1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for sunxi SD/MMC host controllers 4 * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd. 5 * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com> 6 * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch> 7 * (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch> 8 * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com> 9 * (C) Copyright 2017 Sootech SA 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk/sunxi-ng.h> 14 #include <linux/delay.h> 15 #include <linux/device.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/err.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/kernel.h> 21 #include <linux/mmc/card.h> 22 #include <linux/mmc/core.h> 23 #include <linux/mmc/host.h> 24 #include <linux/mmc/mmc.h> 25 #include <linux/mmc/sd.h> 26 #include <linux/mmc/sdio.h> 27 #include <linux/mmc/slot-gpio.h> 28 #include <linux/module.h> 29 #include <linux/mod_devicetable.h> 30 #include <linux/of_address.h> 31 #include <linux/of_platform.h> 32 #include <linux/platform_device.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/regulator/consumer.h> 35 #include <linux/reset.h> 36 #include <linux/scatterlist.h> 37 #include <linux/slab.h> 38 #include <linux/spinlock.h> 39 40 /* register offset definitions */ 41 #define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */ 42 #define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */ 43 #define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */ 44 #define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */ 45 #define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */ 46 #define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */ 47 #define SDXC_REG_CMDR (0x18) /* SMC Command Register */ 48 #define SDXC_REG_CARG (0x1C) /* SMC Argument Register */ 49 #define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */ 50 #define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */ 51 #define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */ 52 #define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */ 53 #define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */ 54 #define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */ 55 #define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */ 56 #define SDXC_REG_STAS (0x3C) /* SMC Status Register */ 57 #define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */ 58 #define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */ 59 #define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */ 60 #define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */ 61 #define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */ 62 #define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */ 63 #define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */ 64 #define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */ 65 #define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */ 66 #define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */ 67 #define SDXC_REG_CHDA (0x90) 68 #define SDXC_REG_CBDA (0x94) 69 70 /* New registers introduced in A64 */ 71 #define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */ 72 #define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */ 73 #define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */ 74 #define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */ 75 #define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */ 76 77 #define mmc_readl(host, reg) \ 78 readl((host)->reg_base + SDXC_##reg) 79 #define mmc_writel(host, reg, value) \ 80 writel((value), (host)->reg_base + SDXC_##reg) 81 82 /* global control register bits */ 83 #define SDXC_SOFT_RESET BIT(0) 84 #define SDXC_FIFO_RESET BIT(1) 85 #define SDXC_DMA_RESET BIT(2) 86 #define SDXC_INTERRUPT_ENABLE_BIT BIT(4) 87 #define SDXC_DMA_ENABLE_BIT BIT(5) 88 #define SDXC_DEBOUNCE_ENABLE_BIT BIT(8) 89 #define SDXC_POSEDGE_LATCH_DATA BIT(9) 90 #define SDXC_DDR_MODE BIT(10) 91 #define SDXC_MEMORY_ACCESS_DONE BIT(29) 92 #define SDXC_ACCESS_DONE_DIRECT BIT(30) 93 #define SDXC_ACCESS_BY_AHB BIT(31) 94 #define SDXC_ACCESS_BY_DMA (0 << 31) 95 #define SDXC_HARDWARE_RESET \ 96 (SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET) 97 98 /* clock control bits */ 99 #define SDXC_MASK_DATA0 BIT(31) 100 #define SDXC_CARD_CLOCK_ON BIT(16) 101 #define SDXC_LOW_POWER_ON BIT(17) 102 103 /* bus width */ 104 #define SDXC_WIDTH1 0 105 #define SDXC_WIDTH4 1 106 #define SDXC_WIDTH8 2 107 108 /* smc command bits */ 109 #define SDXC_RESP_EXPIRE BIT(6) 110 #define SDXC_LONG_RESPONSE BIT(7) 111 #define SDXC_CHECK_RESPONSE_CRC BIT(8) 112 #define SDXC_DATA_EXPIRE BIT(9) 113 #define SDXC_WRITE BIT(10) 114 #define SDXC_SEQUENCE_MODE BIT(11) 115 #define SDXC_SEND_AUTO_STOP BIT(12) 116 #define SDXC_WAIT_PRE_OVER BIT(13) 117 #define SDXC_STOP_ABORT_CMD BIT(14) 118 #define SDXC_SEND_INIT_SEQUENCE BIT(15) 119 #define SDXC_UPCLK_ONLY BIT(21) 120 #define SDXC_READ_CEATA_DEV BIT(22) 121 #define SDXC_CCS_EXPIRE BIT(23) 122 #define SDXC_ENABLE_BIT_BOOT BIT(24) 123 #define SDXC_ALT_BOOT_OPTIONS BIT(25) 124 #define SDXC_BOOT_ACK_EXPIRE BIT(26) 125 #define SDXC_BOOT_ABORT BIT(27) 126 #define SDXC_VOLTAGE_SWITCH BIT(28) 127 #define SDXC_USE_HOLD_REGISTER BIT(29) 128 #define SDXC_START BIT(31) 129 130 /* interrupt bits */ 131 #define SDXC_RESP_ERROR BIT(1) 132 #define SDXC_COMMAND_DONE BIT(2) 133 #define SDXC_DATA_OVER BIT(3) 134 #define SDXC_TX_DATA_REQUEST BIT(4) 135 #define SDXC_RX_DATA_REQUEST BIT(5) 136 #define SDXC_RESP_CRC_ERROR BIT(6) 137 #define SDXC_DATA_CRC_ERROR BIT(7) 138 #define SDXC_RESP_TIMEOUT BIT(8) 139 #define SDXC_DATA_TIMEOUT BIT(9) 140 #define SDXC_VOLTAGE_CHANGE_DONE BIT(10) 141 #define SDXC_FIFO_RUN_ERROR BIT(11) 142 #define SDXC_HARD_WARE_LOCKED BIT(12) 143 #define SDXC_START_BIT_ERROR BIT(13) 144 #define SDXC_AUTO_COMMAND_DONE BIT(14) 145 #define SDXC_END_BIT_ERROR BIT(15) 146 #define SDXC_SDIO_INTERRUPT BIT(16) 147 #define SDXC_CARD_INSERT BIT(30) 148 #define SDXC_CARD_REMOVE BIT(31) 149 #define SDXC_INTERRUPT_ERROR_BIT \ 150 (SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \ 151 SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \ 152 SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR) 153 #define SDXC_INTERRUPT_DONE_BIT \ 154 (SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \ 155 SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE) 156 157 /* status */ 158 #define SDXC_RXWL_FLAG BIT(0) 159 #define SDXC_TXWL_FLAG BIT(1) 160 #define SDXC_FIFO_EMPTY BIT(2) 161 #define SDXC_FIFO_FULL BIT(3) 162 #define SDXC_CARD_PRESENT BIT(8) 163 #define SDXC_CARD_DATA_BUSY BIT(9) 164 #define SDXC_DATA_FSM_BUSY BIT(10) 165 #define SDXC_DMA_REQUEST BIT(31) 166 #define SDXC_FIFO_SIZE 16 167 168 /* Function select */ 169 #define SDXC_CEATA_ON (0xceaa << 16) 170 #define SDXC_SEND_IRQ_RESPONSE BIT(0) 171 #define SDXC_SDIO_READ_WAIT BIT(1) 172 #define SDXC_ABORT_READ_DATA BIT(2) 173 #define SDXC_SEND_CCSD BIT(8) 174 #define SDXC_SEND_AUTO_STOPCCSD BIT(9) 175 #define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10) 176 177 /* IDMA controller bus mod bit field */ 178 #define SDXC_IDMAC_SOFT_RESET BIT(0) 179 #define SDXC_IDMAC_FIX_BURST BIT(1) 180 #define SDXC_IDMAC_IDMA_ON BIT(7) 181 #define SDXC_IDMAC_REFETCH_DES BIT(31) 182 183 /* IDMA status bit field */ 184 #define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0) 185 #define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1) 186 #define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2) 187 #define SDXC_IDMAC_DESTINATION_INVALID BIT(4) 188 #define SDXC_IDMAC_CARD_ERROR_SUM BIT(5) 189 #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8) 190 #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9) 191 #define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10) 192 #define SDXC_IDMAC_IDLE (0 << 13) 193 #define SDXC_IDMAC_SUSPEND (1 << 13) 194 #define SDXC_IDMAC_DESC_READ (2 << 13) 195 #define SDXC_IDMAC_DESC_CHECK (3 << 13) 196 #define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13) 197 #define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13) 198 #define SDXC_IDMAC_READ (6 << 13) 199 #define SDXC_IDMAC_WRITE (7 << 13) 200 #define SDXC_IDMAC_DESC_CLOSE (8 << 13) 201 202 /* 203 * If the idma-des-size-bits of property is ie 13, bufsize bits are: 204 * Bits 0-12: buf1 size 205 * Bits 13-25: buf2 size 206 * Bits 26-31: not used 207 * Since we only ever set buf1 size, we can simply store it directly. 208 */ 209 #define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */ 210 #define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */ 211 #define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */ 212 #define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */ 213 #define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */ 214 #define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */ 215 #define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */ 216 217 #define SDXC_CLK_400K 0 218 #define SDXC_CLK_25M 1 219 #define SDXC_CLK_50M 2 220 #define SDXC_CLK_50M_DDR 3 221 #define SDXC_CLK_50M_DDR_8BIT 4 222 223 #define SDXC_2X_TIMING_MODE BIT(31) 224 225 #define SDXC_CAL_START BIT(15) 226 #define SDXC_CAL_DONE BIT(14) 227 #define SDXC_CAL_DL_SHIFT 8 228 #define SDXC_CAL_DL_SW_EN BIT(7) 229 #define SDXC_CAL_DL_SW_SHIFT 0 230 #define SDXC_CAL_DL_MASK 0x3f 231 232 #define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/ 233 234 struct sunxi_mmc_clk_delay { 235 u32 output; 236 u32 sample; 237 }; 238 239 struct sunxi_idma_des { 240 __le32 config; 241 __le32 buf_size; 242 __le32 buf_addr_ptr1; 243 __le32 buf_addr_ptr2; 244 }; 245 246 struct sunxi_mmc_cfg { 247 u32 idma_des_size_bits; 248 u32 idma_des_shift; 249 const struct sunxi_mmc_clk_delay *clk_delays; 250 251 /* does the IP block support autocalibration? */ 252 bool can_calibrate; 253 254 /* Does DATA0 needs to be masked while the clock is updated */ 255 bool mask_data0; 256 257 /* 258 * hardware only supports new timing mode, either due to lack of 259 * a mode switch in the clock controller, or the mmc controller 260 * is permanently configured in the new timing mode, without the 261 * NTSR mode switch. 262 */ 263 bool needs_new_timings; 264 265 /* clock hardware can switch between old and new timing modes */ 266 bool ccu_has_timings_switch; 267 }; 268 269 struct sunxi_mmc_host { 270 struct device *dev; 271 struct mmc_host *mmc; 272 struct reset_control *reset; 273 const struct sunxi_mmc_cfg *cfg; 274 275 /* IO mapping base */ 276 void __iomem *reg_base; 277 278 /* clock management */ 279 struct clk *clk_ahb; 280 struct clk *clk_mmc; 281 struct clk *clk_sample; 282 struct clk *clk_output; 283 284 /* irq */ 285 spinlock_t lock; 286 int irq; 287 u32 int_sum; 288 u32 sdio_imask; 289 290 /* dma */ 291 dma_addr_t sg_dma; 292 void *sg_cpu; 293 bool wait_dma; 294 295 struct mmc_request *mrq; 296 struct mmc_request *manual_stop_mrq; 297 int ferror; 298 299 /* vqmmc */ 300 bool vqmmc_enabled; 301 302 /* timings */ 303 bool use_new_timings; 304 }; 305 306 static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host) 307 { 308 unsigned long expire = jiffies + msecs_to_jiffies(250); 309 u32 rval; 310 311 mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET); 312 do { 313 rval = mmc_readl(host, REG_GCTRL); 314 } while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET)); 315 316 if (rval & SDXC_HARDWARE_RESET) { 317 dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n"); 318 return -EIO; 319 } 320 321 return 0; 322 } 323 324 static int sunxi_mmc_init_host(struct sunxi_mmc_host *host) 325 { 326 u32 rval; 327 328 if (sunxi_mmc_reset_host(host)) 329 return -EIO; 330 331 /* 332 * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8 333 * 334 * TODO: sun9i has a larger FIFO and supports higher trigger values 335 */ 336 mmc_writel(host, REG_FTRGL, 0x20070008); 337 /* Maximum timeout value */ 338 mmc_writel(host, REG_TMOUT, 0xffffffff); 339 /* Unmask SDIO interrupt if needed */ 340 mmc_writel(host, REG_IMASK, host->sdio_imask); 341 /* Clear all pending interrupts */ 342 mmc_writel(host, REG_RINTR, 0xffffffff); 343 /* Debug register? undocumented */ 344 mmc_writel(host, REG_DBGC, 0xdeb); 345 /* Enable CEATA support */ 346 mmc_writel(host, REG_FUNS, SDXC_CEATA_ON); 347 /* Set DMA descriptor list base address */ 348 mmc_writel(host, REG_DLBA, host->sg_dma >> host->cfg->idma_des_shift); 349 350 rval = mmc_readl(host, REG_GCTRL); 351 rval |= SDXC_INTERRUPT_ENABLE_BIT; 352 /* Undocumented, but found in Allwinner code */ 353 rval &= ~SDXC_ACCESS_DONE_DIRECT; 354 mmc_writel(host, REG_GCTRL, rval); 355 356 return 0; 357 } 358 359 static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host, 360 struct mmc_data *data) 361 { 362 struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu; 363 dma_addr_t next_desc = host->sg_dma; 364 int i, max_len = (1 << host->cfg->idma_des_size_bits); 365 366 for (i = 0; i < data->sg_len; i++) { 367 pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH | 368 SDXC_IDMAC_DES0_OWN | 369 SDXC_IDMAC_DES0_DIC); 370 371 if (data->sg[i].length == max_len) 372 pdes[i].buf_size = 0; /* 0 == max_len */ 373 else 374 pdes[i].buf_size = cpu_to_le32(data->sg[i].length); 375 376 next_desc += sizeof(struct sunxi_idma_des); 377 pdes[i].buf_addr_ptr1 = 378 cpu_to_le32(sg_dma_address(&data->sg[i]) >> 379 host->cfg->idma_des_shift); 380 pdes[i].buf_addr_ptr2 = 381 cpu_to_le32(next_desc >> 382 host->cfg->idma_des_shift); 383 } 384 385 pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD); 386 pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD | 387 SDXC_IDMAC_DES0_ER); 388 pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC); 389 pdes[i - 1].buf_addr_ptr2 = 0; 390 391 /* 392 * Avoid the io-store starting the idmac hitting io-mem before the 393 * descriptors hit the main-mem. 394 */ 395 wmb(); 396 } 397 398 static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host, 399 struct mmc_data *data) 400 { 401 u32 i, dma_len; 402 struct scatterlist *sg; 403 404 dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, 405 mmc_get_dma_dir(data)); 406 if (dma_len == 0) { 407 dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n"); 408 return -ENOMEM; 409 } 410 411 for_each_sg(data->sg, sg, data->sg_len, i) { 412 if (sg->offset & 3 || sg->length & 3) { 413 dev_err(mmc_dev(host->mmc), 414 "unaligned scatterlist: os %x length %d\n", 415 sg->offset, sg->length); 416 return -EINVAL; 417 } 418 } 419 420 return 0; 421 } 422 423 static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host, 424 struct mmc_data *data) 425 { 426 u32 rval; 427 428 sunxi_mmc_init_idma_des(host, data); 429 430 rval = mmc_readl(host, REG_GCTRL); 431 rval |= SDXC_DMA_ENABLE_BIT; 432 mmc_writel(host, REG_GCTRL, rval); 433 rval |= SDXC_DMA_RESET; 434 mmc_writel(host, REG_GCTRL, rval); 435 436 mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET); 437 438 if (!(data->flags & MMC_DATA_WRITE)) 439 mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT); 440 441 mmc_writel(host, REG_DMAC, 442 SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON); 443 } 444 445 static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host, 446 struct mmc_request *req) 447 { 448 u32 arg, cmd_val, ri; 449 unsigned long expire = jiffies + msecs_to_jiffies(1000); 450 451 cmd_val = SDXC_START | SDXC_RESP_EXPIRE | 452 SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC; 453 454 if (req->cmd->opcode == SD_IO_RW_EXTENDED) { 455 cmd_val |= SD_IO_RW_DIRECT; 456 arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) | 457 ((req->cmd->arg >> 28) & 0x7); 458 } else { 459 cmd_val |= MMC_STOP_TRANSMISSION; 460 arg = 0; 461 } 462 463 mmc_writel(host, REG_CARG, arg); 464 mmc_writel(host, REG_CMDR, cmd_val); 465 466 do { 467 ri = mmc_readl(host, REG_RINTR); 468 } while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) && 469 time_before(jiffies, expire)); 470 471 if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) { 472 dev_err(mmc_dev(host->mmc), "send stop command failed\n"); 473 if (req->stop) 474 req->stop->resp[0] = -ETIMEDOUT; 475 } else { 476 if (req->stop) 477 req->stop->resp[0] = mmc_readl(host, REG_RESP0); 478 } 479 480 mmc_writel(host, REG_RINTR, 0xffff); 481 } 482 483 static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host) 484 { 485 struct mmc_command *cmd = host->mrq->cmd; 486 struct mmc_data *data = host->mrq->data; 487 488 /* For some cmds timeout is normal with sd/mmc cards */ 489 if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) == 490 SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND || 491 cmd->opcode == SD_IO_RW_DIRECT)) 492 return; 493 494 dev_dbg(mmc_dev(host->mmc), 495 "smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n", 496 host->mmc->index, cmd->opcode, 497 data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "", 498 host->int_sum & SDXC_RESP_ERROR ? " RE" : "", 499 host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "", 500 host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "", 501 host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "", 502 host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "", 503 host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "", 504 host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "", 505 host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "", 506 host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : "" 507 ); 508 } 509 510 /* Called in interrupt context! */ 511 static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host) 512 { 513 struct mmc_request *mrq = host->mrq; 514 struct mmc_data *data = mrq->data; 515 u32 rval; 516 517 mmc_writel(host, REG_IMASK, host->sdio_imask); 518 mmc_writel(host, REG_IDIE, 0); 519 520 if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) { 521 sunxi_mmc_dump_errinfo(host); 522 mrq->cmd->error = -ETIMEDOUT; 523 524 if (data) { 525 data->error = -ETIMEDOUT; 526 host->manual_stop_mrq = mrq; 527 } 528 529 if (mrq->stop) 530 mrq->stop->error = -ETIMEDOUT; 531 } else { 532 if (mrq->cmd->flags & MMC_RSP_136) { 533 mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3); 534 mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2); 535 mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1); 536 mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0); 537 } else { 538 mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0); 539 } 540 541 if (data) 542 data->bytes_xfered = data->blocks * data->blksz; 543 } 544 545 if (data) { 546 mmc_writel(host, REG_IDST, 0x337); 547 mmc_writel(host, REG_DMAC, 0); 548 rval = mmc_readl(host, REG_GCTRL); 549 rval |= SDXC_DMA_RESET; 550 mmc_writel(host, REG_GCTRL, rval); 551 rval &= ~SDXC_DMA_ENABLE_BIT; 552 mmc_writel(host, REG_GCTRL, rval); 553 rval |= SDXC_FIFO_RESET; 554 mmc_writel(host, REG_GCTRL, rval); 555 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, 556 mmc_get_dma_dir(data)); 557 } 558 559 mmc_writel(host, REG_RINTR, 0xffff); 560 561 host->mrq = NULL; 562 host->int_sum = 0; 563 host->wait_dma = false; 564 565 return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED; 566 } 567 568 static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id) 569 { 570 struct sunxi_mmc_host *host = dev_id; 571 struct mmc_request *mrq; 572 u32 msk_int, idma_int; 573 bool finalize = false; 574 bool sdio_int = false; 575 irqreturn_t ret = IRQ_HANDLED; 576 577 spin_lock(&host->lock); 578 579 idma_int = mmc_readl(host, REG_IDST); 580 msk_int = mmc_readl(host, REG_MISTA); 581 582 dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n", 583 host->mrq, msk_int, idma_int); 584 585 mrq = host->mrq; 586 if (mrq) { 587 if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT) 588 host->wait_dma = false; 589 590 host->int_sum |= msk_int; 591 592 /* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */ 593 if ((host->int_sum & SDXC_RESP_TIMEOUT) && 594 !(host->int_sum & SDXC_COMMAND_DONE)) 595 mmc_writel(host, REG_IMASK, 596 host->sdio_imask | SDXC_COMMAND_DONE); 597 /* Don't wait for dma on error */ 598 else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) 599 finalize = true; 600 else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) && 601 !host->wait_dma) 602 finalize = true; 603 } 604 605 if (msk_int & SDXC_SDIO_INTERRUPT) 606 sdio_int = true; 607 608 mmc_writel(host, REG_RINTR, msk_int); 609 mmc_writel(host, REG_IDST, idma_int); 610 611 if (finalize) 612 ret = sunxi_mmc_finalize_request(host); 613 614 spin_unlock(&host->lock); 615 616 if (finalize && ret == IRQ_HANDLED) 617 mmc_request_done(host->mmc, mrq); 618 619 if (sdio_int) 620 mmc_signal_sdio_irq(host->mmc); 621 622 return ret; 623 } 624 625 static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id) 626 { 627 struct sunxi_mmc_host *host = dev_id; 628 struct mmc_request *mrq; 629 unsigned long iflags; 630 631 spin_lock_irqsave(&host->lock, iflags); 632 mrq = host->manual_stop_mrq; 633 spin_unlock_irqrestore(&host->lock, iflags); 634 635 if (!mrq) { 636 dev_err(mmc_dev(host->mmc), "no request for manual stop\n"); 637 return IRQ_HANDLED; 638 } 639 640 dev_err(mmc_dev(host->mmc), "data error, sending stop command\n"); 641 642 /* 643 * We will never have more than one outstanding request, 644 * and we do not complete the request until after 645 * we've cleared host->manual_stop_mrq so we do not need to 646 * spin lock this function. 647 * Additionally we have wait states within this function 648 * so having it in a lock is a very bad idea. 649 */ 650 sunxi_mmc_send_manual_stop(host, mrq); 651 652 spin_lock_irqsave(&host->lock, iflags); 653 host->manual_stop_mrq = NULL; 654 spin_unlock_irqrestore(&host->lock, iflags); 655 656 mmc_request_done(host->mmc, mrq); 657 658 return IRQ_HANDLED; 659 } 660 661 static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en) 662 { 663 unsigned long expire = jiffies + msecs_to_jiffies(750); 664 u32 rval; 665 666 dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n", 667 oclk_en ? "en" : "dis"); 668 669 rval = mmc_readl(host, REG_CLKCR); 670 rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0); 671 672 if (oclk_en) 673 rval |= SDXC_CARD_CLOCK_ON; 674 if (host->cfg->mask_data0) 675 rval |= SDXC_MASK_DATA0; 676 677 mmc_writel(host, REG_CLKCR, rval); 678 679 rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER; 680 mmc_writel(host, REG_CMDR, rval); 681 682 do { 683 rval = mmc_readl(host, REG_CMDR); 684 } while (time_before(jiffies, expire) && (rval & SDXC_START)); 685 686 /* clear irq status bits set by the command */ 687 mmc_writel(host, REG_RINTR, 688 mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT); 689 690 if (rval & SDXC_START) { 691 dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n"); 692 return -EIO; 693 } 694 695 if (host->cfg->mask_data0) { 696 rval = mmc_readl(host, REG_CLKCR); 697 mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0); 698 } 699 700 return 0; 701 } 702 703 static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off) 704 { 705 if (!host->cfg->can_calibrate) 706 return 0; 707 708 /* 709 * FIXME: 710 * This is not clear how the calibration is supposed to work 711 * yet. The best rate have been obtained by simply setting the 712 * delay to 0, as Allwinner does in its BSP. 713 * 714 * The only mode that doesn't have such a delay is HS400, that 715 * is in itself a TODO. 716 */ 717 writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off); 718 719 return 0; 720 } 721 722 static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host, 723 struct mmc_ios *ios, u32 rate) 724 { 725 int index; 726 727 /* clk controller delays not used under new timings mode */ 728 if (host->use_new_timings) 729 return 0; 730 731 /* some old controllers don't support delays */ 732 if (!host->cfg->clk_delays) 733 return 0; 734 735 /* determine delays */ 736 if (rate <= 400000) { 737 index = SDXC_CLK_400K; 738 } else if (rate <= 25000000) { 739 index = SDXC_CLK_25M; 740 } else if (rate <= 52000000) { 741 if (ios->timing != MMC_TIMING_UHS_DDR50 && 742 ios->timing != MMC_TIMING_MMC_DDR52) { 743 index = SDXC_CLK_50M; 744 } else if (ios->bus_width == MMC_BUS_WIDTH_8) { 745 index = SDXC_CLK_50M_DDR_8BIT; 746 } else { 747 index = SDXC_CLK_50M_DDR; 748 } 749 } else { 750 dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n"); 751 return -EINVAL; 752 } 753 754 clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample); 755 clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output); 756 757 return 0; 758 } 759 760 static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host, 761 struct mmc_ios *ios) 762 { 763 struct mmc_host *mmc = host->mmc; 764 long rate; 765 u32 rval, clock = ios->clock, div = 1; 766 int ret; 767 768 ret = sunxi_mmc_oclk_onoff(host, 0); 769 if (ret) 770 return ret; 771 772 /* Our clock is gated now */ 773 mmc->actual_clock = 0; 774 775 if (!ios->clock) 776 return 0; 777 778 /* 779 * Under the old timing mode, 8 bit DDR requires the module 780 * clock to be double the card clock. Under the new timing 781 * mode, all DDR modes require a doubled module clock. 782 * 783 * We currently only support the standard MMC DDR52 mode. 784 * This block should be updated once support for other DDR 785 * modes is added. 786 */ 787 if (ios->timing == MMC_TIMING_MMC_DDR52 && 788 (host->use_new_timings || 789 ios->bus_width == MMC_BUS_WIDTH_8)) { 790 div = 2; 791 clock <<= 1; 792 } 793 794 if (host->use_new_timings && host->cfg->ccu_has_timings_switch) { 795 ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true); 796 if (ret) { 797 dev_err(mmc_dev(mmc), 798 "error setting new timing mode\n"); 799 return ret; 800 } 801 } 802 803 rate = clk_round_rate(host->clk_mmc, clock); 804 if (rate < 0) { 805 dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n", 806 clock, rate); 807 return rate; 808 } 809 dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n", 810 clock, rate); 811 812 /* setting clock rate */ 813 ret = clk_set_rate(host->clk_mmc, rate); 814 if (ret) { 815 dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n", 816 rate, ret); 817 return ret; 818 } 819 820 /* set internal divider */ 821 rval = mmc_readl(host, REG_CLKCR); 822 rval &= ~0xff; 823 rval |= div - 1; 824 mmc_writel(host, REG_CLKCR, rval); 825 826 /* update card clock rate to account for internal divider */ 827 rate /= div; 828 829 /* 830 * Configure the controller to use the new timing mode if needed. 831 * On controllers that only support the new timing mode, such as 832 * the eMMC controller on the A64, this register does not exist, 833 * and any writes to it are ignored. 834 */ 835 if (host->use_new_timings) { 836 /* Don't touch the delay bits */ 837 rval = mmc_readl(host, REG_SD_NTSR); 838 rval |= SDXC_2X_TIMING_MODE; 839 mmc_writel(host, REG_SD_NTSR, rval); 840 } 841 842 /* sunxi_mmc_clk_set_phase expects the actual card clock rate */ 843 ret = sunxi_mmc_clk_set_phase(host, ios, rate); 844 if (ret) 845 return ret; 846 847 ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG); 848 if (ret) 849 return ret; 850 851 /* 852 * FIXME: 853 * 854 * In HS400 we'll also need to calibrate the data strobe 855 * signal. This should only happen on the MMC2 controller (at 856 * least on the A64). 857 */ 858 859 ret = sunxi_mmc_oclk_onoff(host, 1); 860 if (ret) 861 return ret; 862 863 /* And we just enabled our clock back */ 864 mmc->actual_clock = rate; 865 866 return 0; 867 } 868 869 static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host, 870 unsigned char width) 871 { 872 switch (width) { 873 case MMC_BUS_WIDTH_1: 874 mmc_writel(host, REG_WIDTH, SDXC_WIDTH1); 875 break; 876 case MMC_BUS_WIDTH_4: 877 mmc_writel(host, REG_WIDTH, SDXC_WIDTH4); 878 break; 879 case MMC_BUS_WIDTH_8: 880 mmc_writel(host, REG_WIDTH, SDXC_WIDTH8); 881 break; 882 } 883 } 884 885 static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios) 886 { 887 u32 rval; 888 889 /* set ddr mode */ 890 rval = mmc_readl(host, REG_GCTRL); 891 if (ios->timing == MMC_TIMING_UHS_DDR50 || 892 ios->timing == MMC_TIMING_MMC_DDR52) 893 rval |= SDXC_DDR_MODE; 894 else 895 rval &= ~SDXC_DDR_MODE; 896 mmc_writel(host, REG_GCTRL, rval); 897 898 host->ferror = sunxi_mmc_clk_set_rate(host, ios); 899 /* Android code had a usleep_range(50000, 55000); here */ 900 } 901 902 static void sunxi_mmc_card_power(struct sunxi_mmc_host *host, 903 struct mmc_ios *ios) 904 { 905 struct mmc_host *mmc = host->mmc; 906 907 switch (ios->power_mode) { 908 case MMC_POWER_UP: 909 dev_dbg(mmc_dev(mmc), "Powering card up\n"); 910 911 if (!IS_ERR(mmc->supply.vmmc)) { 912 host->ferror = mmc_regulator_set_ocr(mmc, 913 mmc->supply.vmmc, 914 ios->vdd); 915 if (host->ferror) 916 return; 917 } 918 919 if (!IS_ERR(mmc->supply.vqmmc)) { 920 host->ferror = regulator_enable(mmc->supply.vqmmc); 921 if (host->ferror) { 922 dev_err(mmc_dev(mmc), 923 "failed to enable vqmmc\n"); 924 return; 925 } 926 host->vqmmc_enabled = true; 927 } 928 break; 929 930 case MMC_POWER_OFF: 931 dev_dbg(mmc_dev(mmc), "Powering card off\n"); 932 933 if (!IS_ERR(mmc->supply.vmmc)) 934 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 935 936 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) 937 regulator_disable(mmc->supply.vqmmc); 938 939 host->vqmmc_enabled = false; 940 break; 941 942 default: 943 dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n"); 944 break; 945 } 946 } 947 948 static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 949 { 950 struct sunxi_mmc_host *host = mmc_priv(mmc); 951 952 sunxi_mmc_card_power(host, ios); 953 sunxi_mmc_set_bus_width(host, ios->bus_width); 954 sunxi_mmc_set_clk(host, ios); 955 } 956 957 static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) 958 { 959 int ret; 960 961 /* vqmmc regulator is available */ 962 if (!IS_ERR(mmc->supply.vqmmc)) { 963 ret = mmc_regulator_set_vqmmc(mmc, ios); 964 return ret < 0 ? ret : 0; 965 } 966 967 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */ 968 if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) 969 return 0; 970 971 return -EINVAL; 972 } 973 974 static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable) 975 { 976 struct sunxi_mmc_host *host = mmc_priv(mmc); 977 unsigned long flags; 978 u32 imask; 979 980 if (enable) 981 pm_runtime_get_noresume(host->dev); 982 983 spin_lock_irqsave(&host->lock, flags); 984 985 imask = mmc_readl(host, REG_IMASK); 986 if (enable) { 987 host->sdio_imask = SDXC_SDIO_INTERRUPT; 988 imask |= SDXC_SDIO_INTERRUPT; 989 } else { 990 host->sdio_imask = 0; 991 imask &= ~SDXC_SDIO_INTERRUPT; 992 } 993 mmc_writel(host, REG_IMASK, imask); 994 spin_unlock_irqrestore(&host->lock, flags); 995 996 if (!enable) 997 pm_runtime_put_noidle(host->mmc->parent); 998 } 999 1000 static void sunxi_mmc_hw_reset(struct mmc_host *mmc) 1001 { 1002 struct sunxi_mmc_host *host = mmc_priv(mmc); 1003 mmc_writel(host, REG_HWRST, 0); 1004 udelay(10); 1005 mmc_writel(host, REG_HWRST, 1); 1006 udelay(300); 1007 } 1008 1009 static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) 1010 { 1011 struct sunxi_mmc_host *host = mmc_priv(mmc); 1012 struct mmc_command *cmd = mrq->cmd; 1013 struct mmc_data *data = mrq->data; 1014 unsigned long iflags; 1015 u32 imask = SDXC_INTERRUPT_ERROR_BIT; 1016 u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f); 1017 bool wait_dma = host->wait_dma; 1018 int ret; 1019 1020 /* Check for set_ios errors (should never happen) */ 1021 if (host->ferror) { 1022 mrq->cmd->error = host->ferror; 1023 mmc_request_done(mmc, mrq); 1024 return; 1025 } 1026 1027 if (data) { 1028 ret = sunxi_mmc_map_dma(host, data); 1029 if (ret < 0) { 1030 dev_err(mmc_dev(mmc), "map DMA failed\n"); 1031 cmd->error = ret; 1032 data->error = ret; 1033 mmc_request_done(mmc, mrq); 1034 return; 1035 } 1036 } 1037 1038 if (cmd->opcode == MMC_GO_IDLE_STATE) { 1039 cmd_val |= SDXC_SEND_INIT_SEQUENCE; 1040 imask |= SDXC_COMMAND_DONE; 1041 } 1042 1043 if (cmd->flags & MMC_RSP_PRESENT) { 1044 cmd_val |= SDXC_RESP_EXPIRE; 1045 if (cmd->flags & MMC_RSP_136) 1046 cmd_val |= SDXC_LONG_RESPONSE; 1047 if (cmd->flags & MMC_RSP_CRC) 1048 cmd_val |= SDXC_CHECK_RESPONSE_CRC; 1049 1050 if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) { 1051 cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER; 1052 1053 if (cmd->data->stop) { 1054 imask |= SDXC_AUTO_COMMAND_DONE; 1055 cmd_val |= SDXC_SEND_AUTO_STOP; 1056 } else { 1057 imask |= SDXC_DATA_OVER; 1058 } 1059 1060 if (cmd->data->flags & MMC_DATA_WRITE) 1061 cmd_val |= SDXC_WRITE; 1062 else 1063 wait_dma = true; 1064 } else { 1065 imask |= SDXC_COMMAND_DONE; 1066 } 1067 } else { 1068 imask |= SDXC_COMMAND_DONE; 1069 } 1070 1071 dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n", 1072 cmd_val & 0x3f, cmd_val, cmd->arg, imask, 1073 mrq->data ? mrq->data->blksz * mrq->data->blocks : 0); 1074 1075 spin_lock_irqsave(&host->lock, iflags); 1076 1077 if (host->mrq || host->manual_stop_mrq) { 1078 spin_unlock_irqrestore(&host->lock, iflags); 1079 1080 if (data) 1081 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len, 1082 mmc_get_dma_dir(data)); 1083 1084 dev_err(mmc_dev(mmc), "request already pending\n"); 1085 mrq->cmd->error = -EBUSY; 1086 mmc_request_done(mmc, mrq); 1087 return; 1088 } 1089 1090 if (data) { 1091 mmc_writel(host, REG_BLKSZ, data->blksz); 1092 mmc_writel(host, REG_BCNTR, data->blksz * data->blocks); 1093 sunxi_mmc_start_dma(host, data); 1094 } 1095 1096 host->mrq = mrq; 1097 host->wait_dma = wait_dma; 1098 mmc_writel(host, REG_IMASK, host->sdio_imask | imask); 1099 mmc_writel(host, REG_CARG, cmd->arg); 1100 mmc_writel(host, REG_CMDR, cmd_val); 1101 1102 spin_unlock_irqrestore(&host->lock, iflags); 1103 } 1104 1105 static int sunxi_mmc_card_busy(struct mmc_host *mmc) 1106 { 1107 struct sunxi_mmc_host *host = mmc_priv(mmc); 1108 1109 return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY); 1110 } 1111 1112 static const struct mmc_host_ops sunxi_mmc_ops = { 1113 .request = sunxi_mmc_request, 1114 .set_ios = sunxi_mmc_set_ios, 1115 .get_ro = mmc_gpio_get_ro, 1116 .get_cd = mmc_gpio_get_cd, 1117 .enable_sdio_irq = sunxi_mmc_enable_sdio_irq, 1118 .start_signal_voltage_switch = sunxi_mmc_volt_switch, 1119 .card_hw_reset = sunxi_mmc_hw_reset, 1120 .card_busy = sunxi_mmc_card_busy, 1121 }; 1122 1123 static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = { 1124 [SDXC_CLK_400K] = { .output = 180, .sample = 180 }, 1125 [SDXC_CLK_25M] = { .output = 180, .sample = 75 }, 1126 [SDXC_CLK_50M] = { .output = 90, .sample = 120 }, 1127 [SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 }, 1128 /* Value from A83T "new timing mode". Works but might not be right. */ 1129 [SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 }, 1130 }; 1131 1132 static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = { 1133 [SDXC_CLK_400K] = { .output = 180, .sample = 180 }, 1134 [SDXC_CLK_25M] = { .output = 180, .sample = 75 }, 1135 [SDXC_CLK_50M] = { .output = 150, .sample = 120 }, 1136 [SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 }, 1137 [SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 }, 1138 }; 1139 1140 static const struct sunxi_mmc_cfg sun4i_a10_cfg = { 1141 .idma_des_size_bits = 13, 1142 .clk_delays = NULL, 1143 .can_calibrate = false, 1144 }; 1145 1146 static const struct sunxi_mmc_cfg sun5i_a13_cfg = { 1147 .idma_des_size_bits = 16, 1148 .clk_delays = NULL, 1149 .can_calibrate = false, 1150 }; 1151 1152 static const struct sunxi_mmc_cfg sun7i_a20_cfg = { 1153 .idma_des_size_bits = 16, 1154 .clk_delays = sunxi_mmc_clk_delays, 1155 .can_calibrate = false, 1156 }; 1157 1158 static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = { 1159 .idma_des_size_bits = 16, 1160 .clk_delays = sunxi_mmc_clk_delays, 1161 .can_calibrate = false, 1162 .ccu_has_timings_switch = true, 1163 }; 1164 1165 static const struct sunxi_mmc_cfg sun9i_a80_cfg = { 1166 .idma_des_size_bits = 16, 1167 .clk_delays = sun9i_mmc_clk_delays, 1168 .can_calibrate = false, 1169 }; 1170 1171 static const struct sunxi_mmc_cfg sun20i_d1_cfg = { 1172 .idma_des_size_bits = 13, 1173 .idma_des_shift = 2, 1174 .can_calibrate = true, 1175 .mask_data0 = true, 1176 .needs_new_timings = true, 1177 }; 1178 1179 static const struct sunxi_mmc_cfg sun50i_a64_cfg = { 1180 .idma_des_size_bits = 16, 1181 .clk_delays = NULL, 1182 .can_calibrate = true, 1183 .mask_data0 = true, 1184 .needs_new_timings = true, 1185 }; 1186 1187 static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = { 1188 .idma_des_size_bits = 13, 1189 .clk_delays = NULL, 1190 .can_calibrate = true, 1191 .needs_new_timings = true, 1192 }; 1193 1194 static const struct sunxi_mmc_cfg sun50i_a100_cfg = { 1195 .idma_des_size_bits = 16, 1196 .idma_des_shift = 2, 1197 .clk_delays = NULL, 1198 .can_calibrate = true, 1199 .mask_data0 = true, 1200 .needs_new_timings = true, 1201 }; 1202 1203 static const struct sunxi_mmc_cfg sun50i_a100_emmc_cfg = { 1204 .idma_des_size_bits = 13, 1205 .idma_des_shift = 2, 1206 .clk_delays = NULL, 1207 .can_calibrate = true, 1208 .needs_new_timings = true, 1209 }; 1210 1211 static const struct of_device_id sunxi_mmc_of_match[] = { 1212 { .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg }, 1213 { .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg }, 1214 { .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg }, 1215 { .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg }, 1216 { .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg }, 1217 { .compatible = "allwinner,sun20i-d1-mmc", .data = &sun20i_d1_cfg }, 1218 { .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg }, 1219 { .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg }, 1220 { .compatible = "allwinner,sun50i-a100-mmc", .data = &sun50i_a100_cfg }, 1221 { .compatible = "allwinner,sun50i-a100-emmc", .data = &sun50i_a100_emmc_cfg }, 1222 { /* sentinel */ } 1223 }; 1224 MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match); 1225 1226 static int sunxi_mmc_enable(struct sunxi_mmc_host *host) 1227 { 1228 int ret; 1229 1230 if (!IS_ERR(host->reset)) { 1231 ret = reset_control_reset(host->reset); 1232 if (ret) { 1233 dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n", 1234 ret); 1235 return ret; 1236 } 1237 } 1238 1239 ret = clk_prepare_enable(host->clk_ahb); 1240 if (ret) { 1241 dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret); 1242 goto error_assert_reset; 1243 } 1244 1245 ret = clk_prepare_enable(host->clk_mmc); 1246 if (ret) { 1247 dev_err(host->dev, "Enable mmc clk err %d\n", ret); 1248 goto error_disable_clk_ahb; 1249 } 1250 1251 ret = clk_prepare_enable(host->clk_output); 1252 if (ret) { 1253 dev_err(host->dev, "Enable output clk err %d\n", ret); 1254 goto error_disable_clk_mmc; 1255 } 1256 1257 ret = clk_prepare_enable(host->clk_sample); 1258 if (ret) { 1259 dev_err(host->dev, "Enable sample clk err %d\n", ret); 1260 goto error_disable_clk_output; 1261 } 1262 1263 /* 1264 * Sometimes the controller asserts the irq on boot for some reason, 1265 * make sure the controller is in a sane state before enabling irqs. 1266 */ 1267 ret = sunxi_mmc_reset_host(host); 1268 if (ret) 1269 goto error_disable_clk_sample; 1270 1271 return 0; 1272 1273 error_disable_clk_sample: 1274 clk_disable_unprepare(host->clk_sample); 1275 error_disable_clk_output: 1276 clk_disable_unprepare(host->clk_output); 1277 error_disable_clk_mmc: 1278 clk_disable_unprepare(host->clk_mmc); 1279 error_disable_clk_ahb: 1280 clk_disable_unprepare(host->clk_ahb); 1281 error_assert_reset: 1282 if (!IS_ERR(host->reset)) 1283 reset_control_assert(host->reset); 1284 return ret; 1285 } 1286 1287 static void sunxi_mmc_disable(struct sunxi_mmc_host *host) 1288 { 1289 sunxi_mmc_reset_host(host); 1290 1291 clk_disable_unprepare(host->clk_sample); 1292 clk_disable_unprepare(host->clk_output); 1293 clk_disable_unprepare(host->clk_mmc); 1294 clk_disable_unprepare(host->clk_ahb); 1295 1296 if (!IS_ERR(host->reset)) 1297 reset_control_assert(host->reset); 1298 } 1299 1300 static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host, 1301 struct platform_device *pdev) 1302 { 1303 int ret; 1304 1305 host->cfg = of_device_get_match_data(&pdev->dev); 1306 if (!host->cfg) 1307 return -EINVAL; 1308 1309 ret = mmc_regulator_get_supply(host->mmc); 1310 if (ret) 1311 return ret; 1312 1313 host->reg_base = devm_platform_ioremap_resource(pdev, 0); 1314 if (IS_ERR(host->reg_base)) 1315 return PTR_ERR(host->reg_base); 1316 1317 host->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 1318 if (IS_ERR(host->clk_ahb)) { 1319 dev_err(&pdev->dev, "Could not get ahb clock\n"); 1320 return PTR_ERR(host->clk_ahb); 1321 } 1322 1323 host->clk_mmc = devm_clk_get(&pdev->dev, "mmc"); 1324 if (IS_ERR(host->clk_mmc)) { 1325 dev_err(&pdev->dev, "Could not get mmc clock\n"); 1326 return PTR_ERR(host->clk_mmc); 1327 } 1328 1329 if (host->cfg->clk_delays) { 1330 host->clk_output = devm_clk_get(&pdev->dev, "output"); 1331 if (IS_ERR(host->clk_output)) { 1332 dev_err(&pdev->dev, "Could not get output clock\n"); 1333 return PTR_ERR(host->clk_output); 1334 } 1335 1336 host->clk_sample = devm_clk_get(&pdev->dev, "sample"); 1337 if (IS_ERR(host->clk_sample)) { 1338 dev_err(&pdev->dev, "Could not get sample clock\n"); 1339 return PTR_ERR(host->clk_sample); 1340 } 1341 } 1342 1343 host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev, 1344 "ahb"); 1345 if (PTR_ERR(host->reset) == -EPROBE_DEFER) 1346 return PTR_ERR(host->reset); 1347 1348 ret = sunxi_mmc_enable(host); 1349 if (ret) 1350 return ret; 1351 1352 host->irq = platform_get_irq(pdev, 0); 1353 if (host->irq < 0) { 1354 ret = host->irq; 1355 goto error_disable_mmc; 1356 } 1357 1358 return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq, 1359 sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host); 1360 1361 error_disable_mmc: 1362 sunxi_mmc_disable(host); 1363 return ret; 1364 } 1365 1366 static int sunxi_mmc_probe(struct platform_device *pdev) 1367 { 1368 struct sunxi_mmc_host *host; 1369 struct mmc_host *mmc; 1370 int ret; 1371 1372 mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev); 1373 if (!mmc) { 1374 dev_err(&pdev->dev, "mmc alloc host failed\n"); 1375 return -ENOMEM; 1376 } 1377 platform_set_drvdata(pdev, mmc); 1378 1379 host = mmc_priv(mmc); 1380 host->dev = &pdev->dev; 1381 host->mmc = mmc; 1382 spin_lock_init(&host->lock); 1383 1384 ret = sunxi_mmc_resource_request(host, pdev); 1385 if (ret) 1386 goto error_free_host; 1387 1388 host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 1389 &host->sg_dma, GFP_KERNEL); 1390 if (!host->sg_cpu) { 1391 dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n"); 1392 ret = -ENOMEM; 1393 goto error_free_host; 1394 } 1395 1396 if (host->cfg->ccu_has_timings_switch) { 1397 /* 1398 * Supports both old and new timing modes. 1399 * Try setting the clk to new timing mode. 1400 */ 1401 sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true); 1402 1403 /* And check the result */ 1404 ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc); 1405 if (ret < 0) { 1406 /* 1407 * For whatever reason we were not able to get 1408 * the current active mode. Default to old mode. 1409 */ 1410 dev_warn(&pdev->dev, "MMC clk timing mode unknown\n"); 1411 host->use_new_timings = false; 1412 } else { 1413 host->use_new_timings = !!ret; 1414 } 1415 } else if (host->cfg->needs_new_timings) { 1416 /* Supports new timing mode only */ 1417 host->use_new_timings = true; 1418 } 1419 1420 mmc->ops = &sunxi_mmc_ops; 1421 mmc->max_blk_count = 8192; 1422 mmc->max_blk_size = 4096; 1423 mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des); 1424 mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits); 1425 mmc->max_req_size = mmc->max_seg_size * mmc->max_segs; 1426 /* 400kHz ~ 52MHz */ 1427 mmc->f_min = 400000; 1428 mmc->f_max = 52000000; 1429 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED | 1430 MMC_CAP_SDIO_IRQ; 1431 1432 /* 1433 * Some H5 devices do not have signal traces precise enough to 1434 * use HS DDR mode for their eMMC chips. 1435 * 1436 * We still enable HS DDR modes for all the other controller 1437 * variants that support them. 1438 */ 1439 if ((host->cfg->clk_delays || host->use_new_timings) && 1440 !of_device_is_compatible(pdev->dev.of_node, 1441 "allwinner,sun50i-h5-emmc")) 1442 mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR; 1443 1444 ret = mmc_of_parse(mmc); 1445 if (ret) 1446 goto error_free_dma; 1447 1448 /* 1449 * If we don't support delay chains in the SoC, we can't use any 1450 * of the higher speed modes. Mask them out in case the device 1451 * tree specifies the properties for them, which gets added to 1452 * the caps by mmc_of_parse() above. 1453 */ 1454 if (!(host->cfg->clk_delays || host->use_new_timings)) { 1455 mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR | 1456 MMC_CAP_1_2V_DDR | MMC_CAP_UHS); 1457 mmc->caps2 &= ~MMC_CAP2_HS200; 1458 } 1459 1460 /* TODO: This driver doesn't support HS400 mode yet */ 1461 mmc->caps2 &= ~MMC_CAP2_HS400; 1462 1463 ret = sunxi_mmc_init_host(host); 1464 if (ret) 1465 goto error_free_dma; 1466 1467 pm_runtime_set_active(&pdev->dev); 1468 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1469 pm_runtime_use_autosuspend(&pdev->dev); 1470 pm_runtime_enable(&pdev->dev); 1471 1472 ret = mmc_add_host(mmc); 1473 if (ret) 1474 goto error_free_dma; 1475 1476 dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n", 1477 mmc->max_req_size >> 10, 1478 host->use_new_timings ? ", uses new timings mode" : ""); 1479 1480 return 0; 1481 1482 error_free_dma: 1483 dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma); 1484 error_free_host: 1485 mmc_free_host(mmc); 1486 return ret; 1487 } 1488 1489 static int sunxi_mmc_remove(struct platform_device *pdev) 1490 { 1491 struct mmc_host *mmc = platform_get_drvdata(pdev); 1492 struct sunxi_mmc_host *host = mmc_priv(mmc); 1493 1494 mmc_remove_host(mmc); 1495 pm_runtime_disable(&pdev->dev); 1496 if (!pm_runtime_status_suspended(&pdev->dev)) { 1497 disable_irq(host->irq); 1498 sunxi_mmc_disable(host); 1499 } 1500 dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma); 1501 mmc_free_host(mmc); 1502 1503 return 0; 1504 } 1505 1506 #ifdef CONFIG_PM 1507 static int sunxi_mmc_runtime_resume(struct device *dev) 1508 { 1509 struct mmc_host *mmc = dev_get_drvdata(dev); 1510 struct sunxi_mmc_host *host = mmc_priv(mmc); 1511 int ret; 1512 1513 ret = sunxi_mmc_enable(host); 1514 if (ret) 1515 return ret; 1516 1517 sunxi_mmc_init_host(host); 1518 sunxi_mmc_set_bus_width(host, mmc->ios.bus_width); 1519 sunxi_mmc_set_clk(host, &mmc->ios); 1520 enable_irq(host->irq); 1521 1522 return 0; 1523 } 1524 1525 static int sunxi_mmc_runtime_suspend(struct device *dev) 1526 { 1527 struct mmc_host *mmc = dev_get_drvdata(dev); 1528 struct sunxi_mmc_host *host = mmc_priv(mmc); 1529 1530 /* 1531 * When clocks are off, it's possible receiving 1532 * fake interrupts, which will stall the system. 1533 * Disabling the irq will prevent this. 1534 */ 1535 disable_irq(host->irq); 1536 sunxi_mmc_reset_host(host); 1537 sunxi_mmc_disable(host); 1538 1539 return 0; 1540 } 1541 #endif 1542 1543 static const struct dev_pm_ops sunxi_mmc_pm_ops = { 1544 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1545 pm_runtime_force_resume) 1546 SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend, 1547 sunxi_mmc_runtime_resume, 1548 NULL) 1549 }; 1550 1551 static struct platform_driver sunxi_mmc_driver = { 1552 .driver = { 1553 .name = "sunxi-mmc", 1554 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1555 .of_match_table = sunxi_mmc_of_match, 1556 .pm = &sunxi_mmc_pm_ops, 1557 }, 1558 .probe = sunxi_mmc_probe, 1559 .remove = sunxi_mmc_remove, 1560 }; 1561 module_platform_driver(sunxi_mmc_driver); 1562 1563 MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver"); 1564 MODULE_LICENSE("GPL v2"); 1565 MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>"); 1566 MODULE_ALIAS("platform:sunxi-mmc"); 1567