1 /* 2 * Common Flash Interface support: 3 * Intel Extended Vendor Command Set (ID 0x0001) 4 * 5 * (C) 2000 Red Hat. GPL'd 6 * 7 * 8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net> 9 * - completely revamped method functions so they are aware and 10 * independent of the flash geometry (buswidth, interleave, etc.) 11 * - scalability vs code size is completely set at compile-time 12 * (see include/linux/mtd/cfi.h for selection) 13 * - optimized write buffer method 14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com> 15 * - reworked lock/unlock/erase support for var size flash 16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it> 17 * - auto unlock sectors on resume for auto locking flash on power up 18 */ 19 20 #include <linux/module.h> 21 #include <linux/types.h> 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/init.h> 25 #include <asm/io.h> 26 #include <asm/byteorder.h> 27 28 #include <linux/errno.h> 29 #include <linux/slab.h> 30 #include <linux/delay.h> 31 #include <linux/interrupt.h> 32 #include <linux/reboot.h> 33 #include <linux/bitmap.h> 34 #include <linux/mtd/xip.h> 35 #include <linux/mtd/map.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/cfi.h> 38 39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ 40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ 41 42 // debugging, turns off buffer write mode if set to 1 43 #define FORCE_WORD_WRITE 0 44 45 /* Intel chips */ 46 #define I82802AB 0x00ad 47 #define I82802AC 0x00ac 48 #define PF38F4476 0x881c 49 /* STMicroelectronics chips */ 50 #define M50LPW080 0x002F 51 #define M50FLW080A 0x0080 52 #define M50FLW080B 0x0081 53 /* Atmel chips */ 54 #define AT49BV640D 0x02de 55 #define AT49BV640DT 0x02db 56 57 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 58 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); 59 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); 60 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *); 61 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); 62 static void cfi_intelext_sync (struct mtd_info *); 63 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 64 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 65 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs, 66 uint64_t len); 67 #ifdef CONFIG_MTD_OTP 68 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 69 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 70 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 71 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t); 72 static int cfi_intelext_get_fact_prot_info (struct mtd_info *, 73 struct otp_info *, size_t); 74 static int cfi_intelext_get_user_prot_info (struct mtd_info *, 75 struct otp_info *, size_t); 76 #endif 77 static int cfi_intelext_suspend (struct mtd_info *); 78 static void cfi_intelext_resume (struct mtd_info *); 79 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *); 80 81 static void cfi_intelext_destroy(struct mtd_info *); 82 83 struct mtd_info *cfi_cmdset_0001(struct map_info *, int); 84 85 static struct mtd_info *cfi_intelext_setup (struct mtd_info *); 86 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); 87 88 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, 89 size_t *retlen, void **virt, resource_size_t *phys); 90 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 91 92 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode); 93 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); 94 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); 95 #include "fwh_lock.h" 96 97 98 99 /* 100 * *********** SETUP AND PROBE BITS *********** 101 */ 102 103 static struct mtd_chip_driver cfi_intelext_chipdrv = { 104 .probe = NULL, /* Not usable directly */ 105 .destroy = cfi_intelext_destroy, 106 .name = "cfi_cmdset_0001", 107 .module = THIS_MODULE 108 }; 109 110 /* #define DEBUG_LOCK_BITS */ 111 /* #define DEBUG_CFI_FEATURES */ 112 113 #ifdef DEBUG_CFI_FEATURES 114 static void cfi_tell_features(struct cfi_pri_intelext *extp) 115 { 116 int i; 117 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion); 118 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); 119 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); 120 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); 121 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); 122 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); 123 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); 124 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); 125 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); 126 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); 127 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); 128 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); 129 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported"); 130 for (i=11; i<32; i++) { 131 if (extp->FeatureSupport & (1<<i)) 132 printk(" - Unknown Bit %X: supported\n", i); 133 } 134 135 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); 136 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); 137 for (i=1; i<8; i++) { 138 if (extp->SuspendCmdSupport & (1<<i)) 139 printk(" - Unknown Bit %X: supported\n", i); 140 } 141 142 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); 143 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); 144 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); 145 for (i=2; i<3; i++) { 146 if (extp->BlkStatusRegMask & (1<<i)) 147 printk(" - Unknown Bit %X Active: yes\n",i); 148 } 149 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no"); 150 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no"); 151 for (i=6; i<16; i++) { 152 if (extp->BlkStatusRegMask & (1<<i)) 153 printk(" - Unknown Bit %X Active: yes\n",i); 154 } 155 156 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", 157 extp->VccOptimal >> 4, extp->VccOptimal & 0xf); 158 if (extp->VppOptimal) 159 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", 160 extp->VppOptimal >> 4, extp->VppOptimal & 0xf); 161 } 162 #endif 163 164 /* Atmel chips don't use the same PRI format as Intel chips */ 165 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param) 166 { 167 struct map_info *map = mtd->priv; 168 struct cfi_private *cfi = map->fldrv_priv; 169 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 170 struct cfi_pri_atmel atmel_pri; 171 uint32_t features = 0; 172 173 /* Reverse byteswapping */ 174 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport); 175 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask); 176 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr); 177 178 memcpy(&atmel_pri, extp, sizeof(atmel_pri)); 179 memset((char *)extp + 5, 0, sizeof(*extp) - 5); 180 181 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features); 182 183 if (atmel_pri.Features & 0x01) /* chip erase supported */ 184 features |= (1<<0); 185 if (atmel_pri.Features & 0x02) /* erase suspend supported */ 186 features |= (1<<1); 187 if (atmel_pri.Features & 0x04) /* program suspend supported */ 188 features |= (1<<2); 189 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */ 190 features |= (1<<9); 191 if (atmel_pri.Features & 0x20) /* page mode read supported */ 192 features |= (1<<7); 193 if (atmel_pri.Features & 0x40) /* queued erase supported */ 194 features |= (1<<4); 195 if (atmel_pri.Features & 0x80) /* Protection bits supported */ 196 features |= (1<<6); 197 198 extp->FeatureSupport = features; 199 200 /* burst write mode not supported */ 201 cfi->cfiq->BufWriteTimeoutTyp = 0; 202 cfi->cfiq->BufWriteTimeoutMax = 0; 203 } 204 205 static void fixup_at49bv640dx_lock(struct mtd_info *mtd, void *param) 206 { 207 struct map_info *map = mtd->priv; 208 struct cfi_private *cfi = map->fldrv_priv; 209 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 210 211 cfip->FeatureSupport |= (1 << 5); 212 mtd->flags |= MTD_POWERUP_LOCK; 213 } 214 215 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE 216 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ 217 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param) 218 { 219 struct map_info *map = mtd->priv; 220 struct cfi_private *cfi = map->fldrv_priv; 221 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 222 223 printk(KERN_WARNING "cfi_cmdset_0001: Suspend " 224 "erase on write disabled.\n"); 225 extp->SuspendCmdSupport &= ~1; 226 } 227 #endif 228 229 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND 230 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param) 231 { 232 struct map_info *map = mtd->priv; 233 struct cfi_private *cfi = map->fldrv_priv; 234 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 235 236 if (cfip && (cfip->FeatureSupport&4)) { 237 cfip->FeatureSupport &= ~4; 238 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); 239 } 240 } 241 #endif 242 243 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param) 244 { 245 struct map_info *map = mtd->priv; 246 struct cfi_private *cfi = map->fldrv_priv; 247 248 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */ 249 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ 250 } 251 252 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param) 253 { 254 struct map_info *map = mtd->priv; 255 struct cfi_private *cfi = map->fldrv_priv; 256 257 /* Note this is done after the region info is endian swapped */ 258 cfi->cfiq->EraseRegionInfo[1] = 259 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; 260 }; 261 262 static void fixup_use_point(struct mtd_info *mtd, void *param) 263 { 264 struct map_info *map = mtd->priv; 265 if (!mtd->point && map_is_linear(map)) { 266 mtd->point = cfi_intelext_point; 267 mtd->unpoint = cfi_intelext_unpoint; 268 } 269 } 270 271 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) 272 { 273 struct map_info *map = mtd->priv; 274 struct cfi_private *cfi = map->fldrv_priv; 275 if (cfi->cfiq->BufWriteTimeoutTyp) { 276 printk(KERN_INFO "Using buffer write method\n" ); 277 mtd->write = cfi_intelext_write_buffers; 278 mtd->writev = cfi_intelext_writev; 279 } 280 } 281 282 /* 283 * Some chips power-up with all sectors locked by default. 284 */ 285 static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param) 286 { 287 struct map_info *map = mtd->priv; 288 struct cfi_private *cfi = map->fldrv_priv; 289 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 290 291 if (cfip->FeatureSupport&32) { 292 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" ); 293 mtd->flags |= MTD_POWERUP_LOCK; 294 } 295 } 296 297 static struct cfi_fixup cfi_fixup_table[] = { 298 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL }, 299 { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock, NULL }, 300 { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock, NULL }, 301 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE 302 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, 303 #endif 304 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND 305 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL }, 306 #endif 307 #if !FORCE_WORD_WRITE 308 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL }, 309 #endif 310 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL }, 311 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL }, 312 { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock, NULL, }, 313 { 0, 0, NULL, NULL } 314 }; 315 316 static struct cfi_fixup jedec_fixup_table[] = { 317 { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock, NULL, }, 318 { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock, NULL, }, 319 { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock, NULL, }, 320 { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock, NULL, }, 321 { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock, NULL, }, 322 { 0, 0, NULL, NULL } 323 }; 324 static struct cfi_fixup fixup_table[] = { 325 /* The CFI vendor ids and the JEDEC vendor IDs appear 326 * to be common. It is like the devices id's are as 327 * well. This table is to pick all cases where 328 * we know that is the case. 329 */ 330 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL }, 331 { 0, 0, NULL, NULL } 332 }; 333 334 static void cfi_fixup_major_minor(struct cfi_private *cfi, 335 struct cfi_pri_intelext *extp) 336 { 337 if (cfi->mfr == CFI_MFR_INTEL && 338 cfi->id == PF38F4476 && extp->MinorVersion == '3') 339 extp->MinorVersion = '1'; 340 } 341 342 static inline struct cfi_pri_intelext * 343 read_pri_intelext(struct map_info *map, __u16 adr) 344 { 345 struct cfi_private *cfi = map->fldrv_priv; 346 struct cfi_pri_intelext *extp; 347 unsigned int extra_size = 0; 348 unsigned int extp_size = sizeof(*extp); 349 350 again: 351 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); 352 if (!extp) 353 return NULL; 354 355 cfi_fixup_major_minor(cfi, extp); 356 357 if (extp->MajorVersion != '1' || 358 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) { 359 printk(KERN_ERR " Unknown Intel/Sharp Extended Query " 360 "version %c.%c.\n", extp->MajorVersion, 361 extp->MinorVersion); 362 kfree(extp); 363 return NULL; 364 } 365 366 /* Do some byteswapping if necessary */ 367 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); 368 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); 369 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); 370 371 if (extp->MinorVersion >= '0') { 372 extra_size = 0; 373 374 /* Protection Register info */ 375 extra_size += (extp->NumProtectionFields - 1) * 376 sizeof(struct cfi_intelext_otpinfo); 377 } 378 379 if (extp->MinorVersion >= '1') { 380 /* Burst Read info */ 381 extra_size += 2; 382 if (extp_size < sizeof(*extp) + extra_size) 383 goto need_more; 384 extra_size += extp->extra[extra_size - 1]; 385 } 386 387 if (extp->MinorVersion >= '3') { 388 int nb_parts, i; 389 390 /* Number of hardware-partitions */ 391 extra_size += 1; 392 if (extp_size < sizeof(*extp) + extra_size) 393 goto need_more; 394 nb_parts = extp->extra[extra_size - 1]; 395 396 /* skip the sizeof(partregion) field in CFI 1.4 */ 397 if (extp->MinorVersion >= '4') 398 extra_size += 2; 399 400 for (i = 0; i < nb_parts; i++) { 401 struct cfi_intelext_regioninfo *rinfo; 402 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; 403 extra_size += sizeof(*rinfo); 404 if (extp_size < sizeof(*extp) + extra_size) 405 goto need_more; 406 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); 407 extra_size += (rinfo->NumBlockTypes - 1) 408 * sizeof(struct cfi_intelext_blockinfo); 409 } 410 411 if (extp->MinorVersion >= '4') 412 extra_size += sizeof(struct cfi_intelext_programming_regioninfo); 413 414 if (extp_size < sizeof(*extp) + extra_size) { 415 need_more: 416 extp_size = sizeof(*extp) + extra_size; 417 kfree(extp); 418 if (extp_size > 4096) { 419 printk(KERN_ERR 420 "%s: cfi_pri_intelext is too fat\n", 421 __func__); 422 return NULL; 423 } 424 goto again; 425 } 426 } 427 428 return extp; 429 } 430 431 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) 432 { 433 struct cfi_private *cfi = map->fldrv_priv; 434 struct mtd_info *mtd; 435 int i; 436 437 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); 438 if (!mtd) { 439 printk(KERN_ERR "Failed to allocate memory for MTD device\n"); 440 return NULL; 441 } 442 mtd->priv = map; 443 mtd->type = MTD_NORFLASH; 444 445 /* Fill in the default mtd operations */ 446 mtd->erase = cfi_intelext_erase_varsize; 447 mtd->read = cfi_intelext_read; 448 mtd->write = cfi_intelext_write_words; 449 mtd->sync = cfi_intelext_sync; 450 mtd->lock = cfi_intelext_lock; 451 mtd->unlock = cfi_intelext_unlock; 452 mtd->is_locked = cfi_intelext_is_locked; 453 mtd->suspend = cfi_intelext_suspend; 454 mtd->resume = cfi_intelext_resume; 455 mtd->flags = MTD_CAP_NORFLASH; 456 mtd->name = map->name; 457 mtd->writesize = 1; 458 459 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot; 460 461 if (cfi->cfi_mode == CFI_MODE_CFI) { 462 /* 463 * It's a real CFI chip, not one for which the probe 464 * routine faked a CFI structure. So we read the feature 465 * table from it. 466 */ 467 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; 468 struct cfi_pri_intelext *extp; 469 470 extp = read_pri_intelext(map, adr); 471 if (!extp) { 472 kfree(mtd); 473 return NULL; 474 } 475 476 /* Install our own private info structure */ 477 cfi->cmdset_priv = extp; 478 479 cfi_fixup(mtd, cfi_fixup_table); 480 481 #ifdef DEBUG_CFI_FEATURES 482 /* Tell the user about it in lots of lovely detail */ 483 cfi_tell_features(extp); 484 #endif 485 486 if(extp->SuspendCmdSupport & 1) { 487 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); 488 } 489 } 490 else if (cfi->cfi_mode == CFI_MODE_JEDEC) { 491 /* Apply jedec specific fixups */ 492 cfi_fixup(mtd, jedec_fixup_table); 493 } 494 /* Apply generic fixups */ 495 cfi_fixup(mtd, fixup_table); 496 497 for (i=0; i< cfi->numchips; i++) { 498 if (cfi->cfiq->WordWriteTimeoutTyp) 499 cfi->chips[i].word_write_time = 500 1<<cfi->cfiq->WordWriteTimeoutTyp; 501 else 502 cfi->chips[i].word_write_time = 50000; 503 504 if (cfi->cfiq->BufWriteTimeoutTyp) 505 cfi->chips[i].buffer_write_time = 506 1<<cfi->cfiq->BufWriteTimeoutTyp; 507 /* No default; if it isn't specified, we won't use it */ 508 509 if (cfi->cfiq->BlockEraseTimeoutTyp) 510 cfi->chips[i].erase_time = 511 1000<<cfi->cfiq->BlockEraseTimeoutTyp; 512 else 513 cfi->chips[i].erase_time = 2000000; 514 515 if (cfi->cfiq->WordWriteTimeoutTyp && 516 cfi->cfiq->WordWriteTimeoutMax) 517 cfi->chips[i].word_write_time_max = 518 1<<(cfi->cfiq->WordWriteTimeoutTyp + 519 cfi->cfiq->WordWriteTimeoutMax); 520 else 521 cfi->chips[i].word_write_time_max = 50000 * 8; 522 523 if (cfi->cfiq->BufWriteTimeoutTyp && 524 cfi->cfiq->BufWriteTimeoutMax) 525 cfi->chips[i].buffer_write_time_max = 526 1<<(cfi->cfiq->BufWriteTimeoutTyp + 527 cfi->cfiq->BufWriteTimeoutMax); 528 529 if (cfi->cfiq->BlockEraseTimeoutTyp && 530 cfi->cfiq->BlockEraseTimeoutMax) 531 cfi->chips[i].erase_time_max = 532 1000<<(cfi->cfiq->BlockEraseTimeoutTyp + 533 cfi->cfiq->BlockEraseTimeoutMax); 534 else 535 cfi->chips[i].erase_time_max = 2000000 * 8; 536 537 cfi->chips[i].ref_point_counter = 0; 538 init_waitqueue_head(&(cfi->chips[i].wq)); 539 } 540 541 map->fldrv = &cfi_intelext_chipdrv; 542 543 return cfi_intelext_setup(mtd); 544 } 545 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001"))); 546 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001"))); 547 EXPORT_SYMBOL_GPL(cfi_cmdset_0001); 548 EXPORT_SYMBOL_GPL(cfi_cmdset_0003); 549 EXPORT_SYMBOL_GPL(cfi_cmdset_0200); 550 551 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) 552 { 553 struct map_info *map = mtd->priv; 554 struct cfi_private *cfi = map->fldrv_priv; 555 unsigned long offset = 0; 556 int i,j; 557 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; 558 559 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); 560 561 mtd->size = devsize * cfi->numchips; 562 563 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; 564 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) 565 * mtd->numeraseregions, GFP_KERNEL); 566 if (!mtd->eraseregions) { 567 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); 568 goto setup_err; 569 } 570 571 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { 572 unsigned long ernum, ersize; 573 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; 574 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; 575 576 if (mtd->erasesize < ersize) { 577 mtd->erasesize = ersize; 578 } 579 for (j=0; j<cfi->numchips; j++) { 580 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; 581 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; 582 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; 583 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL); 584 } 585 offset += (ersize * ernum); 586 } 587 588 if (offset != devsize) { 589 /* Argh */ 590 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); 591 goto setup_err; 592 } 593 594 for (i=0; i<mtd->numeraseregions;i++){ 595 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n", 596 i,(unsigned long long)mtd->eraseregions[i].offset, 597 mtd->eraseregions[i].erasesize, 598 mtd->eraseregions[i].numblocks); 599 } 600 601 #ifdef CONFIG_MTD_OTP 602 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; 603 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; 604 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg; 605 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg; 606 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info; 607 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info; 608 #endif 609 610 /* This function has the potential to distort the reality 611 a bit and therefore should be called last. */ 612 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) 613 goto setup_err; 614 615 __module_get(THIS_MODULE); 616 register_reboot_notifier(&mtd->reboot_notifier); 617 return mtd; 618 619 setup_err: 620 kfree(mtd->eraseregions); 621 kfree(mtd); 622 kfree(cfi->cmdset_priv); 623 return NULL; 624 } 625 626 static int cfi_intelext_partition_fixup(struct mtd_info *mtd, 627 struct cfi_private **pcfi) 628 { 629 struct map_info *map = mtd->priv; 630 struct cfi_private *cfi = *pcfi; 631 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 632 633 /* 634 * Probing of multi-partition flash chips. 635 * 636 * To support multiple partitions when available, we simply arrange 637 * for each of them to have their own flchip structure even if they 638 * are on the same physical chip. This means completely recreating 639 * a new cfi_private structure right here which is a blatent code 640 * layering violation, but this is still the least intrusive 641 * arrangement at this point. This can be rearranged in the future 642 * if someone feels motivated enough. --nico 643 */ 644 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3' 645 && extp->FeatureSupport & (1 << 9)) { 646 struct cfi_private *newcfi; 647 struct flchip *chip; 648 struct flchip_shared *shared; 649 int offs, numregions, numparts, partshift, numvirtchips, i, j; 650 651 /* Protection Register info */ 652 offs = (extp->NumProtectionFields - 1) * 653 sizeof(struct cfi_intelext_otpinfo); 654 655 /* Burst Read info */ 656 offs += extp->extra[offs+1]+2; 657 658 /* Number of partition regions */ 659 numregions = extp->extra[offs]; 660 offs += 1; 661 662 /* skip the sizeof(partregion) field in CFI 1.4 */ 663 if (extp->MinorVersion >= '4') 664 offs += 2; 665 666 /* Number of hardware partitions */ 667 numparts = 0; 668 for (i = 0; i < numregions; i++) { 669 struct cfi_intelext_regioninfo *rinfo; 670 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; 671 numparts += rinfo->NumIdentPartitions; 672 offs += sizeof(*rinfo) 673 + (rinfo->NumBlockTypes - 1) * 674 sizeof(struct cfi_intelext_blockinfo); 675 } 676 677 if (!numparts) 678 numparts = 1; 679 680 /* Programming Region info */ 681 if (extp->MinorVersion >= '4') { 682 struct cfi_intelext_programming_regioninfo *prinfo; 683 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs]; 684 mtd->writesize = cfi->interleave << prinfo->ProgRegShift; 685 mtd->flags &= ~MTD_BIT_WRITEABLE; 686 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n", 687 map->name, mtd->writesize, 688 cfi->interleave * prinfo->ControlValid, 689 cfi->interleave * prinfo->ControlInvalid); 690 } 691 692 /* 693 * All functions below currently rely on all chips having 694 * the same geometry so we'll just assume that all hardware 695 * partitions are of the same size too. 696 */ 697 partshift = cfi->chipshift - __ffs(numparts); 698 699 if ((1 << partshift) < mtd->erasesize) { 700 printk( KERN_ERR 701 "%s: bad number of hw partitions (%d)\n", 702 __func__, numparts); 703 return -EINVAL; 704 } 705 706 numvirtchips = cfi->numchips * numparts; 707 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL); 708 if (!newcfi) 709 return -ENOMEM; 710 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL); 711 if (!shared) { 712 kfree(newcfi); 713 return -ENOMEM; 714 } 715 memcpy(newcfi, cfi, sizeof(struct cfi_private)); 716 newcfi->numchips = numvirtchips; 717 newcfi->chipshift = partshift; 718 719 chip = &newcfi->chips[0]; 720 for (i = 0; i < cfi->numchips; i++) { 721 shared[i].writing = shared[i].erasing = NULL; 722 mutex_init(&shared[i].lock); 723 for (j = 0; j < numparts; j++) { 724 *chip = cfi->chips[i]; 725 chip->start += j << partshift; 726 chip->priv = &shared[i]; 727 /* those should be reset too since 728 they create memory references. */ 729 init_waitqueue_head(&chip->wq); 730 mutex_init(&chip->mutex); 731 chip++; 732 } 733 } 734 735 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " 736 "--> %d partitions of %d KiB\n", 737 map->name, cfi->numchips, cfi->interleave, 738 newcfi->numchips, 1<<(newcfi->chipshift-10)); 739 740 map->fldrv_priv = newcfi; 741 *pcfi = newcfi; 742 kfree(cfi); 743 } 744 745 return 0; 746 } 747 748 /* 749 * *********** CHIP ACCESS FUNCTIONS *********** 750 */ 751 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode) 752 { 753 DECLARE_WAITQUEUE(wait, current); 754 struct cfi_private *cfi = map->fldrv_priv; 755 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); 756 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 757 unsigned long timeo = jiffies + HZ; 758 759 /* Prevent setting state FL_SYNCING for chip in suspended state. */ 760 if (mode == FL_SYNCING && chip->oldstate != FL_READY) 761 goto sleep; 762 763 switch (chip->state) { 764 765 case FL_STATUS: 766 for (;;) { 767 status = map_read(map, adr); 768 if (map_word_andequal(map, status, status_OK, status_OK)) 769 break; 770 771 /* At this point we're fine with write operations 772 in other partitions as they don't conflict. */ 773 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) 774 break; 775 776 mutex_unlock(&chip->mutex); 777 cfi_udelay(1); 778 mutex_lock(&chip->mutex); 779 /* Someone else might have been playing with it. */ 780 return -EAGAIN; 781 } 782 /* Fall through */ 783 case FL_READY: 784 case FL_CFI_QUERY: 785 case FL_JEDEC_QUERY: 786 return 0; 787 788 case FL_ERASING: 789 if (!cfip || 790 !(cfip->FeatureSupport & 2) || 791 !(mode == FL_READY || mode == FL_POINT || 792 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) 793 goto sleep; 794 795 796 /* Erase suspend */ 797 map_write(map, CMD(0xB0), adr); 798 799 /* If the flash has finished erasing, then 'erase suspend' 800 * appears to make some (28F320) flash devices switch to 801 * 'read' mode. Make sure that we switch to 'read status' 802 * mode so we get the right data. --rmk 803 */ 804 map_write(map, CMD(0x70), adr); 805 chip->oldstate = FL_ERASING; 806 chip->state = FL_ERASE_SUSPENDING; 807 chip->erase_suspended = 1; 808 for (;;) { 809 status = map_read(map, adr); 810 if (map_word_andequal(map, status, status_OK, status_OK)) 811 break; 812 813 if (time_after(jiffies, timeo)) { 814 /* Urgh. Resume and pretend we weren't here. */ 815 map_write(map, CMD(0xd0), adr); 816 /* Make sure we're in 'read status' mode if it had finished */ 817 map_write(map, CMD(0x70), adr); 818 chip->state = FL_ERASING; 819 chip->oldstate = FL_READY; 820 printk(KERN_ERR "%s: Chip not ready after erase " 821 "suspended: status = 0x%lx\n", map->name, status.x[0]); 822 return -EIO; 823 } 824 825 mutex_unlock(&chip->mutex); 826 cfi_udelay(1); 827 mutex_lock(&chip->mutex); 828 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. 829 So we can just loop here. */ 830 } 831 chip->state = FL_STATUS; 832 return 0; 833 834 case FL_XIP_WHILE_ERASING: 835 if (mode != FL_READY && mode != FL_POINT && 836 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) 837 goto sleep; 838 chip->oldstate = chip->state; 839 chip->state = FL_READY; 840 return 0; 841 842 case FL_SHUTDOWN: 843 /* The machine is rebooting now,so no one can get chip anymore */ 844 return -EIO; 845 case FL_POINT: 846 /* Only if there's no operation suspended... */ 847 if (mode == FL_READY && chip->oldstate == FL_READY) 848 return 0; 849 /* Fall through */ 850 default: 851 sleep: 852 set_current_state(TASK_UNINTERRUPTIBLE); 853 add_wait_queue(&chip->wq, &wait); 854 mutex_unlock(&chip->mutex); 855 schedule(); 856 remove_wait_queue(&chip->wq, &wait); 857 mutex_lock(&chip->mutex); 858 return -EAGAIN; 859 } 860 } 861 862 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) 863 { 864 int ret; 865 DECLARE_WAITQUEUE(wait, current); 866 867 retry: 868 if (chip->priv && 869 (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE 870 || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) { 871 /* 872 * OK. We have possibility for contention on the write/erase 873 * operations which are global to the real chip and not per 874 * partition. So let's fight it over in the partition which 875 * currently has authority on the operation. 876 * 877 * The rules are as follows: 878 * 879 * - any write operation must own shared->writing. 880 * 881 * - any erase operation must own _both_ shared->writing and 882 * shared->erasing. 883 * 884 * - contention arbitration is handled in the owner's context. 885 * 886 * The 'shared' struct can be read and/or written only when 887 * its lock is taken. 888 */ 889 struct flchip_shared *shared = chip->priv; 890 struct flchip *contender; 891 mutex_lock(&shared->lock); 892 contender = shared->writing; 893 if (contender && contender != chip) { 894 /* 895 * The engine to perform desired operation on this 896 * partition is already in use by someone else. 897 * Let's fight over it in the context of the chip 898 * currently using it. If it is possible to suspend, 899 * that other partition will do just that, otherwise 900 * it'll happily send us to sleep. In any case, when 901 * get_chip returns success we're clear to go ahead. 902 */ 903 ret = mutex_trylock(&contender->mutex); 904 mutex_unlock(&shared->lock); 905 if (!ret) 906 goto retry; 907 mutex_unlock(&chip->mutex); 908 ret = chip_ready(map, contender, contender->start, mode); 909 mutex_lock(&chip->mutex); 910 911 if (ret == -EAGAIN) { 912 mutex_unlock(&contender->mutex); 913 goto retry; 914 } 915 if (ret) { 916 mutex_unlock(&contender->mutex); 917 return ret; 918 } 919 mutex_lock(&shared->lock); 920 921 /* We should not own chip if it is already 922 * in FL_SYNCING state. Put contender and retry. */ 923 if (chip->state == FL_SYNCING) { 924 put_chip(map, contender, contender->start); 925 mutex_unlock(&contender->mutex); 926 goto retry; 927 } 928 mutex_unlock(&contender->mutex); 929 } 930 931 /* Check if we already have suspended erase 932 * on this chip. Sleep. */ 933 if (mode == FL_ERASING && shared->erasing 934 && shared->erasing->oldstate == FL_ERASING) { 935 mutex_unlock(&shared->lock); 936 set_current_state(TASK_UNINTERRUPTIBLE); 937 add_wait_queue(&chip->wq, &wait); 938 mutex_unlock(&chip->mutex); 939 schedule(); 940 remove_wait_queue(&chip->wq, &wait); 941 mutex_lock(&chip->mutex); 942 goto retry; 943 } 944 945 /* We now own it */ 946 shared->writing = chip; 947 if (mode == FL_ERASING) 948 shared->erasing = chip; 949 mutex_unlock(&shared->lock); 950 } 951 ret = chip_ready(map, chip, adr, mode); 952 if (ret == -EAGAIN) 953 goto retry; 954 955 return ret; 956 } 957 958 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) 959 { 960 struct cfi_private *cfi = map->fldrv_priv; 961 962 if (chip->priv) { 963 struct flchip_shared *shared = chip->priv; 964 mutex_lock(&shared->lock); 965 if (shared->writing == chip && chip->oldstate == FL_READY) { 966 /* We own the ability to write, but we're done */ 967 shared->writing = shared->erasing; 968 if (shared->writing && shared->writing != chip) { 969 /* give back ownership to who we loaned it from */ 970 struct flchip *loaner = shared->writing; 971 mutex_lock(&loaner->mutex); 972 mutex_unlock(&shared->lock); 973 mutex_unlock(&chip->mutex); 974 put_chip(map, loaner, loaner->start); 975 mutex_lock(&chip->mutex); 976 mutex_unlock(&loaner->mutex); 977 wake_up(&chip->wq); 978 return; 979 } 980 shared->erasing = NULL; 981 shared->writing = NULL; 982 } else if (shared->erasing == chip && shared->writing != chip) { 983 /* 984 * We own the ability to erase without the ability 985 * to write, which means the erase was suspended 986 * and some other partition is currently writing. 987 * Don't let the switch below mess things up since 988 * we don't have ownership to resume anything. 989 */ 990 mutex_unlock(&shared->lock); 991 wake_up(&chip->wq); 992 return; 993 } 994 mutex_unlock(&shared->lock); 995 } 996 997 switch(chip->oldstate) { 998 case FL_ERASING: 999 chip->state = chip->oldstate; 1000 /* What if one interleaved chip has finished and the 1001 other hasn't? The old code would leave the finished 1002 one in READY mode. That's bad, and caused -EROFS 1003 errors to be returned from do_erase_oneblock because 1004 that's the only bit it checked for at the time. 1005 As the state machine appears to explicitly allow 1006 sending the 0x70 (Read Status) command to an erasing 1007 chip and expecting it to be ignored, that's what we 1008 do. */ 1009 map_write(map, CMD(0xd0), adr); 1010 map_write(map, CMD(0x70), adr); 1011 chip->oldstate = FL_READY; 1012 chip->state = FL_ERASING; 1013 break; 1014 1015 case FL_XIP_WHILE_ERASING: 1016 chip->state = chip->oldstate; 1017 chip->oldstate = FL_READY; 1018 break; 1019 1020 case FL_READY: 1021 case FL_STATUS: 1022 case FL_JEDEC_QUERY: 1023 /* We should really make set_vpp() count, rather than doing this */ 1024 DISABLE_VPP(map); 1025 break; 1026 default: 1027 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate); 1028 } 1029 wake_up(&chip->wq); 1030 } 1031 1032 #ifdef CONFIG_MTD_XIP 1033 1034 /* 1035 * No interrupt what so ever can be serviced while the flash isn't in array 1036 * mode. This is ensured by the xip_disable() and xip_enable() functions 1037 * enclosing any code path where the flash is known not to be in array mode. 1038 * And within a XIP disabled code path, only functions marked with __xipram 1039 * may be called and nothing else (it's a good thing to inspect generated 1040 * assembly to make sure inline functions were actually inlined and that gcc 1041 * didn't emit calls to its own support functions). Also configuring MTD CFI 1042 * support to a single buswidth and a single interleave is also recommended. 1043 */ 1044 1045 static void xip_disable(struct map_info *map, struct flchip *chip, 1046 unsigned long adr) 1047 { 1048 /* TODO: chips with no XIP use should ignore and return */ 1049 (void) map_read(map, adr); /* ensure mmu mapping is up to date */ 1050 local_irq_disable(); 1051 } 1052 1053 static void __xipram xip_enable(struct map_info *map, struct flchip *chip, 1054 unsigned long adr) 1055 { 1056 struct cfi_private *cfi = map->fldrv_priv; 1057 if (chip->state != FL_POINT && chip->state != FL_READY) { 1058 map_write(map, CMD(0xff), adr); 1059 chip->state = FL_READY; 1060 } 1061 (void) map_read(map, adr); 1062 xip_iprefetch(); 1063 local_irq_enable(); 1064 } 1065 1066 /* 1067 * When a delay is required for the flash operation to complete, the 1068 * xip_wait_for_operation() function is polling for both the given timeout 1069 * and pending (but still masked) hardware interrupts. Whenever there is an 1070 * interrupt pending then the flash erase or write operation is suspended, 1071 * array mode restored and interrupts unmasked. Task scheduling might also 1072 * happen at that point. The CPU eventually returns from the interrupt or 1073 * the call to schedule() and the suspended flash operation is resumed for 1074 * the remaining of the delay period. 1075 * 1076 * Warning: this function _will_ fool interrupt latency tracing tools. 1077 */ 1078 1079 static int __xipram xip_wait_for_operation( 1080 struct map_info *map, struct flchip *chip, 1081 unsigned long adr, unsigned int chip_op_time_max) 1082 { 1083 struct cfi_private *cfi = map->fldrv_priv; 1084 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 1085 map_word status, OK = CMD(0x80); 1086 unsigned long usec, suspended, start, done; 1087 flstate_t oldstate, newstate; 1088 1089 start = xip_currtime(); 1090 usec = chip_op_time_max; 1091 if (usec == 0) 1092 usec = 500000; 1093 done = 0; 1094 1095 do { 1096 cpu_relax(); 1097 if (xip_irqpending() && cfip && 1098 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || 1099 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && 1100 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { 1101 /* 1102 * Let's suspend the erase or write operation when 1103 * supported. Note that we currently don't try to 1104 * suspend interleaved chips if there is already 1105 * another operation suspended (imagine what happens 1106 * when one chip was already done with the current 1107 * operation while another chip suspended it, then 1108 * we resume the whole thing at once). Yes, it 1109 * can happen! 1110 */ 1111 usec -= done; 1112 map_write(map, CMD(0xb0), adr); 1113 map_write(map, CMD(0x70), adr); 1114 suspended = xip_currtime(); 1115 do { 1116 if (xip_elapsed_since(suspended) > 100000) { 1117 /* 1118 * The chip doesn't want to suspend 1119 * after waiting for 100 msecs. 1120 * This is a critical error but there 1121 * is not much we can do here. 1122 */ 1123 return -EIO; 1124 } 1125 status = map_read(map, adr); 1126 } while (!map_word_andequal(map, status, OK, OK)); 1127 1128 /* Suspend succeeded */ 1129 oldstate = chip->state; 1130 if (oldstate == FL_ERASING) { 1131 if (!map_word_bitsset(map, status, CMD(0x40))) 1132 break; 1133 newstate = FL_XIP_WHILE_ERASING; 1134 chip->erase_suspended = 1; 1135 } else { 1136 if (!map_word_bitsset(map, status, CMD(0x04))) 1137 break; 1138 newstate = FL_XIP_WHILE_WRITING; 1139 chip->write_suspended = 1; 1140 } 1141 chip->state = newstate; 1142 map_write(map, CMD(0xff), adr); 1143 (void) map_read(map, adr); 1144 xip_iprefetch(); 1145 local_irq_enable(); 1146 mutex_unlock(&chip->mutex); 1147 xip_iprefetch(); 1148 cond_resched(); 1149 1150 /* 1151 * We're back. However someone else might have 1152 * decided to go write to the chip if we are in 1153 * a suspended erase state. If so let's wait 1154 * until it's done. 1155 */ 1156 mutex_lock(&chip->mutex); 1157 while (chip->state != newstate) { 1158 DECLARE_WAITQUEUE(wait, current); 1159 set_current_state(TASK_UNINTERRUPTIBLE); 1160 add_wait_queue(&chip->wq, &wait); 1161 mutex_unlock(&chip->mutex); 1162 schedule(); 1163 remove_wait_queue(&chip->wq, &wait); 1164 mutex_lock(&chip->mutex); 1165 } 1166 /* Disallow XIP again */ 1167 local_irq_disable(); 1168 1169 /* Resume the write or erase operation */ 1170 map_write(map, CMD(0xd0), adr); 1171 map_write(map, CMD(0x70), adr); 1172 chip->state = oldstate; 1173 start = xip_currtime(); 1174 } else if (usec >= 1000000/HZ) { 1175 /* 1176 * Try to save on CPU power when waiting delay 1177 * is at least a system timer tick period. 1178 * No need to be extremely accurate here. 1179 */ 1180 xip_cpu_idle(); 1181 } 1182 status = map_read(map, adr); 1183 done = xip_elapsed_since(start); 1184 } while (!map_word_andequal(map, status, OK, OK) 1185 && done < usec); 1186 1187 return (done >= usec) ? -ETIME : 0; 1188 } 1189 1190 /* 1191 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while 1192 * the flash is actively programming or erasing since we have to poll for 1193 * the operation to complete anyway. We can't do that in a generic way with 1194 * a XIP setup so do it before the actual flash operation in this case 1195 * and stub it out from INVAL_CACHE_AND_WAIT. 1196 */ 1197 #define XIP_INVAL_CACHED_RANGE(map, from, size) \ 1198 INVALIDATE_CACHED_RANGE(map, from, size) 1199 1200 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \ 1201 xip_wait_for_operation(map, chip, cmd_adr, usec_max) 1202 1203 #else 1204 1205 #define xip_disable(map, chip, adr) 1206 #define xip_enable(map, chip, adr) 1207 #define XIP_INVAL_CACHED_RANGE(x...) 1208 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation 1209 1210 static int inval_cache_and_wait_for_operation( 1211 struct map_info *map, struct flchip *chip, 1212 unsigned long cmd_adr, unsigned long inval_adr, int inval_len, 1213 unsigned int chip_op_time, unsigned int chip_op_time_max) 1214 { 1215 struct cfi_private *cfi = map->fldrv_priv; 1216 map_word status, status_OK = CMD(0x80); 1217 int chip_state = chip->state; 1218 unsigned int timeo, sleep_time, reset_timeo; 1219 1220 mutex_unlock(&chip->mutex); 1221 if (inval_len) 1222 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len); 1223 mutex_lock(&chip->mutex); 1224 1225 timeo = chip_op_time_max; 1226 if (!timeo) 1227 timeo = 500000; 1228 reset_timeo = timeo; 1229 sleep_time = chip_op_time / 2; 1230 1231 for (;;) { 1232 status = map_read(map, cmd_adr); 1233 if (map_word_andequal(map, status, status_OK, status_OK)) 1234 break; 1235 1236 if (!timeo) { 1237 map_write(map, CMD(0x70), cmd_adr); 1238 chip->state = FL_STATUS; 1239 return -ETIME; 1240 } 1241 1242 /* OK Still waiting. Drop the lock, wait a while and retry. */ 1243 mutex_unlock(&chip->mutex); 1244 if (sleep_time >= 1000000/HZ) { 1245 /* 1246 * Half of the normal delay still remaining 1247 * can be performed with a sleeping delay instead 1248 * of busy waiting. 1249 */ 1250 msleep(sleep_time/1000); 1251 timeo -= sleep_time; 1252 sleep_time = 1000000/HZ; 1253 } else { 1254 udelay(1); 1255 cond_resched(); 1256 timeo--; 1257 } 1258 mutex_lock(&chip->mutex); 1259 1260 while (chip->state != chip_state) { 1261 /* Someone's suspended the operation: sleep */ 1262 DECLARE_WAITQUEUE(wait, current); 1263 set_current_state(TASK_UNINTERRUPTIBLE); 1264 add_wait_queue(&chip->wq, &wait); 1265 mutex_unlock(&chip->mutex); 1266 schedule(); 1267 remove_wait_queue(&chip->wq, &wait); 1268 mutex_lock(&chip->mutex); 1269 } 1270 if (chip->erase_suspended && chip_state == FL_ERASING) { 1271 /* Erase suspend occured while sleep: reset timeout */ 1272 timeo = reset_timeo; 1273 chip->erase_suspended = 0; 1274 } 1275 if (chip->write_suspended && chip_state == FL_WRITING) { 1276 /* Write suspend occured while sleep: reset timeout */ 1277 timeo = reset_timeo; 1278 chip->write_suspended = 0; 1279 } 1280 } 1281 1282 /* Done and happy. */ 1283 chip->state = FL_STATUS; 1284 return 0; 1285 } 1286 1287 #endif 1288 1289 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \ 1290 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max); 1291 1292 1293 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) 1294 { 1295 unsigned long cmd_addr; 1296 struct cfi_private *cfi = map->fldrv_priv; 1297 int ret = 0; 1298 1299 adr += chip->start; 1300 1301 /* Ensure cmd read/writes are aligned. */ 1302 cmd_addr = adr & ~(map_bankwidth(map)-1); 1303 1304 mutex_lock(&chip->mutex); 1305 1306 ret = get_chip(map, chip, cmd_addr, FL_POINT); 1307 1308 if (!ret) { 1309 if (chip->state != FL_POINT && chip->state != FL_READY) 1310 map_write(map, CMD(0xff), cmd_addr); 1311 1312 chip->state = FL_POINT; 1313 chip->ref_point_counter++; 1314 } 1315 mutex_unlock(&chip->mutex); 1316 1317 return ret; 1318 } 1319 1320 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len, 1321 size_t *retlen, void **virt, resource_size_t *phys) 1322 { 1323 struct map_info *map = mtd->priv; 1324 struct cfi_private *cfi = map->fldrv_priv; 1325 unsigned long ofs, last_end = 0; 1326 int chipnum; 1327 int ret = 0; 1328 1329 if (!map->virt || (from + len > mtd->size)) 1330 return -EINVAL; 1331 1332 /* Now lock the chip(s) to POINT state */ 1333 1334 /* ofs: offset within the first chip that the first read should start */ 1335 chipnum = (from >> cfi->chipshift); 1336 ofs = from - (chipnum << cfi->chipshift); 1337 1338 *virt = map->virt + cfi->chips[chipnum].start + ofs; 1339 *retlen = 0; 1340 if (phys) 1341 *phys = map->phys + cfi->chips[chipnum].start + ofs; 1342 1343 while (len) { 1344 unsigned long thislen; 1345 1346 if (chipnum >= cfi->numchips) 1347 break; 1348 1349 /* We cannot point across chips that are virtually disjoint */ 1350 if (!last_end) 1351 last_end = cfi->chips[chipnum].start; 1352 else if (cfi->chips[chipnum].start != last_end) 1353 break; 1354 1355 if ((len + ofs -1) >> cfi->chipshift) 1356 thislen = (1<<cfi->chipshift) - ofs; 1357 else 1358 thislen = len; 1359 1360 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); 1361 if (ret) 1362 break; 1363 1364 *retlen += thislen; 1365 len -= thislen; 1366 1367 ofs = 0; 1368 last_end += 1 << cfi->chipshift; 1369 chipnum++; 1370 } 1371 return 0; 1372 } 1373 1374 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1375 { 1376 struct map_info *map = mtd->priv; 1377 struct cfi_private *cfi = map->fldrv_priv; 1378 unsigned long ofs; 1379 int chipnum; 1380 1381 /* Now unlock the chip(s) POINT state */ 1382 1383 /* ofs: offset within the first chip that the first read should start */ 1384 chipnum = (from >> cfi->chipshift); 1385 ofs = from - (chipnum << cfi->chipshift); 1386 1387 while (len) { 1388 unsigned long thislen; 1389 struct flchip *chip; 1390 1391 chip = &cfi->chips[chipnum]; 1392 if (chipnum >= cfi->numchips) 1393 break; 1394 1395 if ((len + ofs -1) >> cfi->chipshift) 1396 thislen = (1<<cfi->chipshift) - ofs; 1397 else 1398 thislen = len; 1399 1400 mutex_lock(&chip->mutex); 1401 if (chip->state == FL_POINT) { 1402 chip->ref_point_counter--; 1403 if(chip->ref_point_counter == 0) 1404 chip->state = FL_READY; 1405 } else 1406 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */ 1407 1408 put_chip(map, chip, chip->start); 1409 mutex_unlock(&chip->mutex); 1410 1411 len -= thislen; 1412 ofs = 0; 1413 chipnum++; 1414 } 1415 } 1416 1417 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) 1418 { 1419 unsigned long cmd_addr; 1420 struct cfi_private *cfi = map->fldrv_priv; 1421 int ret; 1422 1423 adr += chip->start; 1424 1425 /* Ensure cmd read/writes are aligned. */ 1426 cmd_addr = adr & ~(map_bankwidth(map)-1); 1427 1428 mutex_lock(&chip->mutex); 1429 ret = get_chip(map, chip, cmd_addr, FL_READY); 1430 if (ret) { 1431 mutex_unlock(&chip->mutex); 1432 return ret; 1433 } 1434 1435 if (chip->state != FL_POINT && chip->state != FL_READY) { 1436 map_write(map, CMD(0xff), cmd_addr); 1437 1438 chip->state = FL_READY; 1439 } 1440 1441 map_copy_from(map, buf, adr, len); 1442 1443 put_chip(map, chip, cmd_addr); 1444 1445 mutex_unlock(&chip->mutex); 1446 return 0; 1447 } 1448 1449 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) 1450 { 1451 struct map_info *map = mtd->priv; 1452 struct cfi_private *cfi = map->fldrv_priv; 1453 unsigned long ofs; 1454 int chipnum; 1455 int ret = 0; 1456 1457 /* ofs: offset within the first chip that the first read should start */ 1458 chipnum = (from >> cfi->chipshift); 1459 ofs = from - (chipnum << cfi->chipshift); 1460 1461 *retlen = 0; 1462 1463 while (len) { 1464 unsigned long thislen; 1465 1466 if (chipnum >= cfi->numchips) 1467 break; 1468 1469 if ((len + ofs -1) >> cfi->chipshift) 1470 thislen = (1<<cfi->chipshift) - ofs; 1471 else 1472 thislen = len; 1473 1474 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); 1475 if (ret) 1476 break; 1477 1478 *retlen += thislen; 1479 len -= thislen; 1480 buf += thislen; 1481 1482 ofs = 0; 1483 chipnum++; 1484 } 1485 return ret; 1486 } 1487 1488 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, 1489 unsigned long adr, map_word datum, int mode) 1490 { 1491 struct cfi_private *cfi = map->fldrv_priv; 1492 map_word status, write_cmd; 1493 int ret=0; 1494 1495 adr += chip->start; 1496 1497 switch (mode) { 1498 case FL_WRITING: 1499 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41); 1500 break; 1501 case FL_OTP_WRITE: 1502 write_cmd = CMD(0xc0); 1503 break; 1504 default: 1505 return -EINVAL; 1506 } 1507 1508 mutex_lock(&chip->mutex); 1509 ret = get_chip(map, chip, adr, mode); 1510 if (ret) { 1511 mutex_unlock(&chip->mutex); 1512 return ret; 1513 } 1514 1515 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); 1516 ENABLE_VPP(map); 1517 xip_disable(map, chip, adr); 1518 map_write(map, write_cmd, adr); 1519 map_write(map, datum, adr); 1520 chip->state = mode; 1521 1522 ret = INVAL_CACHE_AND_WAIT(map, chip, adr, 1523 adr, map_bankwidth(map), 1524 chip->word_write_time, 1525 chip->word_write_time_max); 1526 if (ret) { 1527 xip_enable(map, chip, adr); 1528 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name); 1529 goto out; 1530 } 1531 1532 /* check for errors */ 1533 status = map_read(map, adr); 1534 if (map_word_bitsset(map, status, CMD(0x1a))) { 1535 unsigned long chipstatus = MERGESTATUS(status); 1536 1537 /* reset status */ 1538 map_write(map, CMD(0x50), adr); 1539 map_write(map, CMD(0x70), adr); 1540 xip_enable(map, chip, adr); 1541 1542 if (chipstatus & 0x02) { 1543 ret = -EROFS; 1544 } else if (chipstatus & 0x08) { 1545 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name); 1546 ret = -EIO; 1547 } else { 1548 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus); 1549 ret = -EINVAL; 1550 } 1551 1552 goto out; 1553 } 1554 1555 xip_enable(map, chip, adr); 1556 out: put_chip(map, chip, adr); 1557 mutex_unlock(&chip->mutex); 1558 return ret; 1559 } 1560 1561 1562 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) 1563 { 1564 struct map_info *map = mtd->priv; 1565 struct cfi_private *cfi = map->fldrv_priv; 1566 int ret = 0; 1567 int chipnum; 1568 unsigned long ofs; 1569 1570 *retlen = 0; 1571 if (!len) 1572 return 0; 1573 1574 chipnum = to >> cfi->chipshift; 1575 ofs = to - (chipnum << cfi->chipshift); 1576 1577 /* If it's not bus-aligned, do the first byte write */ 1578 if (ofs & (map_bankwidth(map)-1)) { 1579 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); 1580 int gap = ofs - bus_ofs; 1581 int n; 1582 map_word datum; 1583 1584 n = min_t(int, len, map_bankwidth(map)-gap); 1585 datum = map_word_ff(map); 1586 datum = map_word_load_partial(map, datum, buf, gap, n); 1587 1588 ret = do_write_oneword(map, &cfi->chips[chipnum], 1589 bus_ofs, datum, FL_WRITING); 1590 if (ret) 1591 return ret; 1592 1593 len -= n; 1594 ofs += n; 1595 buf += n; 1596 (*retlen) += n; 1597 1598 if (ofs >> cfi->chipshift) { 1599 chipnum ++; 1600 ofs = 0; 1601 if (chipnum == cfi->numchips) 1602 return 0; 1603 } 1604 } 1605 1606 while(len >= map_bankwidth(map)) { 1607 map_word datum = map_word_load(map, buf); 1608 1609 ret = do_write_oneword(map, &cfi->chips[chipnum], 1610 ofs, datum, FL_WRITING); 1611 if (ret) 1612 return ret; 1613 1614 ofs += map_bankwidth(map); 1615 buf += map_bankwidth(map); 1616 (*retlen) += map_bankwidth(map); 1617 len -= map_bankwidth(map); 1618 1619 if (ofs >> cfi->chipshift) { 1620 chipnum ++; 1621 ofs = 0; 1622 if (chipnum == cfi->numchips) 1623 return 0; 1624 } 1625 } 1626 1627 if (len & (map_bankwidth(map)-1)) { 1628 map_word datum; 1629 1630 datum = map_word_ff(map); 1631 datum = map_word_load_partial(map, datum, buf, 0, len); 1632 1633 ret = do_write_oneword(map, &cfi->chips[chipnum], 1634 ofs, datum, FL_WRITING); 1635 if (ret) 1636 return ret; 1637 1638 (*retlen) += len; 1639 } 1640 1641 return 0; 1642 } 1643 1644 1645 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, 1646 unsigned long adr, const struct kvec **pvec, 1647 unsigned long *pvec_seek, int len) 1648 { 1649 struct cfi_private *cfi = map->fldrv_priv; 1650 map_word status, write_cmd, datum; 1651 unsigned long cmd_adr; 1652 int ret, wbufsize, word_gap, words; 1653 const struct kvec *vec; 1654 unsigned long vec_seek; 1655 unsigned long initial_adr; 1656 int initial_len = len; 1657 1658 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 1659 adr += chip->start; 1660 initial_adr = adr; 1661 cmd_adr = adr & ~(wbufsize-1); 1662 1663 /* Let's determine this according to the interleave only once */ 1664 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9); 1665 1666 mutex_lock(&chip->mutex); 1667 ret = get_chip(map, chip, cmd_adr, FL_WRITING); 1668 if (ret) { 1669 mutex_unlock(&chip->mutex); 1670 return ret; 1671 } 1672 1673 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len); 1674 ENABLE_VPP(map); 1675 xip_disable(map, chip, cmd_adr); 1676 1677 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set 1678 [...], the device will not accept any more Write to Buffer commands". 1679 So we must check here and reset those bits if they're set. Otherwise 1680 we're just pissing in the wind */ 1681 if (chip->state != FL_STATUS) { 1682 map_write(map, CMD(0x70), cmd_adr); 1683 chip->state = FL_STATUS; 1684 } 1685 status = map_read(map, cmd_adr); 1686 if (map_word_bitsset(map, status, CMD(0x30))) { 1687 xip_enable(map, chip, cmd_adr); 1688 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); 1689 xip_disable(map, chip, cmd_adr); 1690 map_write(map, CMD(0x50), cmd_adr); 1691 map_write(map, CMD(0x70), cmd_adr); 1692 } 1693 1694 chip->state = FL_WRITING_TO_BUFFER; 1695 map_write(map, write_cmd, cmd_adr); 1696 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0); 1697 if (ret) { 1698 /* Argh. Not ready for write to buffer */ 1699 map_word Xstatus = map_read(map, cmd_adr); 1700 map_write(map, CMD(0x70), cmd_adr); 1701 chip->state = FL_STATUS; 1702 status = map_read(map, cmd_adr); 1703 map_write(map, CMD(0x50), cmd_adr); 1704 map_write(map, CMD(0x70), cmd_adr); 1705 xip_enable(map, chip, cmd_adr); 1706 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n", 1707 map->name, Xstatus.x[0], status.x[0]); 1708 goto out; 1709 } 1710 1711 /* Figure out the number of words to write */ 1712 word_gap = (-adr & (map_bankwidth(map)-1)); 1713 words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map)); 1714 if (!word_gap) { 1715 words--; 1716 } else { 1717 word_gap = map_bankwidth(map) - word_gap; 1718 adr -= word_gap; 1719 datum = map_word_ff(map); 1720 } 1721 1722 /* Write length of data to come */ 1723 map_write(map, CMD(words), cmd_adr ); 1724 1725 /* Write data */ 1726 vec = *pvec; 1727 vec_seek = *pvec_seek; 1728 do { 1729 int n = map_bankwidth(map) - word_gap; 1730 if (n > vec->iov_len - vec_seek) 1731 n = vec->iov_len - vec_seek; 1732 if (n > len) 1733 n = len; 1734 1735 if (!word_gap && len < map_bankwidth(map)) 1736 datum = map_word_ff(map); 1737 1738 datum = map_word_load_partial(map, datum, 1739 vec->iov_base + vec_seek, 1740 word_gap, n); 1741 1742 len -= n; 1743 word_gap += n; 1744 if (!len || word_gap == map_bankwidth(map)) { 1745 map_write(map, datum, adr); 1746 adr += map_bankwidth(map); 1747 word_gap = 0; 1748 } 1749 1750 vec_seek += n; 1751 if (vec_seek == vec->iov_len) { 1752 vec++; 1753 vec_seek = 0; 1754 } 1755 } while (len); 1756 *pvec = vec; 1757 *pvec_seek = vec_seek; 1758 1759 /* GO GO GO */ 1760 map_write(map, CMD(0xd0), cmd_adr); 1761 chip->state = FL_WRITING; 1762 1763 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, 1764 initial_adr, initial_len, 1765 chip->buffer_write_time, 1766 chip->buffer_write_time_max); 1767 if (ret) { 1768 map_write(map, CMD(0x70), cmd_adr); 1769 chip->state = FL_STATUS; 1770 xip_enable(map, chip, cmd_adr); 1771 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name); 1772 goto out; 1773 } 1774 1775 /* check for errors */ 1776 status = map_read(map, cmd_adr); 1777 if (map_word_bitsset(map, status, CMD(0x1a))) { 1778 unsigned long chipstatus = MERGESTATUS(status); 1779 1780 /* reset status */ 1781 map_write(map, CMD(0x50), cmd_adr); 1782 map_write(map, CMD(0x70), cmd_adr); 1783 xip_enable(map, chip, cmd_adr); 1784 1785 if (chipstatus & 0x02) { 1786 ret = -EROFS; 1787 } else if (chipstatus & 0x08) { 1788 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name); 1789 ret = -EIO; 1790 } else { 1791 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus); 1792 ret = -EINVAL; 1793 } 1794 1795 goto out; 1796 } 1797 1798 xip_enable(map, chip, cmd_adr); 1799 out: put_chip(map, chip, cmd_adr); 1800 mutex_unlock(&chip->mutex); 1801 return ret; 1802 } 1803 1804 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs, 1805 unsigned long count, loff_t to, size_t *retlen) 1806 { 1807 struct map_info *map = mtd->priv; 1808 struct cfi_private *cfi = map->fldrv_priv; 1809 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 1810 int ret = 0; 1811 int chipnum; 1812 unsigned long ofs, vec_seek, i; 1813 size_t len = 0; 1814 1815 for (i = 0; i < count; i++) 1816 len += vecs[i].iov_len; 1817 1818 *retlen = 0; 1819 if (!len) 1820 return 0; 1821 1822 chipnum = to >> cfi->chipshift; 1823 ofs = to - (chipnum << cfi->chipshift); 1824 vec_seek = 0; 1825 1826 do { 1827 /* We must not cross write block boundaries */ 1828 int size = wbufsize - (ofs & (wbufsize-1)); 1829 1830 if (size > len) 1831 size = len; 1832 ret = do_write_buffer(map, &cfi->chips[chipnum], 1833 ofs, &vecs, &vec_seek, size); 1834 if (ret) 1835 return ret; 1836 1837 ofs += size; 1838 (*retlen) += size; 1839 len -= size; 1840 1841 if (ofs >> cfi->chipshift) { 1842 chipnum ++; 1843 ofs = 0; 1844 if (chipnum == cfi->numchips) 1845 return 0; 1846 } 1847 1848 /* Be nice and reschedule with the chip in a usable state for other 1849 processes. */ 1850 cond_resched(); 1851 1852 } while (len); 1853 1854 return 0; 1855 } 1856 1857 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, 1858 size_t len, size_t *retlen, const u_char *buf) 1859 { 1860 struct kvec vec; 1861 1862 vec.iov_base = (void *) buf; 1863 vec.iov_len = len; 1864 1865 return cfi_intelext_writev(mtd, &vec, 1, to, retlen); 1866 } 1867 1868 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, 1869 unsigned long adr, int len, void *thunk) 1870 { 1871 struct cfi_private *cfi = map->fldrv_priv; 1872 map_word status; 1873 int retries = 3; 1874 int ret; 1875 1876 adr += chip->start; 1877 1878 retry: 1879 mutex_lock(&chip->mutex); 1880 ret = get_chip(map, chip, adr, FL_ERASING); 1881 if (ret) { 1882 mutex_unlock(&chip->mutex); 1883 return ret; 1884 } 1885 1886 XIP_INVAL_CACHED_RANGE(map, adr, len); 1887 ENABLE_VPP(map); 1888 xip_disable(map, chip, adr); 1889 1890 /* Clear the status register first */ 1891 map_write(map, CMD(0x50), adr); 1892 1893 /* Now erase */ 1894 map_write(map, CMD(0x20), adr); 1895 map_write(map, CMD(0xD0), adr); 1896 chip->state = FL_ERASING; 1897 chip->erase_suspended = 0; 1898 1899 ret = INVAL_CACHE_AND_WAIT(map, chip, adr, 1900 adr, len, 1901 chip->erase_time, 1902 chip->erase_time_max); 1903 if (ret) { 1904 map_write(map, CMD(0x70), adr); 1905 chip->state = FL_STATUS; 1906 xip_enable(map, chip, adr); 1907 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name); 1908 goto out; 1909 } 1910 1911 /* We've broken this before. It doesn't hurt to be safe */ 1912 map_write(map, CMD(0x70), adr); 1913 chip->state = FL_STATUS; 1914 status = map_read(map, adr); 1915 1916 /* check for errors */ 1917 if (map_word_bitsset(map, status, CMD(0x3a))) { 1918 unsigned long chipstatus = MERGESTATUS(status); 1919 1920 /* Reset the error bits */ 1921 map_write(map, CMD(0x50), adr); 1922 map_write(map, CMD(0x70), adr); 1923 xip_enable(map, chip, adr); 1924 1925 if ((chipstatus & 0x30) == 0x30) { 1926 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus); 1927 ret = -EINVAL; 1928 } else if (chipstatus & 0x02) { 1929 /* Protection bit set */ 1930 ret = -EROFS; 1931 } else if (chipstatus & 0x8) { 1932 /* Voltage */ 1933 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name); 1934 ret = -EIO; 1935 } else if (chipstatus & 0x20 && retries--) { 1936 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus); 1937 put_chip(map, chip, adr); 1938 mutex_unlock(&chip->mutex); 1939 goto retry; 1940 } else { 1941 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus); 1942 ret = -EIO; 1943 } 1944 1945 goto out; 1946 } 1947 1948 xip_enable(map, chip, adr); 1949 out: put_chip(map, chip, adr); 1950 mutex_unlock(&chip->mutex); 1951 return ret; 1952 } 1953 1954 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) 1955 { 1956 unsigned long ofs, len; 1957 int ret; 1958 1959 ofs = instr->addr; 1960 len = instr->len; 1961 1962 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); 1963 if (ret) 1964 return ret; 1965 1966 instr->state = MTD_ERASE_DONE; 1967 mtd_erase_callback(instr); 1968 1969 return 0; 1970 } 1971 1972 static void cfi_intelext_sync (struct mtd_info *mtd) 1973 { 1974 struct map_info *map = mtd->priv; 1975 struct cfi_private *cfi = map->fldrv_priv; 1976 int i; 1977 struct flchip *chip; 1978 int ret = 0; 1979 1980 for (i=0; !ret && i<cfi->numchips; i++) { 1981 chip = &cfi->chips[i]; 1982 1983 mutex_lock(&chip->mutex); 1984 ret = get_chip(map, chip, chip->start, FL_SYNCING); 1985 1986 if (!ret) { 1987 chip->oldstate = chip->state; 1988 chip->state = FL_SYNCING; 1989 /* No need to wake_up() on this state change - 1990 * as the whole point is that nobody can do anything 1991 * with the chip now anyway. 1992 */ 1993 } 1994 mutex_unlock(&chip->mutex); 1995 } 1996 1997 /* Unlock the chips again */ 1998 1999 for (i--; i >=0; i--) { 2000 chip = &cfi->chips[i]; 2001 2002 mutex_lock(&chip->mutex); 2003 2004 if (chip->state == FL_SYNCING) { 2005 chip->state = chip->oldstate; 2006 chip->oldstate = FL_READY; 2007 wake_up(&chip->wq); 2008 } 2009 mutex_unlock(&chip->mutex); 2010 } 2011 } 2012 2013 static int __xipram do_getlockstatus_oneblock(struct map_info *map, 2014 struct flchip *chip, 2015 unsigned long adr, 2016 int len, void *thunk) 2017 { 2018 struct cfi_private *cfi = map->fldrv_priv; 2019 int status, ofs_factor = cfi->interleave * cfi->device_type; 2020 2021 adr += chip->start; 2022 xip_disable(map, chip, adr+(2*ofs_factor)); 2023 map_write(map, CMD(0x90), adr+(2*ofs_factor)); 2024 chip->state = FL_JEDEC_QUERY; 2025 status = cfi_read_query(map, adr+(2*ofs_factor)); 2026 xip_enable(map, chip, 0); 2027 return status; 2028 } 2029 2030 #ifdef DEBUG_LOCK_BITS 2031 static int __xipram do_printlockstatus_oneblock(struct map_info *map, 2032 struct flchip *chip, 2033 unsigned long adr, 2034 int len, void *thunk) 2035 { 2036 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", 2037 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk)); 2038 return 0; 2039 } 2040 #endif 2041 2042 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1) 2043 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2) 2044 2045 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, 2046 unsigned long adr, int len, void *thunk) 2047 { 2048 struct cfi_private *cfi = map->fldrv_priv; 2049 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 2050 int udelay; 2051 int ret; 2052 2053 adr += chip->start; 2054 2055 mutex_lock(&chip->mutex); 2056 ret = get_chip(map, chip, adr, FL_LOCKING); 2057 if (ret) { 2058 mutex_unlock(&chip->mutex); 2059 return ret; 2060 } 2061 2062 ENABLE_VPP(map); 2063 xip_disable(map, chip, adr); 2064 2065 map_write(map, CMD(0x60), adr); 2066 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { 2067 map_write(map, CMD(0x01), adr); 2068 chip->state = FL_LOCKING; 2069 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { 2070 map_write(map, CMD(0xD0), adr); 2071 chip->state = FL_UNLOCKING; 2072 } else 2073 BUG(); 2074 2075 /* 2076 * If Instant Individual Block Locking supported then no need 2077 * to delay. 2078 */ 2079 udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0; 2080 2081 ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100); 2082 if (ret) { 2083 map_write(map, CMD(0x70), adr); 2084 chip->state = FL_STATUS; 2085 xip_enable(map, chip, adr); 2086 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name); 2087 goto out; 2088 } 2089 2090 xip_enable(map, chip, adr); 2091 out: put_chip(map, chip, adr); 2092 mutex_unlock(&chip->mutex); 2093 return ret; 2094 } 2095 2096 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2097 { 2098 int ret; 2099 2100 #ifdef DEBUG_LOCK_BITS 2101 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", 2102 __func__, ofs, len); 2103 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 2104 ofs, len, NULL); 2105 #endif 2106 2107 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, 2108 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); 2109 2110 #ifdef DEBUG_LOCK_BITS 2111 printk(KERN_DEBUG "%s: lock status after, ret=%d\n", 2112 __func__, ret); 2113 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 2114 ofs, len, NULL); 2115 #endif 2116 2117 return ret; 2118 } 2119 2120 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2121 { 2122 int ret; 2123 2124 #ifdef DEBUG_LOCK_BITS 2125 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", 2126 __func__, ofs, len); 2127 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 2128 ofs, len, NULL); 2129 #endif 2130 2131 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, 2132 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); 2133 2134 #ifdef DEBUG_LOCK_BITS 2135 printk(KERN_DEBUG "%s: lock status after, ret=%d\n", 2136 __func__, ret); 2137 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 2138 ofs, len, NULL); 2139 #endif 2140 2141 return ret; 2142 } 2143 2144 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs, 2145 uint64_t len) 2146 { 2147 return cfi_varsize_frob(mtd, do_getlockstatus_oneblock, 2148 ofs, len, NULL) ? 1 : 0; 2149 } 2150 2151 #ifdef CONFIG_MTD_OTP 2152 2153 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, 2154 u_long data_offset, u_char *buf, u_int size, 2155 u_long prot_offset, u_int groupno, u_int groupsize); 2156 2157 static int __xipram 2158 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset, 2159 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) 2160 { 2161 struct cfi_private *cfi = map->fldrv_priv; 2162 int ret; 2163 2164 mutex_lock(&chip->mutex); 2165 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); 2166 if (ret) { 2167 mutex_unlock(&chip->mutex); 2168 return ret; 2169 } 2170 2171 /* let's ensure we're not reading back cached data from array mode */ 2172 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size); 2173 2174 xip_disable(map, chip, chip->start); 2175 if (chip->state != FL_JEDEC_QUERY) { 2176 map_write(map, CMD(0x90), chip->start); 2177 chip->state = FL_JEDEC_QUERY; 2178 } 2179 map_copy_from(map, buf, chip->start + offset, size); 2180 xip_enable(map, chip, chip->start); 2181 2182 /* then ensure we don't keep OTP data in the cache */ 2183 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size); 2184 2185 put_chip(map, chip, chip->start); 2186 mutex_unlock(&chip->mutex); 2187 return 0; 2188 } 2189 2190 static int 2191 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset, 2192 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) 2193 { 2194 int ret; 2195 2196 while (size) { 2197 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1); 2198 int gap = offset - bus_ofs; 2199 int n = min_t(int, size, map_bankwidth(map)-gap); 2200 map_word datum = map_word_ff(map); 2201 2202 datum = map_word_load_partial(map, datum, buf, gap, n); 2203 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE); 2204 if (ret) 2205 return ret; 2206 2207 offset += n; 2208 buf += n; 2209 size -= n; 2210 } 2211 2212 return 0; 2213 } 2214 2215 static int 2216 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset, 2217 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) 2218 { 2219 struct cfi_private *cfi = map->fldrv_priv; 2220 map_word datum; 2221 2222 /* make sure area matches group boundaries */ 2223 if (size != grpsz) 2224 return -EXDEV; 2225 2226 datum = map_word_ff(map); 2227 datum = map_word_clr(map, datum, CMD(1 << grpno)); 2228 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE); 2229 } 2230 2231 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, 2232 size_t *retlen, u_char *buf, 2233 otp_op_t action, int user_regs) 2234 { 2235 struct map_info *map = mtd->priv; 2236 struct cfi_private *cfi = map->fldrv_priv; 2237 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 2238 struct flchip *chip; 2239 struct cfi_intelext_otpinfo *otp; 2240 u_long devsize, reg_prot_offset, data_offset; 2241 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size; 2242 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups; 2243 int ret; 2244 2245 *retlen = 0; 2246 2247 /* Check that we actually have some OTP registers */ 2248 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields) 2249 return -ENODATA; 2250 2251 /* we need real chips here not virtual ones */ 2252 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave; 2253 chip_step = devsize >> cfi->chipshift; 2254 chip_num = 0; 2255 2256 /* Some chips have OTP located in the _top_ partition only. 2257 For example: Intel 28F256L18T (T means top-parameter device) */ 2258 if (cfi->mfr == CFI_MFR_INTEL) { 2259 switch (cfi->id) { 2260 case 0x880b: 2261 case 0x880c: 2262 case 0x880d: 2263 chip_num = chip_step - 1; 2264 } 2265 } 2266 2267 for ( ; chip_num < cfi->numchips; chip_num += chip_step) { 2268 chip = &cfi->chips[chip_num]; 2269 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0]; 2270 2271 /* first OTP region */ 2272 field = 0; 2273 reg_prot_offset = extp->ProtRegAddr; 2274 reg_fact_groups = 1; 2275 reg_fact_size = 1 << extp->FactProtRegSize; 2276 reg_user_groups = 1; 2277 reg_user_size = 1 << extp->UserProtRegSize; 2278 2279 while (len > 0) { 2280 /* flash geometry fixup */ 2281 data_offset = reg_prot_offset + 1; 2282 data_offset *= cfi->interleave * cfi->device_type; 2283 reg_prot_offset *= cfi->interleave * cfi->device_type; 2284 reg_fact_size *= cfi->interleave; 2285 reg_user_size *= cfi->interleave; 2286 2287 if (user_regs) { 2288 groups = reg_user_groups; 2289 groupsize = reg_user_size; 2290 /* skip over factory reg area */ 2291 groupno = reg_fact_groups; 2292 data_offset += reg_fact_groups * reg_fact_size; 2293 } else { 2294 groups = reg_fact_groups; 2295 groupsize = reg_fact_size; 2296 groupno = 0; 2297 } 2298 2299 while (len > 0 && groups > 0) { 2300 if (!action) { 2301 /* 2302 * Special case: if action is NULL 2303 * we fill buf with otp_info records. 2304 */ 2305 struct otp_info *otpinfo; 2306 map_word lockword; 2307 len -= sizeof(struct otp_info); 2308 if (len <= 0) 2309 return -ENOSPC; 2310 ret = do_otp_read(map, chip, 2311 reg_prot_offset, 2312 (u_char *)&lockword, 2313 map_bankwidth(map), 2314 0, 0, 0); 2315 if (ret) 2316 return ret; 2317 otpinfo = (struct otp_info *)buf; 2318 otpinfo->start = from; 2319 otpinfo->length = groupsize; 2320 otpinfo->locked = 2321 !map_word_bitsset(map, lockword, 2322 CMD(1 << groupno)); 2323 from += groupsize; 2324 buf += sizeof(*otpinfo); 2325 *retlen += sizeof(*otpinfo); 2326 } else if (from >= groupsize) { 2327 from -= groupsize; 2328 data_offset += groupsize; 2329 } else { 2330 int size = groupsize; 2331 data_offset += from; 2332 size -= from; 2333 from = 0; 2334 if (size > len) 2335 size = len; 2336 ret = action(map, chip, data_offset, 2337 buf, size, reg_prot_offset, 2338 groupno, groupsize); 2339 if (ret < 0) 2340 return ret; 2341 buf += size; 2342 len -= size; 2343 *retlen += size; 2344 data_offset += size; 2345 } 2346 groupno++; 2347 groups--; 2348 } 2349 2350 /* next OTP region */ 2351 if (++field == extp->NumProtectionFields) 2352 break; 2353 reg_prot_offset = otp->ProtRegAddr; 2354 reg_fact_groups = otp->FactGroups; 2355 reg_fact_size = 1 << otp->FactProtRegSize; 2356 reg_user_groups = otp->UserGroups; 2357 reg_user_size = 1 << otp->UserProtRegSize; 2358 otp++; 2359 } 2360 } 2361 2362 return 0; 2363 } 2364 2365 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 2366 size_t len, size_t *retlen, 2367 u_char *buf) 2368 { 2369 return cfi_intelext_otp_walk(mtd, from, len, retlen, 2370 buf, do_otp_read, 0); 2371 } 2372 2373 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 2374 size_t len, size_t *retlen, 2375 u_char *buf) 2376 { 2377 return cfi_intelext_otp_walk(mtd, from, len, retlen, 2378 buf, do_otp_read, 1); 2379 } 2380 2381 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 2382 size_t len, size_t *retlen, 2383 u_char *buf) 2384 { 2385 return cfi_intelext_otp_walk(mtd, from, len, retlen, 2386 buf, do_otp_write, 1); 2387 } 2388 2389 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd, 2390 loff_t from, size_t len) 2391 { 2392 size_t retlen; 2393 return cfi_intelext_otp_walk(mtd, from, len, &retlen, 2394 NULL, do_otp_lock, 1); 2395 } 2396 2397 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, 2398 struct otp_info *buf, size_t len) 2399 { 2400 size_t retlen; 2401 int ret; 2402 2403 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0); 2404 return ret ? : retlen; 2405 } 2406 2407 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, 2408 struct otp_info *buf, size_t len) 2409 { 2410 size_t retlen; 2411 int ret; 2412 2413 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1); 2414 return ret ? : retlen; 2415 } 2416 2417 #endif 2418 2419 static void cfi_intelext_save_locks(struct mtd_info *mtd) 2420 { 2421 struct mtd_erase_region_info *region; 2422 int block, status, i; 2423 unsigned long adr; 2424 size_t len; 2425 2426 for (i = 0; i < mtd->numeraseregions; i++) { 2427 region = &mtd->eraseregions[i]; 2428 if (!region->lockmap) 2429 continue; 2430 2431 for (block = 0; block < region->numblocks; block++){ 2432 len = region->erasesize; 2433 adr = region->offset + block * len; 2434 2435 status = cfi_varsize_frob(mtd, 2436 do_getlockstatus_oneblock, adr, len, NULL); 2437 if (status) 2438 set_bit(block, region->lockmap); 2439 else 2440 clear_bit(block, region->lockmap); 2441 } 2442 } 2443 } 2444 2445 static int cfi_intelext_suspend(struct mtd_info *mtd) 2446 { 2447 struct map_info *map = mtd->priv; 2448 struct cfi_private *cfi = map->fldrv_priv; 2449 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 2450 int i; 2451 struct flchip *chip; 2452 int ret = 0; 2453 2454 if ((mtd->flags & MTD_POWERUP_LOCK) 2455 && extp && (extp->FeatureSupport & (1 << 5))) 2456 cfi_intelext_save_locks(mtd); 2457 2458 for (i=0; !ret && i<cfi->numchips; i++) { 2459 chip = &cfi->chips[i]; 2460 2461 mutex_lock(&chip->mutex); 2462 2463 switch (chip->state) { 2464 case FL_READY: 2465 case FL_STATUS: 2466 case FL_CFI_QUERY: 2467 case FL_JEDEC_QUERY: 2468 if (chip->oldstate == FL_READY) { 2469 /* place the chip in a known state before suspend */ 2470 map_write(map, CMD(0xFF), cfi->chips[i].start); 2471 chip->oldstate = chip->state; 2472 chip->state = FL_PM_SUSPENDED; 2473 /* No need to wake_up() on this state change - 2474 * as the whole point is that nobody can do anything 2475 * with the chip now anyway. 2476 */ 2477 } else { 2478 /* There seems to be an operation pending. We must wait for it. */ 2479 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); 2480 ret = -EAGAIN; 2481 } 2482 break; 2483 default: 2484 /* Should we actually wait? Once upon a time these routines weren't 2485 allowed to. Or should we return -EAGAIN, because the upper layers 2486 ought to have already shut down anything which was using the device 2487 anyway? The latter for now. */ 2488 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); 2489 ret = -EAGAIN; 2490 case FL_PM_SUSPENDED: 2491 break; 2492 } 2493 mutex_unlock(&chip->mutex); 2494 } 2495 2496 /* Unlock the chips again */ 2497 2498 if (ret) { 2499 for (i--; i >=0; i--) { 2500 chip = &cfi->chips[i]; 2501 2502 mutex_lock(&chip->mutex); 2503 2504 if (chip->state == FL_PM_SUSPENDED) { 2505 /* No need to force it into a known state here, 2506 because we're returning failure, and it didn't 2507 get power cycled */ 2508 chip->state = chip->oldstate; 2509 chip->oldstate = FL_READY; 2510 wake_up(&chip->wq); 2511 } 2512 mutex_unlock(&chip->mutex); 2513 } 2514 } 2515 2516 return ret; 2517 } 2518 2519 static void cfi_intelext_restore_locks(struct mtd_info *mtd) 2520 { 2521 struct mtd_erase_region_info *region; 2522 int block, i; 2523 unsigned long adr; 2524 size_t len; 2525 2526 for (i = 0; i < mtd->numeraseregions; i++) { 2527 region = &mtd->eraseregions[i]; 2528 if (!region->lockmap) 2529 continue; 2530 2531 for (block = 0; block < region->numblocks; block++) { 2532 len = region->erasesize; 2533 adr = region->offset + block * len; 2534 2535 if (!test_bit(block, region->lockmap)) 2536 cfi_intelext_unlock(mtd, adr, len); 2537 } 2538 } 2539 } 2540 2541 static void cfi_intelext_resume(struct mtd_info *mtd) 2542 { 2543 struct map_info *map = mtd->priv; 2544 struct cfi_private *cfi = map->fldrv_priv; 2545 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 2546 int i; 2547 struct flchip *chip; 2548 2549 for (i=0; i<cfi->numchips; i++) { 2550 2551 chip = &cfi->chips[i]; 2552 2553 mutex_lock(&chip->mutex); 2554 2555 /* Go to known state. Chip may have been power cycled */ 2556 if (chip->state == FL_PM_SUSPENDED) { 2557 map_write(map, CMD(0xFF), cfi->chips[i].start); 2558 chip->oldstate = chip->state = FL_READY; 2559 wake_up(&chip->wq); 2560 } 2561 2562 mutex_unlock(&chip->mutex); 2563 } 2564 2565 if ((mtd->flags & MTD_POWERUP_LOCK) 2566 && extp && (extp->FeatureSupport & (1 << 5))) 2567 cfi_intelext_restore_locks(mtd); 2568 } 2569 2570 static int cfi_intelext_reset(struct mtd_info *mtd) 2571 { 2572 struct map_info *map = mtd->priv; 2573 struct cfi_private *cfi = map->fldrv_priv; 2574 int i, ret; 2575 2576 for (i=0; i < cfi->numchips; i++) { 2577 struct flchip *chip = &cfi->chips[i]; 2578 2579 /* force the completion of any ongoing operation 2580 and switch to array mode so any bootloader in 2581 flash is accessible for soft reboot. */ 2582 mutex_lock(&chip->mutex); 2583 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN); 2584 if (!ret) { 2585 map_write(map, CMD(0xff), chip->start); 2586 chip->state = FL_SHUTDOWN; 2587 put_chip(map, chip, chip->start); 2588 } 2589 mutex_unlock(&chip->mutex); 2590 } 2591 2592 return 0; 2593 } 2594 2595 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val, 2596 void *v) 2597 { 2598 struct mtd_info *mtd; 2599 2600 mtd = container_of(nb, struct mtd_info, reboot_notifier); 2601 cfi_intelext_reset(mtd); 2602 return NOTIFY_DONE; 2603 } 2604 2605 static void cfi_intelext_destroy(struct mtd_info *mtd) 2606 { 2607 struct map_info *map = mtd->priv; 2608 struct cfi_private *cfi = map->fldrv_priv; 2609 struct mtd_erase_region_info *region; 2610 int i; 2611 cfi_intelext_reset(mtd); 2612 unregister_reboot_notifier(&mtd->reboot_notifier); 2613 kfree(cfi->cmdset_priv); 2614 kfree(cfi->cfiq); 2615 kfree(cfi->chips[0].priv); 2616 kfree(cfi); 2617 for (i = 0; i < mtd->numeraseregions; i++) { 2618 region = &mtd->eraseregions[i]; 2619 if (region->lockmap) 2620 kfree(region->lockmap); 2621 } 2622 kfree(mtd->eraseregions); 2623 } 2624 2625 MODULE_LICENSE("GPL"); 2626 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); 2627 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); 2628 MODULE_ALIAS("cfi_cmdset_0003"); 2629 MODULE_ALIAS("cfi_cmdset_0200"); 2630