1 /* 2 * Driver for sunxi SD/MMC host controllers 3 * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd. 4 * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com> 5 * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch> 6 * (C) Copyright 2013-2014 David Lanzend�rfer <david.lanzendoerfer@o2s.ch> 7 * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com> 8 * (C) Copyright 2017 Sootech SA 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of 13 * the License, or (at your option) any later version. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/io.h> 19 #include <linux/device.h> 20 #include <linux/interrupt.h> 21 #include <linux/delay.h> 22 #include <linux/err.h> 23 24 #include <linux/clk.h> 25 #include <linux/gpio.h> 26 #include <linux/platform_device.h> 27 #include <linux/spinlock.h> 28 #include <linux/scatterlist.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/reset.h> 32 #include <linux/regulator/consumer.h> 33 34 #include <linux/of_address.h> 35 #include <linux/of_gpio.h> 36 #include <linux/of_platform.h> 37 38 #include <linux/mmc/host.h> 39 #include <linux/mmc/sd.h> 40 #include <linux/mmc/sdio.h> 41 #include <linux/mmc/mmc.h> 42 #include <linux/mmc/core.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/slot-gpio.h> 45 46 /* register offset definitions */ 47 #define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */ 48 #define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */ 49 #define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */ 50 #define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */ 51 #define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */ 52 #define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */ 53 #define SDXC_REG_CMDR (0x18) /* SMC Command Register */ 54 #define SDXC_REG_CARG (0x1C) /* SMC Argument Register */ 55 #define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */ 56 #define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */ 57 #define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */ 58 #define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */ 59 #define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */ 60 #define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */ 61 #define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */ 62 #define SDXC_REG_STAS (0x3C) /* SMC Status Register */ 63 #define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */ 64 #define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */ 65 #define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */ 66 #define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */ 67 #define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */ 68 #define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */ 69 #define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */ 70 #define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */ 71 #define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */ 72 #define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */ 73 #define SDXC_REG_CHDA (0x90) 74 #define SDXC_REG_CBDA (0x94) 75 76 /* New registers introduced in A64 */ 77 #define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */ 78 #define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */ 79 #define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */ 80 #define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */ 81 #define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */ 82 83 #define mmc_readl(host, reg) \ 84 readl((host)->reg_base + SDXC_##reg) 85 #define mmc_writel(host, reg, value) \ 86 writel((value), (host)->reg_base + SDXC_##reg) 87 88 /* global control register bits */ 89 #define SDXC_SOFT_RESET BIT(0) 90 #define SDXC_FIFO_RESET BIT(1) 91 #define SDXC_DMA_RESET BIT(2) 92 #define SDXC_INTERRUPT_ENABLE_BIT BIT(4) 93 #define SDXC_DMA_ENABLE_BIT BIT(5) 94 #define SDXC_DEBOUNCE_ENABLE_BIT BIT(8) 95 #define SDXC_POSEDGE_LATCH_DATA BIT(9) 96 #define SDXC_DDR_MODE BIT(10) 97 #define SDXC_MEMORY_ACCESS_DONE BIT(29) 98 #define SDXC_ACCESS_DONE_DIRECT BIT(30) 99 #define SDXC_ACCESS_BY_AHB BIT(31) 100 #define SDXC_ACCESS_BY_DMA (0 << 31) 101 #define SDXC_HARDWARE_RESET \ 102 (SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET) 103 104 /* clock control bits */ 105 #define SDXC_MASK_DATA0 BIT(31) 106 #define SDXC_CARD_CLOCK_ON BIT(16) 107 #define SDXC_LOW_POWER_ON BIT(17) 108 109 /* bus width */ 110 #define SDXC_WIDTH1 0 111 #define SDXC_WIDTH4 1 112 #define SDXC_WIDTH8 2 113 114 /* smc command bits */ 115 #define SDXC_RESP_EXPIRE BIT(6) 116 #define SDXC_LONG_RESPONSE BIT(7) 117 #define SDXC_CHECK_RESPONSE_CRC BIT(8) 118 #define SDXC_DATA_EXPIRE BIT(9) 119 #define SDXC_WRITE BIT(10) 120 #define SDXC_SEQUENCE_MODE BIT(11) 121 #define SDXC_SEND_AUTO_STOP BIT(12) 122 #define SDXC_WAIT_PRE_OVER BIT(13) 123 #define SDXC_STOP_ABORT_CMD BIT(14) 124 #define SDXC_SEND_INIT_SEQUENCE BIT(15) 125 #define SDXC_UPCLK_ONLY BIT(21) 126 #define SDXC_READ_CEATA_DEV BIT(22) 127 #define SDXC_CCS_EXPIRE BIT(23) 128 #define SDXC_ENABLE_BIT_BOOT BIT(24) 129 #define SDXC_ALT_BOOT_OPTIONS BIT(25) 130 #define SDXC_BOOT_ACK_EXPIRE BIT(26) 131 #define SDXC_BOOT_ABORT BIT(27) 132 #define SDXC_VOLTAGE_SWITCH BIT(28) 133 #define SDXC_USE_HOLD_REGISTER BIT(29) 134 #define SDXC_START BIT(31) 135 136 /* interrupt bits */ 137 #define SDXC_RESP_ERROR BIT(1) 138 #define SDXC_COMMAND_DONE BIT(2) 139 #define SDXC_DATA_OVER BIT(3) 140 #define SDXC_TX_DATA_REQUEST BIT(4) 141 #define SDXC_RX_DATA_REQUEST BIT(5) 142 #define SDXC_RESP_CRC_ERROR BIT(6) 143 #define SDXC_DATA_CRC_ERROR BIT(7) 144 #define SDXC_RESP_TIMEOUT BIT(8) 145 #define SDXC_DATA_TIMEOUT BIT(9) 146 #define SDXC_VOLTAGE_CHANGE_DONE BIT(10) 147 #define SDXC_FIFO_RUN_ERROR BIT(11) 148 #define SDXC_HARD_WARE_LOCKED BIT(12) 149 #define SDXC_START_BIT_ERROR BIT(13) 150 #define SDXC_AUTO_COMMAND_DONE BIT(14) 151 #define SDXC_END_BIT_ERROR BIT(15) 152 #define SDXC_SDIO_INTERRUPT BIT(16) 153 #define SDXC_CARD_INSERT BIT(30) 154 #define SDXC_CARD_REMOVE BIT(31) 155 #define SDXC_INTERRUPT_ERROR_BIT \ 156 (SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \ 157 SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \ 158 SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR) 159 #define SDXC_INTERRUPT_DONE_BIT \ 160 (SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \ 161 SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE) 162 163 /* status */ 164 #define SDXC_RXWL_FLAG BIT(0) 165 #define SDXC_TXWL_FLAG BIT(1) 166 #define SDXC_FIFO_EMPTY BIT(2) 167 #define SDXC_FIFO_FULL BIT(3) 168 #define SDXC_CARD_PRESENT BIT(8) 169 #define SDXC_CARD_DATA_BUSY BIT(9) 170 #define SDXC_DATA_FSM_BUSY BIT(10) 171 #define SDXC_DMA_REQUEST BIT(31) 172 #define SDXC_FIFO_SIZE 16 173 174 /* Function select */ 175 #define SDXC_CEATA_ON (0xceaa << 16) 176 #define SDXC_SEND_IRQ_RESPONSE BIT(0) 177 #define SDXC_SDIO_READ_WAIT BIT(1) 178 #define SDXC_ABORT_READ_DATA BIT(2) 179 #define SDXC_SEND_CCSD BIT(8) 180 #define SDXC_SEND_AUTO_STOPCCSD BIT(9) 181 #define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10) 182 183 /* IDMA controller bus mod bit field */ 184 #define SDXC_IDMAC_SOFT_RESET BIT(0) 185 #define SDXC_IDMAC_FIX_BURST BIT(1) 186 #define SDXC_IDMAC_IDMA_ON BIT(7) 187 #define SDXC_IDMAC_REFETCH_DES BIT(31) 188 189 /* IDMA status bit field */ 190 #define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0) 191 #define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1) 192 #define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2) 193 #define SDXC_IDMAC_DESTINATION_INVALID BIT(4) 194 #define SDXC_IDMAC_CARD_ERROR_SUM BIT(5) 195 #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8) 196 #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9) 197 #define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10) 198 #define SDXC_IDMAC_IDLE (0 << 13) 199 #define SDXC_IDMAC_SUSPEND (1 << 13) 200 #define SDXC_IDMAC_DESC_READ (2 << 13) 201 #define SDXC_IDMAC_DESC_CHECK (3 << 13) 202 #define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13) 203 #define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13) 204 #define SDXC_IDMAC_READ (6 << 13) 205 #define SDXC_IDMAC_WRITE (7 << 13) 206 #define SDXC_IDMAC_DESC_CLOSE (8 << 13) 207 208 /* 209 * If the idma-des-size-bits of property is ie 13, bufsize bits are: 210 * Bits 0-12: buf1 size 211 * Bits 13-25: buf2 size 212 * Bits 26-31: not used 213 * Since we only ever set buf1 size, we can simply store it directly. 214 */ 215 #define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */ 216 #define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */ 217 #define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */ 218 #define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */ 219 #define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */ 220 #define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */ 221 #define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */ 222 223 #define SDXC_CLK_400K 0 224 #define SDXC_CLK_25M 1 225 #define SDXC_CLK_50M 2 226 #define SDXC_CLK_50M_DDR 3 227 #define SDXC_CLK_50M_DDR_8BIT 4 228 229 #define SDXC_2X_TIMING_MODE BIT(31) 230 231 #define SDXC_CAL_START BIT(15) 232 #define SDXC_CAL_DONE BIT(14) 233 #define SDXC_CAL_DL_SHIFT 8 234 #define SDXC_CAL_DL_SW_EN BIT(7) 235 #define SDXC_CAL_DL_SW_SHIFT 0 236 #define SDXC_CAL_DL_MASK 0x3f 237 238 #define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/ 239 240 struct sunxi_mmc_clk_delay { 241 u32 output; 242 u32 sample; 243 }; 244 245 struct sunxi_idma_des { 246 __le32 config; 247 __le32 buf_size; 248 __le32 buf_addr_ptr1; 249 __le32 buf_addr_ptr2; 250 }; 251 252 struct sunxi_mmc_cfg { 253 u32 idma_des_size_bits; 254 const struct sunxi_mmc_clk_delay *clk_delays; 255 256 /* does the IP block support autocalibration? */ 257 bool can_calibrate; 258 259 /* Does DATA0 needs to be masked while the clock is updated */ 260 bool mask_data0; 261 262 bool needs_new_timings; 263 }; 264 265 struct sunxi_mmc_host { 266 struct mmc_host *mmc; 267 struct reset_control *reset; 268 const struct sunxi_mmc_cfg *cfg; 269 270 /* IO mapping base */ 271 void __iomem *reg_base; 272 273 /* clock management */ 274 struct clk *clk_ahb; 275 struct clk *clk_mmc; 276 struct clk *clk_sample; 277 struct clk *clk_output; 278 279 /* irq */ 280 spinlock_t lock; 281 int irq; 282 u32 int_sum; 283 u32 sdio_imask; 284 285 /* dma */ 286 dma_addr_t sg_dma; 287 void *sg_cpu; 288 bool wait_dma; 289 290 struct mmc_request *mrq; 291 struct mmc_request *manual_stop_mrq; 292 int ferror; 293 294 /* vqmmc */ 295 bool vqmmc_enabled; 296 }; 297 298 static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host) 299 { 300 unsigned long expire = jiffies + msecs_to_jiffies(250); 301 u32 rval; 302 303 mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET); 304 do { 305 rval = mmc_readl(host, REG_GCTRL); 306 } while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET)); 307 308 if (rval & SDXC_HARDWARE_RESET) { 309 dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n"); 310 return -EIO; 311 } 312 313 return 0; 314 } 315 316 static int sunxi_mmc_init_host(struct mmc_host *mmc) 317 { 318 u32 rval; 319 struct sunxi_mmc_host *host = mmc_priv(mmc); 320 321 if (sunxi_mmc_reset_host(host)) 322 return -EIO; 323 324 /* 325 * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8 326 * 327 * TODO: sun9i has a larger FIFO and supports higher trigger values 328 */ 329 mmc_writel(host, REG_FTRGL, 0x20070008); 330 /* Maximum timeout value */ 331 mmc_writel(host, REG_TMOUT, 0xffffffff); 332 /* Unmask SDIO interrupt if needed */ 333 mmc_writel(host, REG_IMASK, host->sdio_imask); 334 /* Clear all pending interrupts */ 335 mmc_writel(host, REG_RINTR, 0xffffffff); 336 /* Debug register? undocumented */ 337 mmc_writel(host, REG_DBGC, 0xdeb); 338 /* Enable CEATA support */ 339 mmc_writel(host, REG_FUNS, SDXC_CEATA_ON); 340 /* Set DMA descriptor list base address */ 341 mmc_writel(host, REG_DLBA, host->sg_dma); 342 343 rval = mmc_readl(host, REG_GCTRL); 344 rval |= SDXC_INTERRUPT_ENABLE_BIT; 345 /* Undocumented, but found in Allwinner code */ 346 rval &= ~SDXC_ACCESS_DONE_DIRECT; 347 mmc_writel(host, REG_GCTRL, rval); 348 349 return 0; 350 } 351 352 static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host, 353 struct mmc_data *data) 354 { 355 struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu; 356 dma_addr_t next_desc = host->sg_dma; 357 int i, max_len = (1 << host->cfg->idma_des_size_bits); 358 359 for (i = 0; i < data->sg_len; i++) { 360 pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH | 361 SDXC_IDMAC_DES0_OWN | 362 SDXC_IDMAC_DES0_DIC); 363 364 if (data->sg[i].length == max_len) 365 pdes[i].buf_size = 0; /* 0 == max_len */ 366 else 367 pdes[i].buf_size = cpu_to_le32(data->sg[i].length); 368 369 next_desc += sizeof(struct sunxi_idma_des); 370 pdes[i].buf_addr_ptr1 = 371 cpu_to_le32(sg_dma_address(&data->sg[i])); 372 pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc); 373 } 374 375 pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD); 376 pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD | 377 SDXC_IDMAC_DES0_ER); 378 pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC); 379 pdes[i - 1].buf_addr_ptr2 = 0; 380 381 /* 382 * Avoid the io-store starting the idmac hitting io-mem before the 383 * descriptors hit the main-mem. 384 */ 385 wmb(); 386 } 387 388 static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host, 389 struct mmc_data *data) 390 { 391 u32 i, dma_len; 392 struct scatterlist *sg; 393 394 dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, 395 mmc_get_dma_dir(data)); 396 if (dma_len == 0) { 397 dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n"); 398 return -ENOMEM; 399 } 400 401 for_each_sg(data->sg, sg, data->sg_len, i) { 402 if (sg->offset & 3 || sg->length & 3) { 403 dev_err(mmc_dev(host->mmc), 404 "unaligned scatterlist: os %x length %d\n", 405 sg->offset, sg->length); 406 return -EINVAL; 407 } 408 } 409 410 return 0; 411 } 412 413 static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host, 414 struct mmc_data *data) 415 { 416 u32 rval; 417 418 sunxi_mmc_init_idma_des(host, data); 419 420 rval = mmc_readl(host, REG_GCTRL); 421 rval |= SDXC_DMA_ENABLE_BIT; 422 mmc_writel(host, REG_GCTRL, rval); 423 rval |= SDXC_DMA_RESET; 424 mmc_writel(host, REG_GCTRL, rval); 425 426 mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET); 427 428 if (!(data->flags & MMC_DATA_WRITE)) 429 mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT); 430 431 mmc_writel(host, REG_DMAC, 432 SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON); 433 } 434 435 static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host, 436 struct mmc_request *req) 437 { 438 u32 arg, cmd_val, ri; 439 unsigned long expire = jiffies + msecs_to_jiffies(1000); 440 441 cmd_val = SDXC_START | SDXC_RESP_EXPIRE | 442 SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC; 443 444 if (req->cmd->opcode == SD_IO_RW_EXTENDED) { 445 cmd_val |= SD_IO_RW_DIRECT; 446 arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) | 447 ((req->cmd->arg >> 28) & 0x7); 448 } else { 449 cmd_val |= MMC_STOP_TRANSMISSION; 450 arg = 0; 451 } 452 453 mmc_writel(host, REG_CARG, arg); 454 mmc_writel(host, REG_CMDR, cmd_val); 455 456 do { 457 ri = mmc_readl(host, REG_RINTR); 458 } while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) && 459 time_before(jiffies, expire)); 460 461 if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) { 462 dev_err(mmc_dev(host->mmc), "send stop command failed\n"); 463 if (req->stop) 464 req->stop->resp[0] = -ETIMEDOUT; 465 } else { 466 if (req->stop) 467 req->stop->resp[0] = mmc_readl(host, REG_RESP0); 468 } 469 470 mmc_writel(host, REG_RINTR, 0xffff); 471 } 472 473 static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host) 474 { 475 struct mmc_command *cmd = host->mrq->cmd; 476 struct mmc_data *data = host->mrq->data; 477 478 /* For some cmds timeout is normal with sd/mmc cards */ 479 if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) == 480 SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND || 481 cmd->opcode == SD_IO_RW_DIRECT)) 482 return; 483 484 dev_dbg(mmc_dev(host->mmc), 485 "smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n", 486 host->mmc->index, cmd->opcode, 487 data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "", 488 host->int_sum & SDXC_RESP_ERROR ? " RE" : "", 489 host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "", 490 host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "", 491 host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "", 492 host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "", 493 host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "", 494 host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "", 495 host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "", 496 host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : "" 497 ); 498 } 499 500 /* Called in interrupt context! */ 501 static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host) 502 { 503 struct mmc_request *mrq = host->mrq; 504 struct mmc_data *data = mrq->data; 505 u32 rval; 506 507 mmc_writel(host, REG_IMASK, host->sdio_imask); 508 mmc_writel(host, REG_IDIE, 0); 509 510 if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) { 511 sunxi_mmc_dump_errinfo(host); 512 mrq->cmd->error = -ETIMEDOUT; 513 514 if (data) { 515 data->error = -ETIMEDOUT; 516 host->manual_stop_mrq = mrq; 517 } 518 519 if (mrq->stop) 520 mrq->stop->error = -ETIMEDOUT; 521 } else { 522 if (mrq->cmd->flags & MMC_RSP_136) { 523 mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3); 524 mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2); 525 mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1); 526 mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0); 527 } else { 528 mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0); 529 } 530 531 if (data) 532 data->bytes_xfered = data->blocks * data->blksz; 533 } 534 535 if (data) { 536 mmc_writel(host, REG_IDST, 0x337); 537 mmc_writel(host, REG_DMAC, 0); 538 rval = mmc_readl(host, REG_GCTRL); 539 rval |= SDXC_DMA_RESET; 540 mmc_writel(host, REG_GCTRL, rval); 541 rval &= ~SDXC_DMA_ENABLE_BIT; 542 mmc_writel(host, REG_GCTRL, rval); 543 rval |= SDXC_FIFO_RESET; 544 mmc_writel(host, REG_GCTRL, rval); 545 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, 546 mmc_get_dma_dir(data)); 547 } 548 549 mmc_writel(host, REG_RINTR, 0xffff); 550 551 host->mrq = NULL; 552 host->int_sum = 0; 553 host->wait_dma = false; 554 555 return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED; 556 } 557 558 static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id) 559 { 560 struct sunxi_mmc_host *host = dev_id; 561 struct mmc_request *mrq; 562 u32 msk_int, idma_int; 563 bool finalize = false; 564 bool sdio_int = false; 565 irqreturn_t ret = IRQ_HANDLED; 566 567 spin_lock(&host->lock); 568 569 idma_int = mmc_readl(host, REG_IDST); 570 msk_int = mmc_readl(host, REG_MISTA); 571 572 dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n", 573 host->mrq, msk_int, idma_int); 574 575 mrq = host->mrq; 576 if (mrq) { 577 if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT) 578 host->wait_dma = false; 579 580 host->int_sum |= msk_int; 581 582 /* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */ 583 if ((host->int_sum & SDXC_RESP_TIMEOUT) && 584 !(host->int_sum & SDXC_COMMAND_DONE)) 585 mmc_writel(host, REG_IMASK, 586 host->sdio_imask | SDXC_COMMAND_DONE); 587 /* Don't wait for dma on error */ 588 else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) 589 finalize = true; 590 else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) && 591 !host->wait_dma) 592 finalize = true; 593 } 594 595 if (msk_int & SDXC_SDIO_INTERRUPT) 596 sdio_int = true; 597 598 mmc_writel(host, REG_RINTR, msk_int); 599 mmc_writel(host, REG_IDST, idma_int); 600 601 if (finalize) 602 ret = sunxi_mmc_finalize_request(host); 603 604 spin_unlock(&host->lock); 605 606 if (finalize && ret == IRQ_HANDLED) 607 mmc_request_done(host->mmc, mrq); 608 609 if (sdio_int) 610 mmc_signal_sdio_irq(host->mmc); 611 612 return ret; 613 } 614 615 static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id) 616 { 617 struct sunxi_mmc_host *host = dev_id; 618 struct mmc_request *mrq; 619 unsigned long iflags; 620 621 spin_lock_irqsave(&host->lock, iflags); 622 mrq = host->manual_stop_mrq; 623 spin_unlock_irqrestore(&host->lock, iflags); 624 625 if (!mrq) { 626 dev_err(mmc_dev(host->mmc), "no request for manual stop\n"); 627 return IRQ_HANDLED; 628 } 629 630 dev_err(mmc_dev(host->mmc), "data error, sending stop command\n"); 631 632 /* 633 * We will never have more than one outstanding request, 634 * and we do not complete the request until after 635 * we've cleared host->manual_stop_mrq so we do not need to 636 * spin lock this function. 637 * Additionally we have wait states within this function 638 * so having it in a lock is a very bad idea. 639 */ 640 sunxi_mmc_send_manual_stop(host, mrq); 641 642 spin_lock_irqsave(&host->lock, iflags); 643 host->manual_stop_mrq = NULL; 644 spin_unlock_irqrestore(&host->lock, iflags); 645 646 mmc_request_done(host->mmc, mrq); 647 648 return IRQ_HANDLED; 649 } 650 651 static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en) 652 { 653 unsigned long expire = jiffies + msecs_to_jiffies(750); 654 u32 rval; 655 656 dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n", 657 oclk_en ? "en" : "dis"); 658 659 rval = mmc_readl(host, REG_CLKCR); 660 rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0); 661 662 if (oclk_en) 663 rval |= SDXC_CARD_CLOCK_ON; 664 if (host->cfg->mask_data0) 665 rval |= SDXC_MASK_DATA0; 666 667 mmc_writel(host, REG_CLKCR, rval); 668 669 rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER; 670 mmc_writel(host, REG_CMDR, rval); 671 672 do { 673 rval = mmc_readl(host, REG_CMDR); 674 } while (time_before(jiffies, expire) && (rval & SDXC_START)); 675 676 /* clear irq status bits set by the command */ 677 mmc_writel(host, REG_RINTR, 678 mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT); 679 680 if (rval & SDXC_START) { 681 dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n"); 682 return -EIO; 683 } 684 685 if (host->cfg->mask_data0) { 686 rval = mmc_readl(host, REG_CLKCR); 687 mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0); 688 } 689 690 return 0; 691 } 692 693 static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off) 694 { 695 if (!host->cfg->can_calibrate) 696 return 0; 697 698 /* 699 * FIXME: 700 * This is not clear how the calibration is supposed to work 701 * yet. The best rate have been obtained by simply setting the 702 * delay to 0, as Allwinner does in its BSP. 703 * 704 * The only mode that doesn't have such a delay is HS400, that 705 * is in itself a TODO. 706 */ 707 writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off); 708 709 return 0; 710 } 711 712 static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host, 713 struct mmc_ios *ios, u32 rate) 714 { 715 int index; 716 717 if (!host->cfg->clk_delays) 718 return 0; 719 720 /* determine delays */ 721 if (rate <= 400000) { 722 index = SDXC_CLK_400K; 723 } else if (rate <= 25000000) { 724 index = SDXC_CLK_25M; 725 } else if (rate <= 52000000) { 726 if (ios->timing != MMC_TIMING_UHS_DDR50 && 727 ios->timing != MMC_TIMING_MMC_DDR52) { 728 index = SDXC_CLK_50M; 729 } else if (ios->bus_width == MMC_BUS_WIDTH_8) { 730 index = SDXC_CLK_50M_DDR_8BIT; 731 } else { 732 index = SDXC_CLK_50M_DDR; 733 } 734 } else { 735 dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n"); 736 return -EINVAL; 737 } 738 739 clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample); 740 clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output); 741 742 return 0; 743 } 744 745 static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host, 746 struct mmc_ios *ios) 747 { 748 struct mmc_host *mmc = host->mmc; 749 long rate; 750 u32 rval, clock = ios->clock; 751 int ret; 752 753 ret = sunxi_mmc_oclk_onoff(host, 0); 754 if (ret) 755 return ret; 756 757 /* Our clock is gated now */ 758 mmc->actual_clock = 0; 759 760 if (!ios->clock) 761 return 0; 762 763 /* 8 bit DDR requires a higher module clock */ 764 if (ios->timing == MMC_TIMING_MMC_DDR52 && 765 ios->bus_width == MMC_BUS_WIDTH_8) 766 clock <<= 1; 767 768 rate = clk_round_rate(host->clk_mmc, clock); 769 if (rate < 0) { 770 dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n", 771 clock, rate); 772 return rate; 773 } 774 dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n", 775 clock, rate); 776 777 /* setting clock rate */ 778 ret = clk_set_rate(host->clk_mmc, rate); 779 if (ret) { 780 dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n", 781 rate, ret); 782 return ret; 783 } 784 785 /* clear internal divider */ 786 rval = mmc_readl(host, REG_CLKCR); 787 rval &= ~0xff; 788 /* set internal divider for 8 bit eMMC DDR, so card clock is right */ 789 if (ios->timing == MMC_TIMING_MMC_DDR52 && 790 ios->bus_width == MMC_BUS_WIDTH_8) { 791 rval |= 1; 792 rate >>= 1; 793 } 794 mmc_writel(host, REG_CLKCR, rval); 795 796 if (host->cfg->needs_new_timings) 797 mmc_writel(host, REG_SD_NTSR, SDXC_2X_TIMING_MODE); 798 799 ret = sunxi_mmc_clk_set_phase(host, ios, rate); 800 if (ret) 801 return ret; 802 803 ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG); 804 if (ret) 805 return ret; 806 807 /* 808 * FIXME: 809 * 810 * In HS400 we'll also need to calibrate the data strobe 811 * signal. This should only happen on the MMC2 controller (at 812 * least on the A64). 813 */ 814 815 ret = sunxi_mmc_oclk_onoff(host, 1); 816 if (ret) 817 return ret; 818 819 /* And we just enabled our clock back */ 820 mmc->actual_clock = rate; 821 822 return 0; 823 } 824 825 static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 826 { 827 struct sunxi_mmc_host *host = mmc_priv(mmc); 828 u32 rval; 829 830 /* Set the power state */ 831 switch (ios->power_mode) { 832 case MMC_POWER_ON: 833 break; 834 835 case MMC_POWER_UP: 836 if (!IS_ERR(mmc->supply.vmmc)) { 837 host->ferror = mmc_regulator_set_ocr(mmc, 838 mmc->supply.vmmc, 839 ios->vdd); 840 if (host->ferror) 841 return; 842 } 843 844 if (!IS_ERR(mmc->supply.vqmmc)) { 845 host->ferror = regulator_enable(mmc->supply.vqmmc); 846 if (host->ferror) { 847 dev_err(mmc_dev(mmc), 848 "failed to enable vqmmc\n"); 849 return; 850 } 851 host->vqmmc_enabled = true; 852 } 853 854 host->ferror = sunxi_mmc_init_host(mmc); 855 if (host->ferror) 856 return; 857 858 dev_dbg(mmc_dev(mmc), "power on!\n"); 859 break; 860 861 case MMC_POWER_OFF: 862 dev_dbg(mmc_dev(mmc), "power off!\n"); 863 sunxi_mmc_reset_host(host); 864 if (!IS_ERR(mmc->supply.vmmc)) 865 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 866 867 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) 868 regulator_disable(mmc->supply.vqmmc); 869 host->vqmmc_enabled = false; 870 break; 871 } 872 873 /* set bus width */ 874 switch (ios->bus_width) { 875 case MMC_BUS_WIDTH_1: 876 mmc_writel(host, REG_WIDTH, SDXC_WIDTH1); 877 break; 878 case MMC_BUS_WIDTH_4: 879 mmc_writel(host, REG_WIDTH, SDXC_WIDTH4); 880 break; 881 case MMC_BUS_WIDTH_8: 882 mmc_writel(host, REG_WIDTH, SDXC_WIDTH8); 883 break; 884 } 885 886 /* set ddr mode */ 887 rval = mmc_readl(host, REG_GCTRL); 888 if (ios->timing == MMC_TIMING_UHS_DDR50 || 889 ios->timing == MMC_TIMING_MMC_DDR52) 890 rval |= SDXC_DDR_MODE; 891 else 892 rval &= ~SDXC_DDR_MODE; 893 mmc_writel(host, REG_GCTRL, rval); 894 895 /* set up clock */ 896 if (ios->power_mode) { 897 host->ferror = sunxi_mmc_clk_set_rate(host, ios); 898 /* Android code had a usleep_range(50000, 55000); here */ 899 } 900 } 901 902 static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) 903 { 904 /* vqmmc regulator is available */ 905 if (!IS_ERR(mmc->supply.vqmmc)) 906 return mmc_regulator_set_vqmmc(mmc, ios); 907 908 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */ 909 if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) 910 return 0; 911 912 return -EINVAL; 913 } 914 915 static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable) 916 { 917 struct sunxi_mmc_host *host = mmc_priv(mmc); 918 unsigned long flags; 919 u32 imask; 920 921 spin_lock_irqsave(&host->lock, flags); 922 923 imask = mmc_readl(host, REG_IMASK); 924 if (enable) { 925 host->sdio_imask = SDXC_SDIO_INTERRUPT; 926 imask |= SDXC_SDIO_INTERRUPT; 927 } else { 928 host->sdio_imask = 0; 929 imask &= ~SDXC_SDIO_INTERRUPT; 930 } 931 mmc_writel(host, REG_IMASK, imask); 932 spin_unlock_irqrestore(&host->lock, flags); 933 } 934 935 static void sunxi_mmc_hw_reset(struct mmc_host *mmc) 936 { 937 struct sunxi_mmc_host *host = mmc_priv(mmc); 938 mmc_writel(host, REG_HWRST, 0); 939 udelay(10); 940 mmc_writel(host, REG_HWRST, 1); 941 udelay(300); 942 } 943 944 static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) 945 { 946 struct sunxi_mmc_host *host = mmc_priv(mmc); 947 struct mmc_command *cmd = mrq->cmd; 948 struct mmc_data *data = mrq->data; 949 unsigned long iflags; 950 u32 imask = SDXC_INTERRUPT_ERROR_BIT; 951 u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f); 952 bool wait_dma = host->wait_dma; 953 int ret; 954 955 /* Check for set_ios errors (should never happen) */ 956 if (host->ferror) { 957 mrq->cmd->error = host->ferror; 958 mmc_request_done(mmc, mrq); 959 return; 960 } 961 962 if (data) { 963 ret = sunxi_mmc_map_dma(host, data); 964 if (ret < 0) { 965 dev_err(mmc_dev(mmc), "map DMA failed\n"); 966 cmd->error = ret; 967 data->error = ret; 968 mmc_request_done(mmc, mrq); 969 return; 970 } 971 } 972 973 if (cmd->opcode == MMC_GO_IDLE_STATE) { 974 cmd_val |= SDXC_SEND_INIT_SEQUENCE; 975 imask |= SDXC_COMMAND_DONE; 976 } 977 978 if (cmd->flags & MMC_RSP_PRESENT) { 979 cmd_val |= SDXC_RESP_EXPIRE; 980 if (cmd->flags & MMC_RSP_136) 981 cmd_val |= SDXC_LONG_RESPONSE; 982 if (cmd->flags & MMC_RSP_CRC) 983 cmd_val |= SDXC_CHECK_RESPONSE_CRC; 984 985 if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) { 986 cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER; 987 988 if (cmd->data->stop) { 989 imask |= SDXC_AUTO_COMMAND_DONE; 990 cmd_val |= SDXC_SEND_AUTO_STOP; 991 } else { 992 imask |= SDXC_DATA_OVER; 993 } 994 995 if (cmd->data->flags & MMC_DATA_WRITE) 996 cmd_val |= SDXC_WRITE; 997 else 998 wait_dma = true; 999 } else { 1000 imask |= SDXC_COMMAND_DONE; 1001 } 1002 } else { 1003 imask |= SDXC_COMMAND_DONE; 1004 } 1005 1006 dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n", 1007 cmd_val & 0x3f, cmd_val, cmd->arg, imask, 1008 mrq->data ? mrq->data->blksz * mrq->data->blocks : 0); 1009 1010 spin_lock_irqsave(&host->lock, iflags); 1011 1012 if (host->mrq || host->manual_stop_mrq) { 1013 spin_unlock_irqrestore(&host->lock, iflags); 1014 1015 if (data) 1016 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len, 1017 mmc_get_dma_dir(data)); 1018 1019 dev_err(mmc_dev(mmc), "request already pending\n"); 1020 mrq->cmd->error = -EBUSY; 1021 mmc_request_done(mmc, mrq); 1022 return; 1023 } 1024 1025 if (data) { 1026 mmc_writel(host, REG_BLKSZ, data->blksz); 1027 mmc_writel(host, REG_BCNTR, data->blksz * data->blocks); 1028 sunxi_mmc_start_dma(host, data); 1029 } 1030 1031 host->mrq = mrq; 1032 host->wait_dma = wait_dma; 1033 mmc_writel(host, REG_IMASK, host->sdio_imask | imask); 1034 mmc_writel(host, REG_CARG, cmd->arg); 1035 mmc_writel(host, REG_CMDR, cmd_val); 1036 1037 spin_unlock_irqrestore(&host->lock, iflags); 1038 } 1039 1040 static int sunxi_mmc_card_busy(struct mmc_host *mmc) 1041 { 1042 struct sunxi_mmc_host *host = mmc_priv(mmc); 1043 1044 return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY); 1045 } 1046 1047 static struct mmc_host_ops sunxi_mmc_ops = { 1048 .request = sunxi_mmc_request, 1049 .set_ios = sunxi_mmc_set_ios, 1050 .get_ro = mmc_gpio_get_ro, 1051 .get_cd = mmc_gpio_get_cd, 1052 .enable_sdio_irq = sunxi_mmc_enable_sdio_irq, 1053 .start_signal_voltage_switch = sunxi_mmc_volt_switch, 1054 .hw_reset = sunxi_mmc_hw_reset, 1055 .card_busy = sunxi_mmc_card_busy, 1056 }; 1057 1058 static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = { 1059 [SDXC_CLK_400K] = { .output = 180, .sample = 180 }, 1060 [SDXC_CLK_25M] = { .output = 180, .sample = 75 }, 1061 [SDXC_CLK_50M] = { .output = 90, .sample = 120 }, 1062 [SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 }, 1063 /* Value from A83T "new timing mode". Works but might not be right. */ 1064 [SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 }, 1065 }; 1066 1067 static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = { 1068 [SDXC_CLK_400K] = { .output = 180, .sample = 180 }, 1069 [SDXC_CLK_25M] = { .output = 180, .sample = 75 }, 1070 [SDXC_CLK_50M] = { .output = 150, .sample = 120 }, 1071 [SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 }, 1072 [SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 }, 1073 }; 1074 1075 static const struct sunxi_mmc_cfg sun4i_a10_cfg = { 1076 .idma_des_size_bits = 13, 1077 .clk_delays = NULL, 1078 .can_calibrate = false, 1079 }; 1080 1081 static const struct sunxi_mmc_cfg sun5i_a13_cfg = { 1082 .idma_des_size_bits = 16, 1083 .clk_delays = NULL, 1084 .can_calibrate = false, 1085 }; 1086 1087 static const struct sunxi_mmc_cfg sun7i_a20_cfg = { 1088 .idma_des_size_bits = 16, 1089 .clk_delays = sunxi_mmc_clk_delays, 1090 .can_calibrate = false, 1091 }; 1092 1093 static const struct sunxi_mmc_cfg sun9i_a80_cfg = { 1094 .idma_des_size_bits = 16, 1095 .clk_delays = sun9i_mmc_clk_delays, 1096 .can_calibrate = false, 1097 }; 1098 1099 static const struct sunxi_mmc_cfg sun50i_a64_cfg = { 1100 .idma_des_size_bits = 16, 1101 .clk_delays = NULL, 1102 .can_calibrate = true, 1103 .mask_data0 = true, 1104 .needs_new_timings = true, 1105 }; 1106 1107 static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = { 1108 .idma_des_size_bits = 13, 1109 .clk_delays = NULL, 1110 .can_calibrate = true, 1111 }; 1112 1113 static const struct of_device_id sunxi_mmc_of_match[] = { 1114 { .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg }, 1115 { .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg }, 1116 { .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg }, 1117 { .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg }, 1118 { .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg }, 1119 { .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg }, 1120 { /* sentinel */ } 1121 }; 1122 MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match); 1123 1124 static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host, 1125 struct platform_device *pdev) 1126 { 1127 int ret; 1128 1129 host->cfg = of_device_get_match_data(&pdev->dev); 1130 if (!host->cfg) 1131 return -EINVAL; 1132 1133 ret = mmc_regulator_get_supply(host->mmc); 1134 if (ret) { 1135 if (ret != -EPROBE_DEFER) 1136 dev_err(&pdev->dev, "Could not get vmmc supply\n"); 1137 return ret; 1138 } 1139 1140 host->reg_base = devm_ioremap_resource(&pdev->dev, 1141 platform_get_resource(pdev, IORESOURCE_MEM, 0)); 1142 if (IS_ERR(host->reg_base)) 1143 return PTR_ERR(host->reg_base); 1144 1145 host->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 1146 if (IS_ERR(host->clk_ahb)) { 1147 dev_err(&pdev->dev, "Could not get ahb clock\n"); 1148 return PTR_ERR(host->clk_ahb); 1149 } 1150 1151 host->clk_mmc = devm_clk_get(&pdev->dev, "mmc"); 1152 if (IS_ERR(host->clk_mmc)) { 1153 dev_err(&pdev->dev, "Could not get mmc clock\n"); 1154 return PTR_ERR(host->clk_mmc); 1155 } 1156 1157 if (host->cfg->clk_delays) { 1158 host->clk_output = devm_clk_get(&pdev->dev, "output"); 1159 if (IS_ERR(host->clk_output)) { 1160 dev_err(&pdev->dev, "Could not get output clock\n"); 1161 return PTR_ERR(host->clk_output); 1162 } 1163 1164 host->clk_sample = devm_clk_get(&pdev->dev, "sample"); 1165 if (IS_ERR(host->clk_sample)) { 1166 dev_err(&pdev->dev, "Could not get sample clock\n"); 1167 return PTR_ERR(host->clk_sample); 1168 } 1169 } 1170 1171 host->reset = devm_reset_control_get_optional(&pdev->dev, "ahb"); 1172 if (PTR_ERR(host->reset) == -EPROBE_DEFER) 1173 return PTR_ERR(host->reset); 1174 1175 ret = clk_prepare_enable(host->clk_ahb); 1176 if (ret) { 1177 dev_err(&pdev->dev, "Enable ahb clk err %d\n", ret); 1178 return ret; 1179 } 1180 1181 ret = clk_prepare_enable(host->clk_mmc); 1182 if (ret) { 1183 dev_err(&pdev->dev, "Enable mmc clk err %d\n", ret); 1184 goto error_disable_clk_ahb; 1185 } 1186 1187 ret = clk_prepare_enable(host->clk_output); 1188 if (ret) { 1189 dev_err(&pdev->dev, "Enable output clk err %d\n", ret); 1190 goto error_disable_clk_mmc; 1191 } 1192 1193 ret = clk_prepare_enable(host->clk_sample); 1194 if (ret) { 1195 dev_err(&pdev->dev, "Enable sample clk err %d\n", ret); 1196 goto error_disable_clk_output; 1197 } 1198 1199 if (!IS_ERR(host->reset)) { 1200 ret = reset_control_deassert(host->reset); 1201 if (ret) { 1202 dev_err(&pdev->dev, "reset err %d\n", ret); 1203 goto error_disable_clk_sample; 1204 } 1205 } 1206 1207 /* 1208 * Sometimes the controller asserts the irq on boot for some reason, 1209 * make sure the controller is in a sane state before enabling irqs. 1210 */ 1211 ret = sunxi_mmc_reset_host(host); 1212 if (ret) 1213 goto error_assert_reset; 1214 1215 host->irq = platform_get_irq(pdev, 0); 1216 return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq, 1217 sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host); 1218 1219 error_assert_reset: 1220 if (!IS_ERR(host->reset)) 1221 reset_control_assert(host->reset); 1222 error_disable_clk_sample: 1223 clk_disable_unprepare(host->clk_sample); 1224 error_disable_clk_output: 1225 clk_disable_unprepare(host->clk_output); 1226 error_disable_clk_mmc: 1227 clk_disable_unprepare(host->clk_mmc); 1228 error_disable_clk_ahb: 1229 clk_disable_unprepare(host->clk_ahb); 1230 return ret; 1231 } 1232 1233 static int sunxi_mmc_probe(struct platform_device *pdev) 1234 { 1235 struct sunxi_mmc_host *host; 1236 struct mmc_host *mmc; 1237 int ret; 1238 1239 mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev); 1240 if (!mmc) { 1241 dev_err(&pdev->dev, "mmc alloc host failed\n"); 1242 return -ENOMEM; 1243 } 1244 1245 host = mmc_priv(mmc); 1246 host->mmc = mmc; 1247 spin_lock_init(&host->lock); 1248 1249 ret = sunxi_mmc_resource_request(host, pdev); 1250 if (ret) 1251 goto error_free_host; 1252 1253 host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 1254 &host->sg_dma, GFP_KERNEL); 1255 if (!host->sg_cpu) { 1256 dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n"); 1257 ret = -ENOMEM; 1258 goto error_free_host; 1259 } 1260 1261 mmc->ops = &sunxi_mmc_ops; 1262 mmc->max_blk_count = 8192; 1263 mmc->max_blk_size = 4096; 1264 mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des); 1265 mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits); 1266 mmc->max_req_size = mmc->max_seg_size * mmc->max_segs; 1267 /* 400kHz ~ 52MHz */ 1268 mmc->f_min = 400000; 1269 mmc->f_max = 52000000; 1270 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED | 1271 MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ; 1272 1273 if (host->cfg->clk_delays) 1274 mmc->caps |= MMC_CAP_1_8V_DDR; 1275 1276 ret = mmc_of_parse(mmc); 1277 if (ret) 1278 goto error_free_dma; 1279 1280 ret = mmc_add_host(mmc); 1281 if (ret) 1282 goto error_free_dma; 1283 1284 dev_info(&pdev->dev, "base:0x%p irq:%u\n", host->reg_base, host->irq); 1285 platform_set_drvdata(pdev, mmc); 1286 return 0; 1287 1288 error_free_dma: 1289 dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma); 1290 error_free_host: 1291 mmc_free_host(mmc); 1292 return ret; 1293 } 1294 1295 static int sunxi_mmc_remove(struct platform_device *pdev) 1296 { 1297 struct mmc_host *mmc = platform_get_drvdata(pdev); 1298 struct sunxi_mmc_host *host = mmc_priv(mmc); 1299 1300 mmc_remove_host(mmc); 1301 disable_irq(host->irq); 1302 sunxi_mmc_reset_host(host); 1303 1304 if (!IS_ERR(host->reset)) 1305 reset_control_assert(host->reset); 1306 1307 clk_disable_unprepare(host->clk_sample); 1308 clk_disable_unprepare(host->clk_output); 1309 clk_disable_unprepare(host->clk_mmc); 1310 clk_disable_unprepare(host->clk_ahb); 1311 1312 dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma); 1313 mmc_free_host(mmc); 1314 1315 return 0; 1316 } 1317 1318 static struct platform_driver sunxi_mmc_driver = { 1319 .driver = { 1320 .name = "sunxi-mmc", 1321 .of_match_table = of_match_ptr(sunxi_mmc_of_match), 1322 }, 1323 .probe = sunxi_mmc_probe, 1324 .remove = sunxi_mmc_remove, 1325 }; 1326 module_platform_driver(sunxi_mmc_driver); 1327 1328 MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver"); 1329 MODULE_LICENSE("GPL v2"); 1330 MODULE_AUTHOR("David Lanzend�rfer <david.lanzendoerfer@o2s.ch>"); 1331 MODULE_ALIAS("platform:sunxi-mmc"); 1332