1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29 
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41 
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44 
45 #define MAX_RETRIES 3
46 
47 #define SST49LF004B		0x0060
48 #define SST49LF040B		0x0050
49 #define SST49LF008A		0x005a
50 #define AT49BV6416		0x00d6
51 
52 /*
53  * Status Register bit description. Used by flash devices that don't
54  * support DQ polling (e.g. HyperFlash)
55  */
56 #define CFI_SR_DRB		BIT(7)
57 #define CFI_SR_ESB		BIT(5)
58 #define CFI_SR_PSB		BIT(4)
59 #define CFI_SR_WBASB		BIT(3)
60 #define CFI_SR_SLSB		BIT(1)
61 
62 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
64 #if !FORCE_WORD_WRITE
65 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
66 #endif
67 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
68 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
69 static void cfi_amdstd_sync (struct mtd_info *);
70 static int cfi_amdstd_suspend (struct mtd_info *);
71 static void cfi_amdstd_resume (struct mtd_info *);
72 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
73 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
74 					 size_t *, struct otp_info *);
75 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
76 					 size_t *, struct otp_info *);
77 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
78 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
79 					 size_t *, u_char *);
80 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
81 					 size_t *, u_char *);
82 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
83 					  size_t *, u_char *);
84 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
85 
86 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
87 				  size_t *retlen, const u_char *buf);
88 
89 static void cfi_amdstd_destroy(struct mtd_info *);
90 
91 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
92 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
93 
94 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
95 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
96 #include "fwh_lock.h"
97 
98 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
99 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
100 
101 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
102 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
103 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
104 
105 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
106 	.probe		= NULL, /* Not usable directly */
107 	.destroy	= cfi_amdstd_destroy,
108 	.name		= "cfi_cmdset_0002",
109 	.module		= THIS_MODULE
110 };
111 
112 /*
113  * Use status register to poll for Erase/write completion when DQ is not
114  * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
115  * CFI Primary Vendor-Specific Extended Query table 1.5
116  */
117 static int cfi_use_status_reg(struct cfi_private *cfi)
118 {
119 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
120 	u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
121 
122 	return extp->MinorVersion >= '5' &&
123 		(extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
124 }
125 
126 static int cfi_check_err_status(struct map_info *map, struct flchip *chip,
127 				unsigned long adr)
128 {
129 	struct cfi_private *cfi = map->fldrv_priv;
130 	map_word status;
131 
132 	if (!cfi_use_status_reg(cfi))
133 		return 0;
134 
135 	cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
136 			 cfi->device_type, NULL);
137 	status = map_read(map, adr);
138 
139 	/* The error bits are invalid while the chip's busy */
140 	if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB)))
141 		return 0;
142 
143 	if (map_word_bitsset(map, status, CMD(0x3a))) {
144 		unsigned long chipstatus = MERGESTATUS(status);
145 
146 		if (chipstatus & CFI_SR_ESB)
147 			pr_err("%s erase operation failed, status %lx\n",
148 			       map->name, chipstatus);
149 		if (chipstatus & CFI_SR_PSB)
150 			pr_err("%s program operation failed, status %lx\n",
151 			       map->name, chipstatus);
152 		if (chipstatus & CFI_SR_WBASB)
153 			pr_err("%s buffer program command aborted, status %lx\n",
154 			       map->name, chipstatus);
155 		if (chipstatus & CFI_SR_SLSB)
156 			pr_err("%s sector write protected, status %lx\n",
157 			       map->name, chipstatus);
158 
159 		/* Erase/Program status bits are set on the operation failure */
160 		if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB))
161 			return 1;
162 	}
163 	return 0;
164 }
165 
166 /* #define DEBUG_CFI_FEATURES */
167 
168 
169 #ifdef DEBUG_CFI_FEATURES
170 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
171 {
172 	const char* erase_suspend[3] = {
173 		"Not supported", "Read only", "Read/write"
174 	};
175 	const char* top_bottom[6] = {
176 		"No WP", "8x8KiB sectors at top & bottom, no WP",
177 		"Bottom boot", "Top boot",
178 		"Uniform, Bottom WP", "Uniform, Top WP"
179 	};
180 
181 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
182 	printk("  Address sensitive unlock: %s\n",
183 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
184 
185 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
186 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
187 	else
188 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
189 
190 	if (extp->BlkProt == 0)
191 		printk("  Block protection: Not supported\n");
192 	else
193 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
194 
195 
196 	printk("  Temporary block unprotect: %s\n",
197 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
198 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
199 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
200 	printk("  Burst mode: %s\n",
201 	       extp->BurstMode ? "Supported" : "Not supported");
202 	if (extp->PageMode == 0)
203 		printk("  Page mode: Not supported\n");
204 	else
205 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
206 
207 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
208 	       extp->VppMin >> 4, extp->VppMin & 0xf);
209 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
210 	       extp->VppMax >> 4, extp->VppMax & 0xf);
211 
212 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
213 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
214 	else
215 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
216 }
217 #endif
218 
219 #ifdef AMD_BOOTLOC_BUG
220 /* Wheee. Bring me the head of someone at AMD. */
221 static void fixup_amd_bootblock(struct mtd_info *mtd)
222 {
223 	struct map_info *map = mtd->priv;
224 	struct cfi_private *cfi = map->fldrv_priv;
225 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
226 	__u8 major = extp->MajorVersion;
227 	__u8 minor = extp->MinorVersion;
228 
229 	if (((major << 8) | minor) < 0x3131) {
230 		/* CFI version 1.0 => don't trust bootloc */
231 
232 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
233 			map->name, cfi->mfr, cfi->id);
234 
235 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
236 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
237 		 * These were badly detected as they have the 0x80 bit set
238 		 * so treat them as a special case.
239 		 */
240 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
241 
242 			/* Macronix added CFI to their 2nd generation
243 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
244 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
245 			 * has CFI.
246 			 *
247 			 * Therefore also check the manufacturer.
248 			 * This reduces the risk of false detection due to
249 			 * the 8-bit device ID.
250 			 */
251 			(cfi->mfr == CFI_MFR_MACRONIX)) {
252 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
253 				" detected\n", map->name);
254 			extp->TopBottom = 2;	/* bottom boot */
255 		} else
256 		if (cfi->id & 0x80) {
257 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
258 			extp->TopBottom = 3;	/* top boot */
259 		} else {
260 			extp->TopBottom = 2;	/* bottom boot */
261 		}
262 
263 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
264 			" deduced %s from Device ID\n", map->name, major, minor,
265 			extp->TopBottom == 2 ? "bottom" : "top");
266 	}
267 }
268 #endif
269 
270 #if !FORCE_WORD_WRITE
271 static void fixup_use_write_buffers(struct mtd_info *mtd)
272 {
273 	struct map_info *map = mtd->priv;
274 	struct cfi_private *cfi = map->fldrv_priv;
275 	if (cfi->cfiq->BufWriteTimeoutTyp) {
276 		pr_debug("Using buffer write method\n");
277 		mtd->_write = cfi_amdstd_write_buffers;
278 	}
279 }
280 #endif /* !FORCE_WORD_WRITE */
281 
282 /* Atmel chips don't use the same PRI format as AMD chips */
283 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
284 {
285 	struct map_info *map = mtd->priv;
286 	struct cfi_private *cfi = map->fldrv_priv;
287 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
288 	struct cfi_pri_atmel atmel_pri;
289 
290 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
291 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
292 
293 	if (atmel_pri.Features & 0x02)
294 		extp->EraseSuspend = 2;
295 
296 	/* Some chips got it backwards... */
297 	if (cfi->id == AT49BV6416) {
298 		if (atmel_pri.BottomBoot)
299 			extp->TopBottom = 3;
300 		else
301 			extp->TopBottom = 2;
302 	} else {
303 		if (atmel_pri.BottomBoot)
304 			extp->TopBottom = 2;
305 		else
306 			extp->TopBottom = 3;
307 	}
308 
309 	/* burst write mode not supported */
310 	cfi->cfiq->BufWriteTimeoutTyp = 0;
311 	cfi->cfiq->BufWriteTimeoutMax = 0;
312 }
313 
314 static void fixup_use_secsi(struct mtd_info *mtd)
315 {
316 	/* Setup for chips with a secsi area */
317 	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
318 	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
319 }
320 
321 static void fixup_use_erase_chip(struct mtd_info *mtd)
322 {
323 	struct map_info *map = mtd->priv;
324 	struct cfi_private *cfi = map->fldrv_priv;
325 	if ((cfi->cfiq->NumEraseRegions == 1) &&
326 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
327 		mtd->_erase = cfi_amdstd_erase_chip;
328 	}
329 
330 }
331 
332 /*
333  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
334  * locked by default.
335  */
336 static void fixup_use_atmel_lock(struct mtd_info *mtd)
337 {
338 	mtd->_lock = cfi_atmel_lock;
339 	mtd->_unlock = cfi_atmel_unlock;
340 	mtd->flags |= MTD_POWERUP_LOCK;
341 }
342 
343 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
344 {
345 	struct map_info *map = mtd->priv;
346 	struct cfi_private *cfi = map->fldrv_priv;
347 
348 	/*
349 	 * These flashes report two separate eraseblock regions based on the
350 	 * sector_erase-size and block_erase-size, although they both operate on the
351 	 * same memory. This is not allowed according to CFI, so we just pick the
352 	 * sector_erase-size.
353 	 */
354 	cfi->cfiq->NumEraseRegions = 1;
355 }
356 
357 static void fixup_sst39vf(struct mtd_info *mtd)
358 {
359 	struct map_info *map = mtd->priv;
360 	struct cfi_private *cfi = map->fldrv_priv;
361 
362 	fixup_old_sst_eraseregion(mtd);
363 
364 	cfi->addr_unlock1 = 0x5555;
365 	cfi->addr_unlock2 = 0x2AAA;
366 }
367 
368 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
369 {
370 	struct map_info *map = mtd->priv;
371 	struct cfi_private *cfi = map->fldrv_priv;
372 
373 	fixup_old_sst_eraseregion(mtd);
374 
375 	cfi->addr_unlock1 = 0x555;
376 	cfi->addr_unlock2 = 0x2AA;
377 
378 	cfi->sector_erase_cmd = CMD(0x50);
379 }
380 
381 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
382 {
383 	struct map_info *map = mtd->priv;
384 	struct cfi_private *cfi = map->fldrv_priv;
385 
386 	fixup_sst39vf_rev_b(mtd);
387 
388 	/*
389 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
390 	 * it should report a size of 8KBytes (0x0020*256).
391 	 */
392 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
393 	pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
394 		mtd->name);
395 }
396 
397 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
398 {
399 	struct map_info *map = mtd->priv;
400 	struct cfi_private *cfi = map->fldrv_priv;
401 
402 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
403 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
404 		pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
405 			mtd->name);
406 	}
407 }
408 
409 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
410 {
411 	struct map_info *map = mtd->priv;
412 	struct cfi_private *cfi = map->fldrv_priv;
413 
414 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
415 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
416 		pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
417 			mtd->name);
418 	}
419 }
420 
421 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
422 {
423 	struct map_info *map = mtd->priv;
424 	struct cfi_private *cfi = map->fldrv_priv;
425 
426 	/*
427 	 *  S29NS512P flash uses more than 8bits to report number of sectors,
428 	 * which is not permitted by CFI.
429 	 */
430 	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
431 	pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
432 		mtd->name);
433 }
434 
435 /* Used to fix CFI-Tables of chips without Extended Query Tables */
436 static struct cfi_fixup cfi_nopri_fixup_table[] = {
437 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
438 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
439 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
440 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
441 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
442 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
443 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
444 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
445 	{ 0, 0, NULL }
446 };
447 
448 static struct cfi_fixup cfi_fixup_table[] = {
449 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
450 #ifdef AMD_BOOTLOC_BUG
451 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
452 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
453 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
454 #endif
455 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
456 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
457 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
458 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
459 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
460 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
461 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
462 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
463 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
464 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
465 	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
466 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
467 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
468 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
469 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
470 #if !FORCE_WORD_WRITE
471 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
472 #endif
473 	{ 0, 0, NULL }
474 };
475 static struct cfi_fixup jedec_fixup_table[] = {
476 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
477 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
478 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
479 	{ 0, 0, NULL }
480 };
481 
482 static struct cfi_fixup fixup_table[] = {
483 	/* The CFI vendor ids and the JEDEC vendor IDs appear
484 	 * to be common.  It is like the devices id's are as
485 	 * well.  This table is to pick all cases where
486 	 * we know that is the case.
487 	 */
488 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
489 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
490 	{ 0, 0, NULL }
491 };
492 
493 
494 static void cfi_fixup_major_minor(struct cfi_private *cfi,
495 				  struct cfi_pri_amdstd *extp)
496 {
497 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
498 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
499 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
500 			/*
501 			 * Samsung K8P2815UQB and K8D6x16UxM chips
502 			 * report major=0 / minor=0.
503 			 * K8D3x16UxC chips report major=3 / minor=3.
504 			 */
505 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
506 			       " Extended Query version to 1.%c\n",
507 			       extp->MinorVersion);
508 			extp->MajorVersion = '1';
509 		}
510 	}
511 
512 	/*
513 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
514 	 */
515 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
516 		extp->MajorVersion = '1';
517 		extp->MinorVersion = '0';
518 	}
519 }
520 
521 static int is_m29ew(struct cfi_private *cfi)
522 {
523 	if (cfi->mfr == CFI_MFR_INTEL &&
524 	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
525 	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
526 		return 1;
527 	return 0;
528 }
529 
530 /*
531  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
532  * Some revisions of the M29EW suffer from erase suspend hang ups. In
533  * particular, it can occur when the sequence
534  * Erase Confirm -> Suspend -> Program -> Resume
535  * causes a lockup due to internal timing issues. The consequence is that the
536  * erase cannot be resumed without inserting a dummy command after programming
537  * and prior to resuming. [...] The work-around is to issue a dummy write cycle
538  * that writes an F0 command code before the RESUME command.
539  */
540 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
541 					  unsigned long adr)
542 {
543 	struct cfi_private *cfi = map->fldrv_priv;
544 	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
545 	if (is_m29ew(cfi))
546 		map_write(map, CMD(0xF0), adr);
547 }
548 
549 /*
550  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
551  *
552  * Some revisions of the M29EW (for example, A1 and A2 step revisions)
553  * are affected by a problem that could cause a hang up when an ERASE SUSPEND
554  * command is issued after an ERASE RESUME operation without waiting for a
555  * minimum delay.  The result is that once the ERASE seems to be completed
556  * (no bits are toggling), the contents of the Flash memory block on which
557  * the erase was ongoing could be inconsistent with the expected values
558  * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
559  * values), causing a consequent failure of the ERASE operation.
560  * The occurrence of this issue could be high, especially when file system
561  * operations on the Flash are intensive.  As a result, it is recommended
562  * that a patch be applied.  Intensive file system operations can cause many
563  * calls to the garbage routine to free Flash space (also by erasing physical
564  * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
565  * commands can occur.  The problem disappears when a delay is inserted after
566  * the RESUME command by using the udelay() function available in Linux.
567  * The DELAY value must be tuned based on the customer's platform.
568  * The maximum value that fixes the problem in all cases is 500us.
569  * But, in our experience, a delay of 30 µs to 50 µs is sufficient
570  * in most cases.
571  * We have chosen 500µs because this latency is acceptable.
572  */
573 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
574 {
575 	/*
576 	 * Resolving the Delay After Resume Issue see Micron TN-13-07
577 	 * Worst case delay must be 500µs but 30-50µs should be ok as well
578 	 */
579 	if (is_m29ew(cfi))
580 		cfi_udelay(500);
581 }
582 
583 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
584 {
585 	struct cfi_private *cfi = map->fldrv_priv;
586 	struct device_node __maybe_unused *np = map->device_node;
587 	struct mtd_info *mtd;
588 	int i;
589 
590 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
591 	if (!mtd)
592 		return NULL;
593 	mtd->priv = map;
594 	mtd->type = MTD_NORFLASH;
595 
596 	/* Fill in the default mtd operations */
597 	mtd->_erase   = cfi_amdstd_erase_varsize;
598 	mtd->_write   = cfi_amdstd_write_words;
599 	mtd->_read    = cfi_amdstd_read;
600 	mtd->_sync    = cfi_amdstd_sync;
601 	mtd->_suspend = cfi_amdstd_suspend;
602 	mtd->_resume  = cfi_amdstd_resume;
603 	mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
604 	mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
605 	mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
606 	mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
607 	mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
608 	mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
609 	mtd->flags   = MTD_CAP_NORFLASH;
610 	mtd->name    = map->name;
611 	mtd->writesize = 1;
612 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
613 
614 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
615 			mtd->writebufsize);
616 
617 	mtd->_panic_write = cfi_amdstd_panic_write;
618 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
619 
620 	if (cfi->cfi_mode==CFI_MODE_CFI){
621 		unsigned char bootloc;
622 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
623 		struct cfi_pri_amdstd *extp;
624 
625 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
626 		if (extp) {
627 			/*
628 			 * It's a real CFI chip, not one for which the probe
629 			 * routine faked a CFI structure.
630 			 */
631 			cfi_fixup_major_minor(cfi, extp);
632 
633 			/*
634 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
635 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
636 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
637 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
638 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
639 			 */
640 			if (extp->MajorVersion != '1' ||
641 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
642 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
643 				       "version %c.%c (%#02x/%#02x).\n",
644 				       extp->MajorVersion, extp->MinorVersion,
645 				       extp->MajorVersion, extp->MinorVersion);
646 				kfree(extp);
647 				kfree(mtd);
648 				return NULL;
649 			}
650 
651 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
652 			       extp->MajorVersion, extp->MinorVersion);
653 
654 			/* Install our own private info structure */
655 			cfi->cmdset_priv = extp;
656 
657 			/* Apply cfi device specific fixups */
658 			cfi_fixup(mtd, cfi_fixup_table);
659 
660 #ifdef DEBUG_CFI_FEATURES
661 			/* Tell the user about it in lots of lovely detail */
662 			cfi_tell_features(extp);
663 #endif
664 
665 #ifdef CONFIG_OF
666 			if (np && of_property_read_bool(
667 				    np, "use-advanced-sector-protection")
668 			    && extp->BlkProtUnprot == 8) {
669 				printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
670 				mtd->_lock = cfi_ppb_lock;
671 				mtd->_unlock = cfi_ppb_unlock;
672 				mtd->_is_locked = cfi_ppb_is_locked;
673 			}
674 #endif
675 
676 			bootloc = extp->TopBottom;
677 			if ((bootloc < 2) || (bootloc > 5)) {
678 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
679 				       "bank location (%d). Assuming bottom.\n",
680 				       map->name, bootloc);
681 				bootloc = 2;
682 			}
683 
684 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
685 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
686 
687 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
688 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
689 
690 					swap(cfi->cfiq->EraseRegionInfo[i],
691 					     cfi->cfiq->EraseRegionInfo[j]);
692 				}
693 			}
694 			/* Set the default CFI lock/unlock addresses */
695 			cfi->addr_unlock1 = 0x555;
696 			cfi->addr_unlock2 = 0x2aa;
697 		}
698 		cfi_fixup(mtd, cfi_nopri_fixup_table);
699 
700 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
701 			kfree(mtd);
702 			return NULL;
703 		}
704 
705 	} /* CFI mode */
706 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
707 		/* Apply jedec specific fixups */
708 		cfi_fixup(mtd, jedec_fixup_table);
709 	}
710 	/* Apply generic fixups */
711 	cfi_fixup(mtd, fixup_table);
712 
713 	for (i=0; i< cfi->numchips; i++) {
714 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
715 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
716 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
717 		/*
718 		 * First calculate the timeout max according to timeout field
719 		 * of struct cfi_ident that probed from chip's CFI aera, if
720 		 * available. Specify a minimum of 2000us, in case the CFI data
721 		 * is wrong.
722 		 */
723 		if (cfi->cfiq->BufWriteTimeoutTyp &&
724 		    cfi->cfiq->BufWriteTimeoutMax)
725 			cfi->chips[i].buffer_write_time_max =
726 				1 << (cfi->cfiq->BufWriteTimeoutTyp +
727 				      cfi->cfiq->BufWriteTimeoutMax);
728 		else
729 			cfi->chips[i].buffer_write_time_max = 0;
730 
731 		cfi->chips[i].buffer_write_time_max =
732 			max(cfi->chips[i].buffer_write_time_max, 2000);
733 
734 		cfi->chips[i].ref_point_counter = 0;
735 		init_waitqueue_head(&(cfi->chips[i].wq));
736 	}
737 
738 	map->fldrv = &cfi_amdstd_chipdrv;
739 
740 	return cfi_amdstd_setup(mtd);
741 }
742 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
743 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
744 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
745 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
746 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
747 
748 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
749 {
750 	struct map_info *map = mtd->priv;
751 	struct cfi_private *cfi = map->fldrv_priv;
752 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
753 	unsigned long offset = 0;
754 	int i,j;
755 
756 	printk(KERN_NOTICE "number of %s chips: %d\n",
757 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
758 	/* Select the correct geometry setup */
759 	mtd->size = devsize * cfi->numchips;
760 
761 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
762 	mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
763 					  sizeof(struct mtd_erase_region_info),
764 					  GFP_KERNEL);
765 	if (!mtd->eraseregions)
766 		goto setup_err;
767 
768 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
769 		unsigned long ernum, ersize;
770 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
771 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
772 
773 		if (mtd->erasesize < ersize) {
774 			mtd->erasesize = ersize;
775 		}
776 		for (j=0; j<cfi->numchips; j++) {
777 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
778 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
779 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
780 		}
781 		offset += (ersize * ernum);
782 	}
783 	if (offset != devsize) {
784 		/* Argh */
785 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
786 		goto setup_err;
787 	}
788 
789 	__module_get(THIS_MODULE);
790 	register_reboot_notifier(&mtd->reboot_notifier);
791 	return mtd;
792 
793  setup_err:
794 	kfree(mtd->eraseregions);
795 	kfree(mtd);
796 	kfree(cfi->cmdset_priv);
797 	return NULL;
798 }
799 
800 /*
801  * Return true if the chip is ready.
802  *
803  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
804  * non-suspended sector) and is indicated by no toggle bits toggling.
805  *
806  * Note that anything more complicated than checking if no bits are toggling
807  * (including checking DQ5 for an error status) is tricky to get working
808  * correctly and is therefore not done	(particularly with interleaved chips
809  * as each chip must be checked independently of the others).
810  */
811 static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
812 			       unsigned long addr)
813 {
814 	struct cfi_private *cfi = map->fldrv_priv;
815 	map_word d, t;
816 
817 	if (cfi_use_status_reg(cfi)) {
818 		map_word ready = CMD(CFI_SR_DRB);
819 		/*
820 		 * For chips that support status register, check device
821 		 * ready bit
822 		 */
823 		cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
824 				 cfi->device_type, NULL);
825 		d = map_read(map, addr);
826 
827 		return map_word_andequal(map, d, ready, ready);
828 	}
829 
830 	d = map_read(map, addr);
831 	t = map_read(map, addr);
832 
833 	return map_word_equal(map, d, t);
834 }
835 
836 /*
837  * Return true if the chip is ready and has the correct value.
838  *
839  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
840  * non-suspended sector) and it is indicated by no bits toggling.
841  *
842  * Error are indicated by toggling bits or bits held with the wrong value,
843  * or with bits toggling.
844  *
845  * Note that anything more complicated than checking if no bits are toggling
846  * (including checking DQ5 for an error status) is tricky to get working
847  * correctly and is therefore not done	(particularly with interleaved chips
848  * as each chip must be checked independently of the others).
849  *
850  */
851 static int __xipram chip_good(struct map_info *map, struct flchip *chip,
852 			      unsigned long addr, map_word expected)
853 {
854 	struct cfi_private *cfi = map->fldrv_priv;
855 	map_word oldd, curd;
856 
857 	if (cfi_use_status_reg(cfi)) {
858 		map_word ready = CMD(CFI_SR_DRB);
859 
860 		/*
861 		 * For chips that support status register, check device
862 		 * ready bit
863 		 */
864 		cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
865 				 cfi->device_type, NULL);
866 		curd = map_read(map, addr);
867 
868 		return map_word_andequal(map, curd, ready, ready);
869 	}
870 
871 	oldd = map_read(map, addr);
872 	curd = map_read(map, addr);
873 
874 	return	map_word_equal(map, oldd, curd) &&
875 		map_word_equal(map, curd, expected);
876 }
877 
878 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
879 {
880 	DECLARE_WAITQUEUE(wait, current);
881 	struct cfi_private *cfi = map->fldrv_priv;
882 	unsigned long timeo;
883 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
884 
885  resettime:
886 	timeo = jiffies + HZ;
887  retry:
888 	switch (chip->state) {
889 
890 	case FL_STATUS:
891 		for (;;) {
892 			if (chip_ready(map, chip, adr))
893 				break;
894 
895 			if (time_after(jiffies, timeo)) {
896 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
897 				return -EIO;
898 			}
899 			mutex_unlock(&chip->mutex);
900 			cfi_udelay(1);
901 			mutex_lock(&chip->mutex);
902 			/* Someone else might have been playing with it. */
903 			goto retry;
904 		}
905 
906 	case FL_READY:
907 	case FL_CFI_QUERY:
908 	case FL_JEDEC_QUERY:
909 		return 0;
910 
911 	case FL_ERASING:
912 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
913 		    !(mode == FL_READY || mode == FL_POINT ||
914 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
915 			goto sleep;
916 
917 		/* Do not allow suspend iff read/write to EB address */
918 		if ((adr & chip->in_progress_block_mask) ==
919 		    chip->in_progress_block_addr)
920 			goto sleep;
921 
922 		/* Erase suspend */
923 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
924 		 * commands when the erase algorithm isn't in progress. */
925 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
926 		chip->oldstate = FL_ERASING;
927 		chip->state = FL_ERASE_SUSPENDING;
928 		chip->erase_suspended = 1;
929 		for (;;) {
930 			if (chip_ready(map, chip, adr))
931 				break;
932 
933 			if (time_after(jiffies, timeo)) {
934 				/* Should have suspended the erase by now.
935 				 * Send an Erase-Resume command as either
936 				 * there was an error (so leave the erase
937 				 * routine to recover from it) or we trying to
938 				 * use the erase-in-progress sector. */
939 				put_chip(map, chip, adr);
940 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
941 				return -EIO;
942 			}
943 
944 			mutex_unlock(&chip->mutex);
945 			cfi_udelay(1);
946 			mutex_lock(&chip->mutex);
947 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
948 			   So we can just loop here. */
949 		}
950 		chip->state = FL_READY;
951 		return 0;
952 
953 	case FL_XIP_WHILE_ERASING:
954 		if (mode != FL_READY && mode != FL_POINT &&
955 		    (!cfip || !(cfip->EraseSuspend&2)))
956 			goto sleep;
957 		chip->oldstate = chip->state;
958 		chip->state = FL_READY;
959 		return 0;
960 
961 	case FL_SHUTDOWN:
962 		/* The machine is rebooting */
963 		return -EIO;
964 
965 	case FL_POINT:
966 		/* Only if there's no operation suspended... */
967 		if (mode == FL_READY && chip->oldstate == FL_READY)
968 			return 0;
969 		fallthrough;
970 	default:
971 	sleep:
972 		set_current_state(TASK_UNINTERRUPTIBLE);
973 		add_wait_queue(&chip->wq, &wait);
974 		mutex_unlock(&chip->mutex);
975 		schedule();
976 		remove_wait_queue(&chip->wq, &wait);
977 		mutex_lock(&chip->mutex);
978 		goto resettime;
979 	}
980 }
981 
982 
983 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
984 {
985 	struct cfi_private *cfi = map->fldrv_priv;
986 
987 	switch(chip->oldstate) {
988 	case FL_ERASING:
989 		cfi_fixup_m29ew_erase_suspend(map,
990 			chip->in_progress_block_addr);
991 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
992 		cfi_fixup_m29ew_delay_after_resume(cfi);
993 		chip->oldstate = FL_READY;
994 		chip->state = FL_ERASING;
995 		break;
996 
997 	case FL_XIP_WHILE_ERASING:
998 		chip->state = chip->oldstate;
999 		chip->oldstate = FL_READY;
1000 		break;
1001 
1002 	case FL_READY:
1003 	case FL_STATUS:
1004 		break;
1005 	default:
1006 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
1007 	}
1008 	wake_up(&chip->wq);
1009 }
1010 
1011 #ifdef CONFIG_MTD_XIP
1012 
1013 /*
1014  * No interrupt what so ever can be serviced while the flash isn't in array
1015  * mode.  This is ensured by the xip_disable() and xip_enable() functions
1016  * enclosing any code path where the flash is known not to be in array mode.
1017  * And within a XIP disabled code path, only functions marked with __xipram
1018  * may be called and nothing else (it's a good thing to inspect generated
1019  * assembly to make sure inline functions were actually inlined and that gcc
1020  * didn't emit calls to its own support functions). Also configuring MTD CFI
1021  * support to a single buswidth and a single interleave is also recommended.
1022  */
1023 
1024 static void xip_disable(struct map_info *map, struct flchip *chip,
1025 			unsigned long adr)
1026 {
1027 	/* TODO: chips with no XIP use should ignore and return */
1028 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
1029 	local_irq_disable();
1030 }
1031 
1032 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1033 				unsigned long adr)
1034 {
1035 	struct cfi_private *cfi = map->fldrv_priv;
1036 
1037 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1038 		map_write(map, CMD(0xf0), adr);
1039 		chip->state = FL_READY;
1040 	}
1041 	(void) map_read(map, adr);
1042 	xip_iprefetch();
1043 	local_irq_enable();
1044 }
1045 
1046 /*
1047  * When a delay is required for the flash operation to complete, the
1048  * xip_udelay() function is polling for both the given timeout and pending
1049  * (but still masked) hardware interrupts.  Whenever there is an interrupt
1050  * pending then the flash erase operation is suspended, array mode restored
1051  * and interrupts unmasked.  Task scheduling might also happen at that
1052  * point.  The CPU eventually returns from the interrupt or the call to
1053  * schedule() and the suspended flash operation is resumed for the remaining
1054  * of the delay period.
1055  *
1056  * Warning: this function _will_ fool interrupt latency tracing tools.
1057  */
1058 
1059 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
1060 				unsigned long adr, int usec)
1061 {
1062 	struct cfi_private *cfi = map->fldrv_priv;
1063 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
1064 	map_word status, OK = CMD(0x80);
1065 	unsigned long suspended, start = xip_currtime();
1066 	flstate_t oldstate;
1067 
1068 	do {
1069 		cpu_relax();
1070 		if (xip_irqpending() && extp &&
1071 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
1072 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1073 			/*
1074 			 * Let's suspend the erase operation when supported.
1075 			 * Note that we currently don't try to suspend
1076 			 * interleaved chips if there is already another
1077 			 * operation suspended (imagine what happens
1078 			 * when one chip was already done with the current
1079 			 * operation while another chip suspended it, then
1080 			 * we resume the whole thing at once).  Yes, it
1081 			 * can happen!
1082 			 */
1083 			map_write(map, CMD(0xb0), adr);
1084 			usec -= xip_elapsed_since(start);
1085 			suspended = xip_currtime();
1086 			do {
1087 				if (xip_elapsed_since(suspended) > 100000) {
1088 					/*
1089 					 * The chip doesn't want to suspend
1090 					 * after waiting for 100 msecs.
1091 					 * This is a critical error but there
1092 					 * is not much we can do here.
1093 					 */
1094 					return;
1095 				}
1096 				status = map_read(map, adr);
1097 			} while (!map_word_andequal(map, status, OK, OK));
1098 
1099 			/* Suspend succeeded */
1100 			oldstate = chip->state;
1101 			if (!map_word_bitsset(map, status, CMD(0x40)))
1102 				break;
1103 			chip->state = FL_XIP_WHILE_ERASING;
1104 			chip->erase_suspended = 1;
1105 			map_write(map, CMD(0xf0), adr);
1106 			(void) map_read(map, adr);
1107 			xip_iprefetch();
1108 			local_irq_enable();
1109 			mutex_unlock(&chip->mutex);
1110 			xip_iprefetch();
1111 			cond_resched();
1112 
1113 			/*
1114 			 * We're back.  However someone else might have
1115 			 * decided to go write to the chip if we are in
1116 			 * a suspended erase state.  If so let's wait
1117 			 * until it's done.
1118 			 */
1119 			mutex_lock(&chip->mutex);
1120 			while (chip->state != FL_XIP_WHILE_ERASING) {
1121 				DECLARE_WAITQUEUE(wait, current);
1122 				set_current_state(TASK_UNINTERRUPTIBLE);
1123 				add_wait_queue(&chip->wq, &wait);
1124 				mutex_unlock(&chip->mutex);
1125 				schedule();
1126 				remove_wait_queue(&chip->wq, &wait);
1127 				mutex_lock(&chip->mutex);
1128 			}
1129 			/* Disallow XIP again */
1130 			local_irq_disable();
1131 
1132 			/* Correct Erase Suspend Hangups for M29EW */
1133 			cfi_fixup_m29ew_erase_suspend(map, adr);
1134 			/* Resume the write or erase operation */
1135 			map_write(map, cfi->sector_erase_cmd, adr);
1136 			chip->state = oldstate;
1137 			start = xip_currtime();
1138 		} else if (usec >= 1000000/HZ) {
1139 			/*
1140 			 * Try to save on CPU power when waiting delay
1141 			 * is at least a system timer tick period.
1142 			 * No need to be extremely accurate here.
1143 			 */
1144 			xip_cpu_idle();
1145 		}
1146 		status = map_read(map, adr);
1147 	} while (!map_word_andequal(map, status, OK, OK)
1148 		 && xip_elapsed_since(start) < usec);
1149 }
1150 
1151 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1152 
1153 /*
1154  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1155  * the flash is actively programming or erasing since we have to poll for
1156  * the operation to complete anyway.  We can't do that in a generic way with
1157  * a XIP setup so do it before the actual flash operation in this case
1158  * and stub it out from INVALIDATE_CACHE_UDELAY.
1159  */
1160 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1161 	INVALIDATE_CACHED_RANGE(map, from, size)
1162 
1163 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1164 	UDELAY(map, chip, adr, usec)
1165 
1166 /*
1167  * Extra notes:
1168  *
1169  * Activating this XIP support changes the way the code works a bit.  For
1170  * example the code to suspend the current process when concurrent access
1171  * happens is never executed because xip_udelay() will always return with the
1172  * same chip state as it was entered with.  This is why there is no care for
1173  * the presence of add_wait_queue() or schedule() calls from within a couple
1174  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1175  * The queueing and scheduling are always happening within xip_udelay().
1176  *
1177  * Similarly, get_chip() and put_chip() just happen to always be executed
1178  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1179  * is in array mode, therefore never executing many cases therein and not
1180  * causing any problem with XIP.
1181  */
1182 
1183 #else
1184 
1185 #define xip_disable(map, chip, adr)
1186 #define xip_enable(map, chip, adr)
1187 #define XIP_INVAL_CACHED_RANGE(x...)
1188 
1189 #define UDELAY(map, chip, adr, usec)  \
1190 do {  \
1191 	mutex_unlock(&chip->mutex);  \
1192 	cfi_udelay(usec);  \
1193 	mutex_lock(&chip->mutex);  \
1194 } while (0)
1195 
1196 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1197 do {  \
1198 	mutex_unlock(&chip->mutex);  \
1199 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
1200 	cfi_udelay(usec);  \
1201 	mutex_lock(&chip->mutex);  \
1202 } while (0)
1203 
1204 #endif
1205 
1206 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1207 {
1208 	unsigned long cmd_addr;
1209 	struct cfi_private *cfi = map->fldrv_priv;
1210 	int ret;
1211 
1212 	adr += chip->start;
1213 
1214 	/* Ensure cmd read/writes are aligned. */
1215 	cmd_addr = adr & ~(map_bankwidth(map)-1);
1216 
1217 	mutex_lock(&chip->mutex);
1218 	ret = get_chip(map, chip, cmd_addr, FL_READY);
1219 	if (ret) {
1220 		mutex_unlock(&chip->mutex);
1221 		return ret;
1222 	}
1223 
1224 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1225 		map_write(map, CMD(0xf0), cmd_addr);
1226 		chip->state = FL_READY;
1227 	}
1228 
1229 	map_copy_from(map, buf, adr, len);
1230 
1231 	put_chip(map, chip, cmd_addr);
1232 
1233 	mutex_unlock(&chip->mutex);
1234 	return 0;
1235 }
1236 
1237 
1238 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1239 {
1240 	struct map_info *map = mtd->priv;
1241 	struct cfi_private *cfi = map->fldrv_priv;
1242 	unsigned long ofs;
1243 	int chipnum;
1244 	int ret = 0;
1245 
1246 	/* ofs: offset within the first chip that the first read should start */
1247 	chipnum = (from >> cfi->chipshift);
1248 	ofs = from - (chipnum <<  cfi->chipshift);
1249 
1250 	while (len) {
1251 		unsigned long thislen;
1252 
1253 		if (chipnum >= cfi->numchips)
1254 			break;
1255 
1256 		if ((len + ofs -1) >> cfi->chipshift)
1257 			thislen = (1<<cfi->chipshift) - ofs;
1258 		else
1259 			thislen = len;
1260 
1261 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1262 		if (ret)
1263 			break;
1264 
1265 		*retlen += thislen;
1266 		len -= thislen;
1267 		buf += thislen;
1268 
1269 		ofs = 0;
1270 		chipnum++;
1271 	}
1272 	return ret;
1273 }
1274 
1275 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1276 			loff_t adr, size_t len, u_char *buf, size_t grouplen);
1277 
1278 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1279 			     loff_t adr, size_t len)
1280 {
1281 	struct cfi_private *cfi = map->fldrv_priv;
1282 
1283 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1284 			 cfi->device_type, NULL);
1285 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1286 			 cfi->device_type, NULL);
1287 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1288 			 cfi->device_type, NULL);
1289 
1290 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1291 }
1292 
1293 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1294 			    loff_t adr, size_t len)
1295 {
1296 	struct cfi_private *cfi = map->fldrv_priv;
1297 
1298 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1299 			 cfi->device_type, NULL);
1300 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1301 			 cfi->device_type, NULL);
1302 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1303 			 cfi->device_type, NULL);
1304 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1305 			 cfi->device_type, NULL);
1306 
1307 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1308 }
1309 
1310 static inline int do_read_secsi_onechip(struct map_info *map,
1311 					struct flchip *chip, loff_t adr,
1312 					size_t len, u_char *buf,
1313 					size_t grouplen)
1314 {
1315 	DECLARE_WAITQUEUE(wait, current);
1316 
1317  retry:
1318 	mutex_lock(&chip->mutex);
1319 
1320 	if (chip->state != FL_READY){
1321 		set_current_state(TASK_UNINTERRUPTIBLE);
1322 		add_wait_queue(&chip->wq, &wait);
1323 
1324 		mutex_unlock(&chip->mutex);
1325 
1326 		schedule();
1327 		remove_wait_queue(&chip->wq, &wait);
1328 
1329 		goto retry;
1330 	}
1331 
1332 	adr += chip->start;
1333 
1334 	chip->state = FL_READY;
1335 
1336 	otp_enter(map, chip, adr, len);
1337 	map_copy_from(map, buf, adr, len);
1338 	otp_exit(map, chip, adr, len);
1339 
1340 	wake_up(&chip->wq);
1341 	mutex_unlock(&chip->mutex);
1342 
1343 	return 0;
1344 }
1345 
1346 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1347 {
1348 	struct map_info *map = mtd->priv;
1349 	struct cfi_private *cfi = map->fldrv_priv;
1350 	unsigned long ofs;
1351 	int chipnum;
1352 	int ret = 0;
1353 
1354 	/* ofs: offset within the first chip that the first read should start */
1355 	/* 8 secsi bytes per chip */
1356 	chipnum=from>>3;
1357 	ofs=from & 7;
1358 
1359 	while (len) {
1360 		unsigned long thislen;
1361 
1362 		if (chipnum >= cfi->numchips)
1363 			break;
1364 
1365 		if ((len + ofs -1) >> 3)
1366 			thislen = (1<<3) - ofs;
1367 		else
1368 			thislen = len;
1369 
1370 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1371 					    thislen, buf, 0);
1372 		if (ret)
1373 			break;
1374 
1375 		*retlen += thislen;
1376 		len -= thislen;
1377 		buf += thislen;
1378 
1379 		ofs = 0;
1380 		chipnum++;
1381 	}
1382 	return ret;
1383 }
1384 
1385 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1386 				     unsigned long adr, map_word datum,
1387 				     int mode);
1388 
1389 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1390 			size_t len, u_char *buf, size_t grouplen)
1391 {
1392 	int ret;
1393 	while (len) {
1394 		unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1395 		int gap = adr - bus_ofs;
1396 		int n = min_t(int, len, map_bankwidth(map) - gap);
1397 		map_word datum = map_word_ff(map);
1398 
1399 		if (n != map_bankwidth(map)) {
1400 			/* partial write of a word, load old contents */
1401 			otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1402 			datum = map_read(map, bus_ofs);
1403 			otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1404 		}
1405 
1406 		datum = map_word_load_partial(map, datum, buf, gap, n);
1407 		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1408 		if (ret)
1409 			return ret;
1410 
1411 		adr += n;
1412 		buf += n;
1413 		len -= n;
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1420 		       size_t len, u_char *buf, size_t grouplen)
1421 {
1422 	struct cfi_private *cfi = map->fldrv_priv;
1423 	uint8_t lockreg;
1424 	unsigned long timeo;
1425 	int ret;
1426 
1427 	/* make sure area matches group boundaries */
1428 	if ((adr != 0) || (len != grouplen))
1429 		return -EINVAL;
1430 
1431 	mutex_lock(&chip->mutex);
1432 	ret = get_chip(map, chip, chip->start, FL_LOCKING);
1433 	if (ret) {
1434 		mutex_unlock(&chip->mutex);
1435 		return ret;
1436 	}
1437 	chip->state = FL_LOCKING;
1438 
1439 	/* Enter lock register command */
1440 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1441 			 cfi->device_type, NULL);
1442 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1443 			 cfi->device_type, NULL);
1444 	cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1445 			 cfi->device_type, NULL);
1446 
1447 	/* read lock register */
1448 	lockreg = cfi_read_query(map, 0);
1449 
1450 	/* set bit 0 to protect extended memory block */
1451 	lockreg &= ~0x01;
1452 
1453 	/* set bit 0 to protect extended memory block */
1454 	/* write lock register */
1455 	map_write(map, CMD(0xA0), chip->start);
1456 	map_write(map, CMD(lockreg), chip->start);
1457 
1458 	/* wait for chip to become ready */
1459 	timeo = jiffies + msecs_to_jiffies(2);
1460 	for (;;) {
1461 		if (chip_ready(map, chip, adr))
1462 			break;
1463 
1464 		if (time_after(jiffies, timeo)) {
1465 			pr_err("Waiting for chip to be ready timed out.\n");
1466 			ret = -EIO;
1467 			break;
1468 		}
1469 		UDELAY(map, chip, 0, 1);
1470 	}
1471 
1472 	/* exit protection commands */
1473 	map_write(map, CMD(0x90), chip->start);
1474 	map_write(map, CMD(0x00), chip->start);
1475 
1476 	chip->state = FL_READY;
1477 	put_chip(map, chip, chip->start);
1478 	mutex_unlock(&chip->mutex);
1479 
1480 	return ret;
1481 }
1482 
1483 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1484 			       size_t *retlen, u_char *buf,
1485 			       otp_op_t action, int user_regs)
1486 {
1487 	struct map_info *map = mtd->priv;
1488 	struct cfi_private *cfi = map->fldrv_priv;
1489 	int ofs_factor = cfi->interleave * cfi->device_type;
1490 	unsigned long base;
1491 	int chipnum;
1492 	struct flchip *chip;
1493 	uint8_t otp, lockreg;
1494 	int ret;
1495 
1496 	size_t user_size, factory_size, otpsize;
1497 	loff_t user_offset, factory_offset, otpoffset;
1498 	int user_locked = 0, otplocked;
1499 
1500 	*retlen = 0;
1501 
1502 	for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1503 		chip = &cfi->chips[chipnum];
1504 		factory_size = 0;
1505 		user_size = 0;
1506 
1507 		/* Micron M29EW family */
1508 		if (is_m29ew(cfi)) {
1509 			base = chip->start;
1510 
1511 			/* check whether secsi area is factory locked
1512 			   or user lockable */
1513 			mutex_lock(&chip->mutex);
1514 			ret = get_chip(map, chip, base, FL_CFI_QUERY);
1515 			if (ret) {
1516 				mutex_unlock(&chip->mutex);
1517 				return ret;
1518 			}
1519 			cfi_qry_mode_on(base, map, cfi);
1520 			otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1521 			cfi_qry_mode_off(base, map, cfi);
1522 			put_chip(map, chip, base);
1523 			mutex_unlock(&chip->mutex);
1524 
1525 			if (otp & 0x80) {
1526 				/* factory locked */
1527 				factory_offset = 0;
1528 				factory_size = 0x100;
1529 			} else {
1530 				/* customer lockable */
1531 				user_offset = 0;
1532 				user_size = 0x100;
1533 
1534 				mutex_lock(&chip->mutex);
1535 				ret = get_chip(map, chip, base, FL_LOCKING);
1536 				if (ret) {
1537 					mutex_unlock(&chip->mutex);
1538 					return ret;
1539 				}
1540 
1541 				/* Enter lock register command */
1542 				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1543 						 chip->start, map, cfi,
1544 						 cfi->device_type, NULL);
1545 				cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1546 						 chip->start, map, cfi,
1547 						 cfi->device_type, NULL);
1548 				cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1549 						 chip->start, map, cfi,
1550 						 cfi->device_type, NULL);
1551 				/* read lock register */
1552 				lockreg = cfi_read_query(map, 0);
1553 				/* exit protection commands */
1554 				map_write(map, CMD(0x90), chip->start);
1555 				map_write(map, CMD(0x00), chip->start);
1556 				put_chip(map, chip, chip->start);
1557 				mutex_unlock(&chip->mutex);
1558 
1559 				user_locked = ((lockreg & 0x01) == 0x00);
1560 			}
1561 		}
1562 
1563 		otpsize = user_regs ? user_size : factory_size;
1564 		if (!otpsize)
1565 			continue;
1566 		otpoffset = user_regs ? user_offset : factory_offset;
1567 		otplocked = user_regs ? user_locked : 1;
1568 
1569 		if (!action) {
1570 			/* return otpinfo */
1571 			struct otp_info *otpinfo;
1572 			len -= sizeof(*otpinfo);
1573 			if (len <= 0)
1574 				return -ENOSPC;
1575 			otpinfo = (struct otp_info *)buf;
1576 			otpinfo->start = from;
1577 			otpinfo->length = otpsize;
1578 			otpinfo->locked = otplocked;
1579 			buf += sizeof(*otpinfo);
1580 			*retlen += sizeof(*otpinfo);
1581 			from += otpsize;
1582 		} else if ((from < otpsize) && (len > 0)) {
1583 			size_t size;
1584 			size = (len < otpsize - from) ? len : otpsize - from;
1585 			ret = action(map, chip, otpoffset + from, size, buf,
1586 				     otpsize);
1587 			if (ret < 0)
1588 				return ret;
1589 
1590 			buf += size;
1591 			len -= size;
1592 			*retlen += size;
1593 			from = 0;
1594 		} else {
1595 			from -= otpsize;
1596 		}
1597 	}
1598 	return 0;
1599 }
1600 
1601 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1602 					 size_t *retlen, struct otp_info *buf)
1603 {
1604 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1605 				   NULL, 0);
1606 }
1607 
1608 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1609 					 size_t *retlen, struct otp_info *buf)
1610 {
1611 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1612 				   NULL, 1);
1613 }
1614 
1615 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1616 					 size_t len, size_t *retlen,
1617 					 u_char *buf)
1618 {
1619 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1620 				   buf, do_read_secsi_onechip, 0);
1621 }
1622 
1623 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1624 					 size_t len, size_t *retlen,
1625 					 u_char *buf)
1626 {
1627 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1628 				   buf, do_read_secsi_onechip, 1);
1629 }
1630 
1631 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1632 					  size_t len, size_t *retlen,
1633 					  u_char *buf)
1634 {
1635 	return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1636 				   do_otp_write, 1);
1637 }
1638 
1639 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1640 					 size_t len)
1641 {
1642 	size_t retlen;
1643 	return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1644 				   do_otp_lock, 1);
1645 }
1646 
1647 static int __xipram do_write_oneword_once(struct map_info *map,
1648 					  struct flchip *chip,
1649 					  unsigned long adr, map_word datum,
1650 					  int mode, struct cfi_private *cfi)
1651 {
1652 	unsigned long timeo = jiffies + HZ;
1653 	/*
1654 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1655 	 * have a max write time of a few hundreds usec). However, we should
1656 	 * use the maximum timeout value given by the chip at probe time
1657 	 * instead.  Unfortunately, struct flchip does have a field for
1658 	 * maximum timeout, only for typical which can be far too short
1659 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1660 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1661 	 */
1662 	unsigned long uWriteTimeout = (HZ / 1000) + 1;
1663 	int ret = 0;
1664 
1665 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1666 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1667 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1668 	map_write(map, datum, adr);
1669 	chip->state = mode;
1670 
1671 	INVALIDATE_CACHE_UDELAY(map, chip,
1672 				adr, map_bankwidth(map),
1673 				chip->word_write_time);
1674 
1675 	/* See comment above for timeout value. */
1676 	timeo = jiffies + uWriteTimeout;
1677 	for (;;) {
1678 		if (chip->state != mode) {
1679 			/* Someone's suspended the write. Sleep */
1680 			DECLARE_WAITQUEUE(wait, current);
1681 
1682 			set_current_state(TASK_UNINTERRUPTIBLE);
1683 			add_wait_queue(&chip->wq, &wait);
1684 			mutex_unlock(&chip->mutex);
1685 			schedule();
1686 			remove_wait_queue(&chip->wq, &wait);
1687 			timeo = jiffies + (HZ / 2); /* FIXME */
1688 			mutex_lock(&chip->mutex);
1689 			continue;
1690 		}
1691 
1692 		/*
1693 		 * We check "time_after" and "!chip_good" before checking
1694 		 * "chip_good" to avoid the failure due to scheduling.
1695 		 */
1696 		if (time_after(jiffies, timeo) &&
1697 		    !chip_good(map, chip, adr, datum)) {
1698 			xip_enable(map, chip, adr);
1699 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1700 			xip_disable(map, chip, adr);
1701 			ret = -EIO;
1702 			break;
1703 		}
1704 
1705 		if (chip_good(map, chip, adr, datum)) {
1706 			if (cfi_check_err_status(map, chip, adr))
1707 				ret = -EIO;
1708 			break;
1709 		}
1710 
1711 		/* Latency issues. Drop the lock, wait a while and retry */
1712 		UDELAY(map, chip, adr, 1);
1713 	}
1714 
1715 	return ret;
1716 }
1717 
1718 static int __xipram do_write_oneword_start(struct map_info *map,
1719 					   struct flchip *chip,
1720 					   unsigned long adr, int mode)
1721 {
1722 	int ret;
1723 
1724 	mutex_lock(&chip->mutex);
1725 
1726 	ret = get_chip(map, chip, adr, mode);
1727 	if (ret) {
1728 		mutex_unlock(&chip->mutex);
1729 		return ret;
1730 	}
1731 
1732 	if (mode == FL_OTP_WRITE)
1733 		otp_enter(map, chip, adr, map_bankwidth(map));
1734 
1735 	return ret;
1736 }
1737 
1738 static void __xipram do_write_oneword_done(struct map_info *map,
1739 					   struct flchip *chip,
1740 					   unsigned long adr, int mode)
1741 {
1742 	if (mode == FL_OTP_WRITE)
1743 		otp_exit(map, chip, adr, map_bankwidth(map));
1744 
1745 	chip->state = FL_READY;
1746 	DISABLE_VPP(map);
1747 	put_chip(map, chip, adr);
1748 
1749 	mutex_unlock(&chip->mutex);
1750 }
1751 
1752 static int __xipram do_write_oneword_retry(struct map_info *map,
1753 					   struct flchip *chip,
1754 					   unsigned long adr, map_word datum,
1755 					   int mode)
1756 {
1757 	struct cfi_private *cfi = map->fldrv_priv;
1758 	int ret = 0;
1759 	map_word oldd;
1760 	int retry_cnt = 0;
1761 
1762 	/*
1763 	 * Check for a NOP for the case when the datum to write is already
1764 	 * present - it saves time and works around buggy chips that corrupt
1765 	 * data at other locations when 0xff is written to a location that
1766 	 * already contains 0xff.
1767 	 */
1768 	oldd = map_read(map, adr);
1769 	if (map_word_equal(map, oldd, datum)) {
1770 		pr_debug("MTD %s(): NOP\n", __func__);
1771 		return ret;
1772 	}
1773 
1774 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1775 	ENABLE_VPP(map);
1776 	xip_disable(map, chip, adr);
1777 
1778  retry:
1779 	ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
1780 	if (ret) {
1781 		/* reset on all failures. */
1782 		map_write(map, CMD(0xF0), chip->start);
1783 		/* FIXME - should have reset delay before continuing */
1784 
1785 		if (++retry_cnt <= MAX_RETRIES) {
1786 			ret = 0;
1787 			goto retry;
1788 		}
1789 	}
1790 	xip_enable(map, chip, adr);
1791 
1792 	return ret;
1793 }
1794 
1795 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1796 				     unsigned long adr, map_word datum,
1797 				     int mode)
1798 {
1799 	int ret;
1800 
1801 	adr += chip->start;
1802 
1803 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
1804 		 datum.x[0]);
1805 
1806 	ret = do_write_oneword_start(map, chip, adr, mode);
1807 	if (ret)
1808 		return ret;
1809 
1810 	ret = do_write_oneword_retry(map, chip, adr, datum, mode);
1811 
1812 	do_write_oneword_done(map, chip, adr, mode);
1813 
1814 	return ret;
1815 }
1816 
1817 
1818 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1819 				  size_t *retlen, const u_char *buf)
1820 {
1821 	struct map_info *map = mtd->priv;
1822 	struct cfi_private *cfi = map->fldrv_priv;
1823 	int ret;
1824 	int chipnum;
1825 	unsigned long ofs, chipstart;
1826 	DECLARE_WAITQUEUE(wait, current);
1827 
1828 	chipnum = to >> cfi->chipshift;
1829 	ofs = to  - (chipnum << cfi->chipshift);
1830 	chipstart = cfi->chips[chipnum].start;
1831 
1832 	/* If it's not bus-aligned, do the first byte write */
1833 	if (ofs & (map_bankwidth(map)-1)) {
1834 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1835 		int i = ofs - bus_ofs;
1836 		int n = 0;
1837 		map_word tmp_buf;
1838 
1839  retry:
1840 		mutex_lock(&cfi->chips[chipnum].mutex);
1841 
1842 		if (cfi->chips[chipnum].state != FL_READY) {
1843 			set_current_state(TASK_UNINTERRUPTIBLE);
1844 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1845 
1846 			mutex_unlock(&cfi->chips[chipnum].mutex);
1847 
1848 			schedule();
1849 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1850 			goto retry;
1851 		}
1852 
1853 		/* Load 'tmp_buf' with old contents of flash */
1854 		tmp_buf = map_read(map, bus_ofs+chipstart);
1855 
1856 		mutex_unlock(&cfi->chips[chipnum].mutex);
1857 
1858 		/* Number of bytes to copy from buffer */
1859 		n = min_t(int, len, map_bankwidth(map)-i);
1860 
1861 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1862 
1863 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1864 				       bus_ofs, tmp_buf, FL_WRITING);
1865 		if (ret)
1866 			return ret;
1867 
1868 		ofs += n;
1869 		buf += n;
1870 		(*retlen) += n;
1871 		len -= n;
1872 
1873 		if (ofs >> cfi->chipshift) {
1874 			chipnum ++;
1875 			ofs = 0;
1876 			if (chipnum == cfi->numchips)
1877 				return 0;
1878 		}
1879 	}
1880 
1881 	/* We are now aligned, write as much as possible */
1882 	while(len >= map_bankwidth(map)) {
1883 		map_word datum;
1884 
1885 		datum = map_word_load(map, buf);
1886 
1887 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1888 				       ofs, datum, FL_WRITING);
1889 		if (ret)
1890 			return ret;
1891 
1892 		ofs += map_bankwidth(map);
1893 		buf += map_bankwidth(map);
1894 		(*retlen) += map_bankwidth(map);
1895 		len -= map_bankwidth(map);
1896 
1897 		if (ofs >> cfi->chipshift) {
1898 			chipnum ++;
1899 			ofs = 0;
1900 			if (chipnum == cfi->numchips)
1901 				return 0;
1902 			chipstart = cfi->chips[chipnum].start;
1903 		}
1904 	}
1905 
1906 	/* Write the trailing bytes if any */
1907 	if (len & (map_bankwidth(map)-1)) {
1908 		map_word tmp_buf;
1909 
1910  retry1:
1911 		mutex_lock(&cfi->chips[chipnum].mutex);
1912 
1913 		if (cfi->chips[chipnum].state != FL_READY) {
1914 			set_current_state(TASK_UNINTERRUPTIBLE);
1915 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1916 
1917 			mutex_unlock(&cfi->chips[chipnum].mutex);
1918 
1919 			schedule();
1920 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1921 			goto retry1;
1922 		}
1923 
1924 		tmp_buf = map_read(map, ofs + chipstart);
1925 
1926 		mutex_unlock(&cfi->chips[chipnum].mutex);
1927 
1928 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1929 
1930 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1931 				       ofs, tmp_buf, FL_WRITING);
1932 		if (ret)
1933 			return ret;
1934 
1935 		(*retlen) += len;
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 #if !FORCE_WORD_WRITE
1942 static int __xipram do_write_buffer_wait(struct map_info *map,
1943 					 struct flchip *chip, unsigned long adr,
1944 					 map_word datum)
1945 {
1946 	unsigned long timeo;
1947 	unsigned long u_write_timeout;
1948 	int ret = 0;
1949 
1950 	/*
1951 	 * Timeout is calculated according to CFI data, if available.
1952 	 * See more comments in cfi_cmdset_0002().
1953 	 */
1954 	u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
1955 	timeo = jiffies + u_write_timeout;
1956 
1957 	for (;;) {
1958 		if (chip->state != FL_WRITING) {
1959 			/* Someone's suspended the write. Sleep */
1960 			DECLARE_WAITQUEUE(wait, current);
1961 
1962 			set_current_state(TASK_UNINTERRUPTIBLE);
1963 			add_wait_queue(&chip->wq, &wait);
1964 			mutex_unlock(&chip->mutex);
1965 			schedule();
1966 			remove_wait_queue(&chip->wq, &wait);
1967 			timeo = jiffies + (HZ / 2); /* FIXME */
1968 			mutex_lock(&chip->mutex);
1969 			continue;
1970 		}
1971 
1972 		/*
1973 		 * We check "time_after" and "!chip_good" before checking
1974 		 * "chip_good" to avoid the failure due to scheduling.
1975 		 */
1976 		if (time_after(jiffies, timeo) &&
1977 		    !chip_good(map, chip, adr, datum)) {
1978 			pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
1979 			       __func__, adr);
1980 			ret = -EIO;
1981 			break;
1982 		}
1983 
1984 		if (chip_good(map, chip, adr, datum)) {
1985 			if (cfi_check_err_status(map, chip, adr))
1986 				ret = -EIO;
1987 			break;
1988 		}
1989 
1990 		/* Latency issues. Drop the lock, wait a while and retry */
1991 		UDELAY(map, chip, adr, 1);
1992 	}
1993 
1994 	return ret;
1995 }
1996 
1997 static void __xipram do_write_buffer_reset(struct map_info *map,
1998 					   struct flchip *chip,
1999 					   struct cfi_private *cfi)
2000 {
2001 	/*
2002 	 * Recovery from write-buffer programming failures requires
2003 	 * the write-to-buffer-reset sequence.  Since the last part
2004 	 * of the sequence also works as a normal reset, we can run
2005 	 * the same commands regardless of why we are here.
2006 	 * See e.g.
2007 	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
2008 	 */
2009 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2010 			 cfi->device_type, NULL);
2011 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2012 			 cfi->device_type, NULL);
2013 	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
2014 			 cfi->device_type, NULL);
2015 
2016 	/* FIXME - should have reset delay before continuing */
2017 }
2018 
2019 /*
2020  * FIXME: interleaved mode not tested, and probably not supported!
2021  */
2022 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
2023 				    unsigned long adr, const u_char *buf,
2024 				    int len)
2025 {
2026 	struct cfi_private *cfi = map->fldrv_priv;
2027 	int ret;
2028 	unsigned long cmd_adr;
2029 	int z, words;
2030 	map_word datum;
2031 
2032 	adr += chip->start;
2033 	cmd_adr = adr;
2034 
2035 	mutex_lock(&chip->mutex);
2036 	ret = get_chip(map, chip, adr, FL_WRITING);
2037 	if (ret) {
2038 		mutex_unlock(&chip->mutex);
2039 		return ret;
2040 	}
2041 
2042 	datum = map_word_load(map, buf);
2043 
2044 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2045 		 __func__, adr, datum.x[0]);
2046 
2047 	XIP_INVAL_CACHED_RANGE(map, adr, len);
2048 	ENABLE_VPP(map);
2049 	xip_disable(map, chip, cmd_adr);
2050 
2051 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2052 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2053 
2054 	/* Write Buffer Load */
2055 	map_write(map, CMD(0x25), cmd_adr);
2056 
2057 	chip->state = FL_WRITING_TO_BUFFER;
2058 
2059 	/* Write length of data to come */
2060 	words = len / map_bankwidth(map);
2061 	map_write(map, CMD(words - 1), cmd_adr);
2062 	/* Write data */
2063 	z = 0;
2064 	while(z < words * map_bankwidth(map)) {
2065 		datum = map_word_load(map, buf);
2066 		map_write(map, datum, adr + z);
2067 
2068 		z += map_bankwidth(map);
2069 		buf += map_bankwidth(map);
2070 	}
2071 	z -= map_bankwidth(map);
2072 
2073 	adr += z;
2074 
2075 	/* Write Buffer Program Confirm: GO GO GO */
2076 	map_write(map, CMD(0x29), cmd_adr);
2077 	chip->state = FL_WRITING;
2078 
2079 	INVALIDATE_CACHE_UDELAY(map, chip,
2080 				adr, map_bankwidth(map),
2081 				chip->word_write_time);
2082 
2083 	ret = do_write_buffer_wait(map, chip, adr, datum);
2084 	if (ret)
2085 		do_write_buffer_reset(map, chip, cfi);
2086 
2087 	xip_enable(map, chip, adr);
2088 
2089 	chip->state = FL_READY;
2090 	DISABLE_VPP(map);
2091 	put_chip(map, chip, adr);
2092 	mutex_unlock(&chip->mutex);
2093 
2094 	return ret;
2095 }
2096 
2097 
2098 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
2099 				    size_t *retlen, const u_char *buf)
2100 {
2101 	struct map_info *map = mtd->priv;
2102 	struct cfi_private *cfi = map->fldrv_priv;
2103 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
2104 	int ret;
2105 	int chipnum;
2106 	unsigned long ofs;
2107 
2108 	chipnum = to >> cfi->chipshift;
2109 	ofs = to  - (chipnum << cfi->chipshift);
2110 
2111 	/* If it's not bus-aligned, do the first word write */
2112 	if (ofs & (map_bankwidth(map)-1)) {
2113 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
2114 		if (local_len > len)
2115 			local_len = len;
2116 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2117 					     local_len, retlen, buf);
2118 		if (ret)
2119 			return ret;
2120 		ofs += local_len;
2121 		buf += local_len;
2122 		len -= local_len;
2123 
2124 		if (ofs >> cfi->chipshift) {
2125 			chipnum ++;
2126 			ofs = 0;
2127 			if (chipnum == cfi->numchips)
2128 				return 0;
2129 		}
2130 	}
2131 
2132 	/* Write buffer is worth it only if more than one word to write... */
2133 	while (len >= map_bankwidth(map) * 2) {
2134 		/* We must not cross write block boundaries */
2135 		int size = wbufsize - (ofs & (wbufsize-1));
2136 
2137 		if (size > len)
2138 			size = len;
2139 		if (size % map_bankwidth(map))
2140 			size -= size % map_bankwidth(map);
2141 
2142 		ret = do_write_buffer(map, &cfi->chips[chipnum],
2143 				      ofs, buf, size);
2144 		if (ret)
2145 			return ret;
2146 
2147 		ofs += size;
2148 		buf += size;
2149 		(*retlen) += size;
2150 		len -= size;
2151 
2152 		if (ofs >> cfi->chipshift) {
2153 			chipnum ++;
2154 			ofs = 0;
2155 			if (chipnum == cfi->numchips)
2156 				return 0;
2157 		}
2158 	}
2159 
2160 	if (len) {
2161 		size_t retlen_dregs = 0;
2162 
2163 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2164 					     len, &retlen_dregs, buf);
2165 
2166 		*retlen += retlen_dregs;
2167 		return ret;
2168 	}
2169 
2170 	return 0;
2171 }
2172 #endif /* !FORCE_WORD_WRITE */
2173 
2174 /*
2175  * Wait for the flash chip to become ready to write data
2176  *
2177  * This is only called during the panic_write() path. When panic_write()
2178  * is called, the kernel is in the process of a panic, and will soon be
2179  * dead. Therefore we don't take any locks, and attempt to get access
2180  * to the chip as soon as possible.
2181  */
2182 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2183 				 unsigned long adr)
2184 {
2185 	struct cfi_private *cfi = map->fldrv_priv;
2186 	int retries = 10;
2187 	int i;
2188 
2189 	/*
2190 	 * If the driver thinks the chip is idle, and no toggle bits
2191 	 * are changing, then the chip is actually idle for sure.
2192 	 */
2193 	if (chip->state == FL_READY && chip_ready(map, chip, adr))
2194 		return 0;
2195 
2196 	/*
2197 	 * Try several times to reset the chip and then wait for it
2198 	 * to become idle. The upper limit of a few milliseconds of
2199 	 * delay isn't a big problem: the kernel is dying anyway. It
2200 	 * is more important to save the messages.
2201 	 */
2202 	while (retries > 0) {
2203 		const unsigned long timeo = (HZ / 1000) + 1;
2204 
2205 		/* send the reset command */
2206 		map_write(map, CMD(0xF0), chip->start);
2207 
2208 		/* wait for the chip to become ready */
2209 		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2210 			if (chip_ready(map, chip, adr))
2211 				return 0;
2212 
2213 			udelay(1);
2214 		}
2215 
2216 		retries--;
2217 	}
2218 
2219 	/* the chip never became ready */
2220 	return -EBUSY;
2221 }
2222 
2223 /*
2224  * Write out one word of data to a single flash chip during a kernel panic
2225  *
2226  * This is only called during the panic_write() path. When panic_write()
2227  * is called, the kernel is in the process of a panic, and will soon be
2228  * dead. Therefore we don't take any locks, and attempt to get access
2229  * to the chip as soon as possible.
2230  *
2231  * The implementation of this routine is intentionally similar to
2232  * do_write_oneword(), in order to ease code maintenance.
2233  */
2234 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2235 				  unsigned long adr, map_word datum)
2236 {
2237 	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2238 	struct cfi_private *cfi = map->fldrv_priv;
2239 	int retry_cnt = 0;
2240 	map_word oldd;
2241 	int ret;
2242 	int i;
2243 
2244 	adr += chip->start;
2245 
2246 	ret = cfi_amdstd_panic_wait(map, chip, adr);
2247 	if (ret)
2248 		return ret;
2249 
2250 	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2251 			__func__, adr, datum.x[0]);
2252 
2253 	/*
2254 	 * Check for a NOP for the case when the datum to write is already
2255 	 * present - it saves time and works around buggy chips that corrupt
2256 	 * data at other locations when 0xff is written to a location that
2257 	 * already contains 0xff.
2258 	 */
2259 	oldd = map_read(map, adr);
2260 	if (map_word_equal(map, oldd, datum)) {
2261 		pr_debug("MTD %s(): NOP\n", __func__);
2262 		goto op_done;
2263 	}
2264 
2265 	ENABLE_VPP(map);
2266 
2267 retry:
2268 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2269 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2270 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2271 	map_write(map, datum, adr);
2272 
2273 	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2274 		if (chip_ready(map, chip, adr))
2275 			break;
2276 
2277 		udelay(1);
2278 	}
2279 
2280 	if (!chip_good(map, chip, adr, datum) ||
2281 	    cfi_check_err_status(map, chip, adr)) {
2282 		/* reset on all failures. */
2283 		map_write(map, CMD(0xF0), chip->start);
2284 		/* FIXME - should have reset delay before continuing */
2285 
2286 		if (++retry_cnt <= MAX_RETRIES)
2287 			goto retry;
2288 
2289 		ret = -EIO;
2290 	}
2291 
2292 op_done:
2293 	DISABLE_VPP(map);
2294 	return ret;
2295 }
2296 
2297 /*
2298  * Write out some data during a kernel panic
2299  *
2300  * This is used by the mtdoops driver to save the dying messages from a
2301  * kernel which has panic'd.
2302  *
2303  * This routine ignores all of the locking used throughout the rest of the
2304  * driver, in order to ensure that the data gets written out no matter what
2305  * state this driver (and the flash chip itself) was in when the kernel crashed.
2306  *
2307  * The implementation of this routine is intentionally similar to
2308  * cfi_amdstd_write_words(), in order to ease code maintenance.
2309  */
2310 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2311 				  size_t *retlen, const u_char *buf)
2312 {
2313 	struct map_info *map = mtd->priv;
2314 	struct cfi_private *cfi = map->fldrv_priv;
2315 	unsigned long ofs, chipstart;
2316 	int ret;
2317 	int chipnum;
2318 
2319 	chipnum = to >> cfi->chipshift;
2320 	ofs = to - (chipnum << cfi->chipshift);
2321 	chipstart = cfi->chips[chipnum].start;
2322 
2323 	/* If it's not bus aligned, do the first byte write */
2324 	if (ofs & (map_bankwidth(map) - 1)) {
2325 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2326 		int i = ofs - bus_ofs;
2327 		int n = 0;
2328 		map_word tmp_buf;
2329 
2330 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2331 		if (ret)
2332 			return ret;
2333 
2334 		/* Load 'tmp_buf' with old contents of flash */
2335 		tmp_buf = map_read(map, bus_ofs + chipstart);
2336 
2337 		/* Number of bytes to copy from buffer */
2338 		n = min_t(int, len, map_bankwidth(map) - i);
2339 
2340 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2341 
2342 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2343 					     bus_ofs, tmp_buf);
2344 		if (ret)
2345 			return ret;
2346 
2347 		ofs += n;
2348 		buf += n;
2349 		(*retlen) += n;
2350 		len -= n;
2351 
2352 		if (ofs >> cfi->chipshift) {
2353 			chipnum++;
2354 			ofs = 0;
2355 			if (chipnum == cfi->numchips)
2356 				return 0;
2357 		}
2358 	}
2359 
2360 	/* We are now aligned, write as much as possible */
2361 	while (len >= map_bankwidth(map)) {
2362 		map_word datum;
2363 
2364 		datum = map_word_load(map, buf);
2365 
2366 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2367 					     ofs, datum);
2368 		if (ret)
2369 			return ret;
2370 
2371 		ofs += map_bankwidth(map);
2372 		buf += map_bankwidth(map);
2373 		(*retlen) += map_bankwidth(map);
2374 		len -= map_bankwidth(map);
2375 
2376 		if (ofs >> cfi->chipshift) {
2377 			chipnum++;
2378 			ofs = 0;
2379 			if (chipnum == cfi->numchips)
2380 				return 0;
2381 
2382 			chipstart = cfi->chips[chipnum].start;
2383 		}
2384 	}
2385 
2386 	/* Write the trailing bytes if any */
2387 	if (len & (map_bankwidth(map) - 1)) {
2388 		map_word tmp_buf;
2389 
2390 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2391 		if (ret)
2392 			return ret;
2393 
2394 		tmp_buf = map_read(map, ofs + chipstart);
2395 
2396 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2397 
2398 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2399 					     ofs, tmp_buf);
2400 		if (ret)
2401 			return ret;
2402 
2403 		(*retlen) += len;
2404 	}
2405 
2406 	return 0;
2407 }
2408 
2409 
2410 /*
2411  * Handle devices with one erase region, that only implement
2412  * the chip erase command.
2413  */
2414 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2415 {
2416 	struct cfi_private *cfi = map->fldrv_priv;
2417 	unsigned long timeo = jiffies + HZ;
2418 	unsigned long int adr;
2419 	DECLARE_WAITQUEUE(wait, current);
2420 	int ret;
2421 	int retry_cnt = 0;
2422 
2423 	adr = cfi->addr_unlock1;
2424 
2425 	mutex_lock(&chip->mutex);
2426 	ret = get_chip(map, chip, adr, FL_ERASING);
2427 	if (ret) {
2428 		mutex_unlock(&chip->mutex);
2429 		return ret;
2430 	}
2431 
2432 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2433 	       __func__, chip->start);
2434 
2435 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2436 	ENABLE_VPP(map);
2437 	xip_disable(map, chip, adr);
2438 
2439  retry:
2440 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2441 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2442 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2443 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2444 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2445 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2446 
2447 	chip->state = FL_ERASING;
2448 	chip->erase_suspended = 0;
2449 	chip->in_progress_block_addr = adr;
2450 	chip->in_progress_block_mask = ~(map->size - 1);
2451 
2452 	INVALIDATE_CACHE_UDELAY(map, chip,
2453 				adr, map->size,
2454 				chip->erase_time*500);
2455 
2456 	timeo = jiffies + (HZ*20);
2457 
2458 	for (;;) {
2459 		if (chip->state != FL_ERASING) {
2460 			/* Someone's suspended the erase. Sleep */
2461 			set_current_state(TASK_UNINTERRUPTIBLE);
2462 			add_wait_queue(&chip->wq, &wait);
2463 			mutex_unlock(&chip->mutex);
2464 			schedule();
2465 			remove_wait_queue(&chip->wq, &wait);
2466 			mutex_lock(&chip->mutex);
2467 			continue;
2468 		}
2469 		if (chip->erase_suspended) {
2470 			/* This erase was suspended and resumed.
2471 			   Adjust the timeout */
2472 			timeo = jiffies + (HZ*20); /* FIXME */
2473 			chip->erase_suspended = 0;
2474 		}
2475 
2476 		if (chip_good(map, chip, adr, map_word_ff(map))) {
2477 			if (cfi_check_err_status(map, chip, adr))
2478 				ret = -EIO;
2479 			break;
2480 		}
2481 
2482 		if (time_after(jiffies, timeo)) {
2483 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2484 			       __func__);
2485 			ret = -EIO;
2486 			break;
2487 		}
2488 
2489 		/* Latency issues. Drop the lock, wait a while and retry */
2490 		UDELAY(map, chip, adr, 1000000/HZ);
2491 	}
2492 	/* Did we succeed? */
2493 	if (ret) {
2494 		/* reset on all failures. */
2495 		map_write(map, CMD(0xF0), chip->start);
2496 		/* FIXME - should have reset delay before continuing */
2497 
2498 		if (++retry_cnt <= MAX_RETRIES) {
2499 			ret = 0;
2500 			goto retry;
2501 		}
2502 	}
2503 
2504 	chip->state = FL_READY;
2505 	xip_enable(map, chip, adr);
2506 	DISABLE_VPP(map);
2507 	put_chip(map, chip, adr);
2508 	mutex_unlock(&chip->mutex);
2509 
2510 	return ret;
2511 }
2512 
2513 
2514 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2515 {
2516 	struct cfi_private *cfi = map->fldrv_priv;
2517 	unsigned long timeo = jiffies + HZ;
2518 	DECLARE_WAITQUEUE(wait, current);
2519 	int ret;
2520 	int retry_cnt = 0;
2521 
2522 	adr += chip->start;
2523 
2524 	mutex_lock(&chip->mutex);
2525 	ret = get_chip(map, chip, adr, FL_ERASING);
2526 	if (ret) {
2527 		mutex_unlock(&chip->mutex);
2528 		return ret;
2529 	}
2530 
2531 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2532 		 __func__, adr);
2533 
2534 	XIP_INVAL_CACHED_RANGE(map, adr, len);
2535 	ENABLE_VPP(map);
2536 	xip_disable(map, chip, adr);
2537 
2538  retry:
2539 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2540 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2541 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2542 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2543 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2544 	map_write(map, cfi->sector_erase_cmd, adr);
2545 
2546 	chip->state = FL_ERASING;
2547 	chip->erase_suspended = 0;
2548 	chip->in_progress_block_addr = adr;
2549 	chip->in_progress_block_mask = ~(len - 1);
2550 
2551 	INVALIDATE_CACHE_UDELAY(map, chip,
2552 				adr, len,
2553 				chip->erase_time*500);
2554 
2555 	timeo = jiffies + (HZ*20);
2556 
2557 	for (;;) {
2558 		if (chip->state != FL_ERASING) {
2559 			/* Someone's suspended the erase. Sleep */
2560 			set_current_state(TASK_UNINTERRUPTIBLE);
2561 			add_wait_queue(&chip->wq, &wait);
2562 			mutex_unlock(&chip->mutex);
2563 			schedule();
2564 			remove_wait_queue(&chip->wq, &wait);
2565 			mutex_lock(&chip->mutex);
2566 			continue;
2567 		}
2568 		if (chip->erase_suspended) {
2569 			/* This erase was suspended and resumed.
2570 			   Adjust the timeout */
2571 			timeo = jiffies + (HZ*20); /* FIXME */
2572 			chip->erase_suspended = 0;
2573 		}
2574 
2575 		if (chip_good(map, chip, adr, map_word_ff(map))) {
2576 			if (cfi_check_err_status(map, chip, adr))
2577 				ret = -EIO;
2578 			break;
2579 		}
2580 
2581 		if (time_after(jiffies, timeo)) {
2582 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2583 			       __func__);
2584 			ret = -EIO;
2585 			break;
2586 		}
2587 
2588 		/* Latency issues. Drop the lock, wait a while and retry */
2589 		UDELAY(map, chip, adr, 1000000/HZ);
2590 	}
2591 	/* Did we succeed? */
2592 	if (ret) {
2593 		/* reset on all failures. */
2594 		map_write(map, CMD(0xF0), chip->start);
2595 		/* FIXME - should have reset delay before continuing */
2596 
2597 		if (++retry_cnt <= MAX_RETRIES) {
2598 			ret = 0;
2599 			goto retry;
2600 		}
2601 	}
2602 
2603 	chip->state = FL_READY;
2604 	xip_enable(map, chip, adr);
2605 	DISABLE_VPP(map);
2606 	put_chip(map, chip, adr);
2607 	mutex_unlock(&chip->mutex);
2608 	return ret;
2609 }
2610 
2611 
2612 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2613 {
2614 	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2615 				instr->len, NULL);
2616 }
2617 
2618 
2619 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2620 {
2621 	struct map_info *map = mtd->priv;
2622 	struct cfi_private *cfi = map->fldrv_priv;
2623 
2624 	if (instr->addr != 0)
2625 		return -EINVAL;
2626 
2627 	if (instr->len != mtd->size)
2628 		return -EINVAL;
2629 
2630 	return do_erase_chip(map, &cfi->chips[0]);
2631 }
2632 
2633 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2634 			 unsigned long adr, int len, void *thunk)
2635 {
2636 	struct cfi_private *cfi = map->fldrv_priv;
2637 	int ret;
2638 
2639 	mutex_lock(&chip->mutex);
2640 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2641 	if (ret)
2642 		goto out_unlock;
2643 	chip->state = FL_LOCKING;
2644 
2645 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2646 
2647 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2648 			 cfi->device_type, NULL);
2649 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2650 			 cfi->device_type, NULL);
2651 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2652 			 cfi->device_type, NULL);
2653 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2654 			 cfi->device_type, NULL);
2655 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2656 			 cfi->device_type, NULL);
2657 	map_write(map, CMD(0x40), chip->start + adr);
2658 
2659 	chip->state = FL_READY;
2660 	put_chip(map, chip, adr + chip->start);
2661 	ret = 0;
2662 
2663 out_unlock:
2664 	mutex_unlock(&chip->mutex);
2665 	return ret;
2666 }
2667 
2668 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2669 			   unsigned long adr, int len, void *thunk)
2670 {
2671 	struct cfi_private *cfi = map->fldrv_priv;
2672 	int ret;
2673 
2674 	mutex_lock(&chip->mutex);
2675 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2676 	if (ret)
2677 		goto out_unlock;
2678 	chip->state = FL_UNLOCKING;
2679 
2680 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2681 
2682 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2683 			 cfi->device_type, NULL);
2684 	map_write(map, CMD(0x70), adr);
2685 
2686 	chip->state = FL_READY;
2687 	put_chip(map, chip, adr + chip->start);
2688 	ret = 0;
2689 
2690 out_unlock:
2691 	mutex_unlock(&chip->mutex);
2692 	return ret;
2693 }
2694 
2695 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2696 {
2697 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2698 }
2699 
2700 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2701 {
2702 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2703 }
2704 
2705 /*
2706  * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2707  */
2708 
2709 struct ppb_lock {
2710 	struct flchip *chip;
2711 	unsigned long adr;
2712 	int locked;
2713 };
2714 
2715 #define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1)
2716 #define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2)
2717 #define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3)
2718 
2719 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2720 					struct flchip *chip,
2721 					unsigned long adr, int len, void *thunk)
2722 {
2723 	struct cfi_private *cfi = map->fldrv_priv;
2724 	unsigned long timeo;
2725 	int ret;
2726 
2727 	adr += chip->start;
2728 	mutex_lock(&chip->mutex);
2729 	ret = get_chip(map, chip, adr, FL_LOCKING);
2730 	if (ret) {
2731 		mutex_unlock(&chip->mutex);
2732 		return ret;
2733 	}
2734 
2735 	pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2736 
2737 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2738 			 cfi->device_type, NULL);
2739 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2740 			 cfi->device_type, NULL);
2741 	/* PPB entry command */
2742 	cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2743 			 cfi->device_type, NULL);
2744 
2745 	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2746 		chip->state = FL_LOCKING;
2747 		map_write(map, CMD(0xA0), adr);
2748 		map_write(map, CMD(0x00), adr);
2749 	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2750 		/*
2751 		 * Unlocking of one specific sector is not supported, so we
2752 		 * have to unlock all sectors of this device instead
2753 		 */
2754 		chip->state = FL_UNLOCKING;
2755 		map_write(map, CMD(0x80), chip->start);
2756 		map_write(map, CMD(0x30), chip->start);
2757 	} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2758 		chip->state = FL_JEDEC_QUERY;
2759 		/* Return locked status: 0->locked, 1->unlocked */
2760 		ret = !cfi_read_query(map, adr);
2761 	} else
2762 		BUG();
2763 
2764 	/*
2765 	 * Wait for some time as unlocking of all sectors takes quite long
2766 	 */
2767 	timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */
2768 	for (;;) {
2769 		if (chip_ready(map, chip, adr))
2770 			break;
2771 
2772 		if (time_after(jiffies, timeo)) {
2773 			printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2774 			ret = -EIO;
2775 			break;
2776 		}
2777 
2778 		UDELAY(map, chip, adr, 1);
2779 	}
2780 
2781 	/* Exit BC commands */
2782 	map_write(map, CMD(0x90), chip->start);
2783 	map_write(map, CMD(0x00), chip->start);
2784 
2785 	chip->state = FL_READY;
2786 	put_chip(map, chip, adr);
2787 	mutex_unlock(&chip->mutex);
2788 
2789 	return ret;
2790 }
2791 
2792 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2793 				       uint64_t len)
2794 {
2795 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2796 				DO_XXLOCK_ONEBLOCK_LOCK);
2797 }
2798 
2799 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2800 					 uint64_t len)
2801 {
2802 	struct mtd_erase_region_info *regions = mtd->eraseregions;
2803 	struct map_info *map = mtd->priv;
2804 	struct cfi_private *cfi = map->fldrv_priv;
2805 	struct ppb_lock *sect;
2806 	unsigned long adr;
2807 	loff_t offset;
2808 	uint64_t length;
2809 	int chipnum;
2810 	int i;
2811 	int sectors;
2812 	int ret;
2813 	int max_sectors;
2814 
2815 	/*
2816 	 * PPB unlocking always unlocks all sectors of the flash chip.
2817 	 * We need to re-lock all previously locked sectors. So lets
2818 	 * first check the locking status of all sectors and save
2819 	 * it for future use.
2820 	 */
2821 	max_sectors = 0;
2822 	for (i = 0; i < mtd->numeraseregions; i++)
2823 		max_sectors += regions[i].numblocks;
2824 
2825 	sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2826 	if (!sect)
2827 		return -ENOMEM;
2828 
2829 	/*
2830 	 * This code to walk all sectors is a slightly modified version
2831 	 * of the cfi_varsize_frob() code.
2832 	 */
2833 	i = 0;
2834 	chipnum = 0;
2835 	adr = 0;
2836 	sectors = 0;
2837 	offset = 0;
2838 	length = mtd->size;
2839 
2840 	while (length) {
2841 		int size = regions[i].erasesize;
2842 
2843 		/*
2844 		 * Only test sectors that shall not be unlocked. The other
2845 		 * sectors shall be unlocked, so lets keep their locking
2846 		 * status at "unlocked" (locked=0) for the final re-locking.
2847 		 */
2848 		if ((offset < ofs) || (offset >= (ofs + len))) {
2849 			sect[sectors].chip = &cfi->chips[chipnum];
2850 			sect[sectors].adr = adr;
2851 			sect[sectors].locked = do_ppb_xxlock(
2852 				map, &cfi->chips[chipnum], adr, 0,
2853 				DO_XXLOCK_ONEBLOCK_GETLOCK);
2854 		}
2855 
2856 		adr += size;
2857 		offset += size;
2858 		length -= size;
2859 
2860 		if (offset == regions[i].offset + size * regions[i].numblocks)
2861 			i++;
2862 
2863 		if (adr >> cfi->chipshift) {
2864 			if (offset >= (ofs + len))
2865 				break;
2866 			adr = 0;
2867 			chipnum++;
2868 
2869 			if (chipnum >= cfi->numchips)
2870 				break;
2871 		}
2872 
2873 		sectors++;
2874 		if (sectors >= max_sectors) {
2875 			printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2876 			       max_sectors);
2877 			kfree(sect);
2878 			return -EINVAL;
2879 		}
2880 	}
2881 
2882 	/* Now unlock the whole chip */
2883 	ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2884 			       DO_XXLOCK_ONEBLOCK_UNLOCK);
2885 	if (ret) {
2886 		kfree(sect);
2887 		return ret;
2888 	}
2889 
2890 	/*
2891 	 * PPB unlocking always unlocks all sectors of the flash chip.
2892 	 * We need to re-lock all previously locked sectors.
2893 	 */
2894 	for (i = 0; i < sectors; i++) {
2895 		if (sect[i].locked)
2896 			do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2897 				      DO_XXLOCK_ONEBLOCK_LOCK);
2898 	}
2899 
2900 	kfree(sect);
2901 	return ret;
2902 }
2903 
2904 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2905 					    uint64_t len)
2906 {
2907 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2908 				DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2909 }
2910 
2911 static void cfi_amdstd_sync (struct mtd_info *mtd)
2912 {
2913 	struct map_info *map = mtd->priv;
2914 	struct cfi_private *cfi = map->fldrv_priv;
2915 	int i;
2916 	struct flchip *chip;
2917 	int ret = 0;
2918 	DECLARE_WAITQUEUE(wait, current);
2919 
2920 	for (i=0; !ret && i<cfi->numchips; i++) {
2921 		chip = &cfi->chips[i];
2922 
2923 	retry:
2924 		mutex_lock(&chip->mutex);
2925 
2926 		switch(chip->state) {
2927 		case FL_READY:
2928 		case FL_STATUS:
2929 		case FL_CFI_QUERY:
2930 		case FL_JEDEC_QUERY:
2931 			chip->oldstate = chip->state;
2932 			chip->state = FL_SYNCING;
2933 			/* No need to wake_up() on this state change -
2934 			 * as the whole point is that nobody can do anything
2935 			 * with the chip now anyway.
2936 			 */
2937 			fallthrough;
2938 		case FL_SYNCING:
2939 			mutex_unlock(&chip->mutex);
2940 			break;
2941 
2942 		default:
2943 			/* Not an idle state */
2944 			set_current_state(TASK_UNINTERRUPTIBLE);
2945 			add_wait_queue(&chip->wq, &wait);
2946 
2947 			mutex_unlock(&chip->mutex);
2948 
2949 			schedule();
2950 
2951 			remove_wait_queue(&chip->wq, &wait);
2952 
2953 			goto retry;
2954 		}
2955 	}
2956 
2957 	/* Unlock the chips again */
2958 
2959 	for (i--; i >=0; i--) {
2960 		chip = &cfi->chips[i];
2961 
2962 		mutex_lock(&chip->mutex);
2963 
2964 		if (chip->state == FL_SYNCING) {
2965 			chip->state = chip->oldstate;
2966 			wake_up(&chip->wq);
2967 		}
2968 		mutex_unlock(&chip->mutex);
2969 	}
2970 }
2971 
2972 
2973 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2974 {
2975 	struct map_info *map = mtd->priv;
2976 	struct cfi_private *cfi = map->fldrv_priv;
2977 	int i;
2978 	struct flchip *chip;
2979 	int ret = 0;
2980 
2981 	for (i=0; !ret && i<cfi->numchips; i++) {
2982 		chip = &cfi->chips[i];
2983 
2984 		mutex_lock(&chip->mutex);
2985 
2986 		switch(chip->state) {
2987 		case FL_READY:
2988 		case FL_STATUS:
2989 		case FL_CFI_QUERY:
2990 		case FL_JEDEC_QUERY:
2991 			chip->oldstate = chip->state;
2992 			chip->state = FL_PM_SUSPENDED;
2993 			/* No need to wake_up() on this state change -
2994 			 * as the whole point is that nobody can do anything
2995 			 * with the chip now anyway.
2996 			 */
2997 		case FL_PM_SUSPENDED:
2998 			break;
2999 
3000 		default:
3001 			ret = -EAGAIN;
3002 			break;
3003 		}
3004 		mutex_unlock(&chip->mutex);
3005 	}
3006 
3007 	/* Unlock the chips again */
3008 
3009 	if (ret) {
3010 		for (i--; i >=0; i--) {
3011 			chip = &cfi->chips[i];
3012 
3013 			mutex_lock(&chip->mutex);
3014 
3015 			if (chip->state == FL_PM_SUSPENDED) {
3016 				chip->state = chip->oldstate;
3017 				wake_up(&chip->wq);
3018 			}
3019 			mutex_unlock(&chip->mutex);
3020 		}
3021 	}
3022 
3023 	return ret;
3024 }
3025 
3026 
3027 static void cfi_amdstd_resume(struct mtd_info *mtd)
3028 {
3029 	struct map_info *map = mtd->priv;
3030 	struct cfi_private *cfi = map->fldrv_priv;
3031 	int i;
3032 	struct flchip *chip;
3033 
3034 	for (i=0; i<cfi->numchips; i++) {
3035 
3036 		chip = &cfi->chips[i];
3037 
3038 		mutex_lock(&chip->mutex);
3039 
3040 		if (chip->state == FL_PM_SUSPENDED) {
3041 			chip->state = FL_READY;
3042 			map_write(map, CMD(0xF0), chip->start);
3043 			wake_up(&chip->wq);
3044 		}
3045 		else
3046 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3047 
3048 		mutex_unlock(&chip->mutex);
3049 	}
3050 }
3051 
3052 
3053 /*
3054  * Ensure that the flash device is put back into read array mode before
3055  * unloading the driver or rebooting.  On some systems, rebooting while
3056  * the flash is in query/program/erase mode will prevent the CPU from
3057  * fetching the bootloader code, requiring a hard reset or power cycle.
3058  */
3059 static int cfi_amdstd_reset(struct mtd_info *mtd)
3060 {
3061 	struct map_info *map = mtd->priv;
3062 	struct cfi_private *cfi = map->fldrv_priv;
3063 	int i, ret;
3064 	struct flchip *chip;
3065 
3066 	for (i = 0; i < cfi->numchips; i++) {
3067 
3068 		chip = &cfi->chips[i];
3069 
3070 		mutex_lock(&chip->mutex);
3071 
3072 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
3073 		if (!ret) {
3074 			map_write(map, CMD(0xF0), chip->start);
3075 			chip->state = FL_SHUTDOWN;
3076 			put_chip(map, chip, chip->start);
3077 		}
3078 
3079 		mutex_unlock(&chip->mutex);
3080 	}
3081 
3082 	return 0;
3083 }
3084 
3085 
3086 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
3087 			       void *v)
3088 {
3089 	struct mtd_info *mtd;
3090 
3091 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
3092 	cfi_amdstd_reset(mtd);
3093 	return NOTIFY_DONE;
3094 }
3095 
3096 
3097 static void cfi_amdstd_destroy(struct mtd_info *mtd)
3098 {
3099 	struct map_info *map = mtd->priv;
3100 	struct cfi_private *cfi = map->fldrv_priv;
3101 
3102 	cfi_amdstd_reset(mtd);
3103 	unregister_reboot_notifier(&mtd->reboot_notifier);
3104 	kfree(cfi->cmdset_priv);
3105 	kfree(cfi->cfiq);
3106 	kfree(cfi);
3107 	kfree(mtd->eraseregions);
3108 }
3109 
3110 MODULE_LICENSE("GPL");
3111 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3112 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3113 MODULE_ALIAS("cfi_cmdset_0006");
3114 MODULE_ALIAS("cfi_cmdset_0701");
3115