->mutex);  \
963 } while (0)
964 
965 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
966 do {  \
967 	mutex_unlock(&chip->mutex);  \
968 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
969 	cfi_udelay(usec);  \
970 	mutex_lock(&chip->mutex);  \
971 } while (0)
972 
973 #endif
974 
975 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
976 {
977 	unsigned long cmd_addr;
978 	struct cfi_private *cfi = map->fldrv_priv;
979 	int ret;
980 
981 	adr += chip->start;
982 
983 	/* Ensure cmd read/writes are aligned. */
984 	cmd_addr = adr & ~(map_bankwidth(map)-1);
985 
986 	mutex_lock(&chip->mutex);
987 	ret = get_chip(map, chip, cmd_addr, FL_READY);
988 	if (ret) {
989 		mutex_unlock(&chip->mutex);
990 		return ret;
991 	}
992 
993 	if (chip->state != FL_POINT && chip->state != FL_READY) {
994 		map_write(map, CMD(0xf0), cmd_addr);
995 		chip->state = FL_READY;
996 	}
997 
998 	map_copy_from(map, buf, adr, len);
999 
1000 	put_chip(map, chip, cmd_addr);
1001 
1002 	mutex_unlock(&chip->mutex);
1003 	return 0;
1004 }
1005 
1006 
1007 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1008 {
1009 	struct map_info *map = mtd->priv;
1010 	struct cfi_private *cfi = map->fldrv_priv;
1011 	unsigned long ofs;
1012 	int chipnum;
1013 	int ret = 0;
1014 
1015 	/* ofs: offset within the first chip that the first read should start */
1016 
1017 	chipnum = (from >> cfi->chipshift);
1018 	ofs = from - (chipnum <<  cfi->chipshift);
1019 
1020 
1021 	*retlen = 0;
1022 
1023 	while (len) {
1024 		unsigned long thislen;
1025 
1026 		if (chipnum >= cfi->numchips)
1027 			break;
1028 
1029 		if ((len + ofs -1) >> cfi->chipshift)
1030 			thislen = (1<<cfi->chipshift) - ofs;
1031 		else
1032 			thislen = len;
1033 
1034 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1035 		if (ret)
1036 			break;
1037 
1038 		*retlen += thislen;
1039 		len -= thislen;
1040 		buf += thislen;
1041 
1042 		ofs = 0;
1043 		chipnum++;
1044 	}
1045 	return ret;
1046 }
1047 
1048 
1049 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1050 {
1051 	DECLARE_WAITQUEUE(wait, current);
1052 	unsigned long timeo = jiffies + HZ;
1053 	struct cfi_private *cfi = map->fldrv_priv;
1054 
1055  retry:
1056 	mutex_lock(&chip->mutex);
1057 
1058 	if (chip->state != FL_READY){
1059 		set_current_state(TASK_UNINTERRUPTIBLE);
1060 		add_wait_queue(&chip->wq, &wait);
1061 
1062 		mutex_unlock(&chip->mutex);
1063 
1064 		schedule();
1065 		remove_wait_queue(&chip->wq, &wait);
1066 		timeo = jiffies + HZ;
1067 
1068 		goto retry;
1069 	}
1070 
1071 	adr += chip->start;
1072 
1073 	chip->state = FL_READY;
1074 
1075 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1076 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1077 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1078 
1079 	map_copy_from(map, buf, adr, len);
1080 
1081 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1082 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1083 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1084 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1085 
1086 	wake_up(&chip->wq);
1087 	mutex_unlock(&chip->mutex);
1088 
1089 	return 0;
1090 }
1091 
1092 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1093 {
1094 	struct map_info *map = mtd->priv;
1095 	struct cfi_private *cfi = map->fldrv_priv;
1096 	unsigned long ofs;
1097 	int chipnum;
1098 	int ret = 0;
1099 
1100 
1101 	/* ofs: offset within the first chip that the first read should start */
1102 
1103 	/* 8 secsi bytes per chip */
1104 	chipnum=from>>3;
1105 	ofs=from & 7;
1106 
1107 
1108 	*retlen = 0;
1109 
1110 	while (len) {
1111 		unsigned long thislen;
1112 
1113 		if (chipnum >= cfi->numchips)
1114 			break;
1115 
1116 		if ((len + ofs -1) >> 3)
1117 			thislen = (1<<3) - ofs;
1118 		else
1119 			thislen = len;
1120 
1121 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1122 		if (ret)
1123 			break;
1124 
1125 		*retlen += thislen;
1126 		len -= thislen;
1127 		buf += thislen;
1128 
1129 		ofs = 0;
1130 		chipnum++;
1131 	}
1132 	return ret;
1133 }
1134 
1135 
1136 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1137 {
1138 	struct cfi_private *cfi = map->fldrv_priv;
1139 	unsigned long timeo = jiffies + HZ;
1140 	/*
1141 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1142 	 * have a max write time of a few hundreds usec). However, we should
1143 	 * use the maximum timeout value given by the chip at probe time
1144 	 * instead.  Unfortunately, struct flchip does have a field for
1145 	 * maximum timeout, only for typical which can be far too short
1146 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1147 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1148 	 */
1149 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1150 	int ret = 0;
1151 	map_word oldd;
1152 	int retry_cnt = 0;
1153 
1154 	adr += chip->start;
1155 
1156 	mutex_lock(&chip->mutex);
1157 	ret = get_chip(map, chip, adr, FL_WRITING);
1158 	if (ret) {
1159 		mutex_unlock(&chip->mutex);
1160 		return ret;
1161 	}
1162 
1163 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1164 	       __func__, adr, datum.x[0] );
1165 
1166 	/*
1167 	 * Check for a NOP for the case when the datum to write is already
1168 	 * present - it saves time and works around buggy chips that corrupt
1169 	 * data at other locations when 0xff is written to a location that
1170 	 * already contains 0xff.
1171 	 */
1172 	oldd = map_read(map, adr);
1173 	if (map_word_equal(map, oldd, datum)) {
1174 		pr_debug("MTD %s(): NOP\n",
1175 		       __func__);
1176 		goto op_done;
1177 	}
1178 
1179 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1180 	ENABLE_VPP(map);
1181 	xip_disable(map, chip, adr);
1182  retry:
1183 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1184 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1185 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1186 	map_write(map, datum, adr);
1187 	chip->state = FL_WRITING;
1188 
1189 	INVALIDATE_CACHE_UDELAY(map, chip,
1190 				adr, map_bankwidth(map),
1191 				chip->word_write_time);
1192 
1193 	/* See comment above for timeout value. */
1194 	timeo = jiffies + uWriteTimeout;
1195 	for (;;) {
1196 		if (chip->state != FL_WRITING) {
1197 			/* Someone's suspended the write. Sleep */
1198 			DECLARE_WAITQUEUE(wait, current);
1199 
1200 			set_current_state(TASK_UNINTERRUPTIBLE);
1201 			add_wait_queue(&chip->wq, &wait);
1202 			mutex_unlock(&chip->mutex);
1203 			schedule();
1204 			remove_wait_queue(&chip->wq, &wait);
1205 			timeo = jiffies + (HZ / 2); /* FIXME */
1206 			mutex_lock(&chip->mutex);
1207 			continue;
1208 		}
1209 
1210 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1211 			xip_enable(map, chip, adr);
1212 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1213 			xip_disable(map, chip, adr);
1214 			break;
1215 		}
1216 
1217 		if (chip_ready(map, adr))
1218 			break;
1219 
1220 		/* Latency issues. Drop the lock, wait a while and retry */
1221 		UDELAY(map, chip, adr, 1);
1222 	}
1223 	/* Did we succeed? */
1224 	if (!chip_good(map, adr, datum)) {
1225 		/* reset on all failures. */
1226 		map_write( map, CMD(0xF0), chip->start );
1227 		/* FIXME - should have reset delay before continuing */
1228 
1229 		if (++retry_cnt <= MAX_WORD_RETRIES)
1230 			goto retry;
1231 
1232 		ret = -EIO;
1233 	}
1234 	xip_enable(map, chip, adr);
1235  op_done:
1236 	chip->state = FL_READY;
1237 	put_chip(map, chip, adr);
1238 	mutex_unlock(&chip->mutex);
1239 
1240 	return ret;
1241 }
1242 
1243 
1244 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1245 				  size_t *retlen, const u_char *buf)
1246 {
1247 	struct map_info *map = mtd->priv;
1248 	struct cfi_private *cfi = map->fldrv_priv;
1249 	int ret = 0;
1250 	int chipnum;
1251 	unsigned long ofs, chipstart;
1252 	DECLARE_WAITQUEUE(wait, current);
1253 
1254 	*retlen = 0;
1255 	if (!len)
1256 		return 0;
1257 
1258 	chipnum = to >> cfi->chipshift;
1259 	ofs = to  - (chipnum << cfi->chipshift);
1260 	chipstart = cfi->chips[chipnum].start;
1261 
1262 	/* If it's not bus-aligned, do the first byte write */
1263 	if (ofs & (map_bankwidth(map)-1)) {
1264 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1265 		int i = ofs - bus_ofs;
1266 		int n = 0;
1267 		map_word tmp_buf;
1268 
1269  retry:
1270 		mutex_lock(&cfi->chips[chipnum].mutex);
1271 
1272 		if (cfi->chips[chipnum].state != FL_READY) {
1273 			set_current_state(TASK_UNINTERRUPTIBLE);
1274 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1275 
1276 			mutex_unlock(&cfi->chips[chipnum].mutex);
1277 
1278 			schedule();
1279 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1280 			goto retry;
1281 		}
1282 
1283 		/* Load 'tmp_buf' with old contents of flash */
1284 		tmp_buf = map_read(map, bus_ofs+chipstart);
1285 
1286 		mutex_unlock(&cfi->chips[chipnum].mutex);
1287 
1288 		/* Number of bytes to copy from buffer */
1289 		n = min_t(int, len, map_bankwidth(map)-i);
1290 
1291 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1292 
1293 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1294 				       bus_ofs, tmp_buf);
1295 		if (ret)
1296 			return ret;
1297 
1298 		ofs += n;
1299 		buf += n;
1300 		(*retlen) += n;
1301 		len -= n;
1302 
1303 		if (ofs >> cfi->chipshift) {
1304 			chipnum ++;
1305 			ofs = 0;
1306 			if (chipnum == cfi->numchips)
1307 				return 0;
1308 		}
1309 	}
1310 
1311 	/* We are now aligned, write as much as possible */
1312 	while(len >= map_bankwidth(map)) {
1313 		map_word datum;
1314 
1315 		datum = map_word_load(map, buf);
1316 
1317 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1318 				       ofs, datum);
1319 		if (ret)
1320 			return ret;
1321 
1322 		ofs += map_bankwidth(map);
1323 		buf += map_bankwidth(map);
1324 		(*retlen) += map_bankwidth(map);
1325 		len -= map_bankwidth(map);
1326 
1327 		if (ofs >> cfi->chipshift) {
1328 			chipnum ++;
1329 			ofs = 0;
1330 			if (chipnum == cfi->numchips)
1331 				return 0;
1332 			chipstart = cfi->chips[chipnum].start;
1333 		}
1334 	}
1335 
1336 	/* Write the trailing bytes if any */
1337 	if (len & (map_bankwidth(map)-1)) {
1338 		map_word tmp_buf;
1339 
1340  retry1:
1341 		mutex_lock(&cfi->chips[chipnum].mutex);
1342 
1343 		if (cfi->chips[chipnum].state != FL_READY) {
1344 			set_current_state(TASK_UNINTERRUPTIBLE);
1345 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1346 
1347 			mutex_unlock(&cfi->chips[chipnum].mutex);
1348 
1349 			schedule();
1350 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1351 			goto retry1;
1352 		}
1353 
1354 		tmp_buf = map_read(map, ofs + chipstart);
1355 
1356 		mutex_unlock(&cfi->chips[chipnum].mutex);
1357 
1358 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1359 
1360 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1361 				ofs, tmp_buf);
1362 		if (ret)
1363 			return ret;
1364 
1365 		(*retlen) += len;
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 
1372 /*
1373  * FIXME: interleaved mode not tested, and probably not supported!
1374  */
1375 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1376 				    unsigned long adr, const u_char *buf,
1377 				    int len)
1378 {
1379 	struct cfi_private *cfi = map->fldrv_priv;
1380 	unsigned long timeo = jiffies + HZ;
1381 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1382 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1383 	int ret = -EIO;
1384 	unsigned long cmd_adr;
1385 	int z, words;
1386 	map_word datum;
1387 
1388 	adr += chip->start;
1389 	cmd_adr = adr;
1390 
1391 	mutex_lock(&chip->mutex);
1392 	ret = get_chip(map, chip, adr, FL_WRITING);
1393 	if (ret) {
1394 		mutex_unlock(&chip->mutex);
1395 		return ret;
1396 	}
1397 
1398 	datum = map_word_load(map, buf);
1399 
1400 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1401 	       __func__, adr, datum.x[0] );
1402 
1403 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1404 	ENABLE_VPP(map);
1405 	xip_disable(map, chip, cmd_adr);
1406 
1407 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1408 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1409 
1410 	/* Write Buffer Load */
1411 	map_write(map, CMD(0x25), cmd_adr);
1412 
1413 	chip->state = FL_WRITING_TO_BUFFER;
1414 
1415 	/* Write length of data to come */
1416 	words = len / map_bankwidth(map);
1417 	map_write(map, CMD(words - 1), cmd_adr);
1418 	/* Write data */
1419 	z = 0;
1420 	while(z < words * map_bankwidth(map)) {
1421 		datum = map_word_load(map, buf);
1422 		map_write(map, datum, adr + z);
1423 
1424 		z += map_bankwidth(map);
1425 		buf += map_bankwidth(map);
1426 	}
1427 	z -= map_bankwidth(map);
1428 
1429 	adr += z;
1430 
1431 	/* Write Buffer Program Confirm: GO GO GO */
1432 	map_write(map, CMD(0x29), cmd_adr);
1433 	chip->state = FL_WRITING;
1434 
1435 	INVALIDATE_CACHE_UDELAY(map, chip,
1436 				adr, map_bankwidth(map),
1437 				chip->word_write_time);
1438 
1439 	timeo = jiffies + uWriteTimeout;
1440 
1441 	for (;;) {
1442 		if (chip->state != FL_WRITING) {
1443 			/* Someone's suspended the write. Sleep */
1444 			DECLARE_WAITQUEUE(wait, current);
1445 
1446 			set_current_state(TASK_UNINTERRUPTIBLE);
1447 			add_wait_queue(&chip->wq, &wait);
1448 			mutex_unlock(&chip->mutex);
1449 			schedule();
1450 			remove_wait_queue(&chip->wq, &wait);
1451 			timeo = jiffies + (HZ / 2); /* FIXME */
1452 			mutex_lock(&chip->mutex);
1453 			continue;
1454 		}
1455 
1456 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1457 			break;
1458 
1459 		if (chip_ready(map, adr)) {
1460 			xip_enable(map, chip, adr);
1461 			goto op_done;
1462 		}
1463 
1464 		/* Latency issues. Drop the lock, wait a while and retry */
1465 		UDELAY(map, chip, adr, 1);
1466 	}
1467 
1468 	/* reset on all failures. */
1469 	map_write( map, CMD(0xF0), chip->start );
1470 	xip_enable(map, chip, adr);
1471 	/* FIXME - should have reset delay before continuing */
1472 
1473 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1474 	       __func__ );
1475 
1476 	ret = -EIO;
1477  op_done:
1478 	chip->state = FL_READY;
1479 	put_chip(map, chip, adr);
1480 	mutex_unlock(&chip->mutex);
1481 
1482 	return ret;
1483 }
1484 
1485 
1486 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1487 				    size_t *retlen, const u_char *buf)
1488 {
1489 	struct map_info *map = mtd->priv;
1490 	struct cfi_private *cfi = map->fldrv_priv;
1491 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1492 	int ret = 0;
1493 	int chipnum;
1494 	unsigned long ofs;
1495 
1496 	*retlen = 0;
1497 	if (!len)
1498 		return 0;
1499 
1500 	chipnum = to >> cfi->chipshift;
1501 	ofs = to  - (chipnum << cfi->chipshift);
1502 
1503 	/* If it's not bus-aligned, do the first word write */
1504 	if (ofs & (map_bankwidth(map)-1)) {
1505 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1506 		if (local_len > len)
1507 			local_len = len;
1508 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1509 					     local_len, retlen, buf);
1510 		if (ret)
1511 			return ret;
1512 		ofs += local_len;
1513 		buf += local_len;
1514 		len -= local_len;
1515 
1516 		if (ofs >> cfi->chipshift) {
1517 			chipnum ++;
1518 			ofs = 0;
1519 			if (chipnum == cfi->numchips)
1520 				return 0;
1521 		}
1522 	}
1523 
1524 	/* Write buffer is worth it only if more than one word to write... */
1525 	while (len >= map_bankwidth(map) * 2) {
1526 		/* We must not cross write block boundaries */
1527 		int size = wbufsize - (ofs & (wbufsize-1));
1528 
1529 		if (size > len)
1530 			size = len;
1531 		if (size % map_bankwidth(map))
1532 			size -= size % map_bankwidth(map);
1533 
1534 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1535 				      ofs, buf, size);
1536 		if (ret)
1537 			return ret;
1538 
1539 		ofs += size;
1540 		buf += size;
1541 		(*retlen) += size;
1542 		len -= size;
1543 
1544 		if (ofs >> cfi->chipshift) {
1545 			chipnum ++;
1546 			ofs = 0;
1547 			if (chipnum == cfi->numchips)
1548 				return 0;
1549 		}
1550 	}
1551 
1552 	if (len) {
1553 		size_t retlen_dregs = 0;
1554 
1555 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1556 					     len, &retlen_dregs, buf);
1557 
1558 		*retlen += retlen_dregs;
1559 		return ret;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 
1566 /*
1567  * Handle devices with one erase region, that only implement
1568  * the chip erase command.
1569  */
1570 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1571 {
1572 	struct cfi_private *cfi = map->fldrv_priv;
1573 	unsigned long timeo = jiffies + HZ;
1574 	unsigned long int adr;
1575 	DECLARE_WAITQUEUE(wait, current);
1576 	int ret = 0;
1577 
1578 	adr = cfi->addr_unlock1;
1579 
1580 	mutex_lock(&chip->mutex);
1581 	ret = get_chip(map, chip, adr, FL_WRITING);
1582 	if (ret) {
1583 		mutex_unlock(&chip->mutex);
1584 		return ret;
1585 	}
1586 
1587 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1588 	       __func__, chip->start );
1589 
1590 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1591 	ENABLE_VPP(map);
1592 	xip_disable(map, chip, adr);
1593 
1594 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1595 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1596 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1597 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1598 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1599 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1600 
1601 	chip->state = FL_ERASING;
1602 	chip->erase_suspended = 0;
1603 	chip->in_progress_block_addr = adr;
1604 
1605 	INVALIDATE_CACHE_UDELAY(map, chip,
1606 				adr, map->size,
1607 				chip->erase_time*500);
1608 
1609 	timeo = jiffies + (HZ*20);
1610 
1611 	for (;;) {
1612 		if (chip->state != FL_ERASING) {
1613 			/* Someone's suspended the erase. Sleep */
1614 			set_current_state(TASK_UNINTERRUPTIBLE);
1615 			add_wait_queue(&chip->wq, &wait);
1616 			mutex_unlock(&chip->mutex);
1617 			schedule();
1618 			remove_wait_queue(&chip->wq, &wait);
1619 			mutex_lock(&chip->mutex);
1620 			continue;
1621 		}
1622 		if (chip->erase_suspended) {
1623 			/* This erase was suspended and resumed.
1624 			   Adjust the timeout */
1625 			timeo = jiffies + (HZ*20); /* FIXME */
1626 			chip->erase_suspended = 0;
1627 		}
1628 
1629 		if (chip_ready(map, adr))
1630 			break;
1631 
1632 		if (time_after(jiffies, timeo)) {
1633 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1634 				__func__ );
1635 			break;
1636 		}
1637 
1638 		/* Latency issues. Drop the lock, wait a while and retry */
1639 		UDELAY(map, chip, adr, 1000000/HZ);
1640 	}
1641 	/* Did we succeed? */
1642 	if (!chip_good(map, adr, map_word_ff(map))) {
1643 		/* reset on all failures. */
1644 		map_write( map, CMD(0xF0), chip->start );
1645 		/* FIXME - should have reset delay before continuing */
1646 
1647 		ret = -EIO;
1648 	}
1649 
1650 	chip->state = FL_READY;
1651 	xip_enable(map, chip, adr);
1652 	put_chip(map, chip, adr);
1653 	mutex_unlock(&chip->mutex);
1654 
1655 	return ret;
1656 }
1657 
1658 
1659 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1660 {
1661 	struct cfi_private *cfi = map->fldrv_priv;
1662 	unsigned long timeo = jiffies + HZ;
1663 	DECLARE_WAITQUEUE(wait, current);
1664 	int ret = 0;
1665 
1666 	adr += chip->start;
1667 
1668 	mutex_lock(&chip->mutex);
1669 	ret = get_chip(map, chip, adr, FL_ERASING);
1670 	if (ret) {
1671 		mutex_unlock(&chip->mutex);
1672 		return ret;
1673 	}
1674 
1675 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1676 	       __func__, adr );
1677 
1678 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1679 	ENABLE_VPP(map);
1680 	xip_disable(map, chip, adr);
1681 
1682 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1683 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1684 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1685 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1686 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1687 	map_write(map, cfi->sector_erase_cmd, adr);
1688 
1689 	chip->state = FL_ERASING;
1690 	chip->erase_suspended = 0;
1691 	chip->in_progress_block_addr = adr;
1692 
1693 	INVALIDATE_CACHE_UDELAY(map, chip,
1694 				adr, len,
1695 				chip->erase_time*500);
1696 
1697 	timeo = jiffies + (HZ*20);
1698 
1699 	for (;;) {
1700 		if (chip->state != FL_ERASING) {
1701 			/* Someone's suspended the erase. Sleep */
1702 			set_current_state(TASK_UNINTERRUPTIBLE);
1703 			add_wait_queue(&chip->wq, &wait);
1704 			mutex_unlock(&chip->mutex);
1705 			schedule();
1706 			remove_wait_queue(&chip->wq, &wait);
1707 			mutex_lock(&chip->mutex);
1708 			continue;
1709 		}
1710 		if (chip->erase_suspended) {
1711 			/* This erase was suspended and resumed.
1712 			   Adjust the timeout */
1713 			timeo = jiffies + (HZ*20); /* FIXME */
1714 			chip->erase_suspended = 0;
1715 		}
1716 
1717 		if (chip_ready(map, adr)) {
1718 			xip_enable(map, chip, adr);
1719 			break;
1720 		}
1721 
1722 		if (time_after(jiffies, timeo)) {
1723 			xip_enable(map, chip, adr);
1724 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1725 				__func__ );
1726 			break;
1727 		}
1728 
1729 		/* Latency issues. Drop the lock, wait a while and retry */
1730 		UDELAY(map, chip, adr, 1000000/HZ);
1731 	}
1732 	/* Did we succeed? */
1733 	if (!chip_good(map, adr, map_word_ff(map))) {
1734 		/* reset on all failures. */
1735 		map_write( map, CMD(0xF0), chip->start );
1736 		/* FIXME - should have reset delay before continuing */
1737 
1738 		ret = -EIO;
1739 	}
1740 
1741 	chip->state = FL_READY;
1742 	put_chip(map, chip, adr);
1743 	mutex_unlock(&chip->mutex);
1744 	return ret;
1745 }
1746 
1747 
1748 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1749 {
1750 	unsigned long ofs, len;
1751 	int ret;
1752 
1753 	ofs = instr->addr;
1754 	len = instr->len;
1755 
1756 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1757 	if (ret)
1758 		return ret;
1759 
1760 	instr->state = MTD_ERASE_DONE;
1761 	mtd_erase_callback(instr);
1762 
1763 	return 0;
1764 }
1765 
1766 
1767 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1768 {
1769 	struct map_info *map = mtd->priv;
1770 	struct cfi_private *cfi = map->fldrv_priv;
1771 	int ret = 0;
1772 
1773 	if (instr->addr != 0)
1774 		return -EINVAL;
1775 
1776 	if (instr->len != mtd->size)
1777 		return -EINVAL;
1778 
1779 	ret = do_erase_chip(map, &cfi->chips[0]);
1780 	if (ret)
1781 		return ret;
1782 
1783 	instr->state = MTD_ERASE_DONE;
1784 	mtd_erase_callback(instr);
1785 
1786 	return 0;
1787 }
1788 
1789 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1790 			 unsigned long adr, int len, void *thunk)
1791 {
1792 	struct cfi_private *cfi = map->fldrv_priv;
1793 	int ret;
1794 
1795 	mutex_lock(&chip->mutex);
1796 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1797 	if (ret)
1798 		goto out_unlock;
1799 	chip->state = FL_LOCKING;
1800 
1801 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
1802 
1803 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1804 			 cfi->device_type, NULL);
1805 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1806 			 cfi->device_type, NULL);
1807 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1808 			 cfi->device_type, NULL);
1809 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1810 			 cfi->device_type, NULL);
1811 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1812 			 cfi->device_type, NULL);
1813 	map_write(map, CMD(0x40), chip->start + adr);
1814 
1815 	chip->state = FL_READY;
1816 	put_chip(map, chip, adr + chip->start);
1817 	ret = 0;
1818 
1819 out_unlock:
1820 	mutex_unlock(&chip->mutex);
1821 	return ret;
1822 }
1823 
1824 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1825 			   unsigned long adr, int len, void *thunk)
1826 {
1827 	struct cfi_private *cfi = map->fldrv_priv;
1828 	int ret;
1829 
1830 	mutex_lock(&chip->mutex);
1831 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1832 	if (ret)
1833 		goto out_unlock;
1834 	chip->state = FL_UNLOCKING;
1835 
1836 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
1837 
1838 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1839 			 cfi->device_type, NULL);
1840 	map_write(map, CMD(0x70), adr);
1841 
1842 	chip->state = FL_READY;
1843 	put_chip(map, chip, adr + chip->start);
1844 	ret = 0;
1845 
1846 out_unlock:
1847 	mutex_unlock(&chip->mutex);
1848 	return ret;
1849 }
1850 
1851 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1852 {
1853 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1854 }
1855 
1856 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1857 {
1858 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1859 }
1860 
1861 
1862 static void cfi_amdstd_sync (struct mtd_info *mtd)
1863 {
1864 	struct map_info *map = mtd->priv;
1865 	struct cfi_private *cfi = map->fldrv_priv;
1866 	int i;
1867 	struct flchip *chip;
1868 	int ret = 0;
1869 	DECLARE_WAITQUEUE(wait, current);
1870 
1871 	for (i=0; !ret && i<cfi->numchips; i++) {
1872 		chip = &cfi->chips[i];
1873 
1874 	retry:
1875 		mutex_lock(&chip->mutex);
1876 
1877 		switch(chip->state) {
1878 		case FL_READY:
1879 		case FL_STATUS:
1880 		case FL_CFI_QUERY:
1881 		case FL_JEDEC_QUERY:
1882 			chip->oldstate = chip->state;
1883 			chip->state = FL_SYNCING;
1884 			/* No need to wake_up() on this state change -
1885 			 * as the whole point is that nobody can do anything
1886 			 * with the chip now anyway.
1887 			 */
1888 		case FL_SYNCING:
1889 			mutex_unlock(&chip->mutex);
1890 			break;
1891 
1892 		default:
1893 			/* Not an idle state */
1894 			set_current_state(TASK_UNINTERRUPTIBLE);
1895 			add_wait_queue(&chip->wq, &wait);
1896 
1897 			mutex_unlock(&chip->mutex);
1898 
1899 			schedule();
1900 
1901 			remove_wait_queue(&chip->wq, &wait);
1902 
1903 			goto retry;
1904 		}
1905 	}
1906 
1907 	/* Unlock the chips again */
1908 
1909 	for (i--; i >=0; i--) {
1910 		chip = &cfi->chips[i];
1911 
1912 		mutex_lock(&chip->mutex);
1913 
1914 		if (chip->state == FL_SYNCING) {
1915 			chip->state = chip->oldstate;
1916 			wake_up(&chip->wq);
1917 		}
1918 		mutex_unlock(&chip->mutex);
1919 	}
1920 }
1921 
1922 
1923 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1924 {
1925 	struct map_info *map = mtd->priv;
1926 	struct cfi_private *cfi = map->fldrv_priv;
1927 	int i;
1928 	struct flchip *chip;
1929 	int ret = 0;
1930 
1931 	for (i=0; !ret && i<cfi->numchips; i++) {
1932 		chip = &cfi->chips[i];
1933 
1934 		mutex_lock(&chip->mutex);
1935 
1936 		switch(chip->state) {
1937 		case FL_READY:
1938 		case FL_STATUS:
1939 		case FL_CFI_QUERY:
1940 		case FL_JEDEC_QUERY:
1941 			chip->oldstate = chip->state;
1942 			chip->state = FL_PM_SUSPENDED;
1943 			/* No need to wake_up() on this state change -
1944 			 * as the whole point is that nobody can do anything
1945 			 * with the chip now anyway.
1946 			 */
1947 		case FL_PM_SUSPENDED:
1948 			break;
1949 
1950 		default:
1951 			ret = -EAGAIN;
1952 			break;
1953 		}
1954 		mutex_unlock(&chip->mutex);
1955 	}
1956 
1957 	/* Unlock the chips again */
1958 
1959 	if (ret) {
1960 		for (i--; i >=0; i--) {
1961 			chip = &cfi->chips[i];
1962 
1963 			mutex_lock(&chip->mutex);
1964 
1965 			if (chip->state == FL_PM_SUSPENDED) {
1966 				chip->state = chip->oldstate;
1967 				wake_up(&chip->wq);
1968 			}
1969 			mutex_unlock(&chip->mutex);
1970 		}
1971 	}
1972 
1973 	return ret;
1974 }
1975 
1976 
1977 static void cfi_amdstd_resume(struct mtd_info *mtd)
1978 {
1979 	struct map_info *map = mtd->priv;
1980 	struct cfi_private *cfi = map->fldrv_priv;
1981 	int i;
1982 	struct flchip *chip;
1983 
1984 	for (i=0; i<cfi->numchips; i++) {
1985 
1986 		chip = &cfi->chips[i];
1987 
1988 		mutex_lock(&chip->mutex);
1989 
1990 		if (chip->state == FL_PM_SUSPENDED) {
1991 			chip->state = FL_READY;
1992 			map_write(map, CMD(0xF0), chip->start);
1993 			wake_up(&chip->wq);
1994 		}
1995 		else
1996 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1997 
1998 		mutex_unlock(&chip->mutex);
1999 	}
2000 }
2001 
2002 
2003 /*
2004  * Ensure that the flash device is put back into read array mode before
2005  * unloading the driver or rebooting.  On some systems, rebooting while
2006  * the flash is in query/program/erase mode will prevent the CPU from
2007  * fetching the bootloader code, requiring a hard reset or power cycle.
2008  */
2009 static int cfi_amdstd_reset(struct mtd_info *mtd)
2010 {
2011 	struct map_info *map = mtd->priv;
2012 	struct cfi_private *cfi = map->fldrv_priv;
2013 	int i, ret;
2014 	struct flchip *chip;
2015 
2016 	for (i = 0; i < cfi->numchips; i++) {
2017 
2018 		chip = &cfi->chips[i];
2019 
2020 		mutex_lock(&chip->mutex);
2021 
2022 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2023 		if (!ret) {
2024 			map_write(map, CMD(0xF0), chip->start);
2025 			chip->state = FL_SHUTDOWN;
2026 			put_chip(map, chip, chip->start);
2027 		}
2028 
2029 		mutex_unlock(&chip->mutex);
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 
2036 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2037 			       void *v)
2038 {
2039 	struct mtd_info *mtd;
2040 
2041 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2042 	cfi_amdstd_reset(mtd);
2043 	return NOTIFY_DONE;
2044 }
2045 
2046 
2047 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2048 {
2049 	struct map_info *map = mtd->priv;
2050 	struct cfi_private *cfi = map->fldrv_priv;
2051 
2052 	cfi_amdstd_reset(mtd);
2053 	unregister_reboot_notifier(&mtd->reboot_notifier);
2054 	kfree(cfi->cmdset_priv);
2055 	kfree(cfi->cfiq);
2056 	kfree(cfi);
2057 	kfree(mtd->eraseregions);
2058 }
2059 
2060 MODULE_LICENSE("GPL");
2061 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2062 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2063 MODULE_ALIAS("cfi_cmdset_0006");
2064 MODULE_ALIAS("cfi_cmdset_0701");
2065