1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * usb.c - Hardware dependent module for USB 4 * 5 * Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG 6 */ 7 8 #include <linux/module.h> 9 #include <linux/fs.h> 10 #include <linux/usb.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/cdev.h> 14 #include <linux/device.h> 15 #include <linux/list.h> 16 #include <linux/completion.h> 17 #include <linux/mutex.h> 18 #include <linux/spinlock.h> 19 #include <linux/interrupt.h> 20 #include <linux/workqueue.h> 21 #include <linux/sysfs.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/etherdevice.h> 24 #include <linux/uaccess.h> 25 #include <linux/most.h> 26 27 #define USB_MTU 512 28 #define NO_ISOCHRONOUS_URB 0 29 #define AV_PACKETS_PER_XACT 2 30 #define BUF_CHAIN_SIZE 0xFFFF 31 #define MAX_NUM_ENDPOINTS 30 32 #define MAX_SUFFIX_LEN 10 33 #define MAX_STRING_LEN 80 34 #define MAX_BUF_SIZE 0xFFFF 35 36 #define USB_VENDOR_ID_SMSC 0x0424 /* VID: SMSC */ 37 #define USB_DEV_ID_BRDG 0xC001 /* PID: USB Bridge */ 38 #define USB_DEV_ID_OS81118 0xCF18 /* PID: USB OS81118 */ 39 #define USB_DEV_ID_OS81119 0xCF19 /* PID: USB OS81119 */ 40 #define USB_DEV_ID_OS81210 0xCF30 /* PID: USB OS81210 */ 41 /* DRCI Addresses */ 42 #define DRCI_REG_NI_STATE 0x0100 43 #define DRCI_REG_PACKET_BW 0x0101 44 #define DRCI_REG_NODE_ADDR 0x0102 45 #define DRCI_REG_NODE_POS 0x0103 46 #define DRCI_REG_MEP_FILTER 0x0140 47 #define DRCI_REG_HASH_TBL0 0x0141 48 #define DRCI_REG_HASH_TBL1 0x0142 49 #define DRCI_REG_HASH_TBL2 0x0143 50 #define DRCI_REG_HASH_TBL3 0x0144 51 #define DRCI_REG_HW_ADDR_HI 0x0145 52 #define DRCI_REG_HW_ADDR_MI 0x0146 53 #define DRCI_REG_HW_ADDR_LO 0x0147 54 #define DRCI_REG_BASE 0x1100 55 #define DRCI_COMMAND 0x02 56 #define DRCI_READ_REQ 0xA0 57 #define DRCI_WRITE_REQ 0xA1 58 59 /** 60 * struct most_dci_obj - Direct Communication Interface 61 * @kobj:position in sysfs 62 * @usb_device: pointer to the usb device 63 * @reg_addr: register address for arbitrary DCI access 64 */ 65 struct most_dci_obj { 66 struct device dev; 67 struct usb_device *usb_device; 68 u16 reg_addr; 69 }; 70 71 #define to_dci_obj(p) container_of(p, struct most_dci_obj, dev) 72 73 struct most_dev; 74 75 struct clear_hold_work { 76 struct work_struct ws; 77 struct most_dev *mdev; 78 unsigned int channel; 79 int pipe; 80 }; 81 82 #define to_clear_hold_work(w) container_of(w, struct clear_hold_work, ws) 83 84 /** 85 * struct most_dev - holds all usb interface specific stuff 86 * @usb_device: pointer to usb device 87 * @iface: hardware interface 88 * @cap: channel capabilities 89 * @conf: channel configuration 90 * @dci: direct communication interface of hardware 91 * @ep_address: endpoint address table 92 * @description: device description 93 * @suffix: suffix for channel name 94 * @channel_lock: synchronize channel access 95 * @padding_active: indicates channel uses padding 96 * @is_channel_healthy: health status table of each channel 97 * @busy_urbs: list of anchored items 98 * @io_mutex: synchronize I/O with disconnect 99 * @link_stat_timer: timer for link status reports 100 * @poll_work_obj: work for polling link status 101 */ 102 struct most_dev { 103 struct device dev; 104 struct usb_device *usb_device; 105 struct most_interface iface; 106 struct most_channel_capability *cap; 107 struct most_channel_config *conf; 108 struct most_dci_obj *dci; 109 u8 *ep_address; 110 char description[MAX_STRING_LEN]; 111 char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN]; 112 spinlock_t channel_lock[MAX_NUM_ENDPOINTS]; /* sync channel access */ 113 bool padding_active[MAX_NUM_ENDPOINTS]; 114 bool is_channel_healthy[MAX_NUM_ENDPOINTS]; 115 struct clear_hold_work clear_work[MAX_NUM_ENDPOINTS]; 116 struct usb_anchor *busy_urbs; 117 struct mutex io_mutex; 118 struct timer_list link_stat_timer; 119 struct work_struct poll_work_obj; 120 void (*on_netinfo)(struct most_interface *most_iface, 121 unsigned char link_state, unsigned char *addrs); 122 }; 123 124 #define to_mdev(d) container_of(d, struct most_dev, iface) 125 #define to_mdev_from_dev(d) container_of(d, struct most_dev, dev) 126 #define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj) 127 128 static void wq_clear_halt(struct work_struct *wq_obj); 129 static void wq_netinfo(struct work_struct *wq_obj); 130 131 /** 132 * drci_rd_reg - read a DCI register 133 * @dev: usb device 134 * @reg: register address 135 * @buf: buffer to store data 136 * 137 * This is reads data from INIC's direct register communication interface 138 */ 139 static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf) 140 { 141 int retval; 142 __le16 *dma_buf; 143 u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE; 144 145 dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL); 146 if (!dma_buf) 147 return -ENOMEM; 148 149 retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 150 DRCI_READ_REQ, req_type, 151 0x0000, 152 reg, dma_buf, sizeof(*dma_buf), 5 * HZ); 153 *buf = le16_to_cpu(*dma_buf); 154 kfree(dma_buf); 155 156 if (retval < 0) 157 return retval; 158 return 0; 159 } 160 161 /** 162 * drci_wr_reg - write a DCI register 163 * @dev: usb device 164 * @reg: register address 165 * @data: data to write 166 * 167 * This is writes data to INIC's direct register communication interface 168 */ 169 static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data) 170 { 171 return usb_control_msg(dev, 172 usb_sndctrlpipe(dev, 0), 173 DRCI_WRITE_REQ, 174 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 175 data, 176 reg, 177 NULL, 178 0, 179 5 * HZ); 180 } 181 182 static inline int start_sync_ep(struct usb_device *usb_dev, u16 ep) 183 { 184 return drci_wr_reg(usb_dev, DRCI_REG_BASE + DRCI_COMMAND + ep * 16, 1); 185 } 186 187 /** 188 * get_stream_frame_size - calculate frame size of current configuration 189 * @dev: device structure 190 * @cfg: channel configuration 191 */ 192 static unsigned int get_stream_frame_size(struct device *dev, 193 struct most_channel_config *cfg) 194 { 195 unsigned int frame_size; 196 unsigned int sub_size = cfg->subbuffer_size; 197 198 if (!sub_size) { 199 dev_warn(dev, "Misconfig: Subbuffer size zero.\n"); 200 return 0; 201 } 202 switch (cfg->data_type) { 203 case MOST_CH_ISOC: 204 frame_size = AV_PACKETS_PER_XACT * sub_size; 205 break; 206 case MOST_CH_SYNC: 207 if (cfg->packets_per_xact == 0) { 208 dev_warn(dev, "Misconfig: Packets per XACT zero\n"); 209 frame_size = 0; 210 } else if (cfg->packets_per_xact == 0xFF) { 211 frame_size = (USB_MTU / sub_size) * sub_size; 212 } else { 213 frame_size = cfg->packets_per_xact * sub_size; 214 } 215 break; 216 default: 217 dev_warn(dev, "Query frame size of non-streaming channel\n"); 218 frame_size = 0; 219 break; 220 } 221 return frame_size; 222 } 223 224 /** 225 * hdm_poison_channel - mark buffers of this channel as invalid 226 * @iface: pointer to the interface 227 * @channel: channel ID 228 * 229 * This unlinks all URBs submitted to the HCD, 230 * calls the associated completion function of the core and removes 231 * them from the list. 232 * 233 * Returns 0 on success or error code otherwise. 234 */ 235 static int hdm_poison_channel(struct most_interface *iface, int channel) 236 { 237 struct most_dev *mdev = to_mdev(iface); 238 unsigned long flags; 239 spinlock_t *lock; /* temp. lock */ 240 241 if (channel < 0 || channel >= iface->num_channels) { 242 dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n"); 243 return -ECHRNG; 244 } 245 246 lock = mdev->channel_lock + channel; 247 spin_lock_irqsave(lock, flags); 248 mdev->is_channel_healthy[channel] = false; 249 spin_unlock_irqrestore(lock, flags); 250 251 cancel_work_sync(&mdev->clear_work[channel].ws); 252 253 mutex_lock(&mdev->io_mutex); 254 usb_kill_anchored_urbs(&mdev->busy_urbs[channel]); 255 if (mdev->padding_active[channel]) 256 mdev->padding_active[channel] = false; 257 258 if (mdev->conf[channel].data_type == MOST_CH_ASYNC) { 259 del_timer_sync(&mdev->link_stat_timer); 260 cancel_work_sync(&mdev->poll_work_obj); 261 } 262 mutex_unlock(&mdev->io_mutex); 263 return 0; 264 } 265 266 /** 267 * hdm_add_padding - add padding bytes 268 * @mdev: most device 269 * @channel: channel ID 270 * @mbo: buffer object 271 * 272 * This inserts the INIC hardware specific padding bytes into a streaming 273 * channel's buffer 274 */ 275 static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo) 276 { 277 struct most_channel_config *conf = &mdev->conf[channel]; 278 unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf); 279 unsigned int j, num_frames; 280 281 if (!frame_size) 282 return -EINVAL; 283 num_frames = mbo->buffer_length / frame_size; 284 285 if (num_frames < 1) { 286 dev_err(&mdev->usb_device->dev, 287 "Missed minimal transfer unit.\n"); 288 return -EINVAL; 289 } 290 291 for (j = num_frames - 1; j > 0; j--) 292 memmove(mbo->virt_address + j * USB_MTU, 293 mbo->virt_address + j * frame_size, 294 frame_size); 295 mbo->buffer_length = num_frames * USB_MTU; 296 return 0; 297 } 298 299 /** 300 * hdm_remove_padding - remove padding bytes 301 * @mdev: most device 302 * @channel: channel ID 303 * @mbo: buffer object 304 * 305 * This takes the INIC hardware specific padding bytes off a streaming 306 * channel's buffer. 307 */ 308 static int hdm_remove_padding(struct most_dev *mdev, int channel, 309 struct mbo *mbo) 310 { 311 struct most_channel_config *const conf = &mdev->conf[channel]; 312 unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf); 313 unsigned int j, num_frames; 314 315 if (!frame_size) 316 return -EINVAL; 317 num_frames = mbo->processed_length / USB_MTU; 318 319 for (j = 1; j < num_frames; j++) 320 memmove(mbo->virt_address + frame_size * j, 321 mbo->virt_address + USB_MTU * j, 322 frame_size); 323 324 mbo->processed_length = frame_size * num_frames; 325 return 0; 326 } 327 328 /** 329 * hdm_write_completion - completion function for submitted Tx URBs 330 * @urb: the URB that has been completed 331 * 332 * This checks the status of the completed URB. In case the URB has been 333 * unlinked before, it is immediately freed. On any other error the MBO 334 * transfer flag is set. On success it frees allocated resources and calls 335 * the completion function. 336 * 337 * Context: interrupt! 338 */ 339 static void hdm_write_completion(struct urb *urb) 340 { 341 struct mbo *mbo = urb->context; 342 struct most_dev *mdev = to_mdev(mbo->ifp); 343 unsigned int channel = mbo->hdm_channel_id; 344 spinlock_t *lock = mdev->channel_lock + channel; 345 unsigned long flags; 346 347 spin_lock_irqsave(lock, flags); 348 349 mbo->processed_length = 0; 350 mbo->status = MBO_E_INVAL; 351 if (likely(mdev->is_channel_healthy[channel])) { 352 switch (urb->status) { 353 case 0: 354 case -ESHUTDOWN: 355 mbo->processed_length = urb->actual_length; 356 mbo->status = MBO_SUCCESS; 357 break; 358 case -EPIPE: 359 dev_warn(&mdev->usb_device->dev, 360 "Broken pipe on ep%02x\n", 361 mdev->ep_address[channel]); 362 mdev->is_channel_healthy[channel] = false; 363 mdev->clear_work[channel].pipe = urb->pipe; 364 schedule_work(&mdev->clear_work[channel].ws); 365 break; 366 case -ENODEV: 367 case -EPROTO: 368 mbo->status = MBO_E_CLOSE; 369 break; 370 } 371 } 372 373 spin_unlock_irqrestore(lock, flags); 374 375 if (likely(mbo->complete)) 376 mbo->complete(mbo); 377 usb_free_urb(urb); 378 } 379 380 /** 381 * hdm_read_completion - completion function for submitted Rx URBs 382 * @urb: the URB that has been completed 383 * 384 * This checks the status of the completed URB. In case the URB has been 385 * unlinked before it is immediately freed. On any other error the MBO transfer 386 * flag is set. On success it frees allocated resources, removes 387 * padding bytes -if necessary- and calls the completion function. 388 * 389 * Context: interrupt! 390 */ 391 static void hdm_read_completion(struct urb *urb) 392 { 393 struct mbo *mbo = urb->context; 394 struct most_dev *mdev = to_mdev(mbo->ifp); 395 unsigned int channel = mbo->hdm_channel_id; 396 struct device *dev = &mdev->usb_device->dev; 397 spinlock_t *lock = mdev->channel_lock + channel; 398 unsigned long flags; 399 400 spin_lock_irqsave(lock, flags); 401 402 mbo->processed_length = 0; 403 mbo->status = MBO_E_INVAL; 404 if (likely(mdev->is_channel_healthy[channel])) { 405 switch (urb->status) { 406 case 0: 407 case -ESHUTDOWN: 408 mbo->processed_length = urb->actual_length; 409 mbo->status = MBO_SUCCESS; 410 if (mdev->padding_active[channel] && 411 hdm_remove_padding(mdev, channel, mbo)) { 412 mbo->processed_length = 0; 413 mbo->status = MBO_E_INVAL; 414 } 415 break; 416 case -EPIPE: 417 dev_warn(dev, "Broken pipe on ep%02x\n", 418 mdev->ep_address[channel]); 419 mdev->is_channel_healthy[channel] = false; 420 mdev->clear_work[channel].pipe = urb->pipe; 421 schedule_work(&mdev->clear_work[channel].ws); 422 break; 423 case -ENODEV: 424 case -EPROTO: 425 mbo->status = MBO_E_CLOSE; 426 break; 427 case -EOVERFLOW: 428 dev_warn(dev, "Babble on ep%02x\n", 429 mdev->ep_address[channel]); 430 break; 431 } 432 } 433 434 spin_unlock_irqrestore(lock, flags); 435 436 if (likely(mbo->complete)) 437 mbo->complete(mbo); 438 usb_free_urb(urb); 439 } 440 441 /** 442 * hdm_enqueue - receive a buffer to be used for data transfer 443 * @iface: interface to enqueue to 444 * @channel: ID of the channel 445 * @mbo: pointer to the buffer object 446 * 447 * This allocates a new URB and fills it according to the channel 448 * that is being used for transmission of data. Before the URB is 449 * submitted it is stored in the private anchor list. 450 * 451 * Returns 0 on success. On any error the URB is freed and a error code 452 * is returned. 453 * 454 * Context: Could in _some_ cases be interrupt! 455 */ 456 static int hdm_enqueue(struct most_interface *iface, int channel, 457 struct mbo *mbo) 458 { 459 struct most_dev *mdev = to_mdev(iface); 460 struct most_channel_config *conf; 461 int retval = 0; 462 struct urb *urb; 463 unsigned long length; 464 void *virt_address; 465 466 if (!mbo) 467 return -EINVAL; 468 if (iface->num_channels <= channel || channel < 0) 469 return -ECHRNG; 470 471 urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_KERNEL); 472 if (!urb) 473 return -ENOMEM; 474 475 conf = &mdev->conf[channel]; 476 477 mutex_lock(&mdev->io_mutex); 478 if (!mdev->usb_device) { 479 retval = -ENODEV; 480 goto err_free_urb; 481 } 482 483 if ((conf->direction & MOST_CH_TX) && mdev->padding_active[channel] && 484 hdm_add_padding(mdev, channel, mbo)) { 485 retval = -EINVAL; 486 goto err_free_urb; 487 } 488 489 urb->transfer_dma = mbo->bus_address; 490 virt_address = mbo->virt_address; 491 length = mbo->buffer_length; 492 493 if (conf->direction & MOST_CH_TX) { 494 usb_fill_bulk_urb(urb, mdev->usb_device, 495 usb_sndbulkpipe(mdev->usb_device, 496 mdev->ep_address[channel]), 497 virt_address, 498 length, 499 hdm_write_completion, 500 mbo); 501 if (conf->data_type != MOST_CH_ISOC && 502 conf->data_type != MOST_CH_SYNC) 503 urb->transfer_flags |= URB_ZERO_PACKET; 504 } else { 505 usb_fill_bulk_urb(urb, mdev->usb_device, 506 usb_rcvbulkpipe(mdev->usb_device, 507 mdev->ep_address[channel]), 508 virt_address, 509 length + conf->extra_len, 510 hdm_read_completion, 511 mbo); 512 } 513 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 514 515 usb_anchor_urb(urb, &mdev->busy_urbs[channel]); 516 517 retval = usb_submit_urb(urb, GFP_KERNEL); 518 if (retval) { 519 dev_err(&mdev->usb_device->dev, 520 "URB submit failed with error %d.\n", retval); 521 goto err_unanchor_urb; 522 } 523 mutex_unlock(&mdev->io_mutex); 524 return 0; 525 526 err_unanchor_urb: 527 usb_unanchor_urb(urb); 528 err_free_urb: 529 usb_free_urb(urb); 530 mutex_unlock(&mdev->io_mutex); 531 return retval; 532 } 533 534 static void *hdm_dma_alloc(struct mbo *mbo, u32 size) 535 { 536 struct most_dev *mdev = to_mdev(mbo->ifp); 537 538 return usb_alloc_coherent(mdev->usb_device, size, GFP_KERNEL, 539 &mbo->bus_address); 540 } 541 542 static void hdm_dma_free(struct mbo *mbo, u32 size) 543 { 544 struct most_dev *mdev = to_mdev(mbo->ifp); 545 546 usb_free_coherent(mdev->usb_device, size, mbo->virt_address, 547 mbo->bus_address); 548 } 549 550 /** 551 * hdm_configure_channel - receive channel configuration from core 552 * @iface: interface 553 * @channel: channel ID 554 * @conf: structure that holds the configuration information 555 * 556 * The attached network interface controller (NIC) supports a padding mode 557 * to avoid short packets on USB, hence increasing the performance due to a 558 * lower interrupt load. This mode is default for synchronous data and can 559 * be switched on for isochronous data. In case padding is active the 560 * driver needs to know the frame size of the payload in order to calculate 561 * the number of bytes it needs to pad when transmitting or to cut off when 562 * receiving data. 563 * 564 */ 565 static int hdm_configure_channel(struct most_interface *iface, int channel, 566 struct most_channel_config *conf) 567 { 568 unsigned int num_frames; 569 unsigned int frame_size; 570 struct most_dev *mdev = to_mdev(iface); 571 struct device *dev = &mdev->usb_device->dev; 572 573 if (!conf) { 574 dev_err(dev, "Bad config pointer.\n"); 575 return -EINVAL; 576 } 577 if (channel < 0 || channel >= iface->num_channels) { 578 dev_err(dev, "Channel ID out of range.\n"); 579 return -EINVAL; 580 } 581 582 mdev->is_channel_healthy[channel] = true; 583 mdev->clear_work[channel].channel = channel; 584 mdev->clear_work[channel].mdev = mdev; 585 INIT_WORK(&mdev->clear_work[channel].ws, wq_clear_halt); 586 587 if (!conf->num_buffers || !conf->buffer_size) { 588 dev_err(dev, "Misconfig: buffer size or #buffers zero.\n"); 589 return -EINVAL; 590 } 591 592 if (conf->data_type != MOST_CH_SYNC && 593 !(conf->data_type == MOST_CH_ISOC && 594 conf->packets_per_xact != 0xFF)) { 595 mdev->padding_active[channel] = false; 596 /* 597 * Since the NIC's padding mode is not going to be 598 * used, we can skip the frame size calculations and 599 * move directly on to exit. 600 */ 601 goto exit; 602 } 603 604 mdev->padding_active[channel] = true; 605 606 frame_size = get_stream_frame_size(&mdev->dev, conf); 607 if (frame_size == 0 || frame_size > USB_MTU) { 608 dev_warn(dev, "Misconfig: frame size wrong\n"); 609 return -EINVAL; 610 } 611 612 num_frames = conf->buffer_size / frame_size; 613 614 if (conf->buffer_size % frame_size) { 615 u16 old_size = conf->buffer_size; 616 617 conf->buffer_size = num_frames * frame_size; 618 dev_warn(dev, "%s: fixed buffer size (%d -> %d)\n", 619 mdev->suffix[channel], old_size, conf->buffer_size); 620 } 621 622 /* calculate extra length to comply w/ HW padding */ 623 conf->extra_len = num_frames * (USB_MTU - frame_size); 624 625 exit: 626 mdev->conf[channel] = *conf; 627 if (conf->data_type == MOST_CH_ASYNC) { 628 u16 ep = mdev->ep_address[channel]; 629 630 if (start_sync_ep(mdev->usb_device, ep) < 0) 631 dev_warn(dev, "sync for ep%02x failed", ep); 632 } 633 return 0; 634 } 635 636 /** 637 * hdm_request_netinfo - request network information 638 * @iface: pointer to interface 639 * @channel: channel ID 640 * 641 * This is used as trigger to set up the link status timer that 642 * polls for the NI state of the INIC every 2 seconds. 643 * 644 */ 645 static void hdm_request_netinfo(struct most_interface *iface, int channel, 646 void (*on_netinfo)(struct most_interface *, 647 unsigned char, 648 unsigned char *)) 649 { 650 struct most_dev *mdev = to_mdev(iface); 651 652 mdev->on_netinfo = on_netinfo; 653 if (!on_netinfo) 654 return; 655 656 mdev->link_stat_timer.expires = jiffies + HZ; 657 mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires); 658 } 659 660 /** 661 * link_stat_timer_handler - schedule work obtaining mac address and link status 662 * @data: pointer to USB device instance 663 * 664 * The handler runs in interrupt context. That's why we need to defer the 665 * tasks to a work queue. 666 */ 667 static void link_stat_timer_handler(struct timer_list *t) 668 { 669 struct most_dev *mdev = from_timer(mdev, t, link_stat_timer); 670 671 schedule_work(&mdev->poll_work_obj); 672 mdev->link_stat_timer.expires = jiffies + (2 * HZ); 673 add_timer(&mdev->link_stat_timer); 674 } 675 676 /** 677 * wq_netinfo - work queue function to deliver latest networking information 678 * @wq_obj: object that holds data for our deferred work to do 679 * 680 * This retrieves the network interface status of the USB INIC 681 */ 682 static void wq_netinfo(struct work_struct *wq_obj) 683 { 684 struct most_dev *mdev = to_mdev_from_work(wq_obj); 685 struct usb_device *usb_device = mdev->usb_device; 686 struct device *dev = &usb_device->dev; 687 u16 hi, mi, lo, link; 688 u8 hw_addr[6]; 689 690 if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi)) { 691 dev_err(dev, "Vendor request 'hw_addr_hi' failed\n"); 692 return; 693 } 694 695 if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi)) { 696 dev_err(dev, "Vendor request 'hw_addr_mid' failed\n"); 697 return; 698 } 699 700 if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo)) { 701 dev_err(dev, "Vendor request 'hw_addr_low' failed\n"); 702 return; 703 } 704 705 if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link)) { 706 dev_err(dev, "Vendor request 'link status' failed\n"); 707 return; 708 } 709 710 hw_addr[0] = hi >> 8; 711 hw_addr[1] = hi; 712 hw_addr[2] = mi >> 8; 713 hw_addr[3] = mi; 714 hw_addr[4] = lo >> 8; 715 hw_addr[5] = lo; 716 717 if (mdev->on_netinfo) 718 mdev->on_netinfo(&mdev->iface, link, hw_addr); 719 } 720 721 /** 722 * wq_clear_halt - work queue function 723 * @wq_obj: work_struct object to execute 724 * 725 * This sends a clear_halt to the given USB pipe. 726 */ 727 static void wq_clear_halt(struct work_struct *wq_obj) 728 { 729 struct clear_hold_work *clear_work = to_clear_hold_work(wq_obj); 730 struct most_dev *mdev = clear_work->mdev; 731 unsigned int channel = clear_work->channel; 732 int pipe = clear_work->pipe; 733 int snd_pipe; 734 int peer; 735 736 mutex_lock(&mdev->io_mutex); 737 most_stop_enqueue(&mdev->iface, channel); 738 usb_kill_anchored_urbs(&mdev->busy_urbs[channel]); 739 if (usb_clear_halt(mdev->usb_device, pipe)) 740 dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n"); 741 742 /* If the functional Stall condition has been set on an 743 * asynchronous rx channel, we need to clear the tx channel 744 * too, since the hardware runs its clean-up sequence on both 745 * channels, as they are physically one on the network. 746 * 747 * The USB interface that exposes the asynchronous channels 748 * contains always two endpoints, and two only. 749 */ 750 if (mdev->conf[channel].data_type == MOST_CH_ASYNC && 751 mdev->conf[channel].direction == MOST_CH_RX) { 752 if (channel == 0) 753 peer = 1; 754 else 755 peer = 0; 756 snd_pipe = usb_sndbulkpipe(mdev->usb_device, 757 mdev->ep_address[peer]); 758 usb_clear_halt(mdev->usb_device, snd_pipe); 759 } 760 mdev->is_channel_healthy[channel] = true; 761 most_resume_enqueue(&mdev->iface, channel); 762 mutex_unlock(&mdev->io_mutex); 763 } 764 765 /** 766 * hdm_usb_fops - file operation table for USB driver 767 */ 768 static const struct file_operations hdm_usb_fops = { 769 .owner = THIS_MODULE, 770 }; 771 772 /** 773 * usb_device_id - ID table for HCD device probing 774 */ 775 static const struct usb_device_id usbid[] = { 776 { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), }, 777 { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81118), }, 778 { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81119), }, 779 { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81210), }, 780 { } /* Terminating entry */ 781 }; 782 783 struct regs { 784 const char *name; 785 u16 reg; 786 }; 787 788 static const struct regs ro_regs[] = { 789 { "ni_state", DRCI_REG_NI_STATE }, 790 { "packet_bandwidth", DRCI_REG_PACKET_BW }, 791 { "node_address", DRCI_REG_NODE_ADDR }, 792 { "node_position", DRCI_REG_NODE_POS }, 793 }; 794 795 static const struct regs rw_regs[] = { 796 { "mep_filter", DRCI_REG_MEP_FILTER }, 797 { "mep_hash0", DRCI_REG_HASH_TBL0 }, 798 { "mep_hash1", DRCI_REG_HASH_TBL1 }, 799 { "mep_hash2", DRCI_REG_HASH_TBL2 }, 800 { "mep_hash3", DRCI_REG_HASH_TBL3 }, 801 { "mep_eui48_hi", DRCI_REG_HW_ADDR_HI }, 802 { "mep_eui48_mi", DRCI_REG_HW_ADDR_MI }, 803 { "mep_eui48_lo", DRCI_REG_HW_ADDR_LO }, 804 }; 805 806 static int get_stat_reg_addr(const struct regs *regs, int size, 807 const char *name, u16 *reg_addr) 808 { 809 int i; 810 811 for (i = 0; i < size; i++) { 812 if (sysfs_streq(name, regs[i].name)) { 813 *reg_addr = regs[i].reg; 814 return 0; 815 } 816 } 817 return -EINVAL; 818 } 819 820 #define get_static_reg_addr(regs, name, reg_addr) \ 821 get_stat_reg_addr(regs, ARRAY_SIZE(regs), name, reg_addr) 822 823 static ssize_t value_show(struct device *dev, struct device_attribute *attr, 824 char *buf) 825 { 826 const char *name = attr->attr.name; 827 struct most_dci_obj *dci_obj = to_dci_obj(dev); 828 u16 val; 829 u16 reg_addr; 830 int err; 831 832 if (sysfs_streq(name, "arb_address")) 833 return snprintf(buf, PAGE_SIZE, "%04x\n", dci_obj->reg_addr); 834 835 if (sysfs_streq(name, "arb_value")) 836 reg_addr = dci_obj->reg_addr; 837 else if (get_static_reg_addr(ro_regs, name, ®_addr) && 838 get_static_reg_addr(rw_regs, name, ®_addr)) 839 return -EINVAL; 840 841 err = drci_rd_reg(dci_obj->usb_device, reg_addr, &val); 842 if (err < 0) 843 return err; 844 845 return snprintf(buf, PAGE_SIZE, "%04x\n", val); 846 } 847 848 static ssize_t value_store(struct device *dev, struct device_attribute *attr, 849 const char *buf, size_t count) 850 { 851 u16 val; 852 u16 reg_addr; 853 const char *name = attr->attr.name; 854 struct most_dci_obj *dci_obj = to_dci_obj(dev); 855 struct usb_device *usb_dev = dci_obj->usb_device; 856 int err; 857 858 err = kstrtou16(buf, 16, &val); 859 if (err) 860 return err; 861 862 if (sysfs_streq(name, "arb_address")) { 863 dci_obj->reg_addr = val; 864 return count; 865 } 866 867 if (sysfs_streq(name, "arb_value")) 868 err = drci_wr_reg(usb_dev, dci_obj->reg_addr, val); 869 else if (sysfs_streq(name, "sync_ep")) 870 err = start_sync_ep(usb_dev, val); 871 else if (!get_static_reg_addr(rw_regs, name, ®_addr)) 872 err = drci_wr_reg(usb_dev, reg_addr, val); 873 else 874 return -EINVAL; 875 876 if (err < 0) 877 return err; 878 879 return count; 880 } 881 882 static DEVICE_ATTR(ni_state, 0444, value_show, NULL); 883 static DEVICE_ATTR(packet_bandwidth, 0444, value_show, NULL); 884 static DEVICE_ATTR(node_address, 0444, value_show, NULL); 885 static DEVICE_ATTR(node_position, 0444, value_show, NULL); 886 static DEVICE_ATTR(sync_ep, 0200, NULL, value_store); 887 static DEVICE_ATTR(mep_filter, 0644, value_show, value_store); 888 static DEVICE_ATTR(mep_hash0, 0644, value_show, value_store); 889 static DEVICE_ATTR(mep_hash1, 0644, value_show, value_store); 890 static DEVICE_ATTR(mep_hash2, 0644, value_show, value_store); 891 static DEVICE_ATTR(mep_hash3, 0644, value_show, value_store); 892 static DEVICE_ATTR(mep_eui48_hi, 0644, value_show, value_store); 893 static DEVICE_ATTR(mep_eui48_mi, 0644, value_show, value_store); 894 static DEVICE_ATTR(mep_eui48_lo, 0644, value_show, value_store); 895 static DEVICE_ATTR(arb_address, 0644, value_show, value_store); 896 static DEVICE_ATTR(arb_value, 0644, value_show, value_store); 897 898 static struct attribute *dci_attrs[] = { 899 &dev_attr_ni_state.attr, 900 &dev_attr_packet_bandwidth.attr, 901 &dev_attr_node_address.attr, 902 &dev_attr_node_position.attr, 903 &dev_attr_sync_ep.attr, 904 &dev_attr_mep_filter.attr, 905 &dev_attr_mep_hash0.attr, 906 &dev_attr_mep_hash1.attr, 907 &dev_attr_mep_hash2.attr, 908 &dev_attr_mep_hash3.attr, 909 &dev_attr_mep_eui48_hi.attr, 910 &dev_attr_mep_eui48_mi.attr, 911 &dev_attr_mep_eui48_lo.attr, 912 &dev_attr_arb_address.attr, 913 &dev_attr_arb_value.attr, 914 NULL, 915 }; 916 917 ATTRIBUTE_GROUPS(dci); 918 919 static void release_dci(struct device *dev) 920 { 921 struct most_dci_obj *dci = to_dci_obj(dev); 922 923 put_device(dev->parent); 924 kfree(dci); 925 } 926 927 static void release_mdev(struct device *dev) 928 { 929 struct most_dev *mdev = to_mdev_from_dev(dev); 930 931 kfree(mdev); 932 } 933 /** 934 * hdm_probe - probe function of USB device driver 935 * @interface: Interface of the attached USB device 936 * @id: Pointer to the USB ID table. 937 * 938 * This allocates and initializes the device instance, adds the new 939 * entry to the internal list, scans the USB descriptors and registers 940 * the interface with the core. 941 * Additionally, the DCI objects are created and the hardware is sync'd. 942 * 943 * Return 0 on success. In case of an error a negative number is returned. 944 */ 945 static int 946 hdm_probe(struct usb_interface *interface, const struct usb_device_id *id) 947 { 948 struct usb_host_interface *usb_iface_desc = interface->cur_altsetting; 949 struct usb_device *usb_dev = interface_to_usbdev(interface); 950 struct device *dev = &usb_dev->dev; 951 struct most_dev *mdev; 952 unsigned int i; 953 unsigned int num_endpoints; 954 struct most_channel_capability *tmp_cap; 955 struct usb_endpoint_descriptor *ep_desc; 956 int ret = -ENOMEM; 957 958 mdev = kzalloc(sizeof(*mdev), GFP_KERNEL); 959 if (!mdev) 960 return -ENOMEM; 961 962 usb_set_intfdata(interface, mdev); 963 num_endpoints = usb_iface_desc->desc.bNumEndpoints; 964 if (num_endpoints > MAX_NUM_ENDPOINTS) { 965 kfree(mdev); 966 return -EINVAL; 967 } 968 mutex_init(&mdev->io_mutex); 969 INIT_WORK(&mdev->poll_work_obj, wq_netinfo); 970 timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0); 971 972 mdev->usb_device = usb_dev; 973 mdev->link_stat_timer.expires = jiffies + (2 * HZ); 974 975 mdev->iface.mod = hdm_usb_fops.owner; 976 mdev->iface.dev = &mdev->dev; 977 mdev->iface.driver_dev = &interface->dev; 978 mdev->iface.interface = ITYPE_USB; 979 mdev->iface.configure = hdm_configure_channel; 980 mdev->iface.request_netinfo = hdm_request_netinfo; 981 mdev->iface.enqueue = hdm_enqueue; 982 mdev->iface.poison_channel = hdm_poison_channel; 983 mdev->iface.dma_alloc = hdm_dma_alloc; 984 mdev->iface.dma_free = hdm_dma_free; 985 mdev->iface.description = mdev->description; 986 mdev->iface.num_channels = num_endpoints; 987 988 snprintf(mdev->description, sizeof(mdev->description), 989 "%d-%s:%d.%d", 990 usb_dev->bus->busnum, 991 usb_dev->devpath, 992 usb_dev->config->desc.bConfigurationValue, 993 usb_iface_desc->desc.bInterfaceNumber); 994 995 mdev->dev.init_name = mdev->description; 996 mdev->dev.parent = &interface->dev; 997 mdev->dev.release = release_mdev; 998 mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL); 999 if (!mdev->conf) 1000 goto err_free_mdev; 1001 1002 mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL); 1003 if (!mdev->cap) 1004 goto err_free_conf; 1005 1006 mdev->iface.channel_vector = mdev->cap; 1007 mdev->ep_address = 1008 kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL); 1009 if (!mdev->ep_address) 1010 goto err_free_cap; 1011 1012 mdev->busy_urbs = 1013 kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL); 1014 if (!mdev->busy_urbs) 1015 goto err_free_ep_address; 1016 1017 tmp_cap = mdev->cap; 1018 for (i = 0; i < num_endpoints; i++) { 1019 ep_desc = &usb_iface_desc->endpoint[i].desc; 1020 mdev->ep_address[i] = ep_desc->bEndpointAddress; 1021 mdev->padding_active[i] = false; 1022 mdev->is_channel_healthy[i] = true; 1023 1024 snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x", 1025 mdev->ep_address[i]); 1026 1027 tmp_cap->name_suffix = &mdev->suffix[i][0]; 1028 tmp_cap->buffer_size_packet = MAX_BUF_SIZE; 1029 tmp_cap->buffer_size_streaming = MAX_BUF_SIZE; 1030 tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE; 1031 tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE; 1032 tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC | 1033 MOST_CH_ISOC | MOST_CH_SYNC; 1034 if (usb_endpoint_dir_in(ep_desc)) 1035 tmp_cap->direction = MOST_CH_RX; 1036 else 1037 tmp_cap->direction = MOST_CH_TX; 1038 tmp_cap++; 1039 init_usb_anchor(&mdev->busy_urbs[i]); 1040 spin_lock_init(&mdev->channel_lock[i]); 1041 } 1042 dev_dbg(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n", 1043 le16_to_cpu(usb_dev->descriptor.idVendor), 1044 le16_to_cpu(usb_dev->descriptor.idProduct), 1045 usb_dev->bus->busnum, 1046 usb_dev->devnum); 1047 1048 dev_dbg(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n", 1049 usb_dev->bus->busnum, 1050 usb_dev->devpath, 1051 usb_dev->config->desc.bConfigurationValue, 1052 usb_iface_desc->desc.bInterfaceNumber); 1053 1054 ret = most_register_interface(&mdev->iface); 1055 if (ret) 1056 goto err_free_busy_urbs; 1057 1058 mutex_lock(&mdev->io_mutex); 1059 if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 || 1060 le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 || 1061 le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) { 1062 mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL); 1063 if (!mdev->dci) { 1064 mutex_unlock(&mdev->io_mutex); 1065 most_deregister_interface(&mdev->iface); 1066 ret = -ENOMEM; 1067 goto err_free_busy_urbs; 1068 } 1069 1070 mdev->dci->dev.init_name = "dci"; 1071 mdev->dci->dev.parent = get_device(mdev->iface.dev); 1072 mdev->dci->dev.groups = dci_groups; 1073 mdev->dci->dev.release = release_dci; 1074 if (device_register(&mdev->dci->dev)) { 1075 mutex_unlock(&mdev->io_mutex); 1076 most_deregister_interface(&mdev->iface); 1077 ret = -ENOMEM; 1078 goto err_free_dci; 1079 } 1080 mdev->dci->usb_device = mdev->usb_device; 1081 } 1082 mutex_unlock(&mdev->io_mutex); 1083 return 0; 1084 err_free_dci: 1085 put_device(&mdev->dci->dev); 1086 err_free_busy_urbs: 1087 kfree(mdev->busy_urbs); 1088 err_free_ep_address: 1089 kfree(mdev->ep_address); 1090 err_free_cap: 1091 kfree(mdev->cap); 1092 err_free_conf: 1093 kfree(mdev->conf); 1094 err_free_mdev: 1095 put_device(&mdev->dev); 1096 return ret; 1097 } 1098 1099 /** 1100 * hdm_disconnect - disconnect function of USB device driver 1101 * @interface: Interface of the attached USB device 1102 * 1103 * This deregisters the interface with the core, removes the kernel timer 1104 * and frees resources. 1105 * 1106 * Context: hub kernel thread 1107 */ 1108 static void hdm_disconnect(struct usb_interface *interface) 1109 { 1110 struct most_dev *mdev = usb_get_intfdata(interface); 1111 1112 mutex_lock(&mdev->io_mutex); 1113 usb_set_intfdata(interface, NULL); 1114 mdev->usb_device = NULL; 1115 mutex_unlock(&mdev->io_mutex); 1116 1117 del_timer_sync(&mdev->link_stat_timer); 1118 cancel_work_sync(&mdev->poll_work_obj); 1119 1120 if (mdev->dci) 1121 device_unregister(&mdev->dci->dev); 1122 most_deregister_interface(&mdev->iface); 1123 1124 kfree(mdev->busy_urbs); 1125 kfree(mdev->cap); 1126 kfree(mdev->conf); 1127 kfree(mdev->ep_address); 1128 put_device(&mdev->dci->dev); 1129 put_device(&mdev->dev); 1130 } 1131 1132 static int hdm_suspend(struct usb_interface *interface, pm_message_t message) 1133 { 1134 struct most_dev *mdev = usb_get_intfdata(interface); 1135 int i; 1136 1137 mutex_lock(&mdev->io_mutex); 1138 for (i = 0; i < mdev->iface.num_channels; i++) { 1139 most_stop_enqueue(&mdev->iface, i); 1140 usb_kill_anchored_urbs(&mdev->busy_urbs[i]); 1141 } 1142 mutex_unlock(&mdev->io_mutex); 1143 return 0; 1144 } 1145 1146 static int hdm_resume(struct usb_interface *interface) 1147 { 1148 struct most_dev *mdev = usb_get_intfdata(interface); 1149 int i; 1150 1151 mutex_lock(&mdev->io_mutex); 1152 for (i = 0; i < mdev->iface.num_channels; i++) 1153 most_resume_enqueue(&mdev->iface, i); 1154 mutex_unlock(&mdev->io_mutex); 1155 return 0; 1156 } 1157 1158 static struct usb_driver hdm_usb = { 1159 .name = "hdm_usb", 1160 .id_table = usbid, 1161 .probe = hdm_probe, 1162 .disconnect = hdm_disconnect, 1163 .resume = hdm_resume, 1164 .suspend = hdm_suspend, 1165 }; 1166 1167 module_usb_driver(hdm_usb); 1168 MODULE_LICENSE("GPL"); 1169 MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>"); 1170 MODULE_DESCRIPTION("HDM_4_USB"); 1171