xref: /openbmc/linux/drivers/mmc/host/sunxi-mmc.c (revision cd238eff)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for sunxi SD/MMC host controllers
4  * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
5  * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
6  * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
7  * (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
8  * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
9  * (C) Copyright 2017 Sootech SA
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk/sunxi-ng.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/mmc/card.h>
22 #include <linux/mmc/core.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/sdio.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/module.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/reset.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 
39 /* register offset definitions */
40 #define SDXC_REG_GCTRL	(0x00) /* SMC Global Control Register */
41 #define SDXC_REG_CLKCR	(0x04) /* SMC Clock Control Register */
42 #define SDXC_REG_TMOUT	(0x08) /* SMC Time Out Register */
43 #define SDXC_REG_WIDTH	(0x0C) /* SMC Bus Width Register */
44 #define SDXC_REG_BLKSZ	(0x10) /* SMC Block Size Register */
45 #define SDXC_REG_BCNTR	(0x14) /* SMC Byte Count Register */
46 #define SDXC_REG_CMDR	(0x18) /* SMC Command Register */
47 #define SDXC_REG_CARG	(0x1C) /* SMC Argument Register */
48 #define SDXC_REG_RESP0	(0x20) /* SMC Response Register 0 */
49 #define SDXC_REG_RESP1	(0x24) /* SMC Response Register 1 */
50 #define SDXC_REG_RESP2	(0x28) /* SMC Response Register 2 */
51 #define SDXC_REG_RESP3	(0x2C) /* SMC Response Register 3 */
52 #define SDXC_REG_IMASK	(0x30) /* SMC Interrupt Mask Register */
53 #define SDXC_REG_MISTA	(0x34) /* SMC Masked Interrupt Status Register */
54 #define SDXC_REG_RINTR	(0x38) /* SMC Raw Interrupt Status Register */
55 #define SDXC_REG_STAS	(0x3C) /* SMC Status Register */
56 #define SDXC_REG_FTRGL	(0x40) /* SMC FIFO Threshold Watermark Registe */
57 #define SDXC_REG_FUNS	(0x44) /* SMC Function Select Register */
58 #define SDXC_REG_CBCR	(0x48) /* SMC CIU Byte Count Register */
59 #define SDXC_REG_BBCR	(0x4C) /* SMC BIU Byte Count Register */
60 #define SDXC_REG_DBGC	(0x50) /* SMC Debug Enable Register */
61 #define SDXC_REG_HWRST	(0x78) /* SMC Card Hardware Reset for Register */
62 #define SDXC_REG_DMAC	(0x80) /* SMC IDMAC Control Register */
63 #define SDXC_REG_DLBA	(0x84) /* SMC IDMAC Descriptor List Base Addre */
64 #define SDXC_REG_IDST	(0x88) /* SMC IDMAC Status Register */
65 #define SDXC_REG_IDIE	(0x8C) /* SMC IDMAC Interrupt Enable Register */
66 #define SDXC_REG_CHDA	(0x90)
67 #define SDXC_REG_CBDA	(0x94)
68 
69 /* New registers introduced in A64 */
70 #define SDXC_REG_A12A		0x058 /* SMC Auto Command 12 Register */
71 #define SDXC_REG_SD_NTSR	0x05C /* SMC New Timing Set Register */
72 #define SDXC_REG_DRV_DL		0x140 /* Drive Delay Control Register */
73 #define SDXC_REG_SAMP_DL_REG	0x144 /* SMC sample delay control */
74 #define SDXC_REG_DS_DL_REG	0x148 /* SMC data strobe delay control */
75 
76 #define mmc_readl(host, reg) \
77 	readl((host)->reg_base + SDXC_##reg)
78 #define mmc_writel(host, reg, value) \
79 	writel((value), (host)->reg_base + SDXC_##reg)
80 
81 /* global control register bits */
82 #define SDXC_SOFT_RESET			BIT(0)
83 #define SDXC_FIFO_RESET			BIT(1)
84 #define SDXC_DMA_RESET			BIT(2)
85 #define SDXC_INTERRUPT_ENABLE_BIT	BIT(4)
86 #define SDXC_DMA_ENABLE_BIT		BIT(5)
87 #define SDXC_DEBOUNCE_ENABLE_BIT	BIT(8)
88 #define SDXC_POSEDGE_LATCH_DATA		BIT(9)
89 #define SDXC_DDR_MODE			BIT(10)
90 #define SDXC_MEMORY_ACCESS_DONE		BIT(29)
91 #define SDXC_ACCESS_DONE_DIRECT		BIT(30)
92 #define SDXC_ACCESS_BY_AHB		BIT(31)
93 #define SDXC_ACCESS_BY_DMA		(0 << 31)
94 #define SDXC_HARDWARE_RESET \
95 	(SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
96 
97 /* clock control bits */
98 #define SDXC_MASK_DATA0			BIT(31)
99 #define SDXC_CARD_CLOCK_ON		BIT(16)
100 #define SDXC_LOW_POWER_ON		BIT(17)
101 
102 /* bus width */
103 #define SDXC_WIDTH1			0
104 #define SDXC_WIDTH4			1
105 #define SDXC_WIDTH8			2
106 
107 /* smc command bits */
108 #define SDXC_RESP_EXPIRE		BIT(6)
109 #define SDXC_LONG_RESPONSE		BIT(7)
110 #define SDXC_CHECK_RESPONSE_CRC		BIT(8)
111 #define SDXC_DATA_EXPIRE		BIT(9)
112 #define SDXC_WRITE			BIT(10)
113 #define SDXC_SEQUENCE_MODE		BIT(11)
114 #define SDXC_SEND_AUTO_STOP		BIT(12)
115 #define SDXC_WAIT_PRE_OVER		BIT(13)
116 #define SDXC_STOP_ABORT_CMD		BIT(14)
117 #define SDXC_SEND_INIT_SEQUENCE		BIT(15)
118 #define SDXC_UPCLK_ONLY			BIT(21)
119 #define SDXC_READ_CEATA_DEV		BIT(22)
120 #define SDXC_CCS_EXPIRE			BIT(23)
121 #define SDXC_ENABLE_BIT_BOOT		BIT(24)
122 #define SDXC_ALT_BOOT_OPTIONS		BIT(25)
123 #define SDXC_BOOT_ACK_EXPIRE		BIT(26)
124 #define SDXC_BOOT_ABORT			BIT(27)
125 #define SDXC_VOLTAGE_SWITCH	        BIT(28)
126 #define SDXC_USE_HOLD_REGISTER	        BIT(29)
127 #define SDXC_START			BIT(31)
128 
129 /* interrupt bits */
130 #define SDXC_RESP_ERROR			BIT(1)
131 #define SDXC_COMMAND_DONE		BIT(2)
132 #define SDXC_DATA_OVER			BIT(3)
133 #define SDXC_TX_DATA_REQUEST		BIT(4)
134 #define SDXC_RX_DATA_REQUEST		BIT(5)
135 #define SDXC_RESP_CRC_ERROR		BIT(6)
136 #define SDXC_DATA_CRC_ERROR		BIT(7)
137 #define SDXC_RESP_TIMEOUT		BIT(8)
138 #define SDXC_DATA_TIMEOUT		BIT(9)
139 #define SDXC_VOLTAGE_CHANGE_DONE	BIT(10)
140 #define SDXC_FIFO_RUN_ERROR		BIT(11)
141 #define SDXC_HARD_WARE_LOCKED		BIT(12)
142 #define SDXC_START_BIT_ERROR		BIT(13)
143 #define SDXC_AUTO_COMMAND_DONE		BIT(14)
144 #define SDXC_END_BIT_ERROR		BIT(15)
145 #define SDXC_SDIO_INTERRUPT		BIT(16)
146 #define SDXC_CARD_INSERT		BIT(30)
147 #define SDXC_CARD_REMOVE		BIT(31)
148 #define SDXC_INTERRUPT_ERROR_BIT \
149 	(SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
150 	 SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
151 	 SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
152 #define SDXC_INTERRUPT_DONE_BIT \
153 	(SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
154 	 SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
155 
156 /* status */
157 #define SDXC_RXWL_FLAG			BIT(0)
158 #define SDXC_TXWL_FLAG			BIT(1)
159 #define SDXC_FIFO_EMPTY			BIT(2)
160 #define SDXC_FIFO_FULL			BIT(3)
161 #define SDXC_CARD_PRESENT		BIT(8)
162 #define SDXC_CARD_DATA_BUSY		BIT(9)
163 #define SDXC_DATA_FSM_BUSY		BIT(10)
164 #define SDXC_DMA_REQUEST		BIT(31)
165 #define SDXC_FIFO_SIZE			16
166 
167 /* Function select */
168 #define SDXC_CEATA_ON			(0xceaa << 16)
169 #define SDXC_SEND_IRQ_RESPONSE		BIT(0)
170 #define SDXC_SDIO_READ_WAIT		BIT(1)
171 #define SDXC_ABORT_READ_DATA		BIT(2)
172 #define SDXC_SEND_CCSD			BIT(8)
173 #define SDXC_SEND_AUTO_STOPCCSD		BIT(9)
174 #define SDXC_CEATA_DEV_IRQ_ENABLE	BIT(10)
175 
176 /* IDMA controller bus mod bit field */
177 #define SDXC_IDMAC_SOFT_RESET		BIT(0)
178 #define SDXC_IDMAC_FIX_BURST		BIT(1)
179 #define SDXC_IDMAC_IDMA_ON		BIT(7)
180 #define SDXC_IDMAC_REFETCH_DES		BIT(31)
181 
182 /* IDMA status bit field */
183 #define SDXC_IDMAC_TRANSMIT_INTERRUPT		BIT(0)
184 #define SDXC_IDMAC_RECEIVE_INTERRUPT		BIT(1)
185 #define SDXC_IDMAC_FATAL_BUS_ERROR		BIT(2)
186 #define SDXC_IDMAC_DESTINATION_INVALID		BIT(4)
187 #define SDXC_IDMAC_CARD_ERROR_SUM		BIT(5)
188 #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM		BIT(8)
189 #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM	BIT(9)
190 #define SDXC_IDMAC_HOST_ABORT_INTERRUPT		BIT(10)
191 #define SDXC_IDMAC_IDLE				(0 << 13)
192 #define SDXC_IDMAC_SUSPEND			(1 << 13)
193 #define SDXC_IDMAC_DESC_READ			(2 << 13)
194 #define SDXC_IDMAC_DESC_CHECK			(3 << 13)
195 #define SDXC_IDMAC_READ_REQUEST_WAIT		(4 << 13)
196 #define SDXC_IDMAC_WRITE_REQUEST_WAIT		(5 << 13)
197 #define SDXC_IDMAC_READ				(6 << 13)
198 #define SDXC_IDMAC_WRITE			(7 << 13)
199 #define SDXC_IDMAC_DESC_CLOSE			(8 << 13)
200 
201 /*
202 * If the idma-des-size-bits of property is ie 13, bufsize bits are:
203 *  Bits  0-12: buf1 size
204 *  Bits 13-25: buf2 size
205 *  Bits 26-31: not used
206 * Since we only ever set buf1 size, we can simply store it directly.
207 */
208 #define SDXC_IDMAC_DES0_DIC	BIT(1)  /* disable interrupt on completion */
209 #define SDXC_IDMAC_DES0_LD	BIT(2)  /* last descriptor */
210 #define SDXC_IDMAC_DES0_FD	BIT(3)  /* first descriptor */
211 #define SDXC_IDMAC_DES0_CH	BIT(4)  /* chain mode */
212 #define SDXC_IDMAC_DES0_ER	BIT(5)  /* end of ring */
213 #define SDXC_IDMAC_DES0_CES	BIT(30) /* card error summary */
214 #define SDXC_IDMAC_DES0_OWN	BIT(31) /* 1-idma owns it, 0-host owns it */
215 
216 #define SDXC_CLK_400K		0
217 #define SDXC_CLK_25M		1
218 #define SDXC_CLK_50M		2
219 #define SDXC_CLK_50M_DDR	3
220 #define SDXC_CLK_50M_DDR_8BIT	4
221 
222 #define SDXC_2X_TIMING_MODE	BIT(31)
223 
224 #define SDXC_CAL_START		BIT(15)
225 #define SDXC_CAL_DONE		BIT(14)
226 #define SDXC_CAL_DL_SHIFT	8
227 #define SDXC_CAL_DL_SW_EN	BIT(7)
228 #define SDXC_CAL_DL_SW_SHIFT	0
229 #define SDXC_CAL_DL_MASK	0x3f
230 
231 #define SDXC_CAL_TIMEOUT	3	/* in seconds, 3s is enough*/
232 
233 struct sunxi_mmc_clk_delay {
234 	u32 output;
235 	u32 sample;
236 };
237 
238 struct sunxi_idma_des {
239 	__le32 config;
240 	__le32 buf_size;
241 	__le32 buf_addr_ptr1;
242 	__le32 buf_addr_ptr2;
243 };
244 
245 struct sunxi_mmc_cfg {
246 	u32 idma_des_size_bits;
247 	const struct sunxi_mmc_clk_delay *clk_delays;
248 
249 	/* does the IP block support autocalibration? */
250 	bool can_calibrate;
251 
252 	/* Does DATA0 needs to be masked while the clock is updated */
253 	bool mask_data0;
254 
255 	/*
256 	 * hardware only supports new timing mode, either due to lack of
257 	 * a mode switch in the clock controller, or the mmc controller
258 	 * is permanently configured in the new timing mode, without the
259 	 * NTSR mode switch.
260 	 */
261 	bool needs_new_timings;
262 
263 	/* clock hardware can switch between old and new timing modes */
264 	bool ccu_has_timings_switch;
265 };
266 
267 struct sunxi_mmc_host {
268 	struct device *dev;
269 	struct mmc_host	*mmc;
270 	struct reset_control *reset;
271 	const struct sunxi_mmc_cfg *cfg;
272 
273 	/* IO mapping base */
274 	void __iomem	*reg_base;
275 
276 	/* clock management */
277 	struct clk	*clk_ahb;
278 	struct clk	*clk_mmc;
279 	struct clk	*clk_sample;
280 	struct clk	*clk_output;
281 
282 	/* irq */
283 	spinlock_t	lock;
284 	int		irq;
285 	u32		int_sum;
286 	u32		sdio_imask;
287 
288 	/* dma */
289 	dma_addr_t	sg_dma;
290 	void		*sg_cpu;
291 	bool		wait_dma;
292 
293 	struct mmc_request *mrq;
294 	struct mmc_request *manual_stop_mrq;
295 	int		ferror;
296 
297 	/* vqmmc */
298 	bool		vqmmc_enabled;
299 
300 	/* timings */
301 	bool		use_new_timings;
302 };
303 
304 static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
305 {
306 	unsigned long expire = jiffies + msecs_to_jiffies(250);
307 	u32 rval;
308 
309 	mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
310 	do {
311 		rval = mmc_readl(host, REG_GCTRL);
312 	} while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
313 
314 	if (rval & SDXC_HARDWARE_RESET) {
315 		dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
316 		return -EIO;
317 	}
318 
319 	return 0;
320 }
321 
322 static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
323 {
324 	u32 rval;
325 
326 	if (sunxi_mmc_reset_host(host))
327 		return -EIO;
328 
329 	/*
330 	 * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
331 	 *
332 	 * TODO: sun9i has a larger FIFO and supports higher trigger values
333 	 */
334 	mmc_writel(host, REG_FTRGL, 0x20070008);
335 	/* Maximum timeout value */
336 	mmc_writel(host, REG_TMOUT, 0xffffffff);
337 	/* Unmask SDIO interrupt if needed */
338 	mmc_writel(host, REG_IMASK, host->sdio_imask);
339 	/* Clear all pending interrupts */
340 	mmc_writel(host, REG_RINTR, 0xffffffff);
341 	/* Debug register? undocumented */
342 	mmc_writel(host, REG_DBGC, 0xdeb);
343 	/* Enable CEATA support */
344 	mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
345 	/* Set DMA descriptor list base address */
346 	mmc_writel(host, REG_DLBA, host->sg_dma);
347 
348 	rval = mmc_readl(host, REG_GCTRL);
349 	rval |= SDXC_INTERRUPT_ENABLE_BIT;
350 	/* Undocumented, but found in Allwinner code */
351 	rval &= ~SDXC_ACCESS_DONE_DIRECT;
352 	mmc_writel(host, REG_GCTRL, rval);
353 
354 	return 0;
355 }
356 
357 static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
358 				    struct mmc_data *data)
359 {
360 	struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
361 	dma_addr_t next_desc = host->sg_dma;
362 	int i, max_len = (1 << host->cfg->idma_des_size_bits);
363 
364 	for (i = 0; i < data->sg_len; i++) {
365 		pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
366 					     SDXC_IDMAC_DES0_OWN |
367 					     SDXC_IDMAC_DES0_DIC);
368 
369 		if (data->sg[i].length == max_len)
370 			pdes[i].buf_size = 0; /* 0 == max_len */
371 		else
372 			pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
373 
374 		next_desc += sizeof(struct sunxi_idma_des);
375 		pdes[i].buf_addr_ptr1 =
376 			cpu_to_le32(sg_dma_address(&data->sg[i]));
377 		pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc);
378 	}
379 
380 	pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
381 	pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
382 					  SDXC_IDMAC_DES0_ER);
383 	pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
384 	pdes[i - 1].buf_addr_ptr2 = 0;
385 
386 	/*
387 	 * Avoid the io-store starting the idmac hitting io-mem before the
388 	 * descriptors hit the main-mem.
389 	 */
390 	wmb();
391 }
392 
393 static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
394 			     struct mmc_data *data)
395 {
396 	u32 i, dma_len;
397 	struct scatterlist *sg;
398 
399 	dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
400 			     mmc_get_dma_dir(data));
401 	if (dma_len == 0) {
402 		dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
403 		return -ENOMEM;
404 	}
405 
406 	for_each_sg(data->sg, sg, data->sg_len, i) {
407 		if (sg->offset & 3 || sg->length & 3) {
408 			dev_err(mmc_dev(host->mmc),
409 				"unaligned scatterlist: os %x length %d\n",
410 				sg->offset, sg->length);
411 			return -EINVAL;
412 		}
413 	}
414 
415 	return 0;
416 }
417 
418 static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
419 				struct mmc_data *data)
420 {
421 	u32 rval;
422 
423 	sunxi_mmc_init_idma_des(host, data);
424 
425 	rval = mmc_readl(host, REG_GCTRL);
426 	rval |= SDXC_DMA_ENABLE_BIT;
427 	mmc_writel(host, REG_GCTRL, rval);
428 	rval |= SDXC_DMA_RESET;
429 	mmc_writel(host, REG_GCTRL, rval);
430 
431 	mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
432 
433 	if (!(data->flags & MMC_DATA_WRITE))
434 		mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
435 
436 	mmc_writel(host, REG_DMAC,
437 		   SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
438 }
439 
440 static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
441 				       struct mmc_request *req)
442 {
443 	u32 arg, cmd_val, ri;
444 	unsigned long expire = jiffies + msecs_to_jiffies(1000);
445 
446 	cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
447 		  SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
448 
449 	if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
450 		cmd_val |= SD_IO_RW_DIRECT;
451 		arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
452 		      ((req->cmd->arg >> 28) & 0x7);
453 	} else {
454 		cmd_val |= MMC_STOP_TRANSMISSION;
455 		arg = 0;
456 	}
457 
458 	mmc_writel(host, REG_CARG, arg);
459 	mmc_writel(host, REG_CMDR, cmd_val);
460 
461 	do {
462 		ri = mmc_readl(host, REG_RINTR);
463 	} while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
464 		 time_before(jiffies, expire));
465 
466 	if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
467 		dev_err(mmc_dev(host->mmc), "send stop command failed\n");
468 		if (req->stop)
469 			req->stop->resp[0] = -ETIMEDOUT;
470 	} else {
471 		if (req->stop)
472 			req->stop->resp[0] = mmc_readl(host, REG_RESP0);
473 	}
474 
475 	mmc_writel(host, REG_RINTR, 0xffff);
476 }
477 
478 static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
479 {
480 	struct mmc_command *cmd = host->mrq->cmd;
481 	struct mmc_data *data = host->mrq->data;
482 
483 	/* For some cmds timeout is normal with sd/mmc cards */
484 	if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
485 		SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
486 				      cmd->opcode == SD_IO_RW_DIRECT))
487 		return;
488 
489 	dev_dbg(mmc_dev(host->mmc),
490 		"smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
491 		host->mmc->index, cmd->opcode,
492 		data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
493 		host->int_sum & SDXC_RESP_ERROR     ? " RE"     : "",
494 		host->int_sum & SDXC_RESP_CRC_ERROR  ? " RCE"    : "",
495 		host->int_sum & SDXC_DATA_CRC_ERROR  ? " DCE"    : "",
496 		host->int_sum & SDXC_RESP_TIMEOUT ? " RTO"    : "",
497 		host->int_sum & SDXC_DATA_TIMEOUT ? " DTO"    : "",
498 		host->int_sum & SDXC_FIFO_RUN_ERROR  ? " FE"     : "",
499 		host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL"     : "",
500 		host->int_sum & SDXC_START_BIT_ERROR ? " SBE"    : "",
501 		host->int_sum & SDXC_END_BIT_ERROR   ? " EBE"    : ""
502 		);
503 }
504 
505 /* Called in interrupt context! */
506 static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
507 {
508 	struct mmc_request *mrq = host->mrq;
509 	struct mmc_data *data = mrq->data;
510 	u32 rval;
511 
512 	mmc_writel(host, REG_IMASK, host->sdio_imask);
513 	mmc_writel(host, REG_IDIE, 0);
514 
515 	if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
516 		sunxi_mmc_dump_errinfo(host);
517 		mrq->cmd->error = -ETIMEDOUT;
518 
519 		if (data) {
520 			data->error = -ETIMEDOUT;
521 			host->manual_stop_mrq = mrq;
522 		}
523 
524 		if (mrq->stop)
525 			mrq->stop->error = -ETIMEDOUT;
526 	} else {
527 		if (mrq->cmd->flags & MMC_RSP_136) {
528 			mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
529 			mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
530 			mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
531 			mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
532 		} else {
533 			mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
534 		}
535 
536 		if (data)
537 			data->bytes_xfered = data->blocks * data->blksz;
538 	}
539 
540 	if (data) {
541 		mmc_writel(host, REG_IDST, 0x337);
542 		mmc_writel(host, REG_DMAC, 0);
543 		rval = mmc_readl(host, REG_GCTRL);
544 		rval |= SDXC_DMA_RESET;
545 		mmc_writel(host, REG_GCTRL, rval);
546 		rval &= ~SDXC_DMA_ENABLE_BIT;
547 		mmc_writel(host, REG_GCTRL, rval);
548 		rval |= SDXC_FIFO_RESET;
549 		mmc_writel(host, REG_GCTRL, rval);
550 		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
551 			     mmc_get_dma_dir(data));
552 	}
553 
554 	mmc_writel(host, REG_RINTR, 0xffff);
555 
556 	host->mrq = NULL;
557 	host->int_sum = 0;
558 	host->wait_dma = false;
559 
560 	return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
561 }
562 
563 static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
564 {
565 	struct sunxi_mmc_host *host = dev_id;
566 	struct mmc_request *mrq;
567 	u32 msk_int, idma_int;
568 	bool finalize = false;
569 	bool sdio_int = false;
570 	irqreturn_t ret = IRQ_HANDLED;
571 
572 	spin_lock(&host->lock);
573 
574 	idma_int  = mmc_readl(host, REG_IDST);
575 	msk_int   = mmc_readl(host, REG_MISTA);
576 
577 	dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
578 		host->mrq, msk_int, idma_int);
579 
580 	mrq = host->mrq;
581 	if (mrq) {
582 		if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
583 			host->wait_dma = false;
584 
585 		host->int_sum |= msk_int;
586 
587 		/* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
588 		if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
589 				!(host->int_sum & SDXC_COMMAND_DONE))
590 			mmc_writel(host, REG_IMASK,
591 				   host->sdio_imask | SDXC_COMMAND_DONE);
592 		/* Don't wait for dma on error */
593 		else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
594 			finalize = true;
595 		else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
596 				!host->wait_dma)
597 			finalize = true;
598 	}
599 
600 	if (msk_int & SDXC_SDIO_INTERRUPT)
601 		sdio_int = true;
602 
603 	mmc_writel(host, REG_RINTR, msk_int);
604 	mmc_writel(host, REG_IDST, idma_int);
605 
606 	if (finalize)
607 		ret = sunxi_mmc_finalize_request(host);
608 
609 	spin_unlock(&host->lock);
610 
611 	if (finalize && ret == IRQ_HANDLED)
612 		mmc_request_done(host->mmc, mrq);
613 
614 	if (sdio_int)
615 		mmc_signal_sdio_irq(host->mmc);
616 
617 	return ret;
618 }
619 
620 static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
621 {
622 	struct sunxi_mmc_host *host = dev_id;
623 	struct mmc_request *mrq;
624 	unsigned long iflags;
625 
626 	spin_lock_irqsave(&host->lock, iflags);
627 	mrq = host->manual_stop_mrq;
628 	spin_unlock_irqrestore(&host->lock, iflags);
629 
630 	if (!mrq) {
631 		dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
632 		return IRQ_HANDLED;
633 	}
634 
635 	dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
636 
637 	/*
638 	 * We will never have more than one outstanding request,
639 	 * and we do not complete the request until after
640 	 * we've cleared host->manual_stop_mrq so we do not need to
641 	 * spin lock this function.
642 	 * Additionally we have wait states within this function
643 	 * so having it in a lock is a very bad idea.
644 	 */
645 	sunxi_mmc_send_manual_stop(host, mrq);
646 
647 	spin_lock_irqsave(&host->lock, iflags);
648 	host->manual_stop_mrq = NULL;
649 	spin_unlock_irqrestore(&host->lock, iflags);
650 
651 	mmc_request_done(host->mmc, mrq);
652 
653 	return IRQ_HANDLED;
654 }
655 
656 static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
657 {
658 	unsigned long expire = jiffies + msecs_to_jiffies(750);
659 	u32 rval;
660 
661 	dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
662 		oclk_en ? "en" : "dis");
663 
664 	rval = mmc_readl(host, REG_CLKCR);
665 	rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
666 
667 	if (oclk_en)
668 		rval |= SDXC_CARD_CLOCK_ON;
669 	if (host->cfg->mask_data0)
670 		rval |= SDXC_MASK_DATA0;
671 
672 	mmc_writel(host, REG_CLKCR, rval);
673 
674 	rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
675 	mmc_writel(host, REG_CMDR, rval);
676 
677 	do {
678 		rval = mmc_readl(host, REG_CMDR);
679 	} while (time_before(jiffies, expire) && (rval & SDXC_START));
680 
681 	/* clear irq status bits set by the command */
682 	mmc_writel(host, REG_RINTR,
683 		   mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
684 
685 	if (rval & SDXC_START) {
686 		dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
687 		return -EIO;
688 	}
689 
690 	if (host->cfg->mask_data0) {
691 		rval = mmc_readl(host, REG_CLKCR);
692 		mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
693 	}
694 
695 	return 0;
696 }
697 
698 static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
699 {
700 	if (!host->cfg->can_calibrate)
701 		return 0;
702 
703 	/*
704 	 * FIXME:
705 	 * This is not clear how the calibration is supposed to work
706 	 * yet. The best rate have been obtained by simply setting the
707 	 * delay to 0, as Allwinner does in its BSP.
708 	 *
709 	 * The only mode that doesn't have such a delay is HS400, that
710 	 * is in itself a TODO.
711 	 */
712 	writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
713 
714 	return 0;
715 }
716 
717 static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
718 				   struct mmc_ios *ios, u32 rate)
719 {
720 	int index;
721 
722 	/* clk controller delays not used under new timings mode */
723 	if (host->use_new_timings)
724 		return 0;
725 
726 	/* some old controllers don't support delays */
727 	if (!host->cfg->clk_delays)
728 		return 0;
729 
730 	/* determine delays */
731 	if (rate <= 400000) {
732 		index = SDXC_CLK_400K;
733 	} else if (rate <= 25000000) {
734 		index = SDXC_CLK_25M;
735 	} else if (rate <= 52000000) {
736 		if (ios->timing != MMC_TIMING_UHS_DDR50 &&
737 		    ios->timing != MMC_TIMING_MMC_DDR52) {
738 			index = SDXC_CLK_50M;
739 		} else if (ios->bus_width == MMC_BUS_WIDTH_8) {
740 			index = SDXC_CLK_50M_DDR_8BIT;
741 		} else {
742 			index = SDXC_CLK_50M_DDR;
743 		}
744 	} else {
745 		dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
746 		return -EINVAL;
747 	}
748 
749 	clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
750 	clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
751 
752 	return 0;
753 }
754 
755 static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
756 				  struct mmc_ios *ios)
757 {
758 	struct mmc_host *mmc = host->mmc;
759 	long rate;
760 	u32 rval, clock = ios->clock, div = 1;
761 	int ret;
762 
763 	ret = sunxi_mmc_oclk_onoff(host, 0);
764 	if (ret)
765 		return ret;
766 
767 	/* Our clock is gated now */
768 	mmc->actual_clock = 0;
769 
770 	if (!ios->clock)
771 		return 0;
772 
773 	/*
774 	 * Under the old timing mode, 8 bit DDR requires the module
775 	 * clock to be double the card clock. Under the new timing
776 	 * mode, all DDR modes require a doubled module clock.
777 	 *
778 	 * We currently only support the standard MMC DDR52 mode.
779 	 * This block should be updated once support for other DDR
780 	 * modes is added.
781 	 */
782 	if (ios->timing == MMC_TIMING_MMC_DDR52 &&
783 	    (host->use_new_timings ||
784 	     ios->bus_width == MMC_BUS_WIDTH_8)) {
785 		div = 2;
786 		clock <<= 1;
787 	}
788 
789 	if (host->use_new_timings && host->cfg->ccu_has_timings_switch) {
790 		ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
791 		if (ret) {
792 			dev_err(mmc_dev(mmc),
793 				"error setting new timing mode\n");
794 			return ret;
795 		}
796 	}
797 
798 	rate = clk_round_rate(host->clk_mmc, clock);
799 	if (rate < 0) {
800 		dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
801 			clock, rate);
802 		return rate;
803 	}
804 	dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
805 		clock, rate);
806 
807 	/* setting clock rate */
808 	ret = clk_set_rate(host->clk_mmc, rate);
809 	if (ret) {
810 		dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
811 			rate, ret);
812 		return ret;
813 	}
814 
815 	/* set internal divider */
816 	rval = mmc_readl(host, REG_CLKCR);
817 	rval &= ~0xff;
818 	rval |= div - 1;
819 	mmc_writel(host, REG_CLKCR, rval);
820 
821 	/* update card clock rate to account for internal divider */
822 	rate /= div;
823 
824 	/*
825 	 * Configure the controller to use the new timing mode if needed.
826 	 * On controllers that only support the new timing mode, such as
827 	 * the eMMC controller on the A64, this register does not exist,
828 	 * and any writes to it are ignored.
829 	 */
830 	if (host->use_new_timings) {
831 		/* Don't touch the delay bits */
832 		rval = mmc_readl(host, REG_SD_NTSR);
833 		rval |= SDXC_2X_TIMING_MODE;
834 		mmc_writel(host, REG_SD_NTSR, rval);
835 	}
836 
837 	/* sunxi_mmc_clk_set_phase expects the actual card clock rate */
838 	ret = sunxi_mmc_clk_set_phase(host, ios, rate);
839 	if (ret)
840 		return ret;
841 
842 	ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
843 	if (ret)
844 		return ret;
845 
846 	/*
847 	 * FIXME:
848 	 *
849 	 * In HS400 we'll also need to calibrate the data strobe
850 	 * signal. This should only happen on the MMC2 controller (at
851 	 * least on the A64).
852 	 */
853 
854 	ret = sunxi_mmc_oclk_onoff(host, 1);
855 	if (ret)
856 		return ret;
857 
858 	/* And we just enabled our clock back */
859 	mmc->actual_clock = rate;
860 
861 	return 0;
862 }
863 
864 static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
865 				   unsigned char width)
866 {
867 	switch (width) {
868 	case MMC_BUS_WIDTH_1:
869 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
870 		break;
871 	case MMC_BUS_WIDTH_4:
872 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
873 		break;
874 	case MMC_BUS_WIDTH_8:
875 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
876 		break;
877 	}
878 }
879 
880 static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
881 {
882 	u32 rval;
883 
884 	/* set ddr mode */
885 	rval = mmc_readl(host, REG_GCTRL);
886 	if (ios->timing == MMC_TIMING_UHS_DDR50 ||
887 	    ios->timing == MMC_TIMING_MMC_DDR52)
888 		rval |= SDXC_DDR_MODE;
889 	else
890 		rval &= ~SDXC_DDR_MODE;
891 	mmc_writel(host, REG_GCTRL, rval);
892 
893 	host->ferror = sunxi_mmc_clk_set_rate(host, ios);
894 	/* Android code had a usleep_range(50000, 55000); here */
895 }
896 
897 static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
898 				 struct mmc_ios *ios)
899 {
900 	struct mmc_host *mmc = host->mmc;
901 
902 	switch (ios->power_mode) {
903 	case MMC_POWER_UP:
904 		dev_dbg(mmc_dev(mmc), "Powering card up\n");
905 
906 		if (!IS_ERR(mmc->supply.vmmc)) {
907 			host->ferror = mmc_regulator_set_ocr(mmc,
908 							     mmc->supply.vmmc,
909 							     ios->vdd);
910 			if (host->ferror)
911 				return;
912 		}
913 
914 		if (!IS_ERR(mmc->supply.vqmmc)) {
915 			host->ferror = regulator_enable(mmc->supply.vqmmc);
916 			if (host->ferror) {
917 				dev_err(mmc_dev(mmc),
918 					"failed to enable vqmmc\n");
919 				return;
920 			}
921 			host->vqmmc_enabled = true;
922 		}
923 		break;
924 
925 	case MMC_POWER_OFF:
926 		dev_dbg(mmc_dev(mmc), "Powering card off\n");
927 
928 		if (!IS_ERR(mmc->supply.vmmc))
929 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
930 
931 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
932 			regulator_disable(mmc->supply.vqmmc);
933 
934 		host->vqmmc_enabled = false;
935 		break;
936 
937 	default:
938 		dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
939 		break;
940 	}
941 }
942 
943 static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
944 {
945 	struct sunxi_mmc_host *host = mmc_priv(mmc);
946 
947 	sunxi_mmc_card_power(host, ios);
948 	sunxi_mmc_set_bus_width(host, ios->bus_width);
949 	sunxi_mmc_set_clk(host, ios);
950 }
951 
952 static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
953 {
954 	/* vqmmc regulator is available */
955 	if (!IS_ERR(mmc->supply.vqmmc))
956 		return mmc_regulator_set_vqmmc(mmc, ios);
957 
958 	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
959 	if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
960 		return 0;
961 
962 	return -EINVAL;
963 }
964 
965 static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
966 {
967 	struct sunxi_mmc_host *host = mmc_priv(mmc);
968 	unsigned long flags;
969 	u32 imask;
970 
971 	if (enable)
972 		pm_runtime_get_noresume(host->dev);
973 
974 	spin_lock_irqsave(&host->lock, flags);
975 
976 	imask = mmc_readl(host, REG_IMASK);
977 	if (enable) {
978 		host->sdio_imask = SDXC_SDIO_INTERRUPT;
979 		imask |= SDXC_SDIO_INTERRUPT;
980 	} else {
981 		host->sdio_imask = 0;
982 		imask &= ~SDXC_SDIO_INTERRUPT;
983 	}
984 	mmc_writel(host, REG_IMASK, imask);
985 	spin_unlock_irqrestore(&host->lock, flags);
986 
987 	if (!enable)
988 		pm_runtime_put_noidle(host->mmc->parent);
989 }
990 
991 static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
992 {
993 	struct sunxi_mmc_host *host = mmc_priv(mmc);
994 	mmc_writel(host, REG_HWRST, 0);
995 	udelay(10);
996 	mmc_writel(host, REG_HWRST, 1);
997 	udelay(300);
998 }
999 
1000 static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
1001 {
1002 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1003 	struct mmc_command *cmd = mrq->cmd;
1004 	struct mmc_data *data = mrq->data;
1005 	unsigned long iflags;
1006 	u32 imask = SDXC_INTERRUPT_ERROR_BIT;
1007 	u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
1008 	bool wait_dma = host->wait_dma;
1009 	int ret;
1010 
1011 	/* Check for set_ios errors (should never happen) */
1012 	if (host->ferror) {
1013 		mrq->cmd->error = host->ferror;
1014 		mmc_request_done(mmc, mrq);
1015 		return;
1016 	}
1017 
1018 	if (data) {
1019 		ret = sunxi_mmc_map_dma(host, data);
1020 		if (ret < 0) {
1021 			dev_err(mmc_dev(mmc), "map DMA failed\n");
1022 			cmd->error = ret;
1023 			data->error = ret;
1024 			mmc_request_done(mmc, mrq);
1025 			return;
1026 		}
1027 	}
1028 
1029 	if (cmd->opcode == MMC_GO_IDLE_STATE) {
1030 		cmd_val |= SDXC_SEND_INIT_SEQUENCE;
1031 		imask |= SDXC_COMMAND_DONE;
1032 	}
1033 
1034 	if (cmd->flags & MMC_RSP_PRESENT) {
1035 		cmd_val |= SDXC_RESP_EXPIRE;
1036 		if (cmd->flags & MMC_RSP_136)
1037 			cmd_val |= SDXC_LONG_RESPONSE;
1038 		if (cmd->flags & MMC_RSP_CRC)
1039 			cmd_val |= SDXC_CHECK_RESPONSE_CRC;
1040 
1041 		if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
1042 			cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
1043 
1044 			if (cmd->data->stop) {
1045 				imask |= SDXC_AUTO_COMMAND_DONE;
1046 				cmd_val |= SDXC_SEND_AUTO_STOP;
1047 			} else {
1048 				imask |= SDXC_DATA_OVER;
1049 			}
1050 
1051 			if (cmd->data->flags & MMC_DATA_WRITE)
1052 				cmd_val |= SDXC_WRITE;
1053 			else
1054 				wait_dma = true;
1055 		} else {
1056 			imask |= SDXC_COMMAND_DONE;
1057 		}
1058 	} else {
1059 		imask |= SDXC_COMMAND_DONE;
1060 	}
1061 
1062 	dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
1063 		cmd_val & 0x3f, cmd_val, cmd->arg, imask,
1064 		mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
1065 
1066 	spin_lock_irqsave(&host->lock, iflags);
1067 
1068 	if (host->mrq || host->manual_stop_mrq) {
1069 		spin_unlock_irqrestore(&host->lock, iflags);
1070 
1071 		if (data)
1072 			dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
1073 				     mmc_get_dma_dir(data));
1074 
1075 		dev_err(mmc_dev(mmc), "request already pending\n");
1076 		mrq->cmd->error = -EBUSY;
1077 		mmc_request_done(mmc, mrq);
1078 		return;
1079 	}
1080 
1081 	if (data) {
1082 		mmc_writel(host, REG_BLKSZ, data->blksz);
1083 		mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
1084 		sunxi_mmc_start_dma(host, data);
1085 	}
1086 
1087 	host->mrq = mrq;
1088 	host->wait_dma = wait_dma;
1089 	mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
1090 	mmc_writel(host, REG_CARG, cmd->arg);
1091 	mmc_writel(host, REG_CMDR, cmd_val);
1092 
1093 	spin_unlock_irqrestore(&host->lock, iflags);
1094 }
1095 
1096 static int sunxi_mmc_card_busy(struct mmc_host *mmc)
1097 {
1098 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1099 
1100 	return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
1101 }
1102 
1103 static const struct mmc_host_ops sunxi_mmc_ops = {
1104 	.request	 = sunxi_mmc_request,
1105 	.set_ios	 = sunxi_mmc_set_ios,
1106 	.get_ro		 = mmc_gpio_get_ro,
1107 	.get_cd		 = mmc_gpio_get_cd,
1108 	.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
1109 	.start_signal_voltage_switch = sunxi_mmc_volt_switch,
1110 	.hw_reset	 = sunxi_mmc_hw_reset,
1111 	.card_busy	 = sunxi_mmc_card_busy,
1112 };
1113 
1114 static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
1115 	[SDXC_CLK_400K]		= { .output = 180, .sample = 180 },
1116 	[SDXC_CLK_25M]		= { .output = 180, .sample =  75 },
1117 	[SDXC_CLK_50M]		= { .output =  90, .sample = 120 },
1118 	[SDXC_CLK_50M_DDR]	= { .output =  60, .sample = 120 },
1119 	/* Value from A83T "new timing mode". Works but might not be right. */
1120 	[SDXC_CLK_50M_DDR_8BIT]	= { .output =  90, .sample = 180 },
1121 };
1122 
1123 static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
1124 	[SDXC_CLK_400K]		= { .output = 180, .sample = 180 },
1125 	[SDXC_CLK_25M]		= { .output = 180, .sample =  75 },
1126 	[SDXC_CLK_50M]		= { .output = 150, .sample = 120 },
1127 	[SDXC_CLK_50M_DDR]	= { .output =  54, .sample =  36 },
1128 	[SDXC_CLK_50M_DDR_8BIT]	= { .output =  72, .sample =  72 },
1129 };
1130 
1131 static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
1132 	.idma_des_size_bits = 13,
1133 	.clk_delays = NULL,
1134 	.can_calibrate = false,
1135 };
1136 
1137 static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
1138 	.idma_des_size_bits = 16,
1139 	.clk_delays = NULL,
1140 	.can_calibrate = false,
1141 };
1142 
1143 static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
1144 	.idma_des_size_bits = 16,
1145 	.clk_delays = sunxi_mmc_clk_delays,
1146 	.can_calibrate = false,
1147 };
1148 
1149 static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
1150 	.idma_des_size_bits = 16,
1151 	.clk_delays = sunxi_mmc_clk_delays,
1152 	.can_calibrate = false,
1153 	.ccu_has_timings_switch = true,
1154 };
1155 
1156 static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
1157 	.idma_des_size_bits = 16,
1158 	.clk_delays = sun9i_mmc_clk_delays,
1159 	.can_calibrate = false,
1160 };
1161 
1162 static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
1163 	.idma_des_size_bits = 16,
1164 	.clk_delays = NULL,
1165 	.can_calibrate = true,
1166 	.mask_data0 = true,
1167 	.needs_new_timings = true,
1168 };
1169 
1170 static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
1171 	.idma_des_size_bits = 13,
1172 	.clk_delays = NULL,
1173 	.can_calibrate = true,
1174 	.needs_new_timings = true,
1175 };
1176 
1177 static const struct of_device_id sunxi_mmc_of_match[] = {
1178 	{ .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
1179 	{ .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
1180 	{ .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
1181 	{ .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
1182 	{ .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
1183 	{ .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
1184 	{ .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
1185 	{ /* sentinel */ }
1186 };
1187 MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
1188 
1189 static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
1190 {
1191 	int ret;
1192 
1193 	if (!IS_ERR(host->reset)) {
1194 		ret = reset_control_reset(host->reset);
1195 		if (ret) {
1196 			dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
1197 				ret);
1198 			return ret;
1199 		}
1200 	}
1201 
1202 	ret = clk_prepare_enable(host->clk_ahb);
1203 	if (ret) {
1204 		dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
1205 		goto error_assert_reset;
1206 	}
1207 
1208 	ret = clk_prepare_enable(host->clk_mmc);
1209 	if (ret) {
1210 		dev_err(host->dev, "Enable mmc clk err %d\n", ret);
1211 		goto error_disable_clk_ahb;
1212 	}
1213 
1214 	ret = clk_prepare_enable(host->clk_output);
1215 	if (ret) {
1216 		dev_err(host->dev, "Enable output clk err %d\n", ret);
1217 		goto error_disable_clk_mmc;
1218 	}
1219 
1220 	ret = clk_prepare_enable(host->clk_sample);
1221 	if (ret) {
1222 		dev_err(host->dev, "Enable sample clk err %d\n", ret);
1223 		goto error_disable_clk_output;
1224 	}
1225 
1226 	/*
1227 	 * Sometimes the controller asserts the irq on boot for some reason,
1228 	 * make sure the controller is in a sane state before enabling irqs.
1229 	 */
1230 	ret = sunxi_mmc_reset_host(host);
1231 	if (ret)
1232 		goto error_disable_clk_sample;
1233 
1234 	return 0;
1235 
1236 error_disable_clk_sample:
1237 	clk_disable_unprepare(host->clk_sample);
1238 error_disable_clk_output:
1239 	clk_disable_unprepare(host->clk_output);
1240 error_disable_clk_mmc:
1241 	clk_disable_unprepare(host->clk_mmc);
1242 error_disable_clk_ahb:
1243 	clk_disable_unprepare(host->clk_ahb);
1244 error_assert_reset:
1245 	if (!IS_ERR(host->reset))
1246 		reset_control_assert(host->reset);
1247 	return ret;
1248 }
1249 
1250 static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
1251 {
1252 	sunxi_mmc_reset_host(host);
1253 
1254 	clk_disable_unprepare(host->clk_sample);
1255 	clk_disable_unprepare(host->clk_output);
1256 	clk_disable_unprepare(host->clk_mmc);
1257 	clk_disable_unprepare(host->clk_ahb);
1258 
1259 	if (!IS_ERR(host->reset))
1260 		reset_control_assert(host->reset);
1261 }
1262 
1263 static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
1264 				      struct platform_device *pdev)
1265 {
1266 	int ret;
1267 
1268 	host->cfg = of_device_get_match_data(&pdev->dev);
1269 	if (!host->cfg)
1270 		return -EINVAL;
1271 
1272 	ret = mmc_regulator_get_supply(host->mmc);
1273 	if (ret)
1274 		return ret;
1275 
1276 	host->reg_base = devm_ioremap_resource(&pdev->dev,
1277 			      platform_get_resource(pdev, IORESOURCE_MEM, 0));
1278 	if (IS_ERR(host->reg_base))
1279 		return PTR_ERR(host->reg_base);
1280 
1281 	host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1282 	if (IS_ERR(host->clk_ahb)) {
1283 		dev_err(&pdev->dev, "Could not get ahb clock\n");
1284 		return PTR_ERR(host->clk_ahb);
1285 	}
1286 
1287 	host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
1288 	if (IS_ERR(host->clk_mmc)) {
1289 		dev_err(&pdev->dev, "Could not get mmc clock\n");
1290 		return PTR_ERR(host->clk_mmc);
1291 	}
1292 
1293 	if (host->cfg->clk_delays) {
1294 		host->clk_output = devm_clk_get(&pdev->dev, "output");
1295 		if (IS_ERR(host->clk_output)) {
1296 			dev_err(&pdev->dev, "Could not get output clock\n");
1297 			return PTR_ERR(host->clk_output);
1298 		}
1299 
1300 		host->clk_sample = devm_clk_get(&pdev->dev, "sample");
1301 		if (IS_ERR(host->clk_sample)) {
1302 			dev_err(&pdev->dev, "Could not get sample clock\n");
1303 			return PTR_ERR(host->clk_sample);
1304 		}
1305 	}
1306 
1307 	host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
1308 								"ahb");
1309 	if (PTR_ERR(host->reset) == -EPROBE_DEFER)
1310 		return PTR_ERR(host->reset);
1311 
1312 	ret = sunxi_mmc_enable(host);
1313 	if (ret)
1314 		return ret;
1315 
1316 	host->irq = platform_get_irq(pdev, 0);
1317 	if (host->irq <= 0) {
1318 		ret = -EINVAL;
1319 		goto error_disable_mmc;
1320 	}
1321 
1322 	return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
1323 			sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
1324 
1325 error_disable_mmc:
1326 	sunxi_mmc_disable(host);
1327 	return ret;
1328 }
1329 
1330 static int sunxi_mmc_probe(struct platform_device *pdev)
1331 {
1332 	struct sunxi_mmc_host *host;
1333 	struct mmc_host *mmc;
1334 	int ret;
1335 
1336 	mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
1337 	if (!mmc) {
1338 		dev_err(&pdev->dev, "mmc alloc host failed\n");
1339 		return -ENOMEM;
1340 	}
1341 	platform_set_drvdata(pdev, mmc);
1342 
1343 	host = mmc_priv(mmc);
1344 	host->dev = &pdev->dev;
1345 	host->mmc = mmc;
1346 	spin_lock_init(&host->lock);
1347 
1348 	ret = sunxi_mmc_resource_request(host, pdev);
1349 	if (ret)
1350 		goto error_free_host;
1351 
1352 	host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
1353 					  &host->sg_dma, GFP_KERNEL);
1354 	if (!host->sg_cpu) {
1355 		dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
1356 		ret = -ENOMEM;
1357 		goto error_free_host;
1358 	}
1359 
1360 	if (host->cfg->ccu_has_timings_switch) {
1361 		/*
1362 		 * Supports both old and new timing modes.
1363 		 * Try setting the clk to new timing mode.
1364 		 */
1365 		sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
1366 
1367 		/* And check the result */
1368 		ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
1369 		if (ret < 0) {
1370 			/*
1371 			 * For whatever reason we were not able to get
1372 			 * the current active mode. Default to old mode.
1373 			 */
1374 			dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
1375 			host->use_new_timings = false;
1376 		} else {
1377 			host->use_new_timings = !!ret;
1378 		}
1379 	} else if (host->cfg->needs_new_timings) {
1380 		/* Supports new timing mode only */
1381 		host->use_new_timings = true;
1382 	}
1383 
1384 	mmc->ops		= &sunxi_mmc_ops;
1385 	mmc->max_blk_count	= 8192;
1386 	mmc->max_blk_size	= 4096;
1387 	mmc->max_segs		= PAGE_SIZE / sizeof(struct sunxi_idma_des);
1388 	mmc->max_seg_size	= (1 << host->cfg->idma_des_size_bits);
1389 	mmc->max_req_size	= mmc->max_seg_size * mmc->max_segs;
1390 	/* 400kHz ~ 52MHz */
1391 	mmc->f_min		=   400000;
1392 	mmc->f_max		= 52000000;
1393 	mmc->caps	       |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1394 				  MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ;
1395 
1396 	/*
1397 	 * Some H5 devices do not have signal traces precise enough to
1398 	 * use HS DDR mode for their eMMC chips.
1399 	 *
1400 	 * We still enable HS DDR modes for all the other controller
1401 	 * variants that support them.
1402 	 */
1403 	if ((host->cfg->clk_delays || host->use_new_timings) &&
1404 	    !of_device_is_compatible(pdev->dev.of_node,
1405 				     "allwinner,sun50i-h5-emmc"))
1406 		mmc->caps      |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
1407 
1408 	ret = mmc_of_parse(mmc);
1409 	if (ret)
1410 		goto error_free_dma;
1411 
1412 	/*
1413 	 * If we don't support delay chains in the SoC, we can't use any
1414 	 * of the higher speed modes. Mask them out in case the device
1415 	 * tree specifies the properties for them, which gets added to
1416 	 * the caps by mmc_of_parse() above.
1417 	 */
1418 	if (!(host->cfg->clk_delays || host->use_new_timings)) {
1419 		mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR |
1420 			       MMC_CAP_1_2V_DDR | MMC_CAP_UHS);
1421 		mmc->caps2 &= ~MMC_CAP2_HS200;
1422 	}
1423 
1424 	/* TODO: This driver doesn't support HS400 mode yet */
1425 	mmc->caps2 &= ~MMC_CAP2_HS400;
1426 
1427 	ret = sunxi_mmc_init_host(host);
1428 	if (ret)
1429 		goto error_free_dma;
1430 
1431 	pm_runtime_set_active(&pdev->dev);
1432 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1433 	pm_runtime_use_autosuspend(&pdev->dev);
1434 	pm_runtime_enable(&pdev->dev);
1435 
1436 	ret = mmc_add_host(mmc);
1437 	if (ret)
1438 		goto error_free_dma;
1439 
1440 	dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
1441 		 mmc->max_req_size >> 10,
1442 		 host->use_new_timings ? ", uses new timings mode" : "");
1443 
1444 	return 0;
1445 
1446 error_free_dma:
1447 	dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1448 error_free_host:
1449 	mmc_free_host(mmc);
1450 	return ret;
1451 }
1452 
1453 static int sunxi_mmc_remove(struct platform_device *pdev)
1454 {
1455 	struct mmc_host	*mmc = platform_get_drvdata(pdev);
1456 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1457 
1458 	mmc_remove_host(mmc);
1459 	pm_runtime_force_suspend(&pdev->dev);
1460 	disable_irq(host->irq);
1461 	sunxi_mmc_disable(host);
1462 	dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1463 	mmc_free_host(mmc);
1464 
1465 	return 0;
1466 }
1467 
1468 #ifdef CONFIG_PM
1469 static int sunxi_mmc_runtime_resume(struct device *dev)
1470 {
1471 	struct mmc_host	*mmc = dev_get_drvdata(dev);
1472 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1473 	int ret;
1474 
1475 	ret = sunxi_mmc_enable(host);
1476 	if (ret)
1477 		return ret;
1478 
1479 	sunxi_mmc_init_host(host);
1480 	sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
1481 	sunxi_mmc_set_clk(host, &mmc->ios);
1482 	enable_irq(host->irq);
1483 
1484 	return 0;
1485 }
1486 
1487 static int sunxi_mmc_runtime_suspend(struct device *dev)
1488 {
1489 	struct mmc_host	*mmc = dev_get_drvdata(dev);
1490 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1491 
1492 	/*
1493 	 * When clocks are off, it's possible receiving
1494 	 * fake interrupts, which will stall the system.
1495 	 * Disabling the irq  will prevent this.
1496 	 */
1497 	disable_irq(host->irq);
1498 	sunxi_mmc_reset_host(host);
1499 	sunxi_mmc_disable(host);
1500 
1501 	return 0;
1502 }
1503 #endif
1504 
1505 static const struct dev_pm_ops sunxi_mmc_pm_ops = {
1506 	SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
1507 			   sunxi_mmc_runtime_resume,
1508 			   NULL)
1509 };
1510 
1511 static struct platform_driver sunxi_mmc_driver = {
1512 	.driver = {
1513 		.name	= "sunxi-mmc",
1514 		.of_match_table = of_match_ptr(sunxi_mmc_of_match),
1515 		.pm = &sunxi_mmc_pm_ops,
1516 	},
1517 	.probe		= sunxi_mmc_probe,
1518 	.remove		= sunxi_mmc_remove,
1519 };
1520 module_platform_driver(sunxi_mmc_driver);
1521 
1522 MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
1523 MODULE_LICENSE("GPL v2");
1524 MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
1525 MODULE_ALIAS("platform:sunxi-mmc");
1526