xref: /openbmc/linux/drivers/mmc/host/sunxi-mmc.c (revision 4e1a33b1)
1 /*
2  * Driver for sunxi SD/MMC host controllers
3  * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
4  * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
5  * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
6  * (C) Copyright 2013-2014 David Lanzend�rfer <david.lanzendoerfer@o2s.ch>
7  * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
8  * (C) Copyright 2017 Sootech SA
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of
13  * the License, or (at your option) any later version.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/io.h>
19 #include <linux/device.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/err.h>
23 
24 #include <linux/clk.h>
25 #include <linux/gpio.h>
26 #include <linux/platform_device.h>
27 #include <linux/spinlock.h>
28 #include <linux/scatterlist.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/reset.h>
32 #include <linux/regulator/consumer.h>
33 
34 #include <linux/of_address.h>
35 #include <linux/of_gpio.h>
36 #include <linux/of_platform.h>
37 
38 #include <linux/mmc/host.h>
39 #include <linux/mmc/sd.h>
40 #include <linux/mmc/sdio.h>
41 #include <linux/mmc/mmc.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/slot-gpio.h>
45 
46 /* register offset definitions */
47 #define SDXC_REG_GCTRL	(0x00) /* SMC Global Control Register */
48 #define SDXC_REG_CLKCR	(0x04) /* SMC Clock Control Register */
49 #define SDXC_REG_TMOUT	(0x08) /* SMC Time Out Register */
50 #define SDXC_REG_WIDTH	(0x0C) /* SMC Bus Width Register */
51 #define SDXC_REG_BLKSZ	(0x10) /* SMC Block Size Register */
52 #define SDXC_REG_BCNTR	(0x14) /* SMC Byte Count Register */
53 #define SDXC_REG_CMDR	(0x18) /* SMC Command Register */
54 #define SDXC_REG_CARG	(0x1C) /* SMC Argument Register */
55 #define SDXC_REG_RESP0	(0x20) /* SMC Response Register 0 */
56 #define SDXC_REG_RESP1	(0x24) /* SMC Response Register 1 */
57 #define SDXC_REG_RESP2	(0x28) /* SMC Response Register 2 */
58 #define SDXC_REG_RESP3	(0x2C) /* SMC Response Register 3 */
59 #define SDXC_REG_IMASK	(0x30) /* SMC Interrupt Mask Register */
60 #define SDXC_REG_MISTA	(0x34) /* SMC Masked Interrupt Status Register */
61 #define SDXC_REG_RINTR	(0x38) /* SMC Raw Interrupt Status Register */
62 #define SDXC_REG_STAS	(0x3C) /* SMC Status Register */
63 #define SDXC_REG_FTRGL	(0x40) /* SMC FIFO Threshold Watermark Registe */
64 #define SDXC_REG_FUNS	(0x44) /* SMC Function Select Register */
65 #define SDXC_REG_CBCR	(0x48) /* SMC CIU Byte Count Register */
66 #define SDXC_REG_BBCR	(0x4C) /* SMC BIU Byte Count Register */
67 #define SDXC_REG_DBGC	(0x50) /* SMC Debug Enable Register */
68 #define SDXC_REG_HWRST	(0x78) /* SMC Card Hardware Reset for Register */
69 #define SDXC_REG_DMAC	(0x80) /* SMC IDMAC Control Register */
70 #define SDXC_REG_DLBA	(0x84) /* SMC IDMAC Descriptor List Base Addre */
71 #define SDXC_REG_IDST	(0x88) /* SMC IDMAC Status Register */
72 #define SDXC_REG_IDIE	(0x8C) /* SMC IDMAC Interrupt Enable Register */
73 #define SDXC_REG_CHDA	(0x90)
74 #define SDXC_REG_CBDA	(0x94)
75 
76 /* New registers introduced in A64 */
77 #define SDXC_REG_A12A		0x058 /* SMC Auto Command 12 Register */
78 #define SDXC_REG_SD_NTSR	0x05C /* SMC New Timing Set Register */
79 #define SDXC_REG_DRV_DL		0x140 /* Drive Delay Control Register */
80 #define SDXC_REG_SAMP_DL_REG	0x144 /* SMC sample delay control */
81 #define SDXC_REG_DS_DL_REG	0x148 /* SMC data strobe delay control */
82 
83 #define mmc_readl(host, reg) \
84 	readl((host)->reg_base + SDXC_##reg)
85 #define mmc_writel(host, reg, value) \
86 	writel((value), (host)->reg_base + SDXC_##reg)
87 
88 /* global control register bits */
89 #define SDXC_SOFT_RESET			BIT(0)
90 #define SDXC_FIFO_RESET			BIT(1)
91 #define SDXC_DMA_RESET			BIT(2)
92 #define SDXC_INTERRUPT_ENABLE_BIT	BIT(4)
93 #define SDXC_DMA_ENABLE_BIT		BIT(5)
94 #define SDXC_DEBOUNCE_ENABLE_BIT	BIT(8)
95 #define SDXC_POSEDGE_LATCH_DATA		BIT(9)
96 #define SDXC_DDR_MODE			BIT(10)
97 #define SDXC_MEMORY_ACCESS_DONE		BIT(29)
98 #define SDXC_ACCESS_DONE_DIRECT		BIT(30)
99 #define SDXC_ACCESS_BY_AHB		BIT(31)
100 #define SDXC_ACCESS_BY_DMA		(0 << 31)
101 #define SDXC_HARDWARE_RESET \
102 	(SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
103 
104 /* clock control bits */
105 #define SDXC_MASK_DATA0			BIT(31)
106 #define SDXC_CARD_CLOCK_ON		BIT(16)
107 #define SDXC_LOW_POWER_ON		BIT(17)
108 
109 /* bus width */
110 #define SDXC_WIDTH1			0
111 #define SDXC_WIDTH4			1
112 #define SDXC_WIDTH8			2
113 
114 /* smc command bits */
115 #define SDXC_RESP_EXPIRE		BIT(6)
116 #define SDXC_LONG_RESPONSE		BIT(7)
117 #define SDXC_CHECK_RESPONSE_CRC		BIT(8)
118 #define SDXC_DATA_EXPIRE		BIT(9)
119 #define SDXC_WRITE			BIT(10)
120 #define SDXC_SEQUENCE_MODE		BIT(11)
121 #define SDXC_SEND_AUTO_STOP		BIT(12)
122 #define SDXC_WAIT_PRE_OVER		BIT(13)
123 #define SDXC_STOP_ABORT_CMD		BIT(14)
124 #define SDXC_SEND_INIT_SEQUENCE		BIT(15)
125 #define SDXC_UPCLK_ONLY			BIT(21)
126 #define SDXC_READ_CEATA_DEV		BIT(22)
127 #define SDXC_CCS_EXPIRE			BIT(23)
128 #define SDXC_ENABLE_BIT_BOOT		BIT(24)
129 #define SDXC_ALT_BOOT_OPTIONS		BIT(25)
130 #define SDXC_BOOT_ACK_EXPIRE		BIT(26)
131 #define SDXC_BOOT_ABORT			BIT(27)
132 #define SDXC_VOLTAGE_SWITCH	        BIT(28)
133 #define SDXC_USE_HOLD_REGISTER	        BIT(29)
134 #define SDXC_START			BIT(31)
135 
136 /* interrupt bits */
137 #define SDXC_RESP_ERROR			BIT(1)
138 #define SDXC_COMMAND_DONE		BIT(2)
139 #define SDXC_DATA_OVER			BIT(3)
140 #define SDXC_TX_DATA_REQUEST		BIT(4)
141 #define SDXC_RX_DATA_REQUEST		BIT(5)
142 #define SDXC_RESP_CRC_ERROR		BIT(6)
143 #define SDXC_DATA_CRC_ERROR		BIT(7)
144 #define SDXC_RESP_TIMEOUT		BIT(8)
145 #define SDXC_DATA_TIMEOUT		BIT(9)
146 #define SDXC_VOLTAGE_CHANGE_DONE	BIT(10)
147 #define SDXC_FIFO_RUN_ERROR		BIT(11)
148 #define SDXC_HARD_WARE_LOCKED		BIT(12)
149 #define SDXC_START_BIT_ERROR		BIT(13)
150 #define SDXC_AUTO_COMMAND_DONE		BIT(14)
151 #define SDXC_END_BIT_ERROR		BIT(15)
152 #define SDXC_SDIO_INTERRUPT		BIT(16)
153 #define SDXC_CARD_INSERT		BIT(30)
154 #define SDXC_CARD_REMOVE		BIT(31)
155 #define SDXC_INTERRUPT_ERROR_BIT \
156 	(SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
157 	 SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
158 	 SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
159 #define SDXC_INTERRUPT_DONE_BIT \
160 	(SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
161 	 SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
162 
163 /* status */
164 #define SDXC_RXWL_FLAG			BIT(0)
165 #define SDXC_TXWL_FLAG			BIT(1)
166 #define SDXC_FIFO_EMPTY			BIT(2)
167 #define SDXC_FIFO_FULL			BIT(3)
168 #define SDXC_CARD_PRESENT		BIT(8)
169 #define SDXC_CARD_DATA_BUSY		BIT(9)
170 #define SDXC_DATA_FSM_BUSY		BIT(10)
171 #define SDXC_DMA_REQUEST		BIT(31)
172 #define SDXC_FIFO_SIZE			16
173 
174 /* Function select */
175 #define SDXC_CEATA_ON			(0xceaa << 16)
176 #define SDXC_SEND_IRQ_RESPONSE		BIT(0)
177 #define SDXC_SDIO_READ_WAIT		BIT(1)
178 #define SDXC_ABORT_READ_DATA		BIT(2)
179 #define SDXC_SEND_CCSD			BIT(8)
180 #define SDXC_SEND_AUTO_STOPCCSD		BIT(9)
181 #define SDXC_CEATA_DEV_IRQ_ENABLE	BIT(10)
182 
183 /* IDMA controller bus mod bit field */
184 #define SDXC_IDMAC_SOFT_RESET		BIT(0)
185 #define SDXC_IDMAC_FIX_BURST		BIT(1)
186 #define SDXC_IDMAC_IDMA_ON		BIT(7)
187 #define SDXC_IDMAC_REFETCH_DES		BIT(31)
188 
189 /* IDMA status bit field */
190 #define SDXC_IDMAC_TRANSMIT_INTERRUPT		BIT(0)
191 #define SDXC_IDMAC_RECEIVE_INTERRUPT		BIT(1)
192 #define SDXC_IDMAC_FATAL_BUS_ERROR		BIT(2)
193 #define SDXC_IDMAC_DESTINATION_INVALID		BIT(4)
194 #define SDXC_IDMAC_CARD_ERROR_SUM		BIT(5)
195 #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM		BIT(8)
196 #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM	BIT(9)
197 #define SDXC_IDMAC_HOST_ABORT_INTERRUPT		BIT(10)
198 #define SDXC_IDMAC_IDLE				(0 << 13)
199 #define SDXC_IDMAC_SUSPEND			(1 << 13)
200 #define SDXC_IDMAC_DESC_READ			(2 << 13)
201 #define SDXC_IDMAC_DESC_CHECK			(3 << 13)
202 #define SDXC_IDMAC_READ_REQUEST_WAIT		(4 << 13)
203 #define SDXC_IDMAC_WRITE_REQUEST_WAIT		(5 << 13)
204 #define SDXC_IDMAC_READ				(6 << 13)
205 #define SDXC_IDMAC_WRITE			(7 << 13)
206 #define SDXC_IDMAC_DESC_CLOSE			(8 << 13)
207 
208 /*
209 * If the idma-des-size-bits of property is ie 13, bufsize bits are:
210 *  Bits  0-12: buf1 size
211 *  Bits 13-25: buf2 size
212 *  Bits 26-31: not used
213 * Since we only ever set buf1 size, we can simply store it directly.
214 */
215 #define SDXC_IDMAC_DES0_DIC	BIT(1)  /* disable interrupt on completion */
216 #define SDXC_IDMAC_DES0_LD	BIT(2)  /* last descriptor */
217 #define SDXC_IDMAC_DES0_FD	BIT(3)  /* first descriptor */
218 #define SDXC_IDMAC_DES0_CH	BIT(4)  /* chain mode */
219 #define SDXC_IDMAC_DES0_ER	BIT(5)  /* end of ring */
220 #define SDXC_IDMAC_DES0_CES	BIT(30) /* card error summary */
221 #define SDXC_IDMAC_DES0_OWN	BIT(31) /* 1-idma owns it, 0-host owns it */
222 
223 #define SDXC_CLK_400K		0
224 #define SDXC_CLK_25M		1
225 #define SDXC_CLK_50M		2
226 #define SDXC_CLK_50M_DDR	3
227 #define SDXC_CLK_50M_DDR_8BIT	4
228 
229 #define SDXC_2X_TIMING_MODE	BIT(31)
230 
231 #define SDXC_CAL_START		BIT(15)
232 #define SDXC_CAL_DONE		BIT(14)
233 #define SDXC_CAL_DL_SHIFT	8
234 #define SDXC_CAL_DL_SW_EN	BIT(7)
235 #define SDXC_CAL_DL_SW_SHIFT	0
236 #define SDXC_CAL_DL_MASK	0x3f
237 
238 #define SDXC_CAL_TIMEOUT	3	/* in seconds, 3s is enough*/
239 
240 struct sunxi_mmc_clk_delay {
241 	u32 output;
242 	u32 sample;
243 };
244 
245 struct sunxi_idma_des {
246 	__le32 config;
247 	__le32 buf_size;
248 	__le32 buf_addr_ptr1;
249 	__le32 buf_addr_ptr2;
250 };
251 
252 struct sunxi_mmc_cfg {
253 	u32 idma_des_size_bits;
254 	const struct sunxi_mmc_clk_delay *clk_delays;
255 
256 	/* does the IP block support autocalibration? */
257 	bool can_calibrate;
258 
259 	/* Does DATA0 needs to be masked while the clock is updated */
260 	bool mask_data0;
261 
262 	bool needs_new_timings;
263 };
264 
265 struct sunxi_mmc_host {
266 	struct mmc_host	*mmc;
267 	struct reset_control *reset;
268 	const struct sunxi_mmc_cfg *cfg;
269 
270 	/* IO mapping base */
271 	void __iomem	*reg_base;
272 
273 	/* clock management */
274 	struct clk	*clk_ahb;
275 	struct clk	*clk_mmc;
276 	struct clk	*clk_sample;
277 	struct clk	*clk_output;
278 
279 	/* irq */
280 	spinlock_t	lock;
281 	int		irq;
282 	u32		int_sum;
283 	u32		sdio_imask;
284 
285 	/* dma */
286 	dma_addr_t	sg_dma;
287 	void		*sg_cpu;
288 	bool		wait_dma;
289 
290 	struct mmc_request *mrq;
291 	struct mmc_request *manual_stop_mrq;
292 	int		ferror;
293 
294 	/* vqmmc */
295 	bool		vqmmc_enabled;
296 };
297 
298 static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
299 {
300 	unsigned long expire = jiffies + msecs_to_jiffies(250);
301 	u32 rval;
302 
303 	mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
304 	do {
305 		rval = mmc_readl(host, REG_GCTRL);
306 	} while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
307 
308 	if (rval & SDXC_HARDWARE_RESET) {
309 		dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
310 		return -EIO;
311 	}
312 
313 	return 0;
314 }
315 
316 static int sunxi_mmc_init_host(struct mmc_host *mmc)
317 {
318 	u32 rval;
319 	struct sunxi_mmc_host *host = mmc_priv(mmc);
320 
321 	if (sunxi_mmc_reset_host(host))
322 		return -EIO;
323 
324 	/*
325 	 * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
326 	 *
327 	 * TODO: sun9i has a larger FIFO and supports higher trigger values
328 	 */
329 	mmc_writel(host, REG_FTRGL, 0x20070008);
330 	/* Maximum timeout value */
331 	mmc_writel(host, REG_TMOUT, 0xffffffff);
332 	/* Unmask SDIO interrupt if needed */
333 	mmc_writel(host, REG_IMASK, host->sdio_imask);
334 	/* Clear all pending interrupts */
335 	mmc_writel(host, REG_RINTR, 0xffffffff);
336 	/* Debug register? undocumented */
337 	mmc_writel(host, REG_DBGC, 0xdeb);
338 	/* Enable CEATA support */
339 	mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
340 	/* Set DMA descriptor list base address */
341 	mmc_writel(host, REG_DLBA, host->sg_dma);
342 
343 	rval = mmc_readl(host, REG_GCTRL);
344 	rval |= SDXC_INTERRUPT_ENABLE_BIT;
345 	/* Undocumented, but found in Allwinner code */
346 	rval &= ~SDXC_ACCESS_DONE_DIRECT;
347 	mmc_writel(host, REG_GCTRL, rval);
348 
349 	return 0;
350 }
351 
352 static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
353 				    struct mmc_data *data)
354 {
355 	struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
356 	dma_addr_t next_desc = host->sg_dma;
357 	int i, max_len = (1 << host->cfg->idma_des_size_bits);
358 
359 	for (i = 0; i < data->sg_len; i++) {
360 		pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
361 					     SDXC_IDMAC_DES0_OWN |
362 					     SDXC_IDMAC_DES0_DIC);
363 
364 		if (data->sg[i].length == max_len)
365 			pdes[i].buf_size = 0; /* 0 == max_len */
366 		else
367 			pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
368 
369 		next_desc += sizeof(struct sunxi_idma_des);
370 		pdes[i].buf_addr_ptr1 =
371 			cpu_to_le32(sg_dma_address(&data->sg[i]));
372 		pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc);
373 	}
374 
375 	pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
376 	pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
377 					  SDXC_IDMAC_DES0_ER);
378 	pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
379 	pdes[i - 1].buf_addr_ptr2 = 0;
380 
381 	/*
382 	 * Avoid the io-store starting the idmac hitting io-mem before the
383 	 * descriptors hit the main-mem.
384 	 */
385 	wmb();
386 }
387 
388 static enum dma_data_direction sunxi_mmc_get_dma_dir(struct mmc_data *data)
389 {
390 	if (data->flags & MMC_DATA_WRITE)
391 		return DMA_TO_DEVICE;
392 	else
393 		return DMA_FROM_DEVICE;
394 }
395 
396 static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
397 			     struct mmc_data *data)
398 {
399 	u32 i, dma_len;
400 	struct scatterlist *sg;
401 
402 	dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
403 			     sunxi_mmc_get_dma_dir(data));
404 	if (dma_len == 0) {
405 		dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
406 		return -ENOMEM;
407 	}
408 
409 	for_each_sg(data->sg, sg, data->sg_len, i) {
410 		if (sg->offset & 3 || sg->length & 3) {
411 			dev_err(mmc_dev(host->mmc),
412 				"unaligned scatterlist: os %x length %d\n",
413 				sg->offset, sg->length);
414 			return -EINVAL;
415 		}
416 	}
417 
418 	return 0;
419 }
420 
421 static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
422 				struct mmc_data *data)
423 {
424 	u32 rval;
425 
426 	sunxi_mmc_init_idma_des(host, data);
427 
428 	rval = mmc_readl(host, REG_GCTRL);
429 	rval |= SDXC_DMA_ENABLE_BIT;
430 	mmc_writel(host, REG_GCTRL, rval);
431 	rval |= SDXC_DMA_RESET;
432 	mmc_writel(host, REG_GCTRL, rval);
433 
434 	mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
435 
436 	if (!(data->flags & MMC_DATA_WRITE))
437 		mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
438 
439 	mmc_writel(host, REG_DMAC,
440 		   SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
441 }
442 
443 static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
444 				       struct mmc_request *req)
445 {
446 	u32 arg, cmd_val, ri;
447 	unsigned long expire = jiffies + msecs_to_jiffies(1000);
448 
449 	cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
450 		  SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
451 
452 	if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
453 		cmd_val |= SD_IO_RW_DIRECT;
454 		arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
455 		      ((req->cmd->arg >> 28) & 0x7);
456 	} else {
457 		cmd_val |= MMC_STOP_TRANSMISSION;
458 		arg = 0;
459 	}
460 
461 	mmc_writel(host, REG_CARG, arg);
462 	mmc_writel(host, REG_CMDR, cmd_val);
463 
464 	do {
465 		ri = mmc_readl(host, REG_RINTR);
466 	} while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
467 		 time_before(jiffies, expire));
468 
469 	if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
470 		dev_err(mmc_dev(host->mmc), "send stop command failed\n");
471 		if (req->stop)
472 			req->stop->resp[0] = -ETIMEDOUT;
473 	} else {
474 		if (req->stop)
475 			req->stop->resp[0] = mmc_readl(host, REG_RESP0);
476 	}
477 
478 	mmc_writel(host, REG_RINTR, 0xffff);
479 }
480 
481 static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
482 {
483 	struct mmc_command *cmd = host->mrq->cmd;
484 	struct mmc_data *data = host->mrq->data;
485 
486 	/* For some cmds timeout is normal with sd/mmc cards */
487 	if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
488 		SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
489 				      cmd->opcode == SD_IO_RW_DIRECT))
490 		return;
491 
492 	dev_err(mmc_dev(host->mmc),
493 		"smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
494 		host->mmc->index, cmd->opcode,
495 		data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
496 		host->int_sum & SDXC_RESP_ERROR     ? " RE"     : "",
497 		host->int_sum & SDXC_RESP_CRC_ERROR  ? " RCE"    : "",
498 		host->int_sum & SDXC_DATA_CRC_ERROR  ? " DCE"    : "",
499 		host->int_sum & SDXC_RESP_TIMEOUT ? " RTO"    : "",
500 		host->int_sum & SDXC_DATA_TIMEOUT ? " DTO"    : "",
501 		host->int_sum & SDXC_FIFO_RUN_ERROR  ? " FE"     : "",
502 		host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL"     : "",
503 		host->int_sum & SDXC_START_BIT_ERROR ? " SBE"    : "",
504 		host->int_sum & SDXC_END_BIT_ERROR   ? " EBE"    : ""
505 		);
506 }
507 
508 /* Called in interrupt context! */
509 static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
510 {
511 	struct mmc_request *mrq = host->mrq;
512 	struct mmc_data *data = mrq->data;
513 	u32 rval;
514 
515 	mmc_writel(host, REG_IMASK, host->sdio_imask);
516 	mmc_writel(host, REG_IDIE, 0);
517 
518 	if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
519 		sunxi_mmc_dump_errinfo(host);
520 		mrq->cmd->error = -ETIMEDOUT;
521 
522 		if (data) {
523 			data->error = -ETIMEDOUT;
524 			host->manual_stop_mrq = mrq;
525 		}
526 
527 		if (mrq->stop)
528 			mrq->stop->error = -ETIMEDOUT;
529 	} else {
530 		if (mrq->cmd->flags & MMC_RSP_136) {
531 			mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
532 			mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
533 			mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
534 			mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
535 		} else {
536 			mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
537 		}
538 
539 		if (data)
540 			data->bytes_xfered = data->blocks * data->blksz;
541 	}
542 
543 	if (data) {
544 		mmc_writel(host, REG_IDST, 0x337);
545 		mmc_writel(host, REG_DMAC, 0);
546 		rval = mmc_readl(host, REG_GCTRL);
547 		rval |= SDXC_DMA_RESET;
548 		mmc_writel(host, REG_GCTRL, rval);
549 		rval &= ~SDXC_DMA_ENABLE_BIT;
550 		mmc_writel(host, REG_GCTRL, rval);
551 		rval |= SDXC_FIFO_RESET;
552 		mmc_writel(host, REG_GCTRL, rval);
553 		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
554 				     sunxi_mmc_get_dma_dir(data));
555 	}
556 
557 	mmc_writel(host, REG_RINTR, 0xffff);
558 
559 	host->mrq = NULL;
560 	host->int_sum = 0;
561 	host->wait_dma = false;
562 
563 	return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
564 }
565 
566 static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
567 {
568 	struct sunxi_mmc_host *host = dev_id;
569 	struct mmc_request *mrq;
570 	u32 msk_int, idma_int;
571 	bool finalize = false;
572 	bool sdio_int = false;
573 	irqreturn_t ret = IRQ_HANDLED;
574 
575 	spin_lock(&host->lock);
576 
577 	idma_int  = mmc_readl(host, REG_IDST);
578 	msk_int   = mmc_readl(host, REG_MISTA);
579 
580 	dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
581 		host->mrq, msk_int, idma_int);
582 
583 	mrq = host->mrq;
584 	if (mrq) {
585 		if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
586 			host->wait_dma = false;
587 
588 		host->int_sum |= msk_int;
589 
590 		/* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
591 		if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
592 				!(host->int_sum & SDXC_COMMAND_DONE))
593 			mmc_writel(host, REG_IMASK,
594 				   host->sdio_imask | SDXC_COMMAND_DONE);
595 		/* Don't wait for dma on error */
596 		else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
597 			finalize = true;
598 		else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
599 				!host->wait_dma)
600 			finalize = true;
601 	}
602 
603 	if (msk_int & SDXC_SDIO_INTERRUPT)
604 		sdio_int = true;
605 
606 	mmc_writel(host, REG_RINTR, msk_int);
607 	mmc_writel(host, REG_IDST, idma_int);
608 
609 	if (finalize)
610 		ret = sunxi_mmc_finalize_request(host);
611 
612 	spin_unlock(&host->lock);
613 
614 	if (finalize && ret == IRQ_HANDLED)
615 		mmc_request_done(host->mmc, mrq);
616 
617 	if (sdio_int)
618 		mmc_signal_sdio_irq(host->mmc);
619 
620 	return ret;
621 }
622 
623 static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
624 {
625 	struct sunxi_mmc_host *host = dev_id;
626 	struct mmc_request *mrq;
627 	unsigned long iflags;
628 
629 	spin_lock_irqsave(&host->lock, iflags);
630 	mrq = host->manual_stop_mrq;
631 	spin_unlock_irqrestore(&host->lock, iflags);
632 
633 	if (!mrq) {
634 		dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
635 		return IRQ_HANDLED;
636 	}
637 
638 	dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
639 
640 	/*
641 	 * We will never have more than one outstanding request,
642 	 * and we do not complete the request until after
643 	 * we've cleared host->manual_stop_mrq so we do not need to
644 	 * spin lock this function.
645 	 * Additionally we have wait states within this function
646 	 * so having it in a lock is a very bad idea.
647 	 */
648 	sunxi_mmc_send_manual_stop(host, mrq);
649 
650 	spin_lock_irqsave(&host->lock, iflags);
651 	host->manual_stop_mrq = NULL;
652 	spin_unlock_irqrestore(&host->lock, iflags);
653 
654 	mmc_request_done(host->mmc, mrq);
655 
656 	return IRQ_HANDLED;
657 }
658 
659 static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
660 {
661 	unsigned long expire = jiffies + msecs_to_jiffies(750);
662 	u32 rval;
663 
664 	dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
665 		oclk_en ? "en" : "dis");
666 
667 	rval = mmc_readl(host, REG_CLKCR);
668 	rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
669 
670 	if (oclk_en)
671 		rval |= SDXC_CARD_CLOCK_ON;
672 	if (host->cfg->mask_data0)
673 		rval |= SDXC_MASK_DATA0;
674 
675 	mmc_writel(host, REG_CLKCR, rval);
676 
677 	rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
678 	mmc_writel(host, REG_CMDR, rval);
679 
680 	do {
681 		rval = mmc_readl(host, REG_CMDR);
682 	} while (time_before(jiffies, expire) && (rval & SDXC_START));
683 
684 	/* clear irq status bits set by the command */
685 	mmc_writel(host, REG_RINTR,
686 		   mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
687 
688 	if (rval & SDXC_START) {
689 		dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
690 		return -EIO;
691 	}
692 
693 	if (host->cfg->mask_data0) {
694 		rval = mmc_readl(host, REG_CLKCR);
695 		mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
696 	}
697 
698 	return 0;
699 }
700 
701 static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
702 {
703 	if (!host->cfg->can_calibrate)
704 		return 0;
705 
706 	/*
707 	 * FIXME:
708 	 * This is not clear how the calibration is supposed to work
709 	 * yet. The best rate have been obtained by simply setting the
710 	 * delay to 0, as Allwinner does in its BSP.
711 	 *
712 	 * The only mode that doesn't have such a delay is HS400, that
713 	 * is in itself a TODO.
714 	 */
715 	writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
716 
717 	return 0;
718 }
719 
720 static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
721 				   struct mmc_ios *ios, u32 rate)
722 {
723 	int index;
724 
725 	if (!host->cfg->clk_delays)
726 		return 0;
727 
728 	/* determine delays */
729 	if (rate <= 400000) {
730 		index = SDXC_CLK_400K;
731 	} else if (rate <= 25000000) {
732 		index = SDXC_CLK_25M;
733 	} else if (rate <= 52000000) {
734 		if (ios->timing != MMC_TIMING_UHS_DDR50 &&
735 		    ios->timing != MMC_TIMING_MMC_DDR52) {
736 			index = SDXC_CLK_50M;
737 		} else if (ios->bus_width == MMC_BUS_WIDTH_8) {
738 			index = SDXC_CLK_50M_DDR_8BIT;
739 		} else {
740 			index = SDXC_CLK_50M_DDR;
741 		}
742 	} else {
743 		dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
744 		return -EINVAL;
745 	}
746 
747 	clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
748 	clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
749 
750 	return 0;
751 }
752 
753 static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
754 				  struct mmc_ios *ios)
755 {
756 	struct mmc_host *mmc = host->mmc;
757 	long rate;
758 	u32 rval, clock = ios->clock;
759 	int ret;
760 
761 	ret = sunxi_mmc_oclk_onoff(host, 0);
762 	if (ret)
763 		return ret;
764 
765 	/* Our clock is gated now */
766 	mmc->actual_clock = 0;
767 
768 	if (!ios->clock)
769 		return 0;
770 
771 	/* 8 bit DDR requires a higher module clock */
772 	if (ios->timing == MMC_TIMING_MMC_DDR52 &&
773 	    ios->bus_width == MMC_BUS_WIDTH_8)
774 		clock <<= 1;
775 
776 	rate = clk_round_rate(host->clk_mmc, clock);
777 	if (rate < 0) {
778 		dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
779 			clock, rate);
780 		return rate;
781 	}
782 	dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
783 		clock, rate);
784 
785 	/* setting clock rate */
786 	ret = clk_set_rate(host->clk_mmc, rate);
787 	if (ret) {
788 		dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
789 			rate, ret);
790 		return ret;
791 	}
792 
793 	/* clear internal divider */
794 	rval = mmc_readl(host, REG_CLKCR);
795 	rval &= ~0xff;
796 	/* set internal divider for 8 bit eMMC DDR, so card clock is right */
797 	if (ios->timing == MMC_TIMING_MMC_DDR52 &&
798 	    ios->bus_width == MMC_BUS_WIDTH_8) {
799 		rval |= 1;
800 		rate >>= 1;
801 	}
802 	mmc_writel(host, REG_CLKCR, rval);
803 
804 	if (host->cfg->needs_new_timings)
805 		mmc_writel(host, REG_SD_NTSR, SDXC_2X_TIMING_MODE);
806 
807 	ret = sunxi_mmc_clk_set_phase(host, ios, rate);
808 	if (ret)
809 		return ret;
810 
811 	ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
812 	if (ret)
813 		return ret;
814 
815 	/*
816 	 * FIXME:
817 	 *
818 	 * In HS400 we'll also need to calibrate the data strobe
819 	 * signal. This should only happen on the MMC2 controller (at
820 	 * least on the A64).
821 	 */
822 
823 	ret = sunxi_mmc_oclk_onoff(host, 1);
824 	if (ret)
825 		return ret;
826 
827 	/* And we just enabled our clock back */
828 	mmc->actual_clock = rate;
829 
830 	return 0;
831 }
832 
833 static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
834 {
835 	struct sunxi_mmc_host *host = mmc_priv(mmc);
836 	u32 rval;
837 
838 	/* Set the power state */
839 	switch (ios->power_mode) {
840 	case MMC_POWER_ON:
841 		break;
842 
843 	case MMC_POWER_UP:
844 		if (!IS_ERR(mmc->supply.vmmc)) {
845 			host->ferror = mmc_regulator_set_ocr(mmc,
846 							     mmc->supply.vmmc,
847 							     ios->vdd);
848 			if (host->ferror)
849 				return;
850 		}
851 
852 		if (!IS_ERR(mmc->supply.vqmmc)) {
853 			host->ferror = regulator_enable(mmc->supply.vqmmc);
854 			if (host->ferror) {
855 				dev_err(mmc_dev(mmc),
856 					"failed to enable vqmmc\n");
857 				return;
858 			}
859 			host->vqmmc_enabled = true;
860 		}
861 
862 		host->ferror = sunxi_mmc_init_host(mmc);
863 		if (host->ferror)
864 			return;
865 
866 		dev_dbg(mmc_dev(mmc), "power on!\n");
867 		break;
868 
869 	case MMC_POWER_OFF:
870 		dev_dbg(mmc_dev(mmc), "power off!\n");
871 		sunxi_mmc_reset_host(host);
872 		if (!IS_ERR(mmc->supply.vmmc))
873 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
874 
875 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
876 			regulator_disable(mmc->supply.vqmmc);
877 		host->vqmmc_enabled = false;
878 		break;
879 	}
880 
881 	/* set bus width */
882 	switch (ios->bus_width) {
883 	case MMC_BUS_WIDTH_1:
884 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
885 		break;
886 	case MMC_BUS_WIDTH_4:
887 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
888 		break;
889 	case MMC_BUS_WIDTH_8:
890 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
891 		break;
892 	}
893 
894 	/* set ddr mode */
895 	rval = mmc_readl(host, REG_GCTRL);
896 	if (ios->timing == MMC_TIMING_UHS_DDR50 ||
897 	    ios->timing == MMC_TIMING_MMC_DDR52)
898 		rval |= SDXC_DDR_MODE;
899 	else
900 		rval &= ~SDXC_DDR_MODE;
901 	mmc_writel(host, REG_GCTRL, rval);
902 
903 	/* set up clock */
904 	if (ios->power_mode) {
905 		host->ferror = sunxi_mmc_clk_set_rate(host, ios);
906 		/* Android code had a usleep_range(50000, 55000); here */
907 	}
908 }
909 
910 static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
911 {
912 	/* vqmmc regulator is available */
913 	if (!IS_ERR(mmc->supply.vqmmc))
914 		return mmc_regulator_set_vqmmc(mmc, ios);
915 
916 	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
917 	if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
918 		return 0;
919 
920 	return -EINVAL;
921 }
922 
923 static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
924 {
925 	struct sunxi_mmc_host *host = mmc_priv(mmc);
926 	unsigned long flags;
927 	u32 imask;
928 
929 	spin_lock_irqsave(&host->lock, flags);
930 
931 	imask = mmc_readl(host, REG_IMASK);
932 	if (enable) {
933 		host->sdio_imask = SDXC_SDIO_INTERRUPT;
934 		imask |= SDXC_SDIO_INTERRUPT;
935 	} else {
936 		host->sdio_imask = 0;
937 		imask &= ~SDXC_SDIO_INTERRUPT;
938 	}
939 	mmc_writel(host, REG_IMASK, imask);
940 	spin_unlock_irqrestore(&host->lock, flags);
941 }
942 
943 static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
944 {
945 	struct sunxi_mmc_host *host = mmc_priv(mmc);
946 	mmc_writel(host, REG_HWRST, 0);
947 	udelay(10);
948 	mmc_writel(host, REG_HWRST, 1);
949 	udelay(300);
950 }
951 
952 static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
953 {
954 	struct sunxi_mmc_host *host = mmc_priv(mmc);
955 	struct mmc_command *cmd = mrq->cmd;
956 	struct mmc_data *data = mrq->data;
957 	unsigned long iflags;
958 	u32 imask = SDXC_INTERRUPT_ERROR_BIT;
959 	u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
960 	bool wait_dma = host->wait_dma;
961 	int ret;
962 
963 	/* Check for set_ios errors (should never happen) */
964 	if (host->ferror) {
965 		mrq->cmd->error = host->ferror;
966 		mmc_request_done(mmc, mrq);
967 		return;
968 	}
969 
970 	if (data) {
971 		ret = sunxi_mmc_map_dma(host, data);
972 		if (ret < 0) {
973 			dev_err(mmc_dev(mmc), "map DMA failed\n");
974 			cmd->error = ret;
975 			data->error = ret;
976 			mmc_request_done(mmc, mrq);
977 			return;
978 		}
979 	}
980 
981 	if (cmd->opcode == MMC_GO_IDLE_STATE) {
982 		cmd_val |= SDXC_SEND_INIT_SEQUENCE;
983 		imask |= SDXC_COMMAND_DONE;
984 	}
985 
986 	if (cmd->flags & MMC_RSP_PRESENT) {
987 		cmd_val |= SDXC_RESP_EXPIRE;
988 		if (cmd->flags & MMC_RSP_136)
989 			cmd_val |= SDXC_LONG_RESPONSE;
990 		if (cmd->flags & MMC_RSP_CRC)
991 			cmd_val |= SDXC_CHECK_RESPONSE_CRC;
992 
993 		if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
994 			cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
995 
996 			if (cmd->data->stop) {
997 				imask |= SDXC_AUTO_COMMAND_DONE;
998 				cmd_val |= SDXC_SEND_AUTO_STOP;
999 			} else {
1000 				imask |= SDXC_DATA_OVER;
1001 			}
1002 
1003 			if (cmd->data->flags & MMC_DATA_WRITE)
1004 				cmd_val |= SDXC_WRITE;
1005 			else
1006 				wait_dma = true;
1007 		} else {
1008 			imask |= SDXC_COMMAND_DONE;
1009 		}
1010 	} else {
1011 		imask |= SDXC_COMMAND_DONE;
1012 	}
1013 
1014 	dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
1015 		cmd_val & 0x3f, cmd_val, cmd->arg, imask,
1016 		mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
1017 
1018 	spin_lock_irqsave(&host->lock, iflags);
1019 
1020 	if (host->mrq || host->manual_stop_mrq) {
1021 		spin_unlock_irqrestore(&host->lock, iflags);
1022 
1023 		if (data)
1024 			dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
1025 				     sunxi_mmc_get_dma_dir(data));
1026 
1027 		dev_err(mmc_dev(mmc), "request already pending\n");
1028 		mrq->cmd->error = -EBUSY;
1029 		mmc_request_done(mmc, mrq);
1030 		return;
1031 	}
1032 
1033 	if (data) {
1034 		mmc_writel(host, REG_BLKSZ, data->blksz);
1035 		mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
1036 		sunxi_mmc_start_dma(host, data);
1037 	}
1038 
1039 	host->mrq = mrq;
1040 	host->wait_dma = wait_dma;
1041 	mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
1042 	mmc_writel(host, REG_CARG, cmd->arg);
1043 	mmc_writel(host, REG_CMDR, cmd_val);
1044 
1045 	spin_unlock_irqrestore(&host->lock, iflags);
1046 }
1047 
1048 static int sunxi_mmc_card_busy(struct mmc_host *mmc)
1049 {
1050 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1051 
1052 	return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
1053 }
1054 
1055 static struct mmc_host_ops sunxi_mmc_ops = {
1056 	.request	 = sunxi_mmc_request,
1057 	.set_ios	 = sunxi_mmc_set_ios,
1058 	.get_ro		 = mmc_gpio_get_ro,
1059 	.get_cd		 = mmc_gpio_get_cd,
1060 	.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
1061 	.start_signal_voltage_switch = sunxi_mmc_volt_switch,
1062 	.hw_reset	 = sunxi_mmc_hw_reset,
1063 	.card_busy	 = sunxi_mmc_card_busy,
1064 };
1065 
1066 static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
1067 	[SDXC_CLK_400K]		= { .output = 180, .sample = 180 },
1068 	[SDXC_CLK_25M]		= { .output = 180, .sample =  75 },
1069 	[SDXC_CLK_50M]		= { .output =  90, .sample = 120 },
1070 	[SDXC_CLK_50M_DDR]	= { .output =  60, .sample = 120 },
1071 	/* Value from A83T "new timing mode". Works but might not be right. */
1072 	[SDXC_CLK_50M_DDR_8BIT]	= { .output =  90, .sample = 180 },
1073 };
1074 
1075 static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
1076 	[SDXC_CLK_400K]		= { .output = 180, .sample = 180 },
1077 	[SDXC_CLK_25M]		= { .output = 180, .sample =  75 },
1078 	[SDXC_CLK_50M]		= { .output = 150, .sample = 120 },
1079 	[SDXC_CLK_50M_DDR]	= { .output =  54, .sample =  36 },
1080 	[SDXC_CLK_50M_DDR_8BIT]	= { .output =  72, .sample =  72 },
1081 };
1082 
1083 static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
1084 	.idma_des_size_bits = 13,
1085 	.clk_delays = NULL,
1086 	.can_calibrate = false,
1087 };
1088 
1089 static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
1090 	.idma_des_size_bits = 16,
1091 	.clk_delays = NULL,
1092 	.can_calibrate = false,
1093 };
1094 
1095 static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
1096 	.idma_des_size_bits = 16,
1097 	.clk_delays = sunxi_mmc_clk_delays,
1098 	.can_calibrate = false,
1099 };
1100 
1101 static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
1102 	.idma_des_size_bits = 16,
1103 	.clk_delays = sun9i_mmc_clk_delays,
1104 	.can_calibrate = false,
1105 };
1106 
1107 static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
1108 	.idma_des_size_bits = 16,
1109 	.clk_delays = NULL,
1110 	.can_calibrate = true,
1111 	.mask_data0 = true,
1112 	.needs_new_timings = true,
1113 };
1114 
1115 static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
1116 	.idma_des_size_bits = 13,
1117 	.clk_delays = NULL,
1118 	.can_calibrate = true,
1119 };
1120 
1121 static const struct of_device_id sunxi_mmc_of_match[] = {
1122 	{ .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
1123 	{ .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
1124 	{ .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
1125 	{ .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
1126 	{ .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
1127 	{ .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
1128 	{ /* sentinel */ }
1129 };
1130 MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
1131 
1132 static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
1133 				      struct platform_device *pdev)
1134 {
1135 	int ret;
1136 
1137 	host->cfg = of_device_get_match_data(&pdev->dev);
1138 	if (!host->cfg)
1139 		return -EINVAL;
1140 
1141 	ret = mmc_regulator_get_supply(host->mmc);
1142 	if (ret) {
1143 		if (ret != -EPROBE_DEFER)
1144 			dev_err(&pdev->dev, "Could not get vmmc supply\n");
1145 		return ret;
1146 	}
1147 
1148 	host->reg_base = devm_ioremap_resource(&pdev->dev,
1149 			      platform_get_resource(pdev, IORESOURCE_MEM, 0));
1150 	if (IS_ERR(host->reg_base))
1151 		return PTR_ERR(host->reg_base);
1152 
1153 	host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1154 	if (IS_ERR(host->clk_ahb)) {
1155 		dev_err(&pdev->dev, "Could not get ahb clock\n");
1156 		return PTR_ERR(host->clk_ahb);
1157 	}
1158 
1159 	host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
1160 	if (IS_ERR(host->clk_mmc)) {
1161 		dev_err(&pdev->dev, "Could not get mmc clock\n");
1162 		return PTR_ERR(host->clk_mmc);
1163 	}
1164 
1165 	if (host->cfg->clk_delays) {
1166 		host->clk_output = devm_clk_get(&pdev->dev, "output");
1167 		if (IS_ERR(host->clk_output)) {
1168 			dev_err(&pdev->dev, "Could not get output clock\n");
1169 			return PTR_ERR(host->clk_output);
1170 		}
1171 
1172 		host->clk_sample = devm_clk_get(&pdev->dev, "sample");
1173 		if (IS_ERR(host->clk_sample)) {
1174 			dev_err(&pdev->dev, "Could not get sample clock\n");
1175 			return PTR_ERR(host->clk_sample);
1176 		}
1177 	}
1178 
1179 	host->reset = devm_reset_control_get_optional(&pdev->dev, "ahb");
1180 	if (PTR_ERR(host->reset) == -EPROBE_DEFER)
1181 		return PTR_ERR(host->reset);
1182 
1183 	ret = clk_prepare_enable(host->clk_ahb);
1184 	if (ret) {
1185 		dev_err(&pdev->dev, "Enable ahb clk err %d\n", ret);
1186 		return ret;
1187 	}
1188 
1189 	ret = clk_prepare_enable(host->clk_mmc);
1190 	if (ret) {
1191 		dev_err(&pdev->dev, "Enable mmc clk err %d\n", ret);
1192 		goto error_disable_clk_ahb;
1193 	}
1194 
1195 	ret = clk_prepare_enable(host->clk_output);
1196 	if (ret) {
1197 		dev_err(&pdev->dev, "Enable output clk err %d\n", ret);
1198 		goto error_disable_clk_mmc;
1199 	}
1200 
1201 	ret = clk_prepare_enable(host->clk_sample);
1202 	if (ret) {
1203 		dev_err(&pdev->dev, "Enable sample clk err %d\n", ret);
1204 		goto error_disable_clk_output;
1205 	}
1206 
1207 	if (!IS_ERR(host->reset)) {
1208 		ret = reset_control_deassert(host->reset);
1209 		if (ret) {
1210 			dev_err(&pdev->dev, "reset err %d\n", ret);
1211 			goto error_disable_clk_sample;
1212 		}
1213 	}
1214 
1215 	/*
1216 	 * Sometimes the controller asserts the irq on boot for some reason,
1217 	 * make sure the controller is in a sane state before enabling irqs.
1218 	 */
1219 	ret = sunxi_mmc_reset_host(host);
1220 	if (ret)
1221 		goto error_assert_reset;
1222 
1223 	host->irq = platform_get_irq(pdev, 0);
1224 	return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
1225 			sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
1226 
1227 error_assert_reset:
1228 	if (!IS_ERR(host->reset))
1229 		reset_control_assert(host->reset);
1230 error_disable_clk_sample:
1231 	clk_disable_unprepare(host->clk_sample);
1232 error_disable_clk_output:
1233 	clk_disable_unprepare(host->clk_output);
1234 error_disable_clk_mmc:
1235 	clk_disable_unprepare(host->clk_mmc);
1236 error_disable_clk_ahb:
1237 	clk_disable_unprepare(host->clk_ahb);
1238 	return ret;
1239 }
1240 
1241 static int sunxi_mmc_probe(struct platform_device *pdev)
1242 {
1243 	struct sunxi_mmc_host *host;
1244 	struct mmc_host *mmc;
1245 	int ret;
1246 
1247 	mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
1248 	if (!mmc) {
1249 		dev_err(&pdev->dev, "mmc alloc host failed\n");
1250 		return -ENOMEM;
1251 	}
1252 
1253 	host = mmc_priv(mmc);
1254 	host->mmc = mmc;
1255 	spin_lock_init(&host->lock);
1256 
1257 	ret = sunxi_mmc_resource_request(host, pdev);
1258 	if (ret)
1259 		goto error_free_host;
1260 
1261 	host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
1262 					  &host->sg_dma, GFP_KERNEL);
1263 	if (!host->sg_cpu) {
1264 		dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
1265 		ret = -ENOMEM;
1266 		goto error_free_host;
1267 	}
1268 
1269 	mmc->ops		= &sunxi_mmc_ops;
1270 	mmc->max_blk_count	= 8192;
1271 	mmc->max_blk_size	= 4096;
1272 	mmc->max_segs		= PAGE_SIZE / sizeof(struct sunxi_idma_des);
1273 	mmc->max_seg_size	= (1 << host->cfg->idma_des_size_bits);
1274 	mmc->max_req_size	= mmc->max_seg_size * mmc->max_segs;
1275 	/* 400kHz ~ 52MHz */
1276 	mmc->f_min		=   400000;
1277 	mmc->f_max		= 52000000;
1278 	mmc->caps	       |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1279 				  MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ;
1280 
1281 	if (host->cfg->clk_delays)
1282 		mmc->caps      |= MMC_CAP_1_8V_DDR;
1283 
1284 	ret = mmc_of_parse(mmc);
1285 	if (ret)
1286 		goto error_free_dma;
1287 
1288 	ret = mmc_add_host(mmc);
1289 	if (ret)
1290 		goto error_free_dma;
1291 
1292 	dev_info(&pdev->dev, "base:0x%p irq:%u\n", host->reg_base, host->irq);
1293 	platform_set_drvdata(pdev, mmc);
1294 	return 0;
1295 
1296 error_free_dma:
1297 	dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1298 error_free_host:
1299 	mmc_free_host(mmc);
1300 	return ret;
1301 }
1302 
1303 static int sunxi_mmc_remove(struct platform_device *pdev)
1304 {
1305 	struct mmc_host	*mmc = platform_get_drvdata(pdev);
1306 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1307 
1308 	mmc_remove_host(mmc);
1309 	disable_irq(host->irq);
1310 	sunxi_mmc_reset_host(host);
1311 
1312 	if (!IS_ERR(host->reset))
1313 		reset_control_assert(host->reset);
1314 
1315 	clk_disable_unprepare(host->clk_sample);
1316 	clk_disable_unprepare(host->clk_output);
1317 	clk_disable_unprepare(host->clk_mmc);
1318 	clk_disable_unprepare(host->clk_ahb);
1319 
1320 	dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1321 	mmc_free_host(mmc);
1322 
1323 	return 0;
1324 }
1325 
1326 static struct platform_driver sunxi_mmc_driver = {
1327 	.driver = {
1328 		.name	= "sunxi-mmc",
1329 		.of_match_table = of_match_ptr(sunxi_mmc_of_match),
1330 	},
1331 	.probe		= sunxi_mmc_probe,
1332 	.remove		= sunxi_mmc_remove,
1333 };
1334 module_platform_driver(sunxi_mmc_driver);
1335 
1336 MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
1337 MODULE_LICENSE("GPL v2");
1338 MODULE_AUTHOR("David Lanzend�rfer <david.lanzendoerfer@o2s.ch>");
1339 MODULE_ALIAS("platform:sunxi-mmc");
1340